JP2006077330A - Boiler steel with excellent electric weldability, and electric welded boiler steel pipe using the same - Google Patents

Boiler steel with excellent electric weldability, and electric welded boiler steel pipe using the same Download PDF

Info

Publication number
JP2006077330A
JP2006077330A JP2005307722A JP2005307722A JP2006077330A JP 2006077330 A JP2006077330 A JP 2006077330A JP 2005307722 A JP2005307722 A JP 2005307722A JP 2005307722 A JP2005307722 A JP 2005307722A JP 2006077330 A JP2006077330 A JP 2006077330A
Authority
JP
Japan
Prior art keywords
less
electric
steel
mass
erw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005307722A
Other languages
Japanese (ja)
Other versions
JP4377869B2 (en
Inventor
Taro Muraki
太郎 村木
Hiroshi Hasegawa
泰士 長谷川
Junichi Okamoto
潤一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005307722A priority Critical patent/JP4377869B2/en
Publication of JP2006077330A publication Critical patent/JP2006077330A/en
Application granted granted Critical
Publication of JP4377869B2 publication Critical patent/JP4377869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for electric welded boiler which exhibits high creep rupture strength on the high-temperature long-time side and is minimal in defects in an electric welded zone and excellent in electric weldability and also to provide a steel pipe using the same. <P>SOLUTION: The steel has a composition which contains, by mass, 0.01 to 0.20% C, 0.01 to 1.0% Si, 0.10 to 2.0% Mn and 0.5 to 3.5% Cr, also contains P, S and O limited to ≤0.030%, ≤0.010% and ≤0.020%, respectively, and has the balance Fe with inevitable impurities and in which the mass ratio of Si, Mn and Cr ranges from 0.005 to 1.5 in terms of the value of (Si%)/(Mn%+Cr%). Further, the melting point of a ternary mixed oxide consisting of SiO<SB>2</SB>, MnO and Cr<SB>2</SB>O<SB>3</SB>present in the steel is made to ≤1,600°C. As the result, the oxide causing the defects in the electric welded zone at electric welding can be melted and squeezed out as slag components. Therefore, the steel for electric welded boiler minimal in welding defects and excellent in electric weldability and also the electric welded boiler steel pipe using the steel and having excellent creep rupture strength and toughness can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ボイラ用鋼およびそれを使用した電縫ボイラ鋼管に関するものであり、さらに詳しくは高温・高圧環境下で使用するクリープ破断強度に優れ、かつ電縫溶接部特性に優れたボイラ用鋼および電縫溶接部特性に優れた電縫ボイラ鋼管に関するものである。   TECHNICAL FIELD The present invention relates to boiler steel and an electric-welded boiler steel pipe using the same, and more specifically, boiler steel excellent in creep rupture strength used in high-temperature and high-pressure environments and excellent in electric-welded welded portion characteristics. Further, the present invention relates to an ERW boiler steel pipe excellent in ERW welded portion characteristics.

一般に、ボイラ用、化学工業用、原子力用等の高温耐熱耐圧部材にはオーステナイト系ステンレス鋼、Cr含有量が9〜12%(%は重量%を意味する。以下同じ。)の高Crフェライト鋼、Cr含有量が2.25%以下の低Crフェライト鋼あるいは炭素鋼等の材料が用いられている。そして、これらは対象となる部材の使用温度、圧力等の使用環境と経済性を考慮して適宜選択される。   In general, high temperature heat and pressure resistant members for boilers, chemical industries, nuclear power, etc. are austenitic stainless steel, and Cr content is 9 to 12% (% means% by weight; the same applies hereinafter). A material such as low Cr ferritic steel or carbon steel having a Cr content of 2.25% or less is used. These are appropriately selected in consideration of the use environment such as the use temperature and pressure of the target member and the economy.

ところで、これら材料のうちのCr含有量が2.25%以下の低Crフェライト鋼の特徴としては、Crを含有しているため炭素鋼に比べて耐酸化性、高温耐食性および高温強度に優れることや、オーステナイト系ステンレス鋼に比べて格段に安価で、かつ熱膨張係数が小さくて応力腐食割れを起こさないこと、さらには高Crフェライト鋼に比べても安価であって靭性、熱伝導性および溶接性に優れることが挙げられる。   By the way, among these materials, as a feature of low Cr ferritic steel having a Cr content of 2.25% or less, since it contains Cr, it is superior in oxidation resistance, high temperature corrosion resistance and high temperature strength compared to carbon steel. In addition, it is much cheaper than austenitic stainless steel, has a low thermal expansion coefficient and does not cause stress corrosion cracking, and is also cheaper than high Cr ferritic steel, toughness, thermal conductivity and welding It is excellent in property.

このような低Crフェライト鋼の代表例として、JISに規格されているSTBA20,STBA22,STBA23,STBA24等が知られており、通常Cr−Mo鋼と総称されている。また、高温強度を向上させる目的で析出強化元素であるV,Nb,Ti,Ta,Bを添加した低Crフェライト鋼が、下記特許文献1〜10等の公報で提案されている。   As typical examples of such low Cr ferritic steels, STBA20, STBA22, STBA23, STBA24, etc., which are standardized by JIS, are known, and are generally collectively referred to as Cr—Mo steel. In addition, low Cr ferritic steels to which precipitation strengthening elements V, Nb, Ti, Ta, and B are added for the purpose of improving high temperature strength are proposed in the following patent documents 1 to 10 and the like.

さらに、析出強化型の低Crフェライト鋼として、タービン用材料である1Cr−1Mo−0.25V鋼や、高速増殖炉用構造材料である2.25Cr−1Mo−Nb鋼等が良く知られている。しかし、これらの低Crフェライト鋼は、高Crフェライト鋼やオーステナイト系ステンレス鋼に比べると高温での耐酸化性、耐食性に劣り、また高温強度も低いため、550℃以上での使用に問題がある。   Further, as precipitation strengthening type low Cr ferritic steel, 1Cr-1Mo-0.25V steel, which is a material for turbines, 2.25Cr-1Mo-Nb steel, which is a structural material for fast breeder reactors, and the like are well known. . However, these low Cr ferritic steels are inferior in oxidation resistance and corrosion resistance at high temperatures and low in high temperature strength compared to high Cr ferritic steels and austenitic stainless steels, and have problems in use at 550 ° C. or higher. .

そこで、550℃以上の高温でのクリ−プ強度を改善するため、特許文献11,12には、Wの多量添加やCuとMgの複合添加を行った低Crフェライト鋼が提案されている。また、特許文献13には、550℃以上の高温でのクリープ強度を改善し、併せて高強度化に伴う靭性低下を抑制するため、N量を制限した上でBを微量添加した低Crフェライト鋼が提案されている。
特開昭57−131349号公報 特開昭57−131350号公報 特開昭61−166916号公報 特開昭62−54062号公報 特開昭63−18038号公報 特開昭63−62848号公報 特開昭64−68451号公報 特開平1−29853号公報 特開平3−64428号公報 特開平3−87332号公報 特開平2−217438号公報 特開平2−217439号公報 特開平4−268040号公報
Therefore, in order to improve the creep strength at a high temperature of 550 ° C. or higher, Patent Documents 11 and 12 propose low Cr ferritic steels to which a large amount of W is added or Cu and Mg are combined. Patent Document 13 discloses a low Cr ferrite in which a small amount of B is added after limiting the amount of N in order to improve the creep strength at a high temperature of 550 ° C. or higher and to suppress the decrease in toughness accompanying the increase in strength. Steel has been proposed.
JP 57-131349 A JP-A-57-131350 JP 61-166916 A Japanese Patent Laid-Open No. 62-54062 JP 63-18038 A Japanese Unexamined Patent Publication No. 63-62848 Japanese Unexamined Patent Publication No. 64-68451 JP-A-1-29853 Japanese Patent Laid-Open No. 3-64428 JP-A-3-87332 JP-A-2-217438 JP-A-2-217439 JP-A-4-268040

これらの材料を電縫溶接した場合、電縫溶接部には多数の高融点酸化物が生成し、電縫溶接時に内面に取り込まれ、電縫溶接部特性、つまり電縫溶接部の欠陥面積率が高く、550℃以上の高温環境下で電縫溶接部のクリープ破断強度、靭性等の特性が満足できず、電縫溶接鋼管用に適材とはいえない。従って、550℃以上の高温で使用可能な低Crフェライト鋼はシームレス鋼管である。しかしシームレス鋼管は、製造コストが高く、経済的にも有用な材料とはいえない。   When these materials are electro-welded, a large number of high-melting-point oxides are generated in the electro-welded weld and are taken into the inner surface during electro-welding. Therefore, it cannot satisfy the characteristics such as creep rupture strength and toughness of the ERW welded part in a high temperature environment of 550 ° C. or higher, and is not suitable for ERW welded steel pipe. Therefore, the low Cr ferritic steel that can be used at a high temperature of 550 ° C. or higher is a seamless steel pipe. However, seamless steel pipes are expensive to manufacture and are not economically useful materials.

このような技術の状況に鑑みて本発明は、Cr含有量が3.5%以下の低Crフェライト鋼(低Crフェライト系ボイラー用鋼)であって、高温長時間側で高いクリープ破断強度を示し、特に電縫溶接部に生成する欠陥の少ない電縫溶接性優れたボイラー用鋼、および該鋼を用いた電縫溶接部欠陥の少ない電縫ボイラー鋼管を提供することを目的とする。   In view of such a state of the art, the present invention is a low Cr ferritic steel (low Cr ferritic boiler steel) having a Cr content of 3.5% or less, and has a high creep rupture strength at a high temperature and a long time side. In particular, it is an object of the present invention to provide a steel for boilers having excellent electric resistance weldability with few defects generated in an electric resistance welded portion, and an electric resistance boiler steel pipe having less defects in electric resistance welded portions using the steel.

本発明は、550℃以上の高温でも使用可能であり、かつ、従来のシームレス鋼管と比較して製造コストが安く、経済的効果の高い電縫溶接ボイラー鋼管に関するものである。 本発明者らは低Crフェライト系ボイラ用鋼において、電縫溶接部に生成する欠陥が少なく、クリープ破断強度、靭性等の特性が良好な鋼および鋼管を得るために、鋭意検討を重ねた結果、電縫溶接時に生成するSiO2 ,MnOおよびCr2 3 の3元系混合酸化物が溶接欠陥の発生に大きく影響することがわかり、それぞれの混合酸化物の融点を低下させることにより、電縫溶接時に酸化物は溶融し、スラグ成分として溶接部からスクイズアウトでき、混合酸化物に起因する電縫溶接部の溶接欠陥が少なくなることが分かった。 The present invention relates to an electric resistance welded boiler steel pipe that can be used even at a high temperature of 550 ° C. or higher, has a low manufacturing cost, and has a high economic effect as compared with a conventional seamless steel pipe. As a result of intensive studies in order to obtain steels and steel pipes with low cracking strength, toughness and other properties, the present inventors have few defects generated in ERW welds in low Cr ferritic boiler steels. It can be seen that the ternary mixed oxides of SiO 2 , MnO and Cr 2 O 3 produced during electric resistance welding greatly affect the occurrence of welding defects, and by reducing the melting point of each mixed oxide, It was found that the oxide melts during sew welding and can be squeezed out from the weld as a slag component, resulting in fewer weld defects in the ERW weld due to the mixed oxide.

本発明は上記知見に基づいて成されたものであり、低Crフェライト系ボイラー用鋼についてはSiO2 ,MnOおよびCr2 3 の3元系状態図に基づいてSi,MnおよびCrの含有量の関係式を導き出し、それぞれの含有量を規定することでSiO2 ,MnOおよびCr2 3 の3元系混合酸化物の低融点化を図ることにより、電縫溶接部の溶接欠陥を低下させ、電縫溶接部クリープ特性、靭性の劣化を防止することを特徴とする。 The present invention has been made on the basis of the above knowledge, and the content of Si, Mn and Cr based on the ternary phase diagram of SiO 2 , MnO and Cr 2 O 3 for the low Cr ferritic boiler steel. By reducing the melting point of ternary mixed oxides of SiO 2 , MnO and Cr 2 O 3 by defining the respective contents, the weld defects in the ERW welds are reduced. Further, it is characterized by preventing deterioration of creep characteristics and toughness of an electric-welded welded portion.

すなわち、本発明は以下の構成を要旨とする。
(1)質量%で、
C :0.01〜0.20%、 Si :0.01〜1.0%、
Mn:0.10〜2.0% Cr:0.5〜3.5%を含有し、
P :0.030%以下、 S :0.010%以下、
O :0.020%以下に制限し、
(Si%)/(Mn%+Cr%)を0.005以上1.5以下とし、
残部がFeおよび不可避不純物からなると共に、電縫溶接時に生成するSiO2 、MnOおよびCr2 3 の混合酸化物の融点が1600℃以下であることを特徴とする電縫溶接性に優れたボイラ用鋼。
(2)上記(1)項に記載の電縫ボイラ用鋼に、さらに質量%で、
Nb:0.001〜0.5%、 V :0.02〜1.0%、
N :0.001〜0.08%、 B :0.0003〜0.01%、
Al:0.01%以下を含有し、さらに、
Mo:0.01〜2.0%、 W :0.01〜3.0%
の1種または2種を含有することを特徴とする。
(3)上記(1)または(2)項に記載のボイラ用鋼に、さらに質量%で、
Ti:0.001〜0.05%
を含有することを特徴とする。
(4)上記(1)または(2)項に記載のボイラ用鋼に、さらに質量%で、
Cu:0.1〜2.0%、 Ni:0.1〜2.0%、
Co:0.1〜2.0%
の1種または2種以上を含有することを特徴とする。
(5)上記(1)または(2)項に記載のボイラ用鋼に、さらに質量%で、
Ti:0.001〜0.05%を含有し、かつ
Cu:0.1〜2.0%、 Ni:0.1〜2.0%、
Co:0.1〜2.0%
の1種または2種以上を含有することを特徴とする。
(6)上記(1)〜(5)項のいずれか1項に記載のボイラ用鋼に、さらに質量%で、それぞれ0.001〜0.2%のLa,Ca,Y,Ce,Zr,Ta,Hf,Re,Pt,Ir,Pd,Sbのうち1種以上を含有することを特徴とする。
That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.01 to 0.20%, Si: 0.01 to 1.0%,
Mn: 0.10 to 2.0% Cr: 0.5 to 3.5%,
P: 0.030% or less, S: 0.010% or less,
O: limited to 0.020% or less,
(Si%) / (Mn% + Cr%) is set to 0.005 or more and 1.5 or less,
A boiler excellent in electro-weldability, wherein the balance is Fe and inevitable impurities, and the melting point of the mixed oxide of SiO 2 , MnO and Cr 2 O 3 produced during electro-welding is 1600 ° C. or less Steel.
(2) In addition to the electric resistance boiler steel described in the above item (1), further by mass%,
Nb: 0.001 to 0.5%, V: 0.02 to 1.0%,
N: 0.001 to 0.08%, B: 0.0003 to 0.01%,
Al: 0.01% or less, further,
Mo: 0.01-2.0%, W: 0.01-3.0%
It contains 1 type or 2 types of these.
(3) In the boiler steel according to the above (1) or (2), further in mass%,
Ti: 0.001 to 0.05%
It is characterized by containing.
(4) In the boiler steel according to the above (1) or (2), further in mass%,
Cu: 0.1-2.0%, Ni: 0.1-2.0%,
Co: 0.1 to 2.0%
1 type or 2 types or more are contained.
(5) In the boiler steel according to the above (1) or (2), further in mass%,
Ti: 0.001-0.05%, and Cu: 0.1-2.0%, Ni: 0.1-2.0%,
Co: 0.1 to 2.0%
1 type or 2 types or more are contained.
(6) In the boiler steel according to any one of the above items (1) to (5), 0.001 to 0.2% La, Ca, Y, Ce, Zr, It contains one or more of Ta, Hf, Re, Pt, Ir, Pd, and Sb.

(7)質量%で、
C :0.01〜0.20%、 Si:0.01〜1.0%、
Mn:0.10〜2.0%、 Cr:0.5〜3.5%を含有し、
P :0.030%以下、 S :0.010%以下、
O :0.020%以下に制限し、
(Si%)/(Mn%+Cr%)を0.005以上1.5以下とし、
残部がFeおよび不可避不純物からなると共に、電縫溶接時に生成するSiO2 、MnOおよびCr2 3 の3元系混合酸化物の面積率が0.1%以下である電縫溶接部からなることを特徴とする電縫溶接部の欠陥が少なく、クリープ破断強度および靭性に優れた電縫ボイラ鋼管。
(8)前記(7)項に記載の電縫ボイラ鋼管に、母材成分としてさらに、質量%で、
Nb:0.001〜0.5%、 V :0.02〜1.0%、
N :0.001〜0.08%、 B :0.0003〜0.01%、
Al:0.01%以下を含有し、さらに、
Mo:0.01〜2.0%、 W :0.01〜3.0%
の1種または2種を含有することを特徴とする。
(7) By mass%
C: 0.01-0.20%, Si: 0.01-1.0%,
Mn: 0.10 to 2.0%, Cr: 0.5 to 3.5%,
P: 0.030% or less, S: 0.010% or less,
O: limited to 0.020% or less,
(Si%) / (Mn% + Cr%) is set to 0.005 or more and 1.5 or less,
The balance is made of Fe and inevitable impurities, and the area ratio of the ternary mixed oxide of SiO 2 , MnO and Cr 2 O 3 produced during ERW welding is 0.1% or less. An ERW boiler steel pipe with few creep defects and excellent creep rupture strength and toughness.
(8) In the electric-resistance-welded boiler steel pipe according to (7), further, as a base material component, in mass%,
Nb: 0.001 to 0.5%, V: 0.02 to 1.0%,
N: 0.001 to 0.08%, B: 0.0003 to 0.01%,
Al: 0.01% or less, further,
Mo: 0.01-2.0%, W: 0.01-3.0%
It contains 1 type or 2 types of these.

(9)前記(8)項に記載の電縫ボイラ鋼管に、母材成分としてさらに、質量%で、
Ti:0.001〜0.05%
を含有することを特徴とする。
(10)前記(8)項に記載の電縫ボイラ鋼管に、母材成分としてさらに、質量%で、
Cu:0.1〜2.0%、 Ni:0.1〜2.0%、
Co:0.1〜2.0%
の1種または2種以上を含有することを特徴とする。
(11)前記(8)項に記載の電縫ボイラ鋼管に、母材成分としてさらに、質量%で、
Ti:0.001〜0.05%を含有し、かつ
Cu:0.1〜2.0%、 Ni:0.1〜2.0%、
Co:0.1〜2.0%
の1種または2種以上を含有することを特徴とする。
(12)前記(8)〜(11)項のいずれか1項に記載の電縫ボイラ鋼管に、母材成分としてさらに、質量%で、それぞれ0.001〜0.2%のLa,Ca,Y,Ce,Zr,Ta,Hf,Re,Pt,Ir,Pd,Sbのうち1種以上を含有することを特徴とする。
(9) In the electric-resistance-welded boiler steel pipe according to (8), in addition as a base material component, in mass%,
Ti: 0.001 to 0.05%
It is characterized by containing.
(10) In the electric-resistance-welded boiler steel pipe described in (8) above, in addition as a base material component in mass%,
Cu: 0.1-2.0%, Ni: 0.1-2.0%,
Co: 0.1 to 2.0%
1 type or 2 types or more are contained.
(11) In the electric-resistance-welded boiler steel pipe described in (8) above, in addition as a base material component in mass%,
Ti: 0.001-0.05%, and Cu: 0.1-2.0%, Ni: 0.1-2.0%,
Co: 0.1 to 2.0%
1 type or 2 types or more are contained.
(12) In the electric-resistance-welded boiler steel pipe according to any one of (8) to (11) above, 0.001 to 0.2% of La, Ca, It is characterized by containing one or more of Y, Ce, Zr, Ta, Hf, Re, Pt, Ir, Pd, and Sb.

以上のように本発明によれば、高温・高圧環境下で使用するクリープ破断強度に優れ、かつ電縫溶接性に優たたボイラ鋼および電縫溶接部特性に優れた電縫ボイラ鋼管を製造でき、かつ製造コストが安く経済的な材料であり、産業の発展に寄与するところが極めて大である。   As described above, according to the present invention, boiler steel excellent in creep rupture strength and excellent in ERW weldability and ERW boiler steel pipe excellent in ERW weldability is manufactured in a high temperature / high pressure environment. It is an economical material that can be manufactured at low cost and contributes greatly to industrial development.

以下、本発明を詳細に説明する。
本発明は、低Crフェライト系ボイラ用鋼において、特に電縫溶接した場合に、電縫溶接部の欠陥および特性に大きな影響を与える、SiO2 ,MnOとCr2 3 の3元系混合酸化物の融点を、3元系酸化物の状態図に基づき規定するSi,MnとCrの添加量の関係式によって制御し、電縫溶接部の溶接欠陥面積率を極めて低くし、電縫溶接部におけるクリープ特性、靭性等の劣化を防止することを特徴とする。
Hereinafter, the present invention will be described in detail.
The present invention is a ternary mixed oxidation of SiO 2 , MnO and Cr 2 O 3 which has a great influence on defects and characteristics of an ERW weld, particularly in low-Cr ferritic boiler steel, especially when ERW welding is performed. The melting point of the object is controlled by the relational expression of the amount of Si, Mn and Cr specified based on the phase diagram of the ternary oxide, and the weld defect area ratio of the ERW weld is extremely reduced. It is characterized by preventing deterioration of creep characteristics, toughness and the like.

本発明は、低Crフェライト系ボイラ用鋼及びこの鋼を用いた電縫溶接ボイラー鋼管を対象とするが、これらの成分組成を前記のように限定した理由は次の通りである。
Cは、Cr,Fe,W,Mo,V,Nbと炭化物を形成し、高温強度の向上に寄与すると共、それ自体がオーステナイト安定化元素として組織を安定化する。
本発明鋼は、焼きならし・焼きもどし処理によってフェライトとマルテンサイト、ベイナイトおよびパーライトの混合した組織になるが、C含有量はこれらの組織のバランス制御のためにも重要である。
そして、C含有量が0.01%未満では炭化物の析出量が不十分となると共に、δフェライト量が多くなりすぎて強度と靭性を損なう。一方、0.20%を超えると炭化物が過剰に析出し、鋼が著しく硬化して加工性と溶接性を損なう。従って、C含有量は0.01%以上0.20%以下とした。
The present invention is directed to a low Cr ferritic boiler steel and an electric resistance welded boiler steel pipe using this steel. The reasons for limiting the composition of these components as described above are as follows.
C forms carbides with Cr, Fe, W, Mo, V, and Nb, contributes to the improvement of high temperature strength, and stabilizes the structure itself as an austenite stabilizing element.
The steel of the present invention becomes a mixed structure of ferrite, martensite, bainite and pearlite by normalizing / tempering treatment, and the C content is also important for controlling the balance of these structures.
When the C content is less than 0.01%, the amount of precipitated carbide is insufficient, and the amount of δ ferrite is excessively increased, which impairs strength and toughness. On the other hand, if it exceeds 0.20%, carbides are excessively precipitated, the steel is markedly hardened, and workability and weldability are impaired. Therefore, the C content is set to 0.01% or more and 0.20% or less.

Siは、脱酸剤として作用し、また鋼の耐水蒸気酸化特性を高める元素である。Si含有量が0.01%未満では不十分であり、1.0%を超えると靭性が著しく低下し、クリープ破断強度に対しても有害である。従って、Si含有量は0.01%以上1.0%以下とした。   Si is an element that acts as a deoxidizer and enhances the steam oxidation resistance of steel. If the Si content is less than 0.01%, it is insufficient, and if it exceeds 1.0%, the toughness is remarkably lowered, which is also harmful to the creep rupture strength. Therefore, the Si content is set to 0.01% to 1.0%.

Mnは、脱酸のためのみでなく強度保持上も必要な元素である。効果を十分得るためには0.10%以上の添加が必要であり、2.0%を超すとクリープ破断強度が低下する場合がある。従ってMn含有量は0.10%以上2.0%以下とした。   Mn is an element necessary not only for deoxidation but also for maintaining strength. In order to obtain the effect sufficiently, 0.10% or more must be added, and if it exceeds 2.0%, the creep rupture strength may decrease. Therefore, the Mn content is set to 0.10% or more and 2.0% or less.

Crは、低Crフェライト鋼の耐酸化性と高温耐食性の改善のために不可欠な元素であり、Cr含有量が0.5%未満ではこれらの効果が得られない。しかし、Cr含有量が3.5%を超えると、靭性、溶接性、熱伝導性が低くなって低Crフェライト鋼の利点が少なくなる。従って、Cr含有量は0.5%以上3.5%以下とした。   Cr is an indispensable element for improving the oxidation resistance and high temperature corrosion resistance of the low Cr ferritic steel. If the Cr content is less than 0.5%, these effects cannot be obtained. However, if the Cr content exceeds 3.5%, the toughness, weldability and thermal conductivity are lowered, and the advantages of the low Cr ferritic steel are reduced. Therefore, the Cr content is set to 0.5% to 3.5%.

NbはC,Nと結合してNb(C,N)の微細炭窒化物を形成し、クリープ破断強度の上に寄与する。特に、625℃以下では安定な微細析出物を形成してクリープ破断強度を著しく改善する効果がある。さらに、結晶粒を微細化し、靭性
の改善にも有効である。しかし、Nb含有量が0.001%未満では上記効果が得られない。一方、Nb含有量が0.5%を超えると鋼が著しく硬化し、靭性、加工性、溶接性を損なうようになる。従って、Nb含有量は0.001%以上0.5%以下とした。
Nb combines with C and N to form a fine carbonitride of Nb (C, N) and contributes to the creep rupture strength. In particular, at 625 ° C. or lower, there is an effect of remarkably improving the creep rupture strength by forming a stable fine precipitate. Furthermore, it is effective in making crystal grains fine and improving toughness. However, if the Nb content is less than 0.001%, the above effect cannot be obtained. On the other hand, if the Nb content exceeds 0.5%, the steel is markedly hardened and the toughness, workability and weldability are impaired. Therefore, the Nb content is set to 0.001% to 0.5%.

Vは、Nbと同様にC,Nと結合してNV(C,N)の微細炭窒化物を形成し、高温長間側のクリープ破断強度の向上に寄与するが、その含有量が0.02%未満ではその効果は十分ではない。しかし、1.0%を超えてVが添加されるとV(C,N)の析出量が過剰となり、かえって強度と靭性を損なうようになる。従って、V含有量は0.02%以上1.0%以下とした。   V combines with C and N in the same manner as Nb to form a fine carbonitride of NV (C, N) and contributes to the improvement of the creep rupture strength on the high temperature long side. If it is less than 02%, the effect is not sufficient. However, when V is added exceeding 1.0%, the amount of precipitation of V (C, N) becomes excessive, and on the contrary, the strength and toughness are impaired. Therefore, the V content is set to 0.02% or more and 1.0% or less.

Nは、マトリックス中に固溶あるいは窒化物、炭窒化物として析出し、主にVN,NbNまたはそれぞれの炭窒化物の形態をとって固溶強化にも析出強化にも寄与する。本発明では、Tiと結合してTiN、さらにBと結合してBNとして析出し、それぞれクリープ破断強度向上に寄与する。0.001%未満の添加では強化への寄与がほとんどなく、また0.08%を超えて添加すると、母材靭性と強度の低下が著しい。従って、N含有量は0.001%以上0.08%以下とした。   N precipitates in the matrix as a solid solution or as a nitride or carbonitride, and mainly takes the form of VN, NbN or the respective carbonitrides and contributes to solid solution strengthening and precipitation strengthening. In this invention, it couple | bonds with Ti and precipitates as TiN, and also couple | bonds with B as BN, and each contributes to improvement in creep rupture strength. Addition of less than 0.001% hardly contributes to strengthening, and if added over 0.08%, the base material toughness and strength are significantly reduced. Therefore, the N content is set to be 0.001% or more and 0.08% or less.

Bは、次に示す効果を確保するために添加される元素である。Cと共偏析するることにより微細炭化物(具体的にはM236 炭化物)を安定化する。低Crフェライト鋼においては、高温で長時間加熱されるとM236 炭化物にWやMoが濃化することによってこれが粗大なM6 C炭化物へと変化し、クリ−プ強度および靭性の低下を招く。しかしながら、Bの添加によりM236 が安定化するので粗大炭化物M6 Cの析出が抑えられ、クリ−プ強度の低下が抑制される。しかし、B含有量が0.0003%未満では上記の効果が得られず、一方、B含有量が0.01%を超えるとBが結晶粒界に過剰に偏析し、Cとの共偏析によって炭化物が凝集粗大化する場合があり、その結果として加工性、靭性および溶接性を著しく損ねることになる。従って、B含有量は0.0003%以上0.01%以下とした。 B is an element added to ensure the following effects. By co-segregating with C, fine carbide (specifically, M 23 C 6 carbide) is stabilized. In low Cr ferritic steel, when heated for a long time at a high temperature, W and Mo concentrate in the M 23 C 6 carbide, which changes to coarse M 6 C carbide, resulting in a decrease in creep strength and toughness. Invite. However, since M 23 C 6 is stabilized by addition of B, precipitation of coarse carbide M 6 C is suppressed, and a decrease in creep strength is suppressed. However, when the B content is less than 0.0003%, the above effect cannot be obtained. On the other hand, when the B content exceeds 0.01%, B is segregated excessively at the crystal grain boundary, and co-segregation with C results. Carbide may agglomerate and coarsen, and as a result, workability, toughness and weldability are significantly impaired. Therefore, the B content is set to 0.0003% or more and 0.01% or less.

Alは、脱酸剤として有効であるが、特に0.01%を超えると高温強度が低下するで、0.01%以下とした。   Al is effective as a deoxidizing agent. However, when it exceeds 0.01%, the high-temperature strength decreases, so it was made 0.01% or less.

Moは、固溶強化と微細炭化物析出による強化の作用を有していてクリープ破断強度の向上に有効な元素であるので、必要に応じて含有できる。しかし、Mo含有量が0.01%未満では上記効果が得られず、一方、2.0%を超えるとその効果が飽和するばかりか、溶接性、靭性を損なうようになる。従って、Moを添加する場合には0.01%以上2.0%以下が好ましい。なお、MoとWとを複合添加する場合には、単独添加の場合に比べて鋼の強度が一段と向上し、特に高温クリープ破断強度が改善される。   Mo has an effect of strengthening by solid solution strengthening and fine carbide precipitation, and is an element effective for improving the creep rupture strength, and can be contained as necessary. However, if the Mo content is less than 0.01%, the above effect cannot be obtained. On the other hand, if it exceeds 2.0%, the effect is not only saturated but also weldability and toughness are impaired. Therefore, when adding Mo, 0.01% or more and 2.0% or less are preferable. In addition, when Mo and W are added in combination, the strength of the steel is further improved as compared with the case where it is added alone, and particularly, the high temperature creep rupture strength is improved.

Wは、固溶による強化作用と微細炭化物の析出による強化作用を発揮するので、クリープ破断強度の向上に有効な元素であるが、W含有量が0.01%未満ではこれらの効果は得られない。一方、W含有量が3.0%を超えると鋼が著しく硬化し、靭性、加工性、溶接性を損なう。従って、W含有量は0.01以上3.0%以下とした。なお、WはMoと複合添加することによって鋼の強度向上効果が顕著化することは既に述べた通りである。   W is an element effective for improving the creep rupture strength because it exerts a strengthening action by solid solution and a precipitation action of fine carbides, but these effects are obtained when the W content is less than 0.01%. Absent. On the other hand, if the W content exceeds 3.0%, the steel is markedly hardened and the toughness, workability and weldability are impaired. Therefore, the W content is set to 0.01 to 3.0%. In addition, as already described, W is combined with Mo and the effect of improving the strength of steel becomes remarkable.

P,S,Oは、本発明鋼においては不純物として混入してくるが、本発明の効果を発揮する上で、P,Sは強度を低下させ、Oは酸化物として析出して靭性を低下させるので、それぞれ上限値を0.030%、0.010%、0.020%とした。   P, S, and O are mixed as impurities in the steel of the present invention. In order to exert the effects of the present invention, P and S decrease the strength, and O precipitates as an oxide and decreases toughness. Therefore, the upper limit values were set to 0.030%, 0.010%, and 0.020%, respectively.

さらにTiは、CおよびNと結合してTi(C,N)を形成する。特に、Nとの結合力が強いため、固溶Nの固定に有効である。もっとも、後述するようにBも固溶Nを固定する作用を有しているが、Cとの結合形態はTiとは大きく異なる。即ち、BはFe,Cr,Wを主要成分とする炭化物中に偏析しやすく、過剰のBが存在する場合にはこれら炭化物の凝集粗大化を促進する場合がある。これに対し、TiはCと単独に結合すると共にTiNと複合析出するが、それ以上凝集粗大化が進むことはない。従って、Tiは、Nを有効に固定し、同時に炭化物の相安定性に影響しない点で好ましい。
Tiは、固溶N量を抑えることにより焼入れ性を向上させ、靭性,クリ−プ強度を向上させる。しかし、Ti含有量が0.001%未満では前記の効果が得られず、一方、その含有量が0.05%を超えるとTi(C,N)の析出量が多くなって靭性が著しく損なわれるようになる。従って、Tiの含有量は0.001〜0.05%が好ましい。
Further, Ti combines with C and N to form Ti (C, N). In particular, since the binding force with N is strong, it is effective for fixing solute N. Of course, as described later, B also has an action of fixing solute N, but the bonding form with C is greatly different from Ti. That is, B is easily segregated in carbides containing Fe, Cr, W as main components, and when excessive B exists, aggregation and coarsening of these carbides may be promoted. On the other hand, Ti binds to C alone and forms a composite precipitate with TiN, but coagulation coarsening does not proceed further. Therefore, Ti is preferable in that it fixes N effectively and does not affect the phase stability of the carbide at the same time.
Ti improves hardenability by suppressing the amount of dissolved N, and improves toughness and creep strength. However, if the Ti content is less than 0.001%, the above effect cannot be obtained. On the other hand, if the Ti content exceeds 0.05%, the precipitation amount of Ti (C, N) increases and the toughness is significantly impaired. It comes to be. Therefore, the Ti content is preferably 0.001 to 0.05%.

また、Cu,Ni,Coは、いずれも強力なオーステナイト安定化元素であり、特に大量のフェライト安定化元素、すなわちCr,W,Mo,Ti,Si等を添加する場合において、焼入れ組織もしくは焼入れ−焼きもどし組織を得るために必要であり、かつ有用である。同時にCuは高温耐食性の向上、Niは靭性の向上、Coは強度の向上にそれぞれ効果がある。いずれも0.1%以下では効果が不十分であり、2.0%を超えて添加する場合には、粗大な金属間化合物の析出もしくは粒界への偏析に起因する脆化が避けられない。従って、Cu,Ni,Co含有量はそれぞれ0.1%以上2.0%以下とした。   Cu, Ni, and Co are all strong austenite stabilizing elements, and particularly when a large amount of ferrite stabilizing elements, that is, Cr, W, Mo, Ti, Si, or the like is added, the quenched structure or the quenching- Necessary and useful for obtaining tempered tissue. At the same time, Cu is effective in improving high-temperature corrosion resistance, Ni is effective in improving toughness, and Co is effective in improving strength. In any case, the effect is insufficient at 0.1% or less, and when added over 2.0%, embrittlement due to precipitation of coarse intermetallic compounds or segregation at grain boundaries is inevitable. . Therefore, the Cu, Ni, and Co contents are 0.1% or more and 2.0% or less, respectively.

また、La,Ca,Y,Ce,Zr,Ta,Hf,Re,Pt,Ir,Pd,Sbのようなこれらの元素は、不純物元素(P、S、O)とそれらの析出物(介在物)の形態制御を目的として必要に応じて添加される。これらの元素のうち少なくとも一種を、それぞれの元素について0.001%以上添加することによって前記の不純物を安定で無害な析出物として固定し、強度と靭性を向上させる。0.001%未満ではその効果が無く、0.2%を超えると介在物が増加し、かえって靭性を損なうので、それぞれの含有量は0.001〜0.2%とする。   These elements such as La, Ca, Y, Ce, Zr, Ta, Hf, Re, Pt, Ir, Pd, and Sb are impurity elements (P, S, O) and their precipitates (inclusions). ) Is added as needed for the purpose of form control. By adding at least one of these elements in an amount of 0.001% or more for each element, the impurities are fixed as stable and harmless precipitates, and the strength and toughness are improved. If the content is less than 0.001%, the effect is not obtained. If the content exceeds 0.2%, inclusions increase and the toughness is deteriorated. Therefore, the respective contents are set to 0.001 to 0.2%.

本発明は、上記のように低Crフェライト系ボイラ用鋼の成分を規定すると共に、さらに、電縫溶接部に生成する欠陥が少なく、クリープ破断強度および靭性を良好にするために、SiO2 ,MnOおよびCr2 3 の3元系混合酸化物の生成元素であるSi,MnおよびCr含有量を下記(1)式で規定し制御する必要がある。
0.005≦(Si%)/(Mn%+Cr%)≦1.5 ・・・(1)
但し、(Si%),(Mn%),(Cr%)は夫々Si,Mn,Crの
含有量(質量%)を示す。
The present invention defines the components of the low Cr ferritic boiler steel as described above, and further has few defects generated in the ERW weld, and in order to improve the creep rupture strength and toughness, SiO 2 , The contents of Si, Mn, and Cr, which are generation elements of the ternary mixed oxide of MnO and Cr 2 O 3 , need to be defined and controlled by the following formula (1).
0.005 ≦ (Si%) / (Mn% + Cr%) ≦ 1.5 (1)
However, (Si%), (Mn%), and (Cr%) indicate the contents (mass%) of Si, Mn, and Cr, respectively.

本発明者らの実験から、低Crフェライト系ボイラ用鋼(Si−Mn−低Cr成分系)では、SiO2 ,MnOおよびCr2 3 の3元系混合酸化物が電縫溶接部の欠陥の発生に大きく影響するが、それらの混合酸化物の融点が1600℃以下であれば、電縫溶接時には電縫溶接部中に酸化物として残らず、溶融し、スラグ成分としてスクイズアウトされるため、電縫溶接部の溶接欠陥が生じにくいことが分かった。 Experiments of the present inventors, the low Cr ferritic boiler steel (Si-Mn- low Cr component), ternary mixed oxides of SiO 2, MnO and Cr 2 O 3 is seam welded weld defects If the melting point of these mixed oxides is 1600 ° C. or less, it will not remain as an oxide in the ERW weld but melt and squeeze out as a slag component. As a result, it was found that the weld defect of the electric-welding welded portion is less likely to occur.

これらの酸化物の状態図を考えた場合、SiO2 が多くなるほど混合酸化物は低融点化し、MnOおよび/またはCr2 3 が多くなるほど混合酸化物を高融点化する。本発明では、これらのことを考慮して、SiO2 ,MnOおよびCr2 3 の生成元素であるSi,MnおよびCrの添加量を上記(1)式によって規定することによって、電縫溶接部欠陥および特性に大きな影響を与える混合酸化物の生成を制御する。 When considering the phase diagram of these oxides, the higher the SiO 2 , the lower the melting point of the mixed oxide, and the higher the MnO and / or Cr 2 O 3 , the higher the melting point of the mixed oxide. In the present invention, in consideration of these matters, the addition amount of Si, Mn, and Cr, which are the formation elements of SiO 2 , MnO, and Cr 2 O 3 , is defined by the above formula (1). Controls the formation of mixed oxides that have a large impact on defects and properties.

図1は、一般ボイラ用鋼および低Crフェライト系ボイラー用鋼における(Si%)/(Mn%)、または(Si%)/(Mn%+Cr%)と電縫溶接部の溶接欠陥面積率の関係を本発明鋼と従来鋼の場合で比較したものを示し、また図2はそのときの電縫溶接部の靭性と溶接欠陥面積率の関係を示す。ここで、電縫溶接部の溶接欠陥面積率は、電縫溶接部を光学顕微鏡で観察し、一般電ボイラ用鋼については、SiO2 およびMnOを主とする混合酸化物の総面積を測定し、低Crフェライト系ボイラ用鋼については、SiO2 ,MnOおよびCr2 3 を主とするの混合酸化物を測定し、単位面積当たりの面積率を算出して、溶接欠陥面積率としたものである。また、靭性の測定は、電縫鋼管のC方向(円周方向C)に沿ってシャルピー試験片を採取し、100℃でシャルピー試験を行った。 FIG. 1 shows (Si%) / (Mn%) or (Si%) / (Mn% + Cr%) and the weld defect area ratio of an ERW weld in general boiler steel and low Cr ferritic boiler steel. FIG. 2 shows the relationship between the toughness of the ERW weld and the weld defect area ratio at that time. Here, the weld defect area ratio of the ERW welded portion is obtained by observing the ERW welded portion with an optical microscope and measuring the total area of the mixed oxide mainly composed of SiO 2 and MnO for steel for general electric boilers. For low-Cr ferritic boiler steel, mixed oxides mainly composed of SiO 2 , MnO and Cr 2 O 3 were measured, and the area ratio per unit area was calculated as the weld defect area ratio. It is. In addition, the toughness was measured by collecting a Charpy test piece along the C direction (circumferential direction C) of the ERW steel pipe and performing a Charpy test at 100 ° C.

図1および2から上記(1)式に示された(Si%)/(Mn%+Cr%)の値が0.005未満の場合、MnOおよび/またはCr2 3 の酸化物が電縫溶接部に残留し、溶接欠陥の原因となるため、電縫溶接部のクリープ破段強度および靭性が劣化する。また、上記式の値が1.5を超える場合、SiO2 の酸化物が電縫溶接部に残留し、溶接欠陥の原因となるため、電縫溶接部のクリープ破断強度および靭性が劣化する。従って本発明では、上記(1)式の上、下限値を夫々1.5,0.005に限定する。 When the value of (Si%) / (Mn% + Cr%) shown in the above formula (1) from FIGS. 1 and 2 is less than 0.005, the oxide of MnO and / or Cr 2 O 3 is electrowelded. Since it remains in the part and causes welding defects, the creep rupture strength and toughness of the ERW welded part deteriorate. On the other hand, when the value of the above formula exceeds 1.5, the oxide of SiO 2 remains in the ERW weld and causes a welding defect, so that the creep rupture strength and toughness of the ERW weld deteriorate. Therefore, in the present invention, the upper and lower limits of the above formula (1) are limited to 1.5 and 0.005, respectively.

また、上記の成分を有する本発明鋼を用いた電縫ボイラ鋼管は、その電縫溶接部中のSiO2 ,MnOおよびCr2 3 の3元系混合酸化物の面積率が0.1%以下であることが必要である。上記の3元系混合酸化物の面積率が0.1%を超えると電縫溶接部の溶接欠陥面積率が0.1%超になり、クリープ破段強度および靭性が劣化するため、上限を0.1%とする。 In addition, the ERW boiler steel pipe using the steel of the present invention having the above components has an area ratio of the ternary mixed oxide of SiO 2 , MnO and Cr 2 O 3 in the ERW welded portion of 0.1%. It is necessary that: If the area ratio of the ternary mixed oxide exceeds 0.1%, the weld defect area ratio of the ERW weld will exceed 0.1%, and the creep fracture strength and toughness will deteriorate. 0.1%.

表1から表3に示す化学成分の各鋼を150kg真空溶解炉で溶解し、鋳造して得たインゴットを1050〜1300℃で加熱、圧延し、厚さ3、5、10、15および20mmの板とした。圧延終了温度は全て900〜1000℃の間となるように制御した。次に熱処理は、全て固溶化熱処理を施し、さらに780℃×1hr→空冷の焼戻し処理をした。そして、熱処理後の各鋼の母材および電縫溶接部特性を、クリープ破断試験,シャルピー衝撃試験,溶接欠陥面積率測定により評価した。この場合、溶接欠陥面積率測定に用いた試験片の焼戻し処理前後での電縫溶接部破面酸化物形態等は変化しない。   Ingots obtained by melting and casting each steel having chemical components shown in Tables 1 to 3 in a 150 kg vacuum melting furnace are heated and rolled at 1050 to 1300 ° C., and have thicknesses of 3, 5, 10, 15, and 20 mm. A board was used. The rolling end temperature was controlled to be between 900 and 1000 ° C. Next, all the heat treatments were solution heat treatments, and further tempered by 780 ° C. × 1 hr → air cooling. Then, the base metal and ERW weld properties of each steel after the heat treatment were evaluated by creep rupture test, Charpy impact test, and weld defect area ratio measurement. In this case, the shape of the fracture surface oxide of the ERW weld before and after the tempering treatment of the test piece used for the measurement of the weld defect area ratio does not change.

なお、評価試験の中、クリープ破断試験にはφ6mm×GL30mmの引張試験片を用いた。また、550℃および600℃で最長15000hrの試験を行い、外挿して550℃および600℃×10万時間のクリープ破断強度を求めた。シャルピー衝撃試験では10mm×10mm×55mmの2mmVノッチ試験片(JIS4号試験片)を用い、延性−脆性破面遷移温度(vTrs)を求めた。溶接欠陥面積率測定は、100℃でシャルピー試験を行った試験片を用い、光学顕微鏡にて測定した。   In the evaluation test, a tensile test piece of φ6 mm × GL30 mm was used for the creep rupture test. Further, tests were conducted at 550 ° C. and 600 ° C. for a maximum of 15000 hr, and extrapolated to obtain creep rupture strength at 550 ° C. and 600 ° C. × 100,000 hours. In the Charpy impact test, a 10 mm × 10 mm × 55 mm 2 mm V notch test piece (JIS No. 4 test piece) was used to determine the ductile-brittle fracture surface transition temperature (vTrs). The weld defect area ratio was measured with an optical microscope using a test piece subjected to a Charpy test at 100 ° C.

表1および表2には本発明鋼の化学成分と評価結果、また表3には比較鋼の化学成分と評価結果を示す。本発明鋼(No.3〜5,7〜84)は比較鋼(No.101〜126)に比べていずれの特性も優れていることが判る。   Tables 1 and 2 show the chemical composition and evaluation results of the steel of the present invention, and Table 3 shows the chemical composition and evaluation results of the comparative steel. It can be seen that the steels of the present invention (Nos. 3 to 5, 7 to 84) are superior in all properties as compared with the comparative steels (Nos. 101 to 126).

比較鋼の鋼番105,109,113,121および125の場合、Si含有量が0.01%未満では鋼の耐水蒸気酸化特性が不十分であり、1.0%を超えると靭性が著しく低下し、クリープ破断強度に対しても有害である。
比較鋼の鋼番106,110,114,115,118,122および126の場合、強度を十分得るためには0.10%以上のMn添加が必要であり、2.0%を超すとクリープ破断強度が低下する場合がある。
比較鋼の鋼番103,107,111,115,119および123の場合、低Crフェライト鋼の耐酸化性と高温耐食性の改善のためにCrが不可欠な元素であり、Cr含有量が0.5%未満ではこれらの効果が得られない。一方、Cr含有量が3.5%を超えると、靭性、溶接性、熱伝導性が低くなって低Crフェライト鋼の利点が少なくなる。
In the case of comparative steel numbers 105, 109, 113, 121, and 125, if the Si content is less than 0.01%, the steam oxidation resistance of the steel is insufficient, and if it exceeds 1.0%, the toughness is significantly reduced. It is also harmful to the creep rupture strength.
In the case of steel numbers 106, 110, 114, 115, 118, 122 and 126, which are comparative steels, Mn addition of 0.10% or more is necessary to obtain sufficient strength. The strength may decrease.
In the case of steel numbers 103, 107, 111, 115, 119 and 123, which are comparative steels, Cr is an indispensable element for improving the oxidation resistance and high temperature corrosion resistance of the low Cr ferritic steel, and the Cr content is 0.5. If it is less than%, these effects cannot be obtained. On the other hand, if the Cr content exceeds 3.5%, the toughness, weldability and thermal conductivity are lowered, and the advantages of the low Cr ferritic steel are reduced.

比較鋼の鋼番102,104,108,112,116,120,123,124および125の場合、(Si%)/(Mn%+Cr%)の値が0.005未満の場合、MnOやCr2 3 の酸化物が電縫溶接部に残留し、溶接欠陥の原因となり、溶接部の強度、靭性等の特性が劣化する。また、(Si%)/(Mn%+Cr%)の値が1.5を超える場合、SiO2 の酸化物が電縫溶接部に残留し、溶接欠陥の原因となり、溶接部の強度、靭性等の特性が劣化する。
比較鋼の鋼番101,116,117,123,124および126の場合、C含有量が0.01%未満では炭化物の析出が不十分となると共に、δフェライト量が多くなり過ぎて強度と靭性を損なう。一方、0.20%を超えると炭化物が過剰に析出し、鋼が著しく硬化して加工性と溶接性を損なう。
In the case of the steel numbers 102, 104, 108, 112, 116, 120, 123, 124 and 125 of the comparative steel, when the value of (Si%) / (Mn% + Cr%) is less than 0.005, MnO or Cr 2 O 3 oxide remains in the ERW weld, causing weld defects and degrading properties such as strength and toughness of the weld. Further, when the value of (Si%) / (Mn% + Cr%) exceeds 1.5, the oxide of SiO 2 remains in the ERW weld, causing weld defects, the strength of the weld, toughness, etc. The characteristics of the will deteriorate.
In the case of steel numbers 101, 116, 117, 123, 124 and 126, which are comparative steels, if the C content is less than 0.01%, precipitation of carbides becomes insufficient, and the amount of δ ferrite increases so much that strength and toughness. Damage. On the other hand, if it exceeds 0.20%, carbides are excessively precipitated and the steel is markedly hardened, thereby impairing workability and weldability.

Figure 2006077330
Figure 2006077330

Figure 2006077330
Figure 2006077330

Figure 2006077330
Figure 2006077330

溶接欠陥面積率とSi,Mn,Cr量の関係を示す図。The figure which shows the relationship between a welding defect area rate and the amount of Si, Mn, and Cr.

溶接欠陥面積率と靭性の関係を示す図。The figure which shows the relationship between a weld defect area rate and toughness.

Claims (12)

質量%で、
C :0.01〜0.20%、
Si:0.01〜1.0%、
Mn:0.10〜2.0%
Cr:0.5〜3.5%
を含有し、
P :0.030%以下、
S :0.010%以下、
O :0.020%以下
に制限し、
(Si%)/(Mn%+Cr%)を0.005以上1.5以下
とし、残部がFeおよび不可避不純物からなると共に、電縫溶接時に生成するSiO2 、MnOおよびCr2 3 の混合酸化物の融点が1600℃以下であることを特徴とする電縫溶接性に優れたボイラ用鋼。
% By mass
C: 0.01-0.20%,
Si: 0.01 to 1.0%,
Mn: 0.10 to 2.0%
Cr: 0.5 to 3.5%
Containing
P: 0.030% or less,
S: 0.010% or less,
O: limited to 0.020% or less,
(Si%) / (Mn% + Cr%) is set to 0.005 or more and 1.5 or less, and the balance is composed of Fe and inevitable impurities, and mixed oxidation of SiO 2 , MnO and Cr 2 O 3 produced during ERW welding. Boiler steel excellent in electric resistance weldability, characterized in that the melting point of the product is 1600 ° C. or less.
質量%で、
C :0.01〜0.20%、
Si:0.01〜1.0%、
Mn:0.10〜2.0%
Cr:0.5〜3.5%、
Nb:0.001〜0.5%、
V :0.02〜1.0%、
N :0.001〜0.08%、
B :0.0003〜0.01%、
Al:0.01%以下
を含有し、さらに、
Mo:0.01〜2.0%、
W :0.01〜3.0%
の1種または2種を含有し、
P :0.030%以下、
S :0.010%以下、
O :0.020%以下
に制限し、
(Si%)/(Mn%+Cr%)を0.005以上1.5以下
とし、残部がFeおよび不可避不純物からなると共に、電縫溶接時に生成するSiO2 、MnOおよびCr2 3 の混合酸化物の融点が1600℃以下であることを特徴とする電縫溶接性に優れたボイラ用鋼。
% By mass
C: 0.01-0.20%,
Si: 0.01 to 1.0%,
Mn: 0.10 to 2.0%
Cr: 0.5 to 3.5%
Nb: 0.001 to 0.5%,
V: 0.02 to 1.0%,
N: 0.001 to 0.08%,
B: 0.0003 to 0.01%
Al: 0.01% or less, further,
Mo: 0.01 to 2.0%,
W: 0.01-3.0%
1 type or 2 types of
P: 0.030% or less,
S: 0.010% or less,
O: limited to 0.020% or less,
(Si%) / (Mn% + Cr%) is set to 0.005 or more and 1.5 or less, and the balance is composed of Fe and inevitable impurities, and mixed oxidation of SiO 2 , MnO and Cr 2 O 3 produced during ERW welding. Boiler steel excellent in electric resistance weldability, characterized in that the melting point of the product is 1600 ° C. or less.
質量%で、さらに
Ti:0.001〜0.05%
を含有することを特徴とする請求項2に記載の電縫溶接性に優れたボイラ用鋼。
In mass%, Ti: 0.001-0.05%
The boiler steel excellent in ERW weldability according to claim 2, comprising:
質量%で、さらに
Cu:0.1〜2.0%、
Ni:0.1〜2.0%、
Co:0.1〜2.0%
の1種または2種以上を含有することを特徴とする請求項2に記載の電縫溶接性に優れたボイラ用鋼。
% By mass, further Cu: 0.1-2.0%,
Ni: 0.1 to 2.0%,
Co: 0.1 to 2.0%
1 or 2 types or more of these are contained, The steel for boilers excellent in the electric-resistance-welding property of Claim 2 characterized by the above-mentioned.
質量%で、さらに
Ti:0.001〜0.05%
を含有し、かつ
Cu:0.1〜2.0%、
Ni:0.1〜2.0%、
Co:0.1〜2.0%
の1種または2種以上を含有することを特徴とする請求項2に記載の電縫溶接性に優れたボイラ用鋼。
In mass%, Ti: 0.001-0.05%
Cu: 0.1 to 2.0%,
Ni: 0.1 to 2.0%,
Co: 0.1 to 2.0%
1 or 2 types or more of these are contained, The steel for boilers excellent in the electric-resistance-welding property of Claim 2 characterized by the above-mentioned.
質量%でさらに、それぞれ0.001〜0.2%のLa,Ca,Y,Ce,Zr,Ta,Hf,Re,Pt,Ir,Pd,Sbのうち1種以上を含有することを特徴とする請求項2〜5のいずれか1項に記載の電縫溶接性に優れたボイラ用鋼。 It is characterized by further containing 0.001 to 0.2% of La, Ca, Y, Ce, Zr, Ta, Hf, Re, Pt, Ir, Pd, and Sb, respectively, by mass%. The steel for boilers which is excellent in electro-welding weldability according to any one of claims 2 to 5. 質量%で、
C :0.01〜0.20%、
Si:0.01〜1.0%、
Mn:0.10〜2.0%、
Cr:0.5〜3.5%
を含有し、
P :0.030%以下、
S :0.010%以下、
O :0.020%以下
に制限し、
(Si%)/(Mn%+Cr%)を0.005以上1.5以下
とし、残部がFeおよび不可避不純物からなると共に、電縫溶接時に生成するSiO2 、MnOおよびCr2 3 の3元系混合酸化物の面積率が0.1%以下である電縫溶接部からなることを特徴とする電縫溶接部の欠陥が少なく、クリープ破断強度および靭性に優れた電縫ボイラ鋼管。
% By mass
C: 0.01-0.20%,
Si: 0.01 to 1.0%,
Mn: 0.10 to 2.0%,
Cr: 0.5 to 3.5%
Containing
P: 0.030% or less,
S: 0.010% or less,
O: limited to 0.020% or less,
(Si%) / (Mn% + Cr%) is 0.005 or more and 1.5 or less, the balance is Fe and inevitable impurities, and the ternary of SiO 2 , MnO and Cr 2 O 3 produced during ERW welding An ERW boiler steel pipe having few creep defects and excellent creep rupture strength and toughness, comprising an ERW weld having an area ratio of a mixed oxide of 0.1% or less.
質量%で、
C :0.01〜0.20%、
Si:0.01〜1.0%、
Mn:0.10〜2.0%
Cr:0.5〜3.5%、
Nb:0.001〜0.5%、
V :0.02〜1.0%、
N :0.001〜0.08%、
B :0.0003〜0.01%、
Al:0.01%以下
を含有し、さらに、
Mo:0.01〜2.0%、
W :0.01〜3.0%
の1種または2種を含有し、
P :0.030%以下、
S :0.010%以下、
O :0.020%以下
に制限し、
(Si%)/(Mn%+Cr%)を0.005以上1.5以下
とし、残部がFeおよび不可避不純物からなると共に、電縫溶接部におけるSiO2 、MnOおよびCr2 3 の3元系混合酸化物の面積率が0.1%以下である電縫溶接部からなることを特徴とする電縫溶接部の欠陥が少なく、クリープ破断強度および靭性に優れた電縫ボイラ鋼管。
% By mass
C: 0.01-0.20%,
Si: 0.01 to 1.0%,
Mn: 0.10 to 2.0%
Cr: 0.5 to 3.5%
Nb: 0.001 to 0.5%,
V: 0.02 to 1.0%,
N: 0.001 to 0.08%,
B: 0.0003 to 0.01%
Al: 0.01% or less, further,
Mo: 0.01 to 2.0%,
W: 0.01-3.0%
1 type or 2 types of
P: 0.030% or less,
S: 0.010% or less,
O: limited to 0.020% or less,
(Si%) / (Mn% + Cr%) is 0.005 or more and 1.5 or less, the remainder is made of Fe and inevitable impurities, and the ternary system of SiO 2 , MnO and Cr 2 O 3 in the ERW weld An ERW boiler steel pipe having few defects in an ERW weld and having excellent creep rupture strength and toughness, characterized by comprising an ERW weld having an area ratio of mixed oxide of 0.1% or less.
母材成分としてさらに、質量%で、
Ti:0.001〜0.05%
を含有することを特徴とする請求項8に記載の電縫溶接部の欠陥が少なく、クリープ破断強度および靭性に優れた電縫ボイラ鋼管。
Furthermore, as a base material component in mass%,
Ti: 0.001 to 0.05%
The electric-welded boiler steel pipe according to claim 8, wherein the electric-welded welded portion has few defects and is excellent in creep rupture strength and toughness.
母材成分としてさらに、質量%で、
Cu:0.1〜2.0%、
Ni:0.1〜2.0%、
Co:0.1〜2.0%
の1種または2種以上を含有することを特徴とする請求項8に記載の電縫溶接部の欠陥が少なく、クリープ破断強度および靭性に優れた電縫ボイラ鋼管。
Furthermore, as a base material component in mass%,
Cu: 0.1 to 2.0%,
Ni: 0.1 to 2.0%,
Co: 0.1 to 2.0%
The electric-welded boiler steel pipe having few creep defects and excellent creep rupture strength and toughness according to claim 8.
母材成分としてさらに、質量%で、
Ti:0.001〜0.05%
を含有し、かつ
Cu:0.1〜2.0%、
Ni:0.1〜2.0%、
Co:0.1〜2.0%
の1種または2種以上を含有することを特徴とする請求項8に記載の電縫溶接部の欠陥が少なく、クリープ破断強度および靭性に優れた電縫ボイラ鋼管。
Furthermore, as a base material component in mass%,
Ti: 0.001 to 0.05%
Cu: 0.1 to 2.0%,
Ni: 0.1 to 2.0%,
Co: 0.1 to 2.0%
The electric-welded boiler steel pipe having few creep defects and excellent creep rupture strength and toughness according to claim 8.
母材成分としてさらに、質量%で、それぞれ0.001〜0.2%のLa,Ca,Y,Ce,Zr,Ta,Hf,Re,Pt,Ir,Pd,Sbのうち1種以上を含有することを特徴とする請求項8〜11のいずれか1項に記載の電縫溶接部の欠陥が少なく、クリープ破断強度および靭性に優れた電縫ボイラ鋼管。 Further, as a base material component, by mass%, 0.001 to 0.2% of La, Ca, Y, Ce, Zr, Ta, Hf, Re, Pt, Ir, Pd, and Sb are contained. The electric-welded boiler steel pipe according to any one of claims 8 to 11, wherein the electric-welded welded portion has few defects and is excellent in creep rupture strength and toughness.
JP2005307722A 1998-12-14 2005-10-21 Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same Expired - Fee Related JP4377869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307722A JP4377869B2 (en) 1998-12-14 2005-10-21 Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35432798 1998-12-14
JP2005307722A JP4377869B2 (en) 1998-12-14 2005-10-21 Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30470599A Division JP3745567B2 (en) 1998-12-14 1999-10-26 Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same

Publications (2)

Publication Number Publication Date
JP2006077330A true JP2006077330A (en) 2006-03-23
JP4377869B2 JP4377869B2 (en) 2009-12-02

Family

ID=36157015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307722A Expired - Fee Related JP4377869B2 (en) 1998-12-14 2005-10-21 Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same

Country Status (1)

Country Link
JP (1) JP4377869B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478988A1 (en) * 2011-01-20 2012-07-25 Alstom Technology Ltd Filler material for welding based on iron
WO2014045590A1 (en) 2012-09-24 2014-03-27 Jfeスチール株式会社 Electric-resistance-welded steel pipe exhibiting excellent hic resistance and low-temperature toughness at electric-resistance-welded parts, and production method therefor
JP2022510209A (en) * 2018-11-29 2022-01-26 ポスコ Medium- and high-temperature steel sheets with excellent high-temperature strength and their manufacturing methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036773B2 (en) * 2013-11-25 2016-11-30 Jfeスチール株式会社 Shielding device for welded part of bare pipe of ERW steel pipe and method for shielding welded part of bare pipe
JP6319427B2 (en) 2014-11-27 2018-05-09 Jfeスチール株式会社 ERW steel pipe and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478988A1 (en) * 2011-01-20 2012-07-25 Alstom Technology Ltd Filler material for welding based on iron
CN102601538A (en) * 2011-01-20 2012-07-25 阿尔斯通技术有限公司 Filler material for welding based on iron
CH704427A1 (en) * 2011-01-20 2012-07-31 Alstom Technology Ltd Welding additive material.
WO2014045590A1 (en) 2012-09-24 2014-03-27 Jfeスチール株式会社 Electric-resistance-welded steel pipe exhibiting excellent hic resistance and low-temperature toughness at electric-resistance-welded parts, and production method therefor
KR20150055027A (en) 2012-09-24 2015-05-20 제이에프이 스틸 가부시키가이샤 Electric-resistance-welded steel pipe exhibiting excellent hic resistance and low-temperature toughness at electric-resistance-welded parts, and production method therefor
US9873164B2 (en) 2012-09-24 2018-01-23 Jfe Steel Corporation Electric resistance welded steel pipe or steel tube having excellent HIC resistance and low-temperature toughness in electric resistance welded part, and method for manufacturing the same
JP2022510209A (en) * 2018-11-29 2022-01-26 ポスコ Medium- and high-temperature steel sheets with excellent high-temperature strength and their manufacturing methods
JP7277584B2 (en) 2018-11-29 2023-05-19 ポスコ カンパニー リミテッド Medium- and high-temperature steel sheet with excellent high-temperature strength and its manufacturing method

Also Published As

Publication number Publication date
JP4377869B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP4697357B1 (en) Austenitic heat-resistant alloy
JP3334217B2 (en) Low Cr ferritic heat resistant steel with excellent toughness and creep strength
JP2967886B2 (en) Low alloy heat resistant steel with excellent creep strength and toughness
EP1081244B1 (en) High strength, low alloy, heat resistant steel
KR20030011148A (en) Ferritic heat-resistant steel
JP4369612B2 (en) Steel plate for low quenching or normalizing type low alloy boiler steel pipe excellent in toughness, and method of manufacturing steel pipe using the same
JP3745567B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP4377869B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
EP0930127B1 (en) Welding materials for high-Cr steels
JP7485929B2 (en) Low alloy heat-resistant steel and manufacturing method thereof
JP3552517B2 (en) Method for welding high Cr ferritic heat resistant steel and method for manufacturing welded steel pipe
JP4542361B2 (en) Ferritic ERW boiler tube with excellent reheat cracking resistance and its manufacturing method
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
KR102692774B1 (en) Austenitic heat-resistant steel
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
JP7295418B2 (en) welding material
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP3570288B2 (en) High Cr martensitic heat resistant steel with excellent hot workability
JPH07204885A (en) Ferrite steel welding material having excellent high-temperature weld crack resistance
JP2002018593A (en) Welding material for low alloy heat resistant steel and weld metal
JP3418884B2 (en) High Cr ferritic heat resistant steel
EP0816523A1 (en) Low-Cr ferritic steels and low-Cr ferritic cast steels having excellent high-temperature strength and weldability
JP3567603B2 (en) High chromium ferritic steel with excellent toughness, weld joint creep characteristics and hot workability after PWHT
JP3475621B2 (en) High-strength ferritic heat-resistant steel with excellent weld toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees