JP2006076114A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2006076114A
JP2006076114A JP2004262148A JP2004262148A JP2006076114A JP 2006076114 A JP2006076114 A JP 2006076114A JP 2004262148 A JP2004262148 A JP 2004262148A JP 2004262148 A JP2004262148 A JP 2004262148A JP 2006076114 A JP2006076114 A JP 2006076114A
Authority
JP
Japan
Prior art keywords
time difference
correction
light beam
magnification
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004262148A
Other languages
Japanese (ja)
Other versions
JP4549139B2 (en
Inventor
Hidetoshi Yamashita
英俊 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004262148A priority Critical patent/JP4549139B2/en
Publication of JP2006076114A publication Critical patent/JP2006076114A/en
Application granted granted Critical
Publication of JP4549139B2 publication Critical patent/JP4549139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image forming apparatus making correction of a magnification in a main scanning direction by considering variation of each face of a polygon mirror. <P>SOLUTION: This image forming apparatus comprises: the polygon mirror 102 for deflecting in the main scanning direction a light beam modulated according to an image signal; a preceding synchronism detection sensor 105 and a following synchronism detection sensor 106 for detecting the light beam deflected by the polygon mirror 102 at two positions on the main scanning line, a time difference measurement section 107 for measuring a time difference from when one of the sensors 105, 106 detects the light beam until the other detects the light beam, and a magnification correction control section 110 for correcting a magnification of an image on a photosensitive body 104 in the main scanning direction according to the time difference measured by the time difference measurement section 107. The time difference measurement section 107 measures the time difference on each of the faces of the polygon mirror 102. The magnification correction control section 110 calculates a correction value on the basis of the time difference on each of faces of the polygon mirror 102 to make the correction according to the correction value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ビームを用いて像担持体上にカラー画像または複数色を重ね合わせる画像を形成する複写機、プリンタ、ファクシミリ、印刷機などの主走査方向の画像倍率を補正する画像形成装置に関する。   The present invention relates to an image forming apparatus for correcting an image magnification in a main scanning direction of a copying machine, a printer, a facsimile, a printing machine, or the like that forms a color image or an image in which a plurality of colors are superimposed on an image carrier using a light beam. .

特許文献1、2等に開示されている従来技術では、画像の色補正の精度を向上するために、ポリゴンミラーの任意の面に対して2つの光検出手段を用意し、それにより計測される時間差を測定し、その時間差を基にしてポリゴン面全てに反映する方式が取られてきた。しかし、その方法ではポリゴンミラー各面のばらつきを考慮していないため、誤った倍率補正を行うおそれがある。また時間差を読み取るときのばらつきを考慮していないため、正確な倍率補正を行えないという問題点があった。
特開2001−108921号公報 特開平8−136838号公報
In the prior art disclosed in Patent Documents 1 and 2 and the like, in order to improve the color correction accuracy of an image, two light detection means are prepared for an arbitrary surface of a polygon mirror, and measurement is performed thereby. A method has been adopted in which a time difference is measured and reflected on all polygon surfaces based on the time difference. However, since this method does not take into account variations on each surface of the polygon mirror, there is a risk of erroneous magnification correction. In addition, since the variation in reading the time difference is not taken into account, there is a problem that accurate magnification correction cannot be performed.
JP 2001-108921 A JP-A-8-136838

本発明では上記事情を鑑みて、ポリゴンミラー各面のばらつきを考慮した主走査方向の倍率補正を行う画像形成装置を提供することを課題とする。   In view of the above circumstances, it is an object of the present invention to provide an image forming apparatus that performs magnification correction in the main scanning direction in consideration of variations on each surface of a polygon mirror.

上記課題を解決する本発明の態様は、画像信号に応じて変調された光ビームを走査することによって像担持体上に画像を形成する画像形成装置において、画像信号に応じて変調された光ビームを主走査方向に偏向する偏向手段と、前記偏向手段により偏向された光ビームを主走査線上の2箇所でそれぞれ検出する2つの光ビーム検出手段と、2つの前記光ビーム検出手段のうちの一方が光ビームを検出してから2つの前記光ビーム検出手段のうちの他方が光ビームを検出するまでの時間差を計測する時間差計測手段と、前記時間差計測手段で計測した時間差により主走査方向の前記像担持体上の画像の倍率を補正する倍率補正手段を有し、前記時間差計測手段は、前記偏向手段の各面における時間差を計測し、前記倍率補正手段は、前記偏向手段の各面における時間差を基にして補正値を算出し、前記補正値による補正を行うものである。   According to an aspect of the present invention for solving the above-described problems, an image forming apparatus that forms an image on an image carrier by scanning a light beam modulated according to an image signal. One of the two light beam detecting means, a deflecting means for deflecting the light beam in the main scanning direction, two light beam detecting means for detecting the light beam deflected by the deflecting means at two locations on the main scanning line, respectively. A time difference measuring means for measuring a time difference from when the light beam is detected until the other of the two light beam detecting means detects the light beam, and the time difference measured by the time difference measuring means in the main scanning direction. A magnification correction unit configured to correct a magnification of an image on the image carrier, wherein the time difference measurement unit measures a time difference on each surface of the deflection unit, and the magnification correction unit includes the deflection Based on the time difference in the stage of each side calculates a correction value, performs a correction by the correction value.

ここで、前記倍率補正手段は、前記偏向手段の各面における時間差を基にした前記偏向手段の各面毎の補正値を算出し、前記偏向手段の各面において前記補正値による補正を行うことを特徴とする。すると、偏向手段の各面にばらつきがあっても同じ走査時間に補正することができる。   Here, the magnification correction unit calculates a correction value for each surface of the deflection unit based on a time difference in each surface of the deflection unit, and performs correction using the correction value on each surface of the deflection unit. It is characterized by. Then, even if there are variations in each surface of the deflecting means, it can be corrected to the same scanning time.

また、前記時間差計測手段は、前記偏向手段の各面における時間差を基にした前記偏向手段1回転分の平均値を算出し、前記倍率補正手段は、前記平均値を基にした補正値を算出し、前記補正値による補正を行うことを特徴とする。すると、偏向手段の各面の走査時間の総和値が大きくなる時など、時間差を計算・処理するときの負担を軽くすることができる。   The time difference measuring means calculates an average value for one rotation of the deflecting means based on a time difference on each surface of the deflecting means, and the magnification correcting means calculates a correction value based on the average value. The correction is performed using the correction value. As a result, it is possible to reduce the burden when calculating and processing the time difference, such as when the total value of the scanning time of each surface of the deflecting means becomes large.

一方、前記時間差計測手段は、前記偏向手段の各面における時間差を複数回計測するとき、複数回計測された前記時間差の前記偏向手段の各面における加重平均値を算出し、前記倍率補正手段は、前記偏向手段の各面における加重平均値を基にした前記偏向手段の各面毎の補正値を算出し、前記偏向手段の各面において前記補正値による補正を行うことを特徴とする。   On the other hand, when the time difference measuring unit measures the time difference on each surface of the deflection unit a plurality of times, the time difference measuring unit calculates a weighted average value on each surface of the deflection unit of the time difference measured a plurality of times, and the magnification correction unit A correction value for each surface of the deflecting unit is calculated based on a weighted average value on each surface of the deflecting unit, and correction using the correction value is performed on each surface of the deflecting unit.

また、前記時間差計測手段は、前記偏向手段の各面における時間差を複数回計測するとき、複数回計測された前記時間差の前記偏向手段1回転分の総和を算出し、前記偏向手段1回転分の総和を基にした加重平均値を算出し、前記倍率補正手段は、前記偏向手段1回転分の総和を基にした加重平均値を基にした補正値を算出し、前記補正値による補正を行うことを特徴とする。   In addition, when the time difference measuring unit measures the time difference on each surface of the deflecting unit a plurality of times, the time difference measuring unit calculates a sum of the time difference measured a plurality of times for one rotation of the deflecting unit, A weighted average value based on the total sum is calculated, and the magnification correction means calculates a correction value based on the weighted average value based on the total sum of the deflection means for one rotation, and performs correction using the correction value. It is characterized by that.

また、前記時間差計測手段は、前記偏向手段の各面における時間差を複数回計測するとき、複数回計測された前記偏向手段の各面における時間差を基にした前記偏向手段1回転分の平均値を算出し、前記偏向手段1回転分の平均値を基にした加重平均値を算出し、前記倍率補正手段は、前記偏向手段1回転分の平均値を基にした加重平均値を基にした補正値を算出し、前記補正値による補正を行うことを特徴とする。   Further, when the time difference measuring means measures the time difference on each surface of the deflecting means a plurality of times, an average value for one rotation of the deflecting means based on the time difference on each surface of the deflecting means measured a plurality of times is obtained. And calculating a weighted average value based on the average value for one rotation of the deflection means, and the magnification correction means corrects based on the weighted average value based on the average value for one rotation of the deflection means. A value is calculated, and correction using the correction value is performed.

上述の加重平均を算出する方法では、より測定時間が現在に近いほうに重みを付けて平均化しているので、走査時間は現状に近いものとなり、ばらつきを押さえた値を測定することができる。   In the above-described method for calculating the weighted average, since the measurement time is weighted and averaged closer to the present time, the scan time becomes closer to the current state, and a value with reduced variation can be measured.

ポリゴンミラー各面のばらつきを考慮しているため、倍率補正の精度が向上している。   Since the variation of each surface of the polygon mirror is taken into account, the accuracy of magnification correction is improved.

以下、本発明の画像形成装置を実施するための最良の形態を本明細書と同時に提出する図面を参照しながら説明する。   The best mode for carrying out the image forming apparatus of the present invention will be described below with reference to the drawings submitted at the same time as this specification.

図1には、本発明の画像形成装置として、搬送ベルトに沿って画像形成部が並んだタンデムタイプといわれるカラー画像形成装置の構成を記載してある。まずこのカラー画像形成装置の概要を説明する。   FIG. 1 shows a configuration of a color image forming apparatus called a tandem type in which image forming units are arranged along a conveying belt as an image forming apparatus of the present invention. First, an outline of the color image forming apparatus will be described.

各々異なる色(イエロー:Y、マゼンタ:M、シアン:C、ブラック:K)の画像を形成する画像形成部が、転写紙1を搬送する搬送ベルト2に沿って一列に配置されている。   Image forming portions for forming images of different colors (yellow: Y, magenta: M, cyan: C, black: K) are arranged in a line along the conveyance belt 2 that conveys the transfer paper 1.

搬送ベルト2は、その一方が駆動回転する駆動ローラと他方が従動回転する従動ローラである搬送ローラ3、4によって架設されており、搬送ローラ3、4の回転により矢印方向に回転駆動される。搬送ベルトの下部には、転写紙1が収納された給紙トレイ5が備えられている。   The conveying belt 2 is constructed by conveying rollers 3 and 4, one of which is a driving roller that is driven and rotated, and the other is a driven roller that is driven and rotated, and is rotated in the direction of the arrow by the rotation of the conveying rollers 3 and 4. A paper feed tray 5 in which the transfer paper 1 is stored is provided below the transport belt.

給紙トレイ5に収納された転写紙1のうち最上位置にある転写紙は、画像形成時に給紙され、途中レジストセンサ14により各ユニットとのタイミングが取られ、静電吸着によって搬送ベルト2上に吸着される。吸着された転写紙1は、第1の画像形成部(イエロー)に搬送され、ここでイエローの画像形成が行われる。   The transfer sheet 1 at the uppermost position among the transfer sheets 1 stored in the sheet feed tray 5 is fed at the time of image formation, and is timed with each unit by a registration sensor 14 on the way. To be adsorbed. The adsorbed transfer sheet 1 is conveyed to the first image forming unit (yellow), where yellow image formation is performed.

第1の画像形成部(イエロー)は、感光体ドラム6Yと感光体ドラム6Yの周囲に配置された帯電器7Y、露光器8、現像器9Y、感光体クリーナー10Yから構成されている。   The first image forming unit (yellow) includes a photosensitive drum 6Y, a charger 7Y, an exposure unit 8, a developing unit 9Y, and a photosensitive cleaner 10Y disposed around the photosensitive drum 6Y.

感光体ドラム6Yの表面は、帯電器7Yで一様に帯電された後、露光器8によりイエローの画像に対応したレーザー光11Yで露光され、静電潜像が形成される。形成された静電潜像は現像器9Yで現像され、感光体ドラム6Y上にトナー像が形成される。このトナー像は感光体ドラム6Yと搬送ベルト2上の転写紙1と接する位置(転写位置)で転写器12Yによって転写され、転写紙1上に単色(イエロー)の画像を形成する。   The surface of the photosensitive drum 6Y is uniformly charged by the charger 7Y, and then exposed by the exposure device 8 with the laser beam 11Y corresponding to the yellow image, thereby forming an electrostatic latent image. The formed electrostatic latent image is developed by the developing device 9Y, and a toner image is formed on the photosensitive drum 6Y. This toner image is transferred by the transfer device 12Y at a position (transfer position) where the photosensitive drum 6Y contacts the transfer paper 1 on the transport belt 2, and forms a single color (yellow) image on the transfer paper 1.

転写が終わった感光体ドラム6Yは、ドラム表面に残った不要なトナーを感光体クリーナ10Yによってクリーニングされ、次の画像形成に備えることとなる。このように、第1の画像形成部(イエロー)で単色(イエロー)を転写された転写紙1は、搬送ベルト2によって、感光体ドラム6Mと感光体ドラム6Mの周囲に配置された帯電器7M、露光器8、現像器9M、感光体クリーナー10Mにより構成される第2の画像形成部(マゼンタ)に搬送される。   After the transfer, the photoreceptor drum 6Y is cleaned with unnecessary toner remaining on the drum surface by the photoreceptor cleaner 10Y to prepare for the next image formation. As described above, the transfer sheet 1 on which the single color (yellow) is transferred by the first image forming unit (yellow) is transferred to the photosensitive drum 6M and the charger 7M disposed around the photosensitive drum 6M by the conveying belt 2. Then, it is conveyed to a second image forming unit (magenta) constituted by the exposure device 8, the developing device 9M, and the photoreceptor cleaner 10M.

ここでも、同様にレーザー光11Mが露光し、感光体ドラム6M上に形成されたトナー像(マゼンタ)は、転写紙1上に重ねて転写される。転写紙1は、さらに感光体ドラム6Cと感光体ドラム6Cの周囲に配置された帯電器7C、露光器8、現像器9C、感光体クリーナー10Cにより構成される第3の画像形成部(シアン)、および感光体ドラム6Kと感光体ドラム6Kの周囲に配置された帯電器7K、露光器8、現像器9K、感光体クリーナー10Kにより構成される第4の画像形成部(ブラック)に搬送され、同様にレーザー光11C、11Kが露光し、形成されたトナー像が転写紙1に転写されてカラー画像を形成してゆく。第4の画像形成部を通過してカラー画像が形成された転写紙1は、搬送ベルト2から剥離され、定着器13にて定着された後、排紙される。   Here, similarly, the laser beam 11M is exposed, and the toner image (magenta) formed on the photosensitive drum 6M is transferred onto the transfer paper 1 in an overlapping manner. The transfer paper 1 further includes a photoconductor drum 6C and a third image forming unit (cyan) composed of a charger 7C, an exposure device 8, a developing device 9C, and a photoconductor cleaner 10C arranged around the photoconductor drum 6C. And a photosensitive drum 6K and a charging device 7K arranged around the photosensitive drum 6K, an exposure device 8, a developing device 9K, and a fourth image forming unit (black) composed of a photosensitive cleaner 10K. Similarly, the laser beams 11C and 11K are exposed, and the formed toner image is transferred to the transfer paper 1 to form a color image. The transfer paper 1 on which a color image has been formed by passing through the fourth image forming section is peeled off from the conveying belt 2, fixed by the fixing device 13, and then discharged.

図2には、図1の露光部8を構成する部品の一つである、画像書込機能を有するレーザビーム走査装置およびその周辺の制御系を記載したものである。図2を参照してレーザビーム走査装置およびその周辺の制御系に関する構成及び動作の説明をする。   FIG. 2 shows a laser beam scanning apparatus having an image writing function, which is one of the components constituting the exposure unit 8 of FIG. 1, and its surrounding control system. The configuration and operation of the laser beam scanning apparatus and its surrounding control system will be described with reference to FIG.

レーザビーム走査装置は、主走査方向両端部に光ビーム(レーザビーム)を検知する光ビーム検出手段としての先行同期検知センサ105、後行同期検知センサ106が備えられており、fθレンズ103を透過したレーザビームが先行同期検知センサ105、後行同期検知センサ106に入射し検知されるような構成となっている。図2においては、複数あるレンズの代表としてfθレンズ103のみを示し、他のレンズはその図示を省略している。先行同期検知センサ105、後行同期検知センサ106は、同期検知信号となるレーザビーム走査同期信号の検知を行うための同期検知の役割も果たしている。   The laser beam scanning device includes a leading synchronization detection sensor 105 and a trailing synchronization detection sensor 106 as light beam detecting means for detecting a light beam (laser beam) at both ends in the main scanning direction, and transmits through the fθ lens 103. The laser beam thus incident on the preceding synchronization detection sensor 105 and the subsequent synchronization detection sensor 106 is detected. In FIG. 2, only the fθ lens 103 is shown as a representative of a plurality of lenses, and the other lenses are not shown. The preceding synchronization detection sensor 105 and the subsequent synchronization detection sensor 106 also play a role of synchronization detection for detecting a laser beam scanning synchronization signal that becomes a synchronization detection signal.

レーザビームが走査されることにより、先行同期検知センサ105、後行同期検知センサ106がそれぞれレーザビームを検知してレーザビーム検知信号DETP1、DETP2を出力し、このレーザビーム検知信号DETP1、DETP2が、時間差計測部107へ送られる。   By scanning the laser beam, the preceding synchronization detection sensor 105 and the subsequent synchronization detection sensor 106 detect the laser beam and output laser beam detection signals DETP1 and DETP2, respectively, and the laser beam detection signals DETP1 and DETP2 are It is sent to the time difference measuring unit 107.

時間差計測部107は、先行同期検知センサ105の出力信号DETP1と後行同期検知センサ106の出力信号DETP2との時間差を測定し、平均化するなどの算術機能を有し、制御装置(CPU111)からの設定タイミングに応じて時間差測定及びその測定に基づく演算を行い、測定結果及び演算結果を、倍率補正制御部110へ送る。   The time difference measuring unit 107 has an arithmetic function such as measuring and averaging the time difference between the output signal DETP1 of the preceding synchronization detection sensor 105 and the output signal DETP2 of the subsequent synchronization detection sensor 106, and is provided from the control device (CPU 111). The time difference measurement and the calculation based on the measurement are performed according to the set timing, and the measurement result and the calculation result are sent to the magnification correction control unit 110.

倍率補正制御部110は、CPU111から設定された書込クロック周波数及び位相シフト値の初期設定値又は/かつ現在の設定値を記憶する記憶部(不図示)を有する。そして、書込クロックの周波数によって主走査方向の画像倍率が変わることを利用して、または書込クロック調整単位では、調整することが出来ない微少時間を、位相をシフトさせることにより画像倍率が変わることを利用して、最適な書込クロック周波数及び位相シフト値を算出する機能を有する。又、書込クロック周波数を固定して、最適な位相シフト値を算出する機能も有する。前記位相シフト値とCPU111から設定された基準値を比較する機能も有する。CPU111の設定により以上の機能を発揮して、書込クロック設定及び位相シフトを実行する制御信号を書込クロック生成部108へ送る。   The magnification correction control unit 110 has a storage unit (not shown) that stores the initial setting value of the write clock frequency and the phase shift value set by the CPU 111 and / or the current setting value. Then, using the fact that the image magnification in the main scanning direction changes according to the frequency of the write clock, or by shifting the phase for a minute time that cannot be adjusted in the write clock adjustment unit, the image magnification changes. By utilizing this, it has a function of calculating the optimum write clock frequency and phase shift value. It also has a function of calculating the optimum phase shift value with the write clock frequency fixed. It also has a function of comparing the phase shift value with a reference value set by the CPU 111. The above functions are exhibited by the setting of the CPU 111, and a control signal for executing the write clock setting and the phase shift is sent to the write clock generation unit 108.

書込クロック生成部108は、PLL発信装置108−1と位相制御装置108−2により構成されており、上記倍率補正制御部110の制御を受けて書込クロックの生成、及び位相シフトを実行する。
PLL発信装置108−1は発振器112からのクロックを受けて、書込クロックVCLKのn倍の周波数を有するPLL発信クロックを生成する機能を有する。
位相制御装置108−2は同期検知信号である上記DETP1に同期してPLL発信クロックをn分周し、DETP1に同期した書込クロックVCLKを生成する機能を有する。そして、上記PLL発信クロック半周期の整数倍量を書込クロックVCLKの特定周期に加減することで、1画素単位で書込クロック周期をシフトする機能を有する。
The write clock generation unit 108 includes a PLL transmission device 108-1 and a phase control device 108-2, and generates a write clock and performs phase shift under the control of the magnification correction control unit 110. .
The PLL oscillator 108-1 has a function of receiving a clock from the oscillator 112 and generating a PLL oscillator clock having a frequency n times the write clock VCLK.
The phase control device 108-2 has a function of generating a write clock VCLK synchronized with DETP1 by dividing the PLL oscillation clock by n in synchronization with the DETP1, which is a synchronization detection signal. The write clock cycle is shifted by one pixel unit by adding or subtracting an integral multiple of the PLL transmission clock half cycle to the specific cycle of the write clock VCLK.

書込クロック生成部108で周波数可変及び位相可変による主走査の画像倍率補正がなされた書込クロックVCLKは、光ビーム発生手段駆動部としてのLD(Laser Diode)変調装置101へ送られる。LD変調装置101は、レーザビーム走査装置におけるLDユニット内のLD109の点灯を書込クロック生成部108からの書込クロックVCLKに同期させた画像信号に応じて制御する。従ってLDユニット内のLD109から画像信号に応じて変調されたレーザビームが出射され、このレーザビームがポリゴンミラー102により偏向されてfθレンズ103を介して図1の6Y、6M、6C、6Kに相当する感光体104上を走査することになる。   The write clock VCLK that has been subjected to the main scanning image magnification correction by the variable frequency and phase in the write clock generator 108 is sent to an LD (Laser Diode) modulator 101 as a light beam generator drive unit. The LD modulation device 101 controls the lighting of the LD 109 in the LD unit in the laser beam scanning device in accordance with an image signal synchronized with the write clock VCLK from the write clock generation unit 108. Accordingly, a laser beam modulated in accordance with the image signal is emitted from the LD 109 in the LD unit, and this laser beam is deflected by the polygon mirror 102 and corresponds to 6Y, 6M, 6C, and 6K in FIG. The photosensitive member 104 to be scanned is scanned.

以下、本形態で実施される倍率補正に係る時間差測定及びその測定に基づく演算の方法について説明する。まず図4のポリゴンミラー102において、その各面(6面の場合)に対してm1〜m6の番号を振り分ける。そして各面m1〜m6の先行同期検知センサ105と後行同期検知センサ106の通過時間の差をそれぞれt1〜t6とする(図5タイミングチャート参照)。時間差t1〜t6は時間差計測部107で測定し、CPU111にそのデータを送る。CPU111では、基準(理想)となる時間差をTとすると、ポリゴンミラー各面の走査誤差率はそれぞれ(t1/T)〜(t6/T)となるので、再び基準値Tに戻るよう、倍率補正制御部110による処理によりm1〜m6各面を各々の倍率で走査時間の補正を行う。   Hereinafter, a time difference measurement according to the magnification correction performed in this embodiment and a calculation method based on the measurement will be described. First, in the polygon mirror 102 of FIG. 4, numbers m1 to m6 are assigned to the respective surfaces (in the case of six surfaces). The difference between the passage times of the preceding synchronization detection sensor 105 and the subsequent synchronization detection sensor 106 on each surface m1 to m6 is defined as t1 to t6, respectively (see the timing chart in FIG. 5). The time differences t1 to t6 are measured by the time difference measuring unit 107, and the data is sent to the CPU 111. In the CPU 111, if the time difference that is the reference (ideal) is T, the scanning error rate of each surface of the polygon mirror is (t1 / T) to (t6 / T), so that the magnification correction is performed so that it returns to the reference value T again. The processing by the control unit 110 corrects the scanning time for each surface of m1 to m6 at each magnification.

倍率補正に係る時間差測定及びその測定に基づく演算の他の方法について説明する。
ポリゴンミラー102の各面m1〜m6の先行同期検知センサ105と後行同期検知センサ106の通過時間の差t1〜t6を時間差計測部107で測定する。ただしCPU111に送るデータはt1〜t6の平均(t1+t2+t3+t4+t5+t6)/6とする。CPU111では、ポリゴンミラー1面の基準(理想)となる時間差をTとすると、時間差計測部107から送られてきた平均時間より(t1+t2+t3+t4+t5+t6)/6Tが平均的なポリゴンミラー各面の走査誤差率となるので、この走査誤差率を元に倍率補正制御部110による処理によりm1〜m6各面を同じ倍率で走査時間の補正を行う。
Another method of time difference measurement for magnification correction and calculation based on the measurement will be described.
A time difference measuring unit 107 measures the difference t1 to t6 in the passage times of the preceding synchronization detection sensor 105 and the subsequent synchronization detection sensor 106 on each surface m1 to m6 of the polygon mirror 102. However, the data sent to the CPU 111 is an average of t1 to t6 (t1 + t2 + t3 + t4 + t5 + t6) / 6. In the CPU 111, if the time difference that is the reference (ideal) of the polygon mirror 1 surface is T, (t1 + t2 + t3 + t4 + t5 + t6) / 6T is an average from the average time sent from the time difference measuring unit 107. Since the scanning error rate of each surface of the polygon mirror becomes a correct, the scanning time is corrected at the same magnification for each of the m1 to m6 surfaces by processing by the magnification correction control unit 110 based on this scanning error rate.

倍率補正に係る時間差測定及びその測定に基づく演算の他の方法について説明する。
ポリゴンミラー102の各面m1〜m6の先行同期検知センサ105と後行同期検知センサ106の通過時間の差t1〜t6を時間差計測部107で測定する。そして、同様の測定をn回繰返し、t1〜t6を加重平均した値t1'〜t6'をCPU111に送る。加重平均の仕方は、n=3の場合を例に説明する。いまポリゴンミラー面の1つm1の時間差測定結果がt11、t12、t13だったとすると、各々に異なった重みづけの係数ω1、ω2、ω3を掛けて平均する。この時、重みづけの係数はω1+ω2+ω3=1の関係になるようにすると、ポリゴンミラー面m1の時間差の加重平均値t1'はt1'=(ω1・t11+ω2・t12+ω3・t13)となる。重みづけの係数の決め方は、例えば測定した時間が一番近いほうに重みを置きたければω1=0.25、ω2=0.25、ω3=0.50するなど、条件に合わせて変更する。CPU111では、基準(理想)となる時間差をTとすると、ポリゴンミラー各面の走査誤差率はそれぞれ(t1'/T)〜(t6'/T)となるので、再び基準値Tに戻るよう、倍率補正制御部110による処理によりm1〜m6各面を各々の倍率で走査時間の補正を行う。
Another method of time difference measurement for magnification correction and calculation based on the measurement will be described.
A time difference measuring unit 107 measures the difference t1 to t6 in the passage times of the preceding synchronization detection sensor 105 and the subsequent synchronization detection sensor 106 on each surface m1 to m6 of the polygon mirror 102. The same measurement is repeated n times, and values t1 ′ to t6 ′ obtained by weighted averaging t1 to t6 are sent to the CPU 111. The weighted average method will be described by taking n = 3 as an example. Assuming that the time difference measurement results for one of the polygon mirror surfaces m1 are t11, t12, and t13, they are multiplied by different weighting coefficients ω1, ω2, and ω3 and averaged. At this time, if the weighting coefficient is in the relationship of ω1 + ω2 + ω3 = 1, the weighted average value t1 ′ of the time difference of the polygon mirror surface m1 is t1 ′ = (ω1 · t11 + ω2 · t12 + ω3 · t13). The method of determining the weighting coefficient is changed according to the condition, for example, if the weight is to be placed in the closest measured time, ω1 = 0.25, ω2 = 0.25, ω3 = 0.50. In the CPU 111, assuming that the reference (ideal) time difference is T, the scanning error rate of each surface of the polygon mirror is (t1 '/ T) to (t6' / T). By the processing by the magnification correction control unit 110, the scanning time of each surface of m1 to m6 is corrected at each magnification.

倍率補正に係る時間差測定及びその測定に基づく演算の他の方法について説明する。
ポリゴンミラー102の各面m1〜m6の先行同期検知センサ105と後行同期検知センサ106の通過時間の差t1〜t6を時間差計測部107で測定し、それらの総和(t1+t2+t3+t4+t5+t6)を算出する。そして、同様の測定、算出をn回繰返し、総和の加重平均値(t1+t2+t3+t4+t5+t6)'を算出する。加重平均の方法は上述の方法と同様である。CPU111に送るデータは総和の加重平均値(t1+t2+t3+t4+t5+t6)'とする。CPU111では、ポリゴンミラー1面の基準(理想)となる時間差をTとすると、時間差計測部107から送られてきた総和時間より(t1+t2+t3+t4+t5+t6)'/6Tが平均的なポリゴンミラー各面の走査誤差率となるので、この走査誤差率を元に倍率補正制御部110による処理によりm1〜m6各面を同じ倍率で走査時間の補正を行う。
Another method of time difference measurement for magnification correction and calculation based on the measurement will be described.
A time difference measuring unit 107 measures a difference t1 to t6 in passing time between the preceding synchronization detection sensor 105 and the subsequent synchronization detection sensor 106 on each surface m1 to m6 of the polygon mirror 102, and sums them (t1 + t2 + t3 + t4). + t5 + t6) is calculated. Then, the same measurement and calculation are repeated n times, and a weighted average value (t1 + t2 + t3 + t4 + t5 + t6) ′ is calculated. The weighted average method is the same as that described above. The data sent to the CPU 111 is a weighted average value of the sum (t1 + t2 + t3 + t4 + t5 + t6) ′. In the CPU 111, if the time difference that is the reference (ideal) of the polygon mirror 1 surface is T, (t1 + t2 + t3 + t4 + t5 + t6) '/ 6T is an average from the total time sent from the time difference measuring unit 107 Thus, the scanning error rate of each surface of the polygon mirror is corrected. Based on this scanning error rate, the scanning time is corrected for each surface of m1 to m6 at the same magnification by the processing by the magnification correction control unit 110.

倍率補正に係る時間差測定及びその測定に基づく演算の他の方法について説明する。
ポリゴンミラー102の各面m1〜m6の先行同期検知センサ105と後行同期検知センサ106の通過時間の差t1〜t6を時間差計測部107で測定し、それらの平均値(t1+t2+t3+t4+t5+t6)/6を算出する。そして、同様の測定、算出をn回繰返し、平均値の加重平均値{(t1+t2+t3+t4+t5+t6)/6}'を算出する。加重平均の方法は上述の方法と同じである。CPU111に送るデータは平均値の加重平均値{(t1+t2+t3+t4+t5+t6)/6}'とする。CPU111では、ポリゴンミラー1面の基準(理想)となる時間差をTとすると、時間差計測部107から送られてきた平均時間より{(t1+t2+t3+t4+t5+t6)/6}'/Tが平均的なポリゴンミラー各面の走査誤差率となるので、この走査誤差率を元に倍率補正制御部110による処理によりm1〜m6各面を同じ倍率で走査時間の補正を行う。
Another method of time difference measurement for magnification correction and calculation based on the measurement will be described.
The time difference measuring unit 107 measures the difference t1 to t6 in the passage time between the preceding synchronization detection sensor 105 and the subsequent synchronization detection sensor 106 on each surface m1 to m6 of the polygon mirror 102, and averages them (t1 + t2 + t3 + t4 + t5 + t6) / 6 is calculated. Then, the same measurement and calculation are repeated n times, and a weighted average value {(t1 + t2 + t3 + t4 + t5 + t6) / 6} ′ is calculated. The weighted average method is the same as that described above. The data sent to the CPU 111 is a weighted average value of average values {(t1 + t2 + t3 + t4 + t5 + t6) / 6} ′. In the CPU 111, if the time difference serving as the reference (ideal) of the polygon mirror 1 surface is T, {(t1 + t2 + t3 + t4 + t5 + t6) / 6} ′ from the average time sent from the time difference measuring unit 107. Since / T is the average scanning error rate of each surface of the polygon mirror, the scanning time is corrected at the same magnification for each of the m1 to m6 surfaces by processing by the magnification correction control unit 110 based on this scanning error rate.

なお、上述した形態は本発明を実施するための最良の形態であるがこれに限定する趣旨ではない。従って、本発明の要旨を変更しない範囲において種々変形することが可能である。   The above-described embodiment is the best mode for carrying out the present invention, but the present invention is not limited to this. Therefore, various modifications can be made without departing from the scope of the present invention.

例えば、図2のレーザビーム走査装置およびその周辺の制御系に関する構成は、図3に示す構成でも実現可能である。つまり、倍率補正制御部110は独立の制御部として存在することなく、倍率補正に関する機能はCPU111が担うことになる。このとき時間差計測部107は、測定結果及び演算結果をCPU111へ送り、CPU111は、書込クロック周波数及び位相シフト値の初期設定値又は/かつ現在の設定値を記憶し、最適な書込クロック周波数及び位相シフト値を算出する。又、書込クロック周波数を固定して、最適な位相シフト値を算出する。前記位相シフト値と基準値を比較する。そして、必要に応じて制御信号を書込クロック生成部108へ送る。倍率補正制御部110が担う機能を外部のCPUに委ねることによりレーザビーム走査装置自体の構成を簡素化し、負荷を低減することができる。   For example, the configuration relating to the laser beam scanning apparatus of FIG. 2 and its surrounding control system can also be realized by the configuration shown in FIG. That is, the magnification correction control unit 110 does not exist as an independent control unit, and the function related to magnification correction is performed by the CPU 111. At this time, the time difference measuring unit 107 sends the measurement result and the calculation result to the CPU 111, and the CPU 111 stores the initial setting value and / or the current setting value of the writing clock frequency and the phase shift value, and the optimum writing clock frequency. And a phase shift value is calculated. Also, the optimum phase shift value is calculated with the write clock frequency fixed. The phase shift value is compared with a reference value. Then, a control signal is sent to the write clock generation unit 108 as necessary. By entrusting the function of the magnification correction control unit 110 to an external CPU, the configuration of the laser beam scanning device itself can be simplified and the load can be reduced.

また図2及び図3においては、書込クロック生成部108と時間差計測部107及び倍率補正制御部110は別々の構成としているが、これらを1つの回路としてまとめたものを使用し、装置の簡素化を図っても良い。   2 and 3, the write clock generation unit 108, the time difference measurement unit 107, and the magnification correction control unit 110 are configured separately. However, these are combined into a single circuit to simplify the apparatus. You may plan to make it.

本発明の画像形成装置を搭載したプリンタ、カラー複写機、MFP(Multi Functional Products)の開発が望まれる。   Development of printers, color copiers, and MFPs (Multi Functional Products) equipped with the image forming apparatus of the present invention is desired.

タンデムタイプのカラー画像形成装置の構成を記載した図面である。1 is a diagram illustrating a configuration of a tandem type color image forming apparatus. レーザビーム走査装置およびその周辺の制御系の構成を記載した図面である。It is drawing which described the structure of the laser beam scanning apparatus and its periphery control system. レーザビーム走査装置およびその周辺の制御系の他の構成を記載した図面である。It is drawing which described the other structure of the laser beam scanning apparatus and its surrounding control system. ポリゴンミラー102を図示したものである。A polygon mirror 102 is illustrated. DETP1及びDETP2に関するタイミングチャートである。It is a timing chart regarding DETP1 and DETP2.

符号の説明Explanation of symbols

1 転写紙
2 搬送ベルト
3 搬送ローラ
4 搬送ローラ
5 給紙トレイ
6Y、6M、6C、6K 感光体ドラム
7Y、7M、7C、7K 帯電器
8 露光器
9Y、9M、9C、9K 現像器
10Y、10M、10C、10K 感光体クリーナー
11Y、11M、11C、11K レーザー光
12Y、12M、12C、12K 転写器
13 定着器
101 LD変調装置
102 ポリゴンミラー
103 fθレンズ
104 感光体
105 先行同期検知センサ
106 後行同期検知センサ
107 時間差計測部
108 書込クロック生成部
108−1 PLL発信装置
108−2 位相制御装置
109 LD
110 倍率補正制御部
111 発振器
112 CPU
DESCRIPTION OF SYMBOLS 1 Transfer paper 2 Conveyance belt 3 Conveyance roller 4 Conveyance roller 5 Feed tray 6Y, 6M, 6C, 6K Photosensitive drum 7Y, 7M, 7C, 7K Charger 8 Exposing device 9Y, 9M, 9C, 9K Developer 10Y, 10M 10C, 10K Photoconductor cleaner 11Y, 11M, 11C, 11K Laser light 12Y, 12M, 12C, 12K Transfer device 13 Fixing device 101 LD modulator 102 Polygon mirror 103 fθ lens 104 Photoconductor 105 Pre-synchronization detection sensor 106 Trailing synchronization Detection sensor 107 Time difference measurement unit 108 Write clock generation unit 108-1 PLL transmission device 108-2 Phase control device 109 LD
110 Magnification Correction Control Unit 111 Oscillator 112 CPU

Claims (6)

画像信号に応じて変調された光ビームを走査することによって像担持体上に画像を形成する画像形成装置において、
画像信号に応じて変調された光ビームを主走査方向に偏向する偏向手段と、
前記偏向手段により偏向された光ビームを主走査線上の2箇所でそれぞれ検出する2つの光ビーム検出手段と、
2つの前記光ビーム検出手段のうちの一方が光ビームを検出してから2つの前記光ビーム検出手段のうちの他方が光ビームを検出するまでの時間差を計測する時間差計測手段と、
前記時間差計測手段で計測した時間差により主走査方向の前記像担持体上の画像の倍率を補正する倍率補正手段を有し、
前記時間差計測手段は、前記偏向手段の各面における時間差を計測し、
前記倍率補正手段は、前記偏向手段の各面における時間差を基にして補正値を算出し、前記補正値による補正を行うことを特徴とする画像形成装置。
In an image forming apparatus for forming an image on an image carrier by scanning a light beam modulated according to an image signal,
Deflection means for deflecting a light beam modulated in accordance with an image signal in the main scanning direction;
Two light beam detecting means for detecting the light beam deflected by the deflecting means at two positions on the main scanning line, and
A time difference measuring means for measuring a time difference from when one of the two light beam detecting means detects a light beam until the other of the two light beam detecting means detects the light beam;
Magnification correction means for correcting the magnification of the image on the image carrier in the main scanning direction by the time difference measured by the time difference measurement means,
The time difference measuring means measures a time difference on each surface of the deflecting means,
The image forming apparatus according to claim 1, wherein the magnification correction unit calculates a correction value based on a time difference on each surface of the deflection unit and performs correction using the correction value.
前記倍率補正手段は、前記偏向手段の各面における時間差を基にした前記偏向手段の各面毎の補正値を算出し、前記偏向手段の各面において前記補正値による補正を行うことを特徴とする請求項1に記載の画像形成装置。   The magnification correction unit calculates a correction value for each surface of the deflection unit based on a time difference in each surface of the deflection unit, and performs correction using the correction value on each surface of the deflection unit. The image forming apparatus according to claim 1. 前記時間差計測手段は、前記偏向手段の各面における時間差を基にした前記偏向手段1回転分の平均値を算出し、
前記倍率補正手段は、前記平均値を基にした補正値を算出し、前記補正値による補正を行うことを特徴とする請求項1に記載の画像形成装置。
The time difference measuring means calculates an average value for one rotation of the deflecting means based on a time difference on each surface of the deflecting means,
The image forming apparatus according to claim 1, wherein the magnification correction unit calculates a correction value based on the average value and performs correction using the correction value.
前記時間差計測手段は、前記偏向手段の各面における時間差を複数回計測し、複数回計測された前記時間差の前記偏向手段の各面における加重平均値を算出し、
前記倍率補正手段は、前記偏向手段の各面における加重平均値を基にした前記偏向手段の各面毎の補正値を算出し、前記偏向手段の各面において前記補正値による補正を行うことを特徴とする請求項1または2に記載の画像形成装置。
The time difference measuring means measures a time difference on each surface of the deflection means a plurality of times, calculates a weighted average value on each surface of the deflection means for the time difference measured a plurality of times,
The magnification correction unit calculates a correction value for each surface of the deflection unit based on a weighted average value on each surface of the deflection unit, and performs correction using the correction value on each surface of the deflection unit. The image forming apparatus according to claim 1, wherein the image forming apparatus is an image forming apparatus.
前記時間差計測手段は、前記偏向手段の各面における時間差を複数回計測し、複数回計測された前記時間差の前記偏向手段1回転分の総和を算出し、前記偏向手段1回転分の総和を基にした加重平均値を算出し、
前記倍率補正手段は、前記偏向手段1回転分の総和を基にした加重平均値を基にした補正値を算出し、前記補正値による補正を行うことを特徴とする請求項1に記載の画像形成装置。
The time difference measuring means measures a time difference on each surface of the deflecting means a plurality of times, calculates a sum of the time difference measured a plurality of times for one rotation of the deflecting means, and based on the sum of the one rotation of the deflecting means. To calculate the weighted average
2. The image according to claim 1, wherein the magnification correction unit calculates a correction value based on a weighted average value based on a total sum of one rotation of the deflection unit, and performs correction using the correction value. Forming equipment.
前記時間差計測手段は、前記偏向手段の各面における時間差を複数回計測し、複数回計測された前記偏向手段の各面における時間差を基にした前記偏向手段1回転分の平均値を算出し、前記偏向手段1回転分の平均値を基にした加重平均値を算出し、
前記倍率補正手段は、前記偏向手段1回転分の平均値を基にした加重平均値を基にした補正値を算出し、前記補正値による補正を行うことを特徴とする請求項1または3に記載の画像形成装置。
The time difference measuring means measures a time difference on each surface of the deflecting means a plurality of times, calculates an average value for one rotation of the deflecting means based on a time difference measured on each surface of the deflecting means a plurality of times, Calculating a weighted average value based on an average value for one rotation of the deflection means;
4. The magnification correction unit calculates a correction value based on a weighted average value based on an average value for one rotation of the deflection unit, and performs correction using the correction value. The image forming apparatus described.
JP2004262148A 2004-09-09 2004-09-09 Image forming apparatus Expired - Fee Related JP4549139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262148A JP4549139B2 (en) 2004-09-09 2004-09-09 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262148A JP4549139B2 (en) 2004-09-09 2004-09-09 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2006076114A true JP2006076114A (en) 2006-03-23
JP4549139B2 JP4549139B2 (en) 2010-09-22

Family

ID=36155969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262148A Expired - Fee Related JP4549139B2 (en) 2004-09-09 2004-09-09 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP4549139B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175470A (en) * 2008-01-25 2009-08-06 Kyocera Mita Corp Optical scanner and image forming apparatus equipped with the same
US8493578B2 (en) 2008-09-16 2013-07-23 Ricoh Company, Limited Pixel clock generator and image forming apparatus
JP2014191144A (en) * 2013-03-27 2014-10-06 Kyocera Document Solutions Inc Optical scanner and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110413A (en) * 1986-10-29 1988-05-14 Dainippon Screen Mfg Co Ltd Method and device for correcting jitter of polygon mirror
JPH07128270A (en) * 1991-10-21 1995-05-19 Figaro Eng Inc Gas detecting device
JPH10147953A (en) * 1996-11-18 1998-06-02 Komatsu Ltd Dozing device for bulldozer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110413A (en) * 1986-10-29 1988-05-14 Dainippon Screen Mfg Co Ltd Method and device for correcting jitter of polygon mirror
JPH07128270A (en) * 1991-10-21 1995-05-19 Figaro Eng Inc Gas detecting device
JPH10147953A (en) * 1996-11-18 1998-06-02 Komatsu Ltd Dozing device for bulldozer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175470A (en) * 2008-01-25 2009-08-06 Kyocera Mita Corp Optical scanner and image forming apparatus equipped with the same
US8493578B2 (en) 2008-09-16 2013-07-23 Ricoh Company, Limited Pixel clock generator and image forming apparatus
JP2014191144A (en) * 2013-03-27 2014-10-06 Kyocera Document Solutions Inc Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP4549139B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4264442B2 (en) Color misregistration adjustment method and image forming apparatus
WO2011074110A1 (en) Image forming device
JP5807345B2 (en) Image forming apparatus
JP2008180946A (en) Image forming method, image forming apparatus, and program for image forming apparatus
JP5181753B2 (en) Color image forming apparatus, misregistration correction method, misregistration correction program, and recording medium
JP2007293047A (en) Color image forming apparatus and color image forming method
JP2013076983A (en) Image forming apparatus, and image forming method
JP4549139B2 (en) Image forming apparatus
JP6324211B2 (en) Image forming apparatus
JP2014021242A (en) Image forming apparatus and image forming method
JP6241082B2 (en) Image forming apparatus and image forming method
JP2004230856A (en) Imaging device
JP5915455B2 (en) Image forming apparatus
JP4391427B2 (en) Image forming apparatus
JP5145189B2 (en) Image forming apparatus
JP2006227474A (en) Color image forming apparatus
JP2006297767A (en) Image formation device
JP2012194477A (en) Image forming apparatus
JP7472695B2 (en) Image forming device
JP5375104B2 (en) Misregistration amount calculation device, misregistration amount calculation method, misregistration amount calculation program
JP2018066812A (en) Image forming apparatus
JP2010217728A (en) Optical scanner and image forming apparatus
JP2006181835A (en) Image forming device
JP2011227342A (en) Image forming device and method for correcting image formation positional deviation
JP6544530B2 (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees