JP2006076076A - Manufacturing method of radial tire for building vehicle - Google Patents

Manufacturing method of radial tire for building vehicle Download PDF

Info

Publication number
JP2006076076A
JP2006076076A JP2004261290A JP2004261290A JP2006076076A JP 2006076076 A JP2006076076 A JP 2006076076A JP 2004261290 A JP2004261290 A JP 2004261290A JP 2004261290 A JP2004261290 A JP 2004261290A JP 2006076076 A JP2006076076 A JP 2006076076A
Authority
JP
Japan
Prior art keywords
molded body
tire
unvulcanized
layer
unvulcanized belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004261290A
Other languages
Japanese (ja)
Other versions
JP4586466B2 (en
Inventor
Takeshi Takahashi
高橋  健
Takeshi Maekawa
剛 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004261290A priority Critical patent/JP4586466B2/en
Publication of JP2006076076A publication Critical patent/JP2006076076A/en
Application granted granted Critical
Publication of JP4586466B2 publication Critical patent/JP4586466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tyre Moulding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a radial tire for a building vehicle improving the quality of the radial tire by suppressing the outer peripheral growth of a secondary molded body shaped into a toroidal shape. <P>SOLUTION: When a green tire 104 is molded in the manufacturing method of the radial tire for the building vehicle constituted by arranging at least four belt layers 8, wherein reinforcing cords are obliquely arranged in the peripheral direction of the tire, on the outer peripheral side of the carcass layer 4 of a tread part 1, a cylindrical primary molded body 101 having an unvulcanized carcass layer 4' and at least two unvulcanized belt layers 8'A and 8'B are subsequently laminated on the unvulcanized carcass layer 4' of the primary molded body 101. Next, the primary molded body 102, on which the unvulcanized belt layers 8'A and 8'B are laminated, is molded into a secondary molded body 103 shaped into the toroidal shape and a remaining unvulcanized belt layer 8' is laminated on the unvulcanized belt layer 8'B of the secondary molded body 103 to mold the green tire 104. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建設車両用ラジアルタイヤの製造方法に関し、更に詳しくは、トロイダル状にシェーピングした2次成形体の外周成長を抑制し、タイヤ品質を向上することができる建設車両用ラジアルタイヤの製造方法に関する。   The present invention relates to a method for manufacturing a radial tire for a construction vehicle, and more particularly, a method for manufacturing a radial tire for a construction vehicle capable of suppressing the outer peripheral growth of a secondary molded body shaped in a toroidal shape and improving the tire quality. About.

ORタイヤ(Off the Road Tire)と言われる建設車両用の大型ラジアルタイヤは、トレッド部のカーカス層外周側に補強コードをタイヤ周方向に傾斜配列した4層以上のベルト層を配置した構成を有している。このような建設車両用ラジアルタイヤは、グリーンタイヤを成形する工程において、未加硫カーカス層などのタイヤ骨格をなす円筒状の1次成形体(所謂、1次グリーンタイヤ)を成形した後、その1次成形体をトロイダル状にシェーピングした2次成形体(所謂、2次グリーンタイヤ)に成形し、該2次成形体上に未加硫のベルト層とトレッドゴム層を貼り合わせてグリーンタイヤを成形するようにしている(例えば、特許文献1参照)。   Large radial tires for construction vehicles, called OR tires (Off the Road Tires), have a configuration in which four or more belt layers are arranged on the outer periphery of the carcass layer in the tread, with reinforcing cords inclined in the tire circumferential direction. is doing. Such a radial tire for construction vehicles is formed by forming a cylindrical primary molded body (so-called primary green tire) that forms a tire skeleton such as an unvulcanized carcass layer in a process of forming a green tire. A primary molded body is molded into a secondary molded body shaped in a toroidal shape (so-called secondary green tire), and an unvulcanized belt layer and a tread rubber layer are bonded to the secondary molded body to form a green tire. It is made to shape | mold (for example, refer patent document 1).

しかしながら、建設車両用ラジアルタイヤは、通常のタイヤと比べて大型であるため、トロイダル状にシェーピングした2次成形体がシェーピング後に自然に膨径し、外周成長が発生する。特に2次成形体にベルト層を貼り付けるまでの時間が長いと、外周成長が顕著となり、タイヤの品質上好ましくない。
特開昭49−15776号公報
However, since the radial tire for construction vehicles is larger than a normal tire, the secondary molded body shaped in a toroidal shape naturally expands after shaping, and outer peripheral growth occurs. In particular, if the time until the belt layer is applied to the secondary molded body is long, the peripheral growth becomes remarkable, which is not preferable in terms of tire quality.
Japanese Patent Laid-Open No. 49-15776

本発明の目的は、トロイダル状にシェーピングした2次成形体の外周成長を抑制し、タイヤ品質を向上することが可能な建設車両用ラジアルタイヤの製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a radial tire for a construction vehicle capable of suppressing the outer peripheral growth of a secondary molded body shaped in a toroidal shape and improving the tire quality.

上記目的を達成する本発明は、トレッド部のカーカス層外周側に補強コードをタイヤ周方向に傾斜配列した4層以上のベルト層を配置した建設車両用ラジアルタイヤの製造方法であって、グリーンタイヤを成形する際に、未加硫カーカス層を有する円筒状の1次成形体を成形した後、該1次成形体の未加硫カーカス層上に前記4層以上のベルト層を成形するための4層以上の未加硫ベルト層の一部である少なくとも2層の未加硫ベルト層を貼り合わせ、該未加硫ベルト層を貼り合わせた1次成形体をトロイダル状にシェーピングした2次成形体に成形し、該2次成形体の未加硫ベルト層上に残りの未加硫ベルト層を貼り合わせてグリーンタイヤを成形することを特徴とする。   The present invention that achieves the above object is a method for manufacturing a radial tire for a construction vehicle in which four or more belt layers in which reinforcing cords are inclined and arranged in the tire circumferential direction are arranged on the outer circumferential side of a carcass layer of a tread, When forming a cylindrical primary molded body having an unvulcanized carcass layer, the four or more belt layers are formed on the unvulcanized carcass layer of the primary molded body. Secondary molding in which at least two unvulcanized belt layers that are a part of four or more unvulcanized belt layers are bonded together, and the primary molded body in which the unvulcanized belt layers are bonded together is shaped into a toroidal shape. A green tire is formed by forming a green tire by bonding the remaining unvulcanized belt layer onto the unvulcanized belt layer of the secondary molded body.

上述した本発明では、一部の未加硫ベルト層を貼り合わせた1次成形体を成形し、それをトロイダル状にシェーピングして2次成形体に成形するため、トロイダル状にシェーピングした2次成形体の外周が未加硫ベルト層によって拘束されるので、時間が経過しても経時変化が小さく、外周成長の抑制が可能になる。従って、タイヤ品質を向上することができる。   In the present invention described above, a primary molded body in which a part of the unvulcanized belt layer is bonded is molded, and the secondary molded body is shaped into a toroidal shape and shaped into a secondary molded body. Since the outer periphery of the molded body is constrained by the unvulcanized belt layer, the change with time is small even if time passes, and the growth of the outer periphery can be suppressed. Therefore, tire quality can be improved.

以下、本発明の実施の形態について添付の図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は建設車両用ラジアルタイヤの一例を示し、1はトレッド部、2はサイドウォール部、3はビード部、CLはタイヤ赤道面である。   FIG. 1 shows an example of a radial tire for a construction vehicle, where 1 is a tread portion, 2 is a sidewall portion, 3 is a bead portion, and CL is a tire equatorial plane.

タイヤ内部には、左右のビード部3間にタイヤ幅方向に延在するスチールコード(不図示)をタイヤ周方向に所定の間隔で配列したカーカス層4が延設され、その両端部4aがビード部3に埋設したビードコア5の周りにビードフィラー6を挟み込むようにしてタイヤ内側から外側に折り返されている。ビードフィラー6は、ビードコア5の外周側に当接する下ビードフィラー6Aとその外周側に配置した外ビードフィラー6Bとから構成されている。   A carcass layer 4 in which steel cords (not shown) extending in the tire width direction are arranged between the left and right bead portions 3 at predetermined intervals in the tire circumferential direction is extended inside the tire, and both end portions 4a thereof are beaded. A bead filler 6 is sandwiched around a bead core 5 embedded in the portion 3 so as to be folded back from the tire inner side to the outer side. The bead filler 6 includes a lower bead filler 6 </ b> A that contacts the outer peripheral side of the bead core 5 and an outer bead filler 6 </ b> B disposed on the outer peripheral side thereof.

トレッド部1のカーカス層4の外周側には、層間ゴム層7を介して、スチールコードからなる補強コード(不図示)を所定の間隔でタイヤ周方向に傾斜配列した4層以上(一般に4〜8層、図では7層を例示)のベルト層8が配置されている。これらのベルト層8は、互いに隣接するベルト層8間で補強コードがタイヤ周方向に対する傾斜方向を逆向きにして交差するように積層されている。   On the outer peripheral side of the carcass layer 4 of the tread portion 1, four or more layers (generally 4 to 4) in which reinforcing cords (not shown) made of steel cords are inclined and arranged in the tire circumferential direction at a predetermined interval via an interlayer rubber layer 7. The belt layer 8 is arranged in 8 layers (7 layers are illustrated in the figure). These belt layers 8 are laminated so that the reinforcing cords intersect with each other between the belt layers 8 adjacent to each other with the inclination direction with respect to the tire circumferential direction reversed.

カーカス層4に隣接する内側の2層のベルト層8A,8Bは、その幅が残りのベルト層8より狭く、トレッド部1のセンター領域1Aに位置している。幅が広い残りのベルト層8は、トレッド部1のショルダー領域1B側まで延在している。   The inner two belt layers 8A and 8B adjacent to the carcass layer 4 are narrower than the remaining belt layers 8 and are located in the center region 1A of the tread portion 1. The remaining wide belt layer 8 extends to the shoulder region 1B side of the tread portion 1.

カーカス層4の内側には、非通気性のゴムのインナーライナー層9が内貼りされている。ベルト層8の外周側には、アンダートレッドゴム層10とキャップトレッドゴム層11からなるトレッドゴム層12が配設され、サイドウォール部2には、サイドゴム層13とリムクッションゴム層14が配置されている。   On the inner side of the carcass layer 4, a non-breathable rubber inner liner layer 9 is attached. A tread rubber layer 12 including an under tread rubber layer 10 and a cap tread rubber layer 11 is disposed on the outer peripheral side of the belt layer 8, and a side rubber layer 13 and a rim cushion rubber layer 14 are disposed on the sidewall portion 2. ing.

以下、図2〜12を参照しながら、上述した建設車両用ラジアルタイヤを例にとって本発明の製造方法を説明する。   Hereinafter, the manufacturing method of the present invention will be described with reference to FIGS.

図2から図4は、第1次成形機により1次成形体(所謂、1次グリーンタイヤ)を成形する工程を示す。図2〜図4に示す第1次成形機100において、21はヘッドストック(本体)、22はテールストックである。ヘッドストック21の駆動軸23には成形ドラム25が取り付けられ、その成形ドラム25は半径の大きさが拡縮するように構成されている。テールストック22に設けられた従動軸24は、上記駆動軸23及び成形ドラム25と共に回転するようになっている。さらに、駆動軸23と従動軸24にそれぞれビード供給部26aと26bが設けられ、これらビード供給部26a,26bは、それぞれ軸上を往復移動して、成形ドラム25に接近したり、離間したりするようになっている。   2 to 4 show a process of forming a primary molded body (so-called primary green tire) with a primary molding machine. In the primary molding machine 100 shown in FIGS. 2 to 4, 21 is a headstock (main body), and 22 is a tailstock. A molding drum 25 is attached to the drive shaft 23 of the headstock 21, and the molding drum 25 is configured so that the size of the radius expands and contracts. A driven shaft 24 provided on the tail stock 22 rotates together with the drive shaft 23 and the forming drum 25. Further, the drive shaft 23 and the driven shaft 24 are provided with bead supply portions 26a and 26b, respectively, and these bead supply portions 26a and 26b reciprocate on the respective shafts to approach or separate from the forming drum 25. It is supposed to be.

1次成形体を成形する工程は、まず第1次成形機100の成形ドラム25に、予め不図示のバンド成形機で成形した筒状のバンド27を、図2のように装着する。また、ビード供給部26a,26bに、スチールワイヤを集束したリング状のビードコア5に未加硫ゴムのビードフィラー6’が組み付けられたビードコア組立体28を装着する。筒状のバンド27は、未加硫のカーカス層4’をベースとし、そのカーカス層4’の内周面に未加硫のインナーライナー層(不図示)を内張りして構成されている。   In the step of forming the primary molded body, first, a cylindrical band 27 molded in advance by a band molding machine (not shown) is attached to the molding drum 25 of the primary molding machine 100 as shown in FIG. In addition, a bead core assembly 28 in which a bead filler 6 'made of unvulcanized rubber is assembled to a bead supply unit 26a, 26b and a ring-shaped bead core 5 in which steel wires are converged. The cylindrical band 27 is configured by using an unvulcanized carcass layer 4 ′ as a base and lining an unvulcanized inner liner layer (not shown) on the inner peripheral surface of the carcass layer 4 ′.

次いで、カーカス層4’の両端部4’aを破線で示すように径方向内側へ折り曲げ、それぞれビードコア組立体28を載置したビード供給部26a,26bを成形ドラム25の端部へ移動させ、ビードコア組立体28をカーカス層4’の端部4’aへ移し替える。さらにカーカス層4’の端部4’aをそれぞれビードコア組立体28を包み込むように折り返して、図3に示す状態にする。さらに、図4に示すように、未加硫の層間ゴム層7’と未加硫のリムクッションゴム層(不図示)、及びカーカス層4’の端部4’aを覆うように未加硫のサイドゴム層13’を巻き付けて、1次成形体101を完成する。   Next, both end portions 4′a of the carcass layer 4 ′ are bent radially inward as indicated by broken lines, and the bead supply portions 26a and 26b on which the bead core assemblies 28 are placed are moved to the end portions of the forming drum 25, respectively. The bead core assembly 28 is transferred to the end 4′a of the carcass layer 4 ′. Further, the end portions 4 ′ a of the carcass layer 4 ′ are folded back so as to wrap the bead core assembly 28, so that the state shown in FIG. 3 is obtained. Further, as shown in FIG. 4, the unvulcanized interlayer rubber layer 7 ′, the unvulcanized rim cushion rubber layer (not shown), and the unvulcanized so as to cover the end portion 4′a of the carcass layer 4 ′. The side rubber layer 13 ′ is wound to complete the primary molded body 101.

1次成形体101を成形した後、図5に示すように、更に4層以上のベルト層8を成形するための4層以上の未加硫のベルト層8’の一部である内側の2層の未加硫のベルト層8’A,8’Bを不図示のベルト供給部から順次供給してカーカス層4’上に端部を重ね合わせ接合して貼り合わせ、一部の未加硫ベルト層8’A,8’Bを貼り合わせた1次成形体102を成形する。2層のベルト層8’A,8’Bは、補強コードが互いにタイヤ周方向に対する傾斜方向を逆向きにして交差し、幅が残りのベルト層8’の幅より狭く、トレッド部1のセンター領域1Aに位置する。   After forming the primary molded body 101, as shown in FIG. 5, the inner 2 which is a part of four or more unvulcanized belt layers 8 ′ for forming four or more belt layers 8. The unvulcanized belt layers 8′A and 8′B of the layers are sequentially supplied from a belt supply unit (not shown), and the end portions are overlapped and bonded to the carcass layer 4 ′ to be bonded, and a part of the unvulcanized belt layers The primary molded body 102 in which the belt layers 8′A and 8′B are bonded together is molded. The two belt layers 8′A and 8′B intersect with each other with the reinforcing cords crossing each other with the inclination direction with respect to the tire circumferential direction reversed, and the width is narrower than the width of the remaining belt layer 8 ′. Located in region 1A.

次に、一部のベルト層8’を貼り合わせた1次成形体102を第1次成形機100の成形ドラム25から取り外し、図6及び図7に示すように、その取り外した1次成形体102の内側に加硫ブラダーユニット32を装着する。加硫ブラダーユニット32は、後述する加硫工程で完成グリーンタイヤの内側をインフレートさせるためのもので、加硫機に着脱自在に装着されている。この加硫ブラダーユニット32は、軸方向に相対移動する一対の筒33a,33bからなる伸縮自在の筒体33と、この筒体33の外側を覆うブラダ34とから構成されている。   Next, the primary molded body 102 to which a part of the belt layer 8 ′ is bonded is removed from the molding drum 25 of the primary molding machine 100, and the removed primary molded body is removed as shown in FIGS. A vulcanization bladder unit 32 is mounted inside 102. The vulcanization bladder unit 32 is for inflating the inside of the finished green tire in a vulcanization process described later, and is detachably attached to the vulcanizer. The vulcanization bladder unit 32 includes a telescopic cylinder 33 composed of a pair of cylinders 33 a and 33 b that move relative to each other in the axial direction, and a bladder 34 that covers the outside of the cylinder 33.

ベルト層8’A,8’Bを貼り合わせた1次成形体102を加硫ブラダーユニット32に組み付ける作業は、1次成形体102が重量物であるから、図6に示すように、フック37などを介してクレーンで吊り上げるとか、フォークリフトを利用するようにするとよい。また、1次成形体102を加硫ブラダーユニット32を装着する前に、加硫ブラダーユニット32のブラダー34の表面に噴霧ノズル36などにより離型材36aを塗布して離型性を良好にしておくことが好ましい。さらに、1次成形体102を加硫ブラダーユニット32に装着したら、図7に示すように、両ビードリング35を取り付けて、1次成形体102が簡単に抜け落ちないようにする。   The operation of assembling the primary molded body 102 in which the belt layers 8′A and 8′B are bonded to the vulcanization bladder unit 32 is performed as shown in FIG. It is better to lift it with a crane through a forklift. Further, before the vulcanization bladder unit 32 is mounted on the primary molded body 102, a release material 36a is applied to the surface of the bladder 34 of the vulcanization bladder unit 32 by a spray nozzle 36 or the like to improve the releasability. It is preferable. Further, when the primary molded body 102 is mounted on the vulcanization bladder unit 32, as shown in FIG. 7, both bead rings 35 are attached so that the primary molded body 102 does not easily fall off.

次に、図8に示すように、加硫ブラダーユニット32の筒体33を軸方向に収縮させ、1次成形体102のビード部の間隔を、所定のリム幅に設定すると共に、加硫ブラダーユニット32に圧縮空気を供給して、外径をベルト貼りの径になるまでインフレートさせ、1次成形体102をトロイダル状にシェーピングした2次成形体103に成形する。   Next, as shown in FIG. 8, the cylindrical body 33 of the vulcanization bladder unit 32 is contracted in the axial direction to set the interval between the bead portions of the primary molded body 102 to a predetermined rim width, and the vulcanization bladder. Compressed air is supplied to the unit 32 to inflate the outer diameter until the belt is pasted, and the primary molded body 102 is molded into a secondary molded body 103 shaped in a toroidal shape.

所定の外径とリム幅を有するようにトロイダル状にシェーピングされた2次成形体103は、加硫ブラダーユニット32を装着したまま、旋回装置(図示せず)を利用して、軸方向を鉛直から水平にするように姿勢を変える。さらに、図9のように、クレーン38で吊り下げたり、フォークリフトで搬送することにより、成形ドラム25を取り外した第1次成形機100の駆動軸23に再び装着する。   The secondary molded body 103 shaped in a toroidal shape so as to have a predetermined outer diameter and rim width is vertically oriented using a swivel device (not shown) with the vulcanization bladder unit 32 mounted. Change the posture so that it is level. Further, as shown in FIG. 9, it is mounted again on the drive shaft 23 of the primary molding machine 100 from which the molding drum 25 has been removed by being suspended by a crane 38 or transported by a forklift.

次いで、図10のように、ヘッドストック21の駆動軸23上の2次成形体103にテールストック22側の従動軸24を組み付けた状態にし、さらにエア供給ユニット39から加硫ブラダーユニット32のブラダー34内に圧縮空気を供給して、2次成形体103をトロイダル状にインフレートした状態に維持する。そして、その2次成形体103のベルト層8’B上に残りの未加硫のベルト層8’を貼り合わせた後、その外周に未加硫のトレッドゴム層11’を巻き付け、更に不図示のステッチング(圧着)工程を経て、図11のように、グリーンタイヤ104として完成させる。   Next, as shown in FIG. 10, the driven shaft 24 on the tail stock 22 side is assembled to the secondary compact 103 on the drive shaft 23 of the headstock 21, and the bladder of the vulcanization bladder unit 32 is further supplied from the air supply unit 39. Compressed air is supplied into 34 to maintain the secondary molded body 103 in a toroidal-inflated state. Then, after the remaining unvulcanized belt layer 8 ′ is bonded onto the belt layer 8′B of the secondary molded body 103, the unvulcanized tread rubber layer 11 ′ is wound around the outer periphery, and further not illustrated. Through the stitching (crimping) process, the green tire 104 is completed as shown in FIG.

上記のようにして得られた完成グリーンタイヤ104を第1次成形機100から取り出し、加硫ブラダーユニット32を装着したまま、図12に示すように、加硫モールド42の中に搬送する。そして、加硫ブラダーユニット32で完成グリーンタイヤ104のインフレート状態を維持しながら加硫モールド42中で加熱し加硫硬化させることにより、建設車両用ラジアルタイヤが完成する。   The completed green tire 104 obtained as described above is taken out from the primary molding machine 100 and conveyed into the vulcanization mold 42 with the vulcanization bladder unit 32 attached as shown in FIG. Then, the radial tire for a construction vehicle is completed by heating and curing in the vulcanization mold 42 while maintaining the inflated state of the completed green tire 104 by the vulcanization bladder unit 32.

上述した本発明によれば、一部の未加硫のベルト層8’A,8’Bを貼り合わせた1次成形体102を成形し、それをトロイダル状にシェーピングして2次成形体103に成形するようにしたので、トロイダル状にシェーピングした2次成形体103の外周がベルト層8’A,8’Bに拘束され、2次成形体103の外周成長を抑制することができる。特に、上述した方法では、トロイダル状にシェーピングした後、第1次成形機100に再び取り付けるまでに時間がかかるため、ベルト層8’A,8’Bがない2次成形体ではその間に外周が成長するが、一部のベルト層8’A,8’Bを備えた2次成形体103はそのような外周成長を効果的に抑えることができる。従って、タイヤ品質を向上することができる。   According to the present invention described above, the primary molded body 102 in which a part of the unvulcanized belt layers 8′A and 8′B is bonded is formed, and shaped into a toroidal shape to form the secondary molded body 103. Therefore, the outer periphery of the secondary molded body 103 shaped in a toroidal shape is restrained by the belt layers 8′A and 8′B, and the outer peripheral growth of the secondary molded body 103 can be suppressed. In particular, in the above-described method, since it takes time to re-attach to the primary molding machine 100 after shaping in a toroidal shape, the secondary molded body without the belt layers 8′A and 8′B has an outer periphery therebetween. Although it grows, the secondary molded body 103 provided with some belt layers 8′A and 8′B can effectively suppress such peripheral growth. Therefore, tire quality can be improved.

また、トロイダル状にシェーピングするまでの間に自重により変形して押しつぶれる(特にトレッド部1のセンター領域1Aで発生)のも抑制することができ、それにより加硫工程で起き易いカーカス層の補強コードの不整列(コードウェーブ故障)も改善することができる。   In addition, it is possible to suppress deformation and crushing (particularly occurring in the center region 1A of the tread portion 1) due to its own weight before shaping into a toroidal shape, thereby reinforcing the carcass layer that is likely to occur in the vulcanization process. Code misalignment (code wave failure) can also be improved.

また、トロイダル状にシェーピングする際のリフト率が大きいため、1次成形体102にトレッド部1のショルダー領域1Bまで延在するベルト層を貼り合わせてあると、センター領域1Aに位置するベルト層の部分では補強コードが所定の角度に揃って変化するが、ショルダー領域1Bに位置するベルト層の端部側の部分では補強コード間の間隔が開いて所定の角度に変化しない。上述した本発明では、ベルト層8’A,8’Bの幅をベルト層8’A,8’Bがトレッド部1のセンター領域1A内に位置する幅とすることで、トロイダル状にシェーピングした際にベルト層8’A,8’Bの補強コードが所定の角度に揃って変化するので、加硫後のベルト層8A,8Bの機能を低下させることがない。   Further, since the lift rate when shaping in a toroidal shape is large, if a belt layer extending to the shoulder region 1B of the tread portion 1 is bonded to the primary molded body 102, the belt layer positioned in the center region 1A In the portion, the reinforcing cords change at a predetermined angle, but in the portion on the end side of the belt layer located in the shoulder region 1B, the interval between the reinforcing cords is opened and does not change to the predetermined angle. In the present invention described above, the width of the belt layers 8′A and 8′B is set to a width in which the belt layers 8′A and 8′B are located in the center region 1A of the tread portion 1, so that the belt layers 8′A and 8′B are shaped in a toroidal shape. At this time, since the reinforcing cords of the belt layers 8'A and 8'B change at a predetermined angle, the functions of the belt layers 8A and 8B after vulcanization are not deteriorated.

本発明において、ベルト層8’A,8’Bの補強コードのタイヤ周方向に対する傾斜角度としては、20〜65°の範囲にするのが好ましい。この傾斜角度が20°より低いと、シェーピング時のインフレートに追従して補強コードが角度変化することができず、その結果、第1成形体103が補強コードにより拘束されて所定寸法までシェーピングすることができなくなる。逆に65°を超えると、拘束効果が小さくなり過ぎて、トロイダル状にシェーピングした2次成形体103の外周成長を抑えることが難しくなる。より好ましくは、35〜55°がよい。   In the present invention, the inclination angle of the reinforcing cords of the belt layers 8'A and 8'B with respect to the tire circumferential direction is preferably in the range of 20 to 65 °. If the inclination angle is lower than 20 °, the reinforcing cord cannot change its angle following the inflation during shaping, and as a result, the first molded body 103 is restrained by the reinforcing cord and shaped to a predetermined size. I can't do that. On the other hand, when the angle exceeds 65 °, the restraining effect becomes too small, and it becomes difficult to suppress the outer peripheral growth of the secondary molded body 103 shaped in a toroidal shape. More preferably, it is 35 to 55 °.

また、ベルト層8’A,8’Bの補強コードには、補強コード1本当たりの破断強度が2500N以上のスチールコードなどの補強コードを使用するのが好ましい。破断強度が2500Nより低いと、2次成形体103の外周成長を効果的に抑えることが難しくなる。上限値としては、加硫後のベルト層8A,8Bの発熱の点から8000N以下(撚り径が3mm以下)にするのがよい。   Further, as the reinforcing cords of the belt layers 8'A and 8'B, it is preferable to use reinforcing cords such as steel cords having a breaking strength per reinforcing cord of 2500 N or more. When the breaking strength is lower than 2500 N, it is difficult to effectively suppress the outer peripheral growth of the secondary molded body 103. The upper limit is preferably 8000 N or less (twisted diameter is 3 mm or less) from the viewpoint of heat generation of the belt layers 8A and 8B after vulcanization.

残りの未加硫のベルト層8’は、従来と同様の構造のものを使用することができ、互いに隣接するベルト層8’間でタイヤ周方向に対する傾斜方向を逆向きにして交差する補強コードのタイヤ周方向に対する傾斜角度は、18〜38°の範囲にすることができる。この傾斜角度が18°より小さいと、加硫の際のリフト時に補強コードが内周側の層に食い込むため、好ましくない。逆に38°を超えると、ベルト層8としてのタガ効果を十分に発揮することができなくなる。   The remaining unvulcanized belt layer 8 ′ can be of the same structure as the conventional one, and the reinforcing cord intersects with the belt layer 8 ′ adjacent to each other with the inclined direction with respect to the tire circumferential direction reversed. The inclination angle with respect to the tire circumferential direction can be in the range of 18 to 38 °. If the inclination angle is smaller than 18 °, the reinforcing cords bite into the inner peripheral layer at the time of lifting during vulcanization, which is not preferable. Conversely, if it exceeds 38 °, the hoop effect as the belt layer 8 cannot be fully exhibited.

また、上述したように、第1成形体103が有する未加硫のベルト層8’の数は、内側の2層の未加硫のベルト層8’A,8’Bで効果を発揮するため十分であるが、それ以上であってもよく、少なくとも2層の未加硫のベルト層8’A,8’Bであればよい。2層以上にする場合にも、それらのベルト層はベルト層8’A,8’Bと同様の構成にするのがよい。   In addition, as described above, the number of the unvulcanized belt layers 8 ′ included in the first molded body 103 is effective in the inner two unvulcanized belt layers 8 ′ A and 8 ′ B. Although sufficient, it may be more than that, and at least two unvulcanized belt layers 8′A and 8′B may be used. Even when the number of layers is two or more, those belt layers are preferably configured in the same manner as the belt layers 8'A and 8'B.

本発明は、上記実施形態では、トロイダル状にショーピングする第2次成形機を使用せずに、第1次成形機100のみでグリーンタイヤ104を成形するようにしたが、第1次成形機100で上述した第1成形体103まで成形した後、第1成形体103を第2次成形機に取り付けてトロイダル状にショーピングし、そこで残りの未加硫のベルト層8’とトレッドゴム層11’をそれぞれ貼り付けてグリーンタイヤ104を成形するようにしてもよい。   In the above embodiment, the green tire 104 is formed only by the primary molding machine 100 without using the secondary molding machine that performs the toroidal shopping. After forming the first molded body 103 described above at 100, the first molded body 103 is attached to a secondary molding machine and shaped in a toroidal shape, where the remaining unvulcanized belt layer 8 'and tread rubber layer The green tire 104 may be molded by attaching 11 ′.

タイヤサイズを2700R49で共通にし、図2〜8(但し、図6に示す工程は省略)に示すようにして、本発明の方法により内側の2層の未加硫ベルト層を貼り付けた1次成形体をトロイダル状にシェーピングして2次成形体を成形した。また、未加硫ベルト層を貼り付けていない1次成形体を同様にしてトロイダル状にシェーピングして2次成形体を成形した。   The tire size is the same for 2700R49, and the inner two unvulcanized belt layers are pasted by the method of the present invention as shown in FIGS. 2 to 8 (however, the steps shown in FIG. 6 are omitted). The molded body was shaped into a toroidal shape to form a secondary molded body. In addition, a primary molded body to which an unvulcanized belt layer was not attached was shaped in a toroidal shape in the same manner to form a secondary molded body.

1次成形体を成形する際に使用した第1次成形機の成形ドラムの周長は5267mmである。2層の未加硫ベルト層の補強コードには、7×7×0.22構造のスチールコードを使用し、その破断強度は4000Nである。また補強コードの傾斜角度は共に50°であり、2層の内の内側のベルト層の幅は320mm、貼り合わせ時の周長が5319mm、外側のベルト層の幅は280mm、貼り合わせ時の周長が5330mmである。また、トロイダル状にシェーピングした時の内圧は0.06MPaである。   The circumference of the molding drum of the primary molding machine used when molding the primary molded body is 5267 mm. A steel cord having a structure of 7 × 7 × 0.22 is used for the reinforcing cord of the two unvulcanized belt layers, and its breaking strength is 4000N. The inclination angles of the reinforcing cords are both 50 °, the width of the inner belt layer of the two layers is 320 mm, the circumferential length at the time of bonding is 5319 mm, the width of the outer belt layer is 280 mm, and the circumference at the time of bonding is The length is 5330 mm. The internal pressure when shaping in a toroidal shape is 0.06 MPa.

得られた各2次成形体を内圧を付与した状態でそのまま放置し、外周成長の経時変化を調べたところ、図13に示す結果を得た。なお、図13において、実線が本発明の方法により成形した2次成形体、点線が未加硫ベルト層を貼り付けていない1次成形体をトロイダル状にシェーピングした2次成形体を示す。   Each of the obtained secondary compacts was left as it was with an internal pressure applied, and the change over time in the peripheral growth was examined. The result shown in FIG. 13 was obtained. In FIG. 13, the solid line indicates the secondary molded body formed by the method of the present invention, and the dotted line indicates the secondary molded body obtained by shaping the primary molded body to which the unvulcanized belt layer is not attached in a toroidal shape.

図13から、本発明の方法により成形した2次成形体は外周成長が小さく、本発明はトロイダル状にシェーピングした2次成形体の外周成長を抑制できることがわかる。   From FIG. 13, it can be seen that the secondary molded body molded by the method of the present invention has a small peripheral growth, and the present invention can suppress the peripheral growth of the secondary molded body shaped in a toroidal shape.

本発明の方法により製造される建設車両用ラジアルタイヤの一例を示すタイヤ子午線半断面図である。It is a tire meridian half sectional view showing an example of a radial tire for construction vehicles manufactured by a method of the present invention. 本発明の建設車両用ラジアルタイヤの製造方法における1次成形体の成形工程の説明図である。It is explanatory drawing of the formation process of the primary molded object in the manufacturing method of the radial tire for construction vehicles of this invention. 図2の工程に続く1次成形体の成形工程を示す説明図である。It is explanatory drawing which shows the formation process of the primary molded object following the process of FIG. 図3の工程に続く1次成形体の成形工程を示す説明図である。It is explanatory drawing which shows the formation process of the primary molded object following the process of FIG. 図4の工程に続く未加硫のベルト層の貼り付けた1次成形体の成形工程を示す説明図である。It is explanatory drawing which shows the formation process of the primary molded object which the unvulcanized belt layer stuck on following the process of FIG. 図5の工程で得られた1次成形体を加硫ブラダーユニットに装着する工程を示す説明図である。It is explanatory drawing which shows the process of mounting | wearing the vulcanization bladder unit with the primary molded object obtained at the process of FIG. 1次成形体を加硫ブラダーユニットに装着後の状態を示す断面図である。It is sectional drawing which shows the state after mounting | wearing a vulcanization bladder unit with a primary molded object. 図7の1次成形体をインフレートして2次成形体を成形する工程を示す断面図である。It is sectional drawing which shows the process of inflating the primary molded object of FIG. 7, and shape | molding a secondary molded object. 図8で得た2次成形体を再び第1次成形機に装着する工程を示す説明図である。It is explanatory drawing which shows the process of mounting | wearing a primary molding machine again with the secondary molded object obtained in FIG. 図9で第1次成形機に装着した2次成形体に残りの未加硫のベルト層を巻き付ける工程を示す説明図である。It is explanatory drawing which shows the process of winding the remaining unvulcanized belt layers around the secondary molded body mounted on the primary molding machine in FIG. 図10の工程の次にトレッドゴム層を巻き付けてグリーンタイヤを成形する工程を示す説明図である。It is explanatory drawing which shows the process of winding a tread rubber layer and shape | molding a green tire next to the process of FIG. 図11の工程で得たグリーンタイヤを加硫モールドで加硫する工程を示す説明図である。It is explanatory drawing which shows the process of vulcanizing the green tire obtained at the process of FIG. 11 with a vulcanization mold. 実施例の結果を示すグラフ図である。It is a graph which shows the result of an Example.

符号の説明Explanation of symbols

1 トレッド部
1A センター領域
1B ショルダー領域
2 サイドウォール部
3 ビード部
4 カーカス層
4’未加硫カーカス層
8,8A,8B ベルト層
8’,8’A,8’B 未加硫ベルト層
11 トレッドゴム層
25 成形ドラム
27 バンド
28 ビードコア組立体
32 加硫モールド
100 第1次成形機
101,102 1次成形体
103 2次成形体
104 グリーンタイヤ
DESCRIPTION OF SYMBOLS 1 Tread part 1A Center area | region 1B Shoulder area | region 2 Side wall part 3 Bead part 4 Carcass layer 4 'Unvulcanized carcass layer 8, 8A, 8B Belt layer 8', 8'A, 8'B Unvulcanized belt layer 11 Tread Rubber layer 25 Molding drum 27 Band 28 Bead core assembly 32 Vulcanization mold 100 Primary molding machine 101, 102 Primary molded body 103 Secondary molded body 104 Green tire

Claims (8)

トレッド部のカーカス層外周側に補強コードをタイヤ周方向に傾斜配列した4層以上のベルト層を配置した建設車両用ラジアルタイヤの製造方法であって、グリーンタイヤを成形する際に、未加硫カーカス層を有する円筒状の1次成形体を成形した後、該1次成形体の未加硫カーカス層上に前記4層以上のベルト層を成形するための4層以上の未加硫ベルト層の一部である少なくとも2層の未加硫ベルト層を貼り合わせ、該未加硫ベルト層を貼り合わせた1次成形体をトロイダル状にシェーピングした2次成形体に成形し、該2次成形体の未加硫ベルト層上に残りの未加硫ベルト層を貼り合わせてグリーンタイヤを成形する建設車両用ラジアルタイヤの製造方法。   A method of manufacturing a radial tire for a construction vehicle in which four or more belt layers in which reinforcing cords are inclined and arranged in the tire circumferential direction are arranged on the outer circumferential side of the tread portion of the carcass layer, and when unmolded when forming a green tire Four or more unvulcanized belt layers for molding a cylindrical primary molded body having a carcass layer and then molding the four or more belt layers on the unvulcanized carcass layer of the primary molded body At least two unvulcanized belt layers that are a part of the unvulcanized belt layer are bonded together, and the primary molded body bonded with the unvulcanized belt layer is molded into a toroidal shaped secondary molded body, and the secondary molding is performed. A method for manufacturing a radial tire for a construction vehicle, wherein a green tire is formed by bonding the remaining unvulcanized belt layer on an unvulcanized belt layer of a body. 前記少なくとも2層の未加硫ベルト層の補強コードが互いにタイヤ周方向に対する傾斜方向を逆向きにして交差する請求項1に記載の建設車両用ラジアルタイヤの製造方法。   The method for manufacturing a radial tire for a construction vehicle according to claim 1, wherein the reinforcing cords of the at least two unvulcanized belt layers intersect with each other with the inclination directions with respect to the tire circumferential direction being opposite to each other. 前記少なくとも2層の未加硫ベルト層の補強コードのタイヤ周方向に対する傾斜角度が20〜65°である請求項2に記載の建設車両用ラジアルタイヤの製造方法。   The method for manufacturing a radial tire for a construction vehicle according to claim 2, wherein an inclination angle of the reinforcing cord of the at least two unvulcanized belt layers with respect to a tire circumferential direction is 20 to 65 °. 前記少なくとも2層の未加硫ベルト層の幅が前記残りの未加硫ベルト層の幅より狭い請求項1,2または3に記載の建設車両用ラジアルタイヤの製造方法。   The method for manufacturing a radial tire for a construction vehicle according to claim 1, wherein the width of the at least two unvulcanized belt layers is narrower than the width of the remaining unvulcanized belt layer. 前記少なくとも2層の未加硫ベルト層がトレッド部のセンター領域に位置する幅を有する請求項4に記載の建設車両用ラジアルタイヤの製造方法。   The manufacturing method of the radial tire for construction vehicles of Claim 4 which has a width | variety in which the said at least 2 layer of unvulcanized belt layer is located in the center area | region of a tread part. 前記少なくとも2層の未加硫ベルト層の補強コード1本当たりの破断強度が2500N以上である請求項1乃至5のいずれか1項に記載の建設車両用ラジアルタイヤの製造方法。   The method for manufacturing a radial tire for a construction vehicle according to any one of claims 1 to 5, wherein the breaking strength per reinforcing cord of the at least two unvulcanized belt layers is 2500 N or more. 前記少なくとも2層の未加硫ベルト層が2層である請求項1乃至6のいずれか1項に記載の建設車両用ラジアルタイヤの製造方法。   The method for manufacturing a radial tire for a construction vehicle according to claim 1, wherein the at least two unvulcanized belt layers are two layers. 前記残りの未加硫ベルト層において、補強コードのタイヤ周方向に対する傾斜角度が18〜38°であり、互いに隣接する未加硫ベルト層間で補強コードがタイヤ周方向に対する傾斜方向を逆向きにして交差する請求項1乃至7のいずれか1項に記載の建設車両用ラジアルタイヤの製造方法。   In the remaining unvulcanized belt layer, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is 18 to 38 °, and the reinforcing cord has an inclination direction opposite to the tire circumferential direction between adjacent unvulcanized belt layers. The manufacturing method of the radial tire for construction vehicles of any one of Claim 1 thru | or 7 which cross | intersects.
JP2004261290A 2004-09-08 2004-09-08 Manufacturing method of radial tire for construction vehicle Expired - Fee Related JP4586466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261290A JP4586466B2 (en) 2004-09-08 2004-09-08 Manufacturing method of radial tire for construction vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261290A JP4586466B2 (en) 2004-09-08 2004-09-08 Manufacturing method of radial tire for construction vehicle

Publications (2)

Publication Number Publication Date
JP2006076076A true JP2006076076A (en) 2006-03-23
JP4586466B2 JP4586466B2 (en) 2010-11-24

Family

ID=36155936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261290A Expired - Fee Related JP4586466B2 (en) 2004-09-08 2004-09-08 Manufacturing method of radial tire for construction vehicle

Country Status (1)

Country Link
JP (1) JP4586466B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247077A (en) * 1975-10-09 1977-04-14 Gen Tire & Rubber Co Method of making radial tire
JPS54157184A (en) * 1978-05-30 1979-12-11 Goodrich Co B F Method of molding radial tire
JPS5655242A (en) * 1979-08-13 1981-05-15 Michelin & Cie Manufacture of pneumatic tire
JP2000225810A (en) * 1999-02-08 2000-08-15 Bridgestone Corp Pneumatic radial tire for heavy load
JP2004196142A (en) * 2002-12-19 2004-07-15 Bridgestone Corp Pneumatic radial-ply tire and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247077A (en) * 1975-10-09 1977-04-14 Gen Tire & Rubber Co Method of making radial tire
JPS54157184A (en) * 1978-05-30 1979-12-11 Goodrich Co B F Method of molding radial tire
JPS5655242A (en) * 1979-08-13 1981-05-15 Michelin & Cie Manufacture of pneumatic tire
JP2000225810A (en) * 1999-02-08 2000-08-15 Bridgestone Corp Pneumatic radial tire for heavy load
JP2004196142A (en) * 2002-12-19 2004-07-15 Bridgestone Corp Pneumatic radial-ply tire and manufacturing method thereof

Also Published As

Publication number Publication date
JP4586466B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
CN100572107C (en) Tire and manufacture method with improved high speed performance
JP4914024B2 (en) Pneumatic tire and method for manufacturing pneumatic tire
JPS62290524A (en) Manufacture of radial tire
JP4840965B2 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP2007290193A (en) Method for producing pneumatic tire and pneumatic tire
JP5987324B2 (en) Pneumatic tire
JP4586466B2 (en) Manufacturing method of radial tire for construction vehicle
JP2006247929A (en) Manufacturing method of run-flat tire
KR101027637B1 (en) Method of manufacturing radial tire for construction vehicle
JPS62225406A (en) Air compressed radial tyre
JP3726085B2 (en) Manufacturing method of radial tire for construction vehicle
JP2015085583A (en) Green tire molding device and method for manufacturing pneumatic tire
EP2865542B1 (en) Pneumatic tire and method for manufacturing pneumatic tire
CN102085700B (en) Post cure rotational stations
JP2007022045A (en) Shaping bladder for tire manufacture and tire manufacturing method
JP2004249537A (en) Tire molding method and tire
WO2007049601A1 (en) Air bladder for safety tire and safety tire
JP2006103458A (en) Run flat tire and method of manufacturing the run flat tire
KR102301168B1 (en) Pneumatic tire
JP2003225953A (en) Method for manufacturing pneumatic tire
JP2009178909A (en) Method of manufacturing pneumatic tire
JP6774386B2 (en) Pneumatic tires
JPH11321229A (en) Pneumatic radial tire and manufacture thereof
JP2019104111A (en) Production method of pneumatic tire
US20070051454A1 (en) Producing method of pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees