JP2006075760A - Wastewater purifying treatment material and treatment method - Google Patents

Wastewater purifying treatment material and treatment method Download PDF

Info

Publication number
JP2006075760A
JP2006075760A JP2004263735A JP2004263735A JP2006075760A JP 2006075760 A JP2006075760 A JP 2006075760A JP 2004263735 A JP2004263735 A JP 2004263735A JP 2004263735 A JP2004263735 A JP 2004263735A JP 2006075760 A JP2006075760 A JP 2006075760A
Authority
JP
Japan
Prior art keywords
iron
wastewater
treatment material
purification treatment
wool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004263735A
Other languages
Japanese (ja)
Other versions
JP4380478B2 (en
Inventor
Hiroshi Hayashi
浩志 林
Ayako Mitsumoto
綾子 三本
Shintaro Nakaie
新太郎 仲家
Tokio Kamoshita
時男 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004263735A priority Critical patent/JP4380478B2/en
Publication of JP2006075760A publication Critical patent/JP2006075760A/en
Application granted granted Critical
Publication of JP4380478B2 publication Critical patent/JP4380478B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater purifying treatment material for removing heavy metals from wastewater efficiently and economically, and a wastewater treatment method. <P>SOLUTION: A fibrous substance is used as a carrier and a reducible ferrous precipitate being a mixture of iron hydroxide and green rust or green rust and iron ferrite is supported on the carrier to obtain a wastewater purifying treatment material. Preferably, the reducible ferrous precipitate comprising a precipitate based on iron hydroxide (II), green rust alone or a mixture of green rust and iron ferrite and characterized in that the ratio [Fe<SP>2+</SP>/total Fe] of divalent iron to total iron is 0.3 or above is supported on the ferrous substance to obtain the wastewater purifying treatment material. As the ferrous substance, an inorganic fiber such as quartz wool, glass wool, rock wool, ceramic wool, steel wool, slag wool and the like or an organic fiber is used and a container communicating with wastewater is filled with the wastewater purifying treatment material. The wastewater treatment method using the wastewater purifying treatment material is also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排水に含まれる重金属の除去効果と経済性に優れた排水浄化処理材と、この処理材を用いた浄化処理方法に関する。より詳しくは、常温で使用され、使用方法が簡単であって排水に含まれる重金属の除去効果と経済性に優れた排水浄化処理材と、この処理材を用いた浄化処理方法に関する。 The present invention relates to a wastewater purification treatment material excellent in removal effect and economical efficiency of heavy metals contained in wastewater, and a purification treatment method using this treatment material. More specifically, the present invention relates to a wastewater purification treatment material that is used at room temperature, has a simple usage method, and is excellent in the removal effect and economical efficiency of heavy metals contained in wastewater, and a purification treatment method using this treatment material.

排水中の重金属を除去する手段として、キレート剤に重金属を吸着させる方法や、水酸化物や硫化物の沈澱を生成させ、この沈澱に重金属を取り込ませて共沈させる方法、排水に鉄粉を加えて重金属を沈澱させる方法などが知られている。しかし、キレート剤を用いる方法はキレート剤が高価であるため経済性に劣る、また、キレート剤は還元性がないため重金属の無害化が不十分である。さらにキレート剤が処理水中に残留する可能性がある。 As a means of removing heavy metals in the wastewater, a method of adsorbing heavy metals to the chelating agent, a method of generating precipitates of hydroxides and sulfides, taking heavy metals into the precipitates, and coprecipitation, iron powder in the wastewater In addition, methods for precipitating heavy metals are known. However, the method using a chelating agent is inferior in economic efficiency because the chelating agent is expensive, and the chelating agent is not reducible, so that detoxification of heavy metals is insufficient. In addition, chelating agents may remain in the treated water.

一方、水酸化物や硫化物の沈澱を生成させる方法は、凝集剤を必要とし、シックナーによる凝集沈降分離や、スラッジの脱水処理などの負担が大きい。また、良好な固液分離を行うために共沈剤を必要とするためにスラッジ量が増大すると云う問題がある。また、澱物の脱水性が悪いために澱物処理の負担が大きいと云う問題がある。 On the other hand, the method of generating precipitates of hydroxides and sulfides requires a flocculant and has a heavy burden such as coagulation sedimentation separation by thickener and sludge dehydration treatment. In addition, there is a problem that the amount of sludge increases because a coprecipitation agent is required to perform good solid-liquid separation. Moreover, there is a problem that the burden of starch treatment is large because the dehydrating property of starch is poor.

鉄粉を排水に添加して重金属を還元析出させる方法は、反応が遅いため処理時間が長くかかる、鉄粉の回収が面倒である、反応時のpHは酸性下とし処理後は中性に戻すためpHの調整が煩わしい、水素ガスや2価鉄イオンなどの副生成物を処理する必要があるなど後処理の負担が大きい。 The method of reducing and precipitating heavy metals by adding iron powder to the wastewater takes a long time because of the slow reaction, and the recovery of the iron powder is troublesome. The pH during the reaction is under acidic condition and returned to neutral after the treatment. Therefore, the burden of post-processing is large, such as the need to process by-products such as hydrogen gas and divalent iron ions, which is troublesome to adjust pH.

水酸化物沈澱を利用する他の方法として、繊維状の基材表面に金属水酸化物のゲル状沈殿物を保持させた付着材を充填した層に排水等を通じて、排水等に含まれる微粒子を吸着させる処理方法が知られている(特許文献1:特開平5−293316号公報)。この方法によれば、排水等に含まれる一部の溶存成分、例えば、カドミウム、ヒ素、水銀等の有害金属イオンや高分子凝集剤なども吸着できると説明されている。しかし、この方法では配位結合的な吸着力を利用しているため吸着力ないし吸着容量が十分ではないと云う問題がある。 As another method using hydroxide precipitation, fine particles contained in drainage are passed through drainage etc. through a layer filled with an adhesive that holds a metal hydroxide gel precipitate on the surface of a fibrous base material. A treatment method for adsorption is known (Patent Document 1: Japanese Patent Laid-Open No. 5-293316). According to this method, it is described that a part of dissolved components contained in waste water and the like, for example, harmful metal ions such as cadmium, arsenic, mercury, and polymer flocculant can be adsorbed. However, this method has a problem that the adsorptive power or the adsorption capacity is not sufficient because it uses a coordination bond-like adsorbing force.

一方、排水に還元剤を添加して上記重金属イオンを還元し、排水から除去する方法も知られており、還元剤として鉄粉などが用いられている。例えば、カラム状の槽内に鉄粒子を充填した層を形成し、この鉄粒子充填層に排水を通液して鉄粒子の表面に重金属を吸着させて除去する方法が知られている(特許文献2:特開平9−262592号公報)。さらに、鉄粉や鉄微粒子に排水を接触させて排水中のセレンを鉄粉等の表面に還元析出させることによって排水中のセレン濃度を低減する方法も知られている(特許文献3:特開平7−2502号公報)。 On the other hand, a method of adding a reducing agent to waste water to reduce the heavy metal ions and removing it from the waste water is also known, and iron powder or the like is used as the reducing agent. For example, a method is known in which a layer filled with iron particles is formed in a column-shaped tank, and drainage is passed through the iron particle packed bed to adsorb and remove heavy metals on the surface of the iron particles (patent). Document 2: JP-A-9-262592). Furthermore, there is also known a method of reducing the selenium concentration in the waste water by bringing the waste water into contact with iron powder or iron fine particles and reducing and precipitating selenium in the waste water on the surface of the iron powder or the like (Patent Document 3: Japanese Patent Laid-open No. Hei. 7-2502).

しかし、還元剤として鉄粉を用いる方法は、鉄粉表面に重金属が吸着すると表面反応が妨げられて急激に還元力が低下するため、短期間に鉄粉を入れ替える必要があり、メンテナンスの負担が大きいと云う問題がある。さらに、特に酸性条件下では水素ガスが発生するため後処理が必要となる。また、鉄粉を多量に用いるために充填層が格段に重くなり、装置構造の負担も大きい。
特開平5−293316号公報 特開平9−262592号公報 特開平7−002502号公報
However, the method of using iron powder as a reducing agent requires that the iron powder be replaced in a short period of time because the surface reaction is hindered when the heavy metal is adsorbed on the surface of the iron powder, and the reducing power decreases rapidly. There is a problem of being big. Furthermore, since hydrogen gas is generated particularly under acidic conditions, post-treatment is required. In addition, since a large amount of iron powder is used, the packed bed becomes extremely heavy, and the burden on the device structure is large.
JP-A-5-293316 JP-A-9-262592 JP-A-7-002502

本発明は、従来の排水処理方法における上記問題を解決したものであり、排水等に含まれる重金属の除去効果に優れており、かつメンテナンスが容易であって経済性に優れた排水浄化処理材とその処理方法を提供するものである。 The present invention solves the above-mentioned problems in conventional wastewater treatment methods, is excellent in the effect of removing heavy metals contained in wastewater, etc., and is easy to maintain and economical in wastewater purification treatment material The processing method is provided.

本発明は以下の構成からなる排水浄化処理材とその処理方法に関する。
(1)繊維状物質を担体とし、鉄水酸化物、グリーンラスト、またはグリーンラストと鉄フェライトとの混合物である還元性の鉄系沈澱物を担持させてなることを特徴とする排水浄化処理材。
(2)鉄水酸化物、グリーンラスト、またはグリーンラストと鉄フェライトとの混合物からなり、全鉄に対する2価鉄の比〔Fe2+/全Fe〕が0.3以上である還元性の鉄系沈澱物を繊維状物質に担持させてなる上記(1)の排水浄化処理材。
(3)繊維状物質が、石英ウール、ガラスウール、ロックウール、セラミックウール、スチールウール、またはスラグウールなどの無機繊維、あるいは有機繊維である上記(1)または上記(2)に記載する排水浄化処理材。
(4)排水を通じる容器に上記(1)〜上記(3)の何れかに記載する排水浄化処理材を充填してなる排水浄化処理材。
(5)上記(1)〜(3)の何れかに記載する排水浄化処理材を容器に充填し、該容器に排水を通じて上記排水浄化処理材に接触させることによって、排水に含まれるセレン、銅、六価クロム、モリブデン、ホウ素、アンチモン、鉛、ヒ素、亜鉛、カドミウム、ニッケル、マンガン、フッ素、スズ、燐、コバルト、またはトリクロロエチレンやジクロロエチレンなど有機塩素化合物のいずれか1種または2種以上を除去する排水浄化処理方法。
The present invention relates to a wastewater purification treatment material having the following constitution and a treatment method thereof.
(1) Wastewater purification treatment material characterized by carrying a reducing iron-based precipitate, which is a fibrous substance as a carrier, and is iron hydroxide, green last, or a mixture of green last and iron ferrite. .
(2) Reducing iron comprising iron hydroxide, green last, or a mixture of green last and iron ferrite and having a ratio of divalent iron to total iron [Fe 2+ / total Fe] of 0.3 or more The waste water purification treatment material according to (1) above, wherein the system precipitate is supported on a fibrous material.
(3) Wastewater purification as described in (1) or (2) above, wherein the fibrous material is inorganic fiber such as quartz wool, glass wool, rock wool, ceramic wool, steel wool, or slag wool, or organic fiber Treatment material.
(4) A wastewater purification treatment material obtained by filling a wastewater purification treatment material described in any one of (1) to (3) above into a container through which wastewater flows.
(5) Filling a container with the waste water purification treatment material described in any one of (1) to (3) above and bringing the container into contact with the waste water purification treatment material through waste water, selenium and copper contained in the waste water , Hexavalent chromium, molybdenum, boron, antimony, lead, arsenic, zinc, cadmium, nickel, manganese, fluorine, tin, phosphorus, cobalt, or any one or more of organic chlorine compounds such as trichlorethylene and dichloroethylene Wastewater purification treatment method.

〔具体的な説明〕
本発明に係る排水浄化処理材は、繊維状物質を担体とし、鉄水酸化物、グリーンラスト、またはグリーンラストと鉄フェライトとの混合物である還元性の鉄系沈澱物を担持させてなることを特徴とする排水浄化処理材である。具体的には、例えば、2価鉄の水酸化鉄(II)を主体とする鉄水酸化物、あるいは、グリーンラスト単独、またはグリーンラストと鉄フェライトとの混合物からなる還元性の鉄系沈澱物を繊維状物質に担持させてなる排水浄化処理材である。
[Specific description]
The waste water purification treatment material according to the present invention comprises a fibrous substance as a carrier and carries a reducing iron-based precipitate that is iron hydroxide, green last, or a mixture of green last and iron ferrite. It is a featured wastewater purification treatment material. Specifically, for example, a reducing iron-based precipitate composed of an iron hydroxide mainly composed of divalent iron (II) hydroxide, or green last alone, or a mixture of green last and iron ferrite. Is a wastewater purification treatment material that is supported on a fibrous material.

グリーンラストは、第一鉄と第二鉄の水酸化物が層状をなす青緑色の物質であり、層間にアニオンを取り込んだ構造を有し、例えば次式(1)によって表される。
〔FeII (6-x)FeIII x(OH)12x+〔Ax/n・yH2O〕x- …(1)
(0.9<x<4.2、Fe2+/全Fe=0.3〜0.85)
(A:アニオン、SO4 2-、Cl-など)
例えば、A=SO4 2-、x=2のとき、グリーンラスト(II)〔GR(II)〕と呼ばれる。グリーンラストは緩慢に酸化することによって鉄フェライト化する。
Green last is a blue-green substance in which a hydroxide of ferrous iron and ferric iron forms a layer, and has a structure in which an anion is taken in between layers, and is represented by, for example, the following formula (1).
[Fe II (6-x) Fe III x (OH) 12 ] x + [A x / n · yH 2 O] x- ... (1)
(0.9 <x <4.2, Fe 2+ / total Fe = 0.3 to 0.85)
(A: anion, SO 4 2− , Cl −, etc.)
For example, when A = SO 4 2− and x = 2, it is called green last (II) [GR (II)]. Green rust becomes iron ferrite by slowly oxidizing.

鉄フェライトは、マグネタイト(FeIIOFeIII 23)を主体とするが、一部にFe(II)またはFe(III)が重金属と置換したものでもよい。本発明の還元性を有する鉄系沈澱物は、例えば、排水中の重金属イオンがグリーンラストに取り込まれ、重金属を一部に含んだ状態で鉄フェライト化したものを用いることができる。 The iron ferrite is mainly composed of magnetite (Fe II OFe III 2 O 3 ), but may be partially substituted with heavy metal by Fe (II) or Fe (III). As the iron-based precipitate having reducibility according to the present invention, for example, a ferritic iron precipitate in a state in which heavy metal ions in waste water are taken into the green rust and partially include heavy metals can be used.

還元性鉄水酸化物は、2価鉄の水酸化鉄(II)を主体とする沈澱であり、例えば、第一鉄塩溶液に非酸化性雰囲気下でアルカリを加えて沈澱を生成させることによって得ることができる。この水酸化鉄(II)はアルカリ性下で緩慢に酸化することによって次第にグリーンラストに変質する。 Reducing iron hydroxide is a precipitate mainly composed of iron (II) hydroxide of divalent iron. For example, by adding alkali to a ferrous salt solution in a non-oxidizing atmosphere to form a precipitate. Obtainable. This iron (II) hydroxide gradually changes to green last by slowly oxidizing under alkaline conditions.

本発明の鉄系沈澱物は、還元力を有するように、該沈澱中の全鉄に対する2価鉄の比〔Fe2+/全Fe〕は少なくとも0.3以上のものが用いられる。鉄系沈澱物の2価鉄の比がこれより小さいと還元力が弱いので適当ではない。因みに、上記のとおり、グリーンラストまたはグリーンラストと鉄フェライトとの混合物では、上記2価鉄の比〔Fe2+/全Fe〕は0.3〜0.85であり、2価鉄量の多いものほど還元力が強い。なお、グリーンラストは緩慢に酸化することによって鉄フェライト化するので、通常は、上記2価鉄の比は0.4〜0.65、好ましくは0.5〜0.6であればよい。 In the iron-based precipitate of the present invention, the ratio of divalent iron to the total iron in the precipitate [Fe 2+ / total Fe] is at least 0.3 or more so as to have a reducing power. If the ratio of divalent iron in the iron-based precipitate is smaller than this, the reducing power is weak, which is not suitable. Incidentally, as described above, in the green last or a mixture of green last and iron ferrite, the ratio of the divalent iron [Fe 2+ / total Fe] is 0.3 to 0.85, and the amount of divalent iron is large. The stronger the reduction, the stronger. In addition, since green last is iron-ferrite by being oxidized slowly, the ratio of the divalent iron is usually 0.4 to 0.65, preferably 0.5 to 0.6.

本発明の排水浄化処理材は、繊維状物質を担体とし、これに上記還元性鉄系沈殿物を担持させたものである。担体の繊維状物質としては、例えば、石英ウール、ガラスウール、ロックウール、セラミックウール、スチールウール、またはスラグウールなどの無機繊維を用いることができる。あるいは有機合成繊維を用いても良い。繊維状物質の太さ、密度、あるいは鉄系沈殿物と繊維状物質の重量割合などは使用環境に応じて適宜選択される。 The wastewater purification treatment material of the present invention uses a fibrous substance as a carrier and carries the above-described reducing iron-based precipitate thereon. As the fibrous material of the carrier, for example, inorganic fibers such as quartz wool, glass wool, rock wool, ceramic wool, steel wool, or slag wool can be used. Alternatively, organic synthetic fibers may be used. The thickness and density of the fibrous substance, or the weight ratio of the iron-based precipitate and the fibrous substance are appropriately selected according to the use environment.

本発明の排水浄化処理材は、例えば、水酸化鉄(II)を主体とする沈澱物スラリー、グリーンラスト単独のスラリー、またはグリーンラストと鉄フェライトとの混合物のスラリーを調製し、これらのスラリーに繊維状物質を浸し、十分に攪拌してスラリーを繊維に馴染ませ、この繊維表面をスラリーの沈殿物によって被覆させることによって製造することができる。あるいは2価鉄系塩類水溶液に繊維状物質を含浸させ、ここにアルカリを添加させて沈殿物を形成し、この沈殿物によって繊維表面を被覆することによって本発明の排水浄化処理剤を製造することができる。 The waste water purification treatment material of the present invention, for example, prepared a precipitate slurry mainly composed of iron (II) hydroxide, a slurry of green last alone, or a slurry of a mixture of green last and iron ferrite, to these slurries It can be produced by soaking the fibrous material, stirring well to allow the slurry to conform to the fiber and coating the fiber surface with a slurry precipitate. Alternatively, the wastewater purification treatment agent of the present invention is produced by impregnating a fibrous material into a divalent iron-based salt aqueous solution, adding an alkali thereto to form a precipitate, and covering the fiber surface with this precipitate. Can do.

グリーンラストのスラリー、あるいはグリーンラストと鉄フェライトの混合物のスラリーは以下のようにして調製することができる。
(イ)硫酸第一鉄水溶液に消石灰を添加してpH9.0前後のアルカリ性にし、鉄系沈殿物を生成させる。
(ロ)この沈殿物を固液分離して回収し、さらに消石灰を加えてpH12前後の強アルカリに調整する。
(ハ)この強アルカリ澱物を硫酸第一鉄水溶液に加え、pH9.0前後に調整し、攪拌してスラリーにする。このときスラリー中の全鉄に対する2価鉄の比〔Fe2+/T-Fe〕が0.4〜0.65、および酸化還元電位(Ag/AgCl電極基準)が−620mV〜−680mVになるように攪拌装置の空気界面との接触面積を調整する。
(ニ)生成した沈澱物を固液分離して濃縮澱物とする。
上記(ロ)〜(ニ)の工程を繰り返すことによって本発明の排水浄化処理材に用いる鉄系沈殿物を調製することができる。
A slurry of green last or a mixture of green last and iron ferrite can be prepared as follows.
(Ii) Slaked lime is added to the ferrous sulfate aqueous solution to make it alkaline at about pH 9.0 to produce an iron-based precipitate.
(B) The precipitate is recovered by solid-liquid separation, and further slaked lime is added to adjust to a strong alkali around pH 12.
(C) This strong alkali starch is added to the ferrous sulfate aqueous solution, adjusted to around pH 9.0, and stirred to form a slurry. At this time, the ratio of divalent iron to the total iron in the slurry [Fe 2+ / T-Fe] is 0.4 to 0.65, and the redox potential (Ag / AgCl electrode standard) is -620 mV to -680 mV. Thus, the contact area with the air interface of the stirring device is adjusted.
(D) The produced precipitate is solid-liquid separated to obtain a concentrated starch.
By repeating the steps (b) to (d), an iron-based precipitate used for the wastewater purification treatment material of the present invention can be prepared.

また、本発明の排水浄化処理材に用いる鉄系沈殿物は、次のように2価鉄と3価鉄を含む水溶液を用いて調製することができる。
(イ)以下(ロ)〜(ニ)の操作を不活性ガス雰囲気下(99.99%N2等)で実施する。
(ロ)イオン交換水を99.99%N2等の不活性ガスで曝気して脱酸素する。
(ハ)上記イオン交換水にFeSO4・7H2OとFe2(SO4)3を添加して、Fe2+/Fe3+=2(モル比)の割合でFe2+とFe3+を含む溶液を調製する。
(ニ)この硫酸鉄水溶液にNaOHを加えて混合する。NaOHの添加量はNaOH/全Fe=2(モル比)となるように調整する。この結果、以下の反応式に示すようにグリーンラスト(II)が生成する。
4Fe2++2Fe3++12OH-+SO4 2- → Fe4Fe2(OH)12SO4
(ホ)この沈澱物を固液分離して回収し、さらに消石灰を加えてpH12前後の強アルカリに調整する。
(ヘ)この強アルカリ澱物を硫酸第一鉄水溶液に加え、pH9.0前後に調整し、攪拌してスラリーにする。このときスラリー中の全鉄に対する二価鉄の比(Fe2+/全Fe)が0.4〜0.65、および酸化還元電位(Ag/AgCl電極基準)が−620mV〜−680mVになるように攪拌装置の空気界面との接触面積を調整する。
(ト)生成した沈澱物を固液分離して濃縮澱物とする。
上記(ホ)〜(ト)の工程を繰り返して得た濃縮澱物を本発明の排水浄化処理材に用いることができる
Moreover, the iron-type deposit used for the waste water purification treatment material of this invention can be prepared using the aqueous solution containing bivalent iron and trivalent iron as follows.
(B) The following operations (b) to (d) are carried out under an inert gas atmosphere (99.99% N 2 or the like).
(B) The deionized water is aerated with an inert gas such as 99.99% N 2 .
(C) FeSO 4 .7H 2 O and Fe 2 (SO 4 ) 3 are added to the ion exchange water, and Fe 2+ and Fe 3+ are added at a ratio of Fe 2+ / Fe 3+ = 2 (molar ratio). A solution containing is prepared.
(D) NaOH is added to the aqueous iron sulfate solution and mixed. The amount of NaOH added is adjusted so that NaOH / total Fe = 2 (molar ratio). As a result, green last (II) is produced as shown in the following reaction formula.
4Fe 2+ + 2Fe 3+ + 12OH + SO 4 2− → Fe 4 Fe 2 (OH) 12 SO 4
(E) The precipitate is recovered by solid-liquid separation, and further slaked lime is added to adjust to a strong alkali around pH 12.
(F) Add this strong alkali starch to the ferrous sulfate aqueous solution, adjust the pH to around 9.0, and stir to make a slurry. At this time, the ratio of divalent iron to total iron in the slurry (Fe 2+ / total Fe) is 0.4 to 0.65, and the oxidation-reduction potential (Ag / AgCl electrode standard) is −620 mV to −680 mV. The contact area with the air interface of the agitator is adjusted.
(G) The produced precipitate is solid-liquid separated to obtain a concentrated starch.
The concentrated starch obtained by repeating the steps (e) to (g) can be used for the wastewater purification treatment material of the present invention.

このようにして得た澱物スラリーを繊維状物質と十分に含浸させ、繊維状物質に担持させることにより、本発明の排水浄化処理材を得ることができる。 The starch slurry thus obtained is sufficiently impregnated with the fibrous substance and supported on the fibrous substance, whereby the waste water purification treatment material of the present invention can be obtained.

また、以下のようにしても本発明の排水浄化処理材を製造することができる。
(イ)硫酸第一鉄水溶液に繊維状物質を含浸させる。
(ロ)ここに水酸化ナトリウム水溶液を添加し、pH9.0に調整し、上記繊維状物質の表面に沈殿物を沈積させる。
以上の工程により、本発明の排水浄化処理材を得ることができる。
Also, the waste water purification treatment material of the present invention can be manufactured as follows.
(A) Impregnating a ferrous sulfate aqueous solution with a fibrous material.
(B) An aqueous sodium hydroxide solution is added here to adjust the pH to 9.0, and a precipitate is deposited on the surface of the fibrous material.
Through the above steps, the waste water purification treatment material of the present invention can be obtained.

本発明の排水浄化処理材は、例えば、排水を通じるカラム等の容器に該処理材を充填して使用することができる。上記鉄系沈殿物を担持した繊維状物質をカラム等に充填したものは、球状の担体やブロック状の担体に比べて表面積が大きく、空隙率が高いので、繊維状物質と沈殿物の微粒子が相互に絡み合った状態になり、鉄系沈殿物が安定に保持される。従って、カラム等に排水を通じた場合、鉄系沈殿物が繊維状物質から脱落して流出する割合が少なく、安定な処理効果を得ることができる。 The waste water purification treatment material of the present invention can be used, for example, by filling the treatment material in a container such as a column through which waste water passes. A column or the like filled with a fibrous substance carrying the iron-based precipitate has a larger surface area and a higher porosity than a spherical carrier or a block-like carrier. It becomes intertwined with each other and the iron-based precipitate is stably maintained. Therefore, when drainage is passed through a column or the like, the ratio of the iron-based precipitates falling off from the fibrous material and flowing out is small, and a stable treatment effect can be obtained.

鉄系沈殿物を担持した繊維状物質を充填したカラム等はpH8〜11のアルカリ性下で使用するのが好ましく、pH9〜10で使用するのが更に好ましい。このpHが上記範囲より低いと2価鉄イオンが溶出して水質が悪化する。一方、pHが上記範囲よりも高いと還元能力が落ちる。 A column packed with a fibrous substance carrying an iron-based precipitate is preferably used under alkaline pH 8-11, and more preferably pH 9-10. When this pH is lower than the above range, divalent iron ions are eluted and the water quality deteriorates. On the other hand, when the pH is higher than the above range, the reducing ability decreases.

本発明の排水浄化処理材は、排水を通じた上記カラム内の酸化還元電位がAg/AgCl電極基準として−500mV〜−800mVの状態で使用するのが好ましく、−620mV〜−680mVがさらに好ましい。この酸化還元電位が上記範囲より高いと還元能力が低下するため重金属除去処理が不能になる。 The waste water purification treatment material of the present invention is preferably used in a state where the oxidation-reduction potential in the column through waste water is -500 mV to -800 mV as an Ag / AgCl electrode reference, and more preferably -620 mV to -680 mV. If this oxidation-reduction potential is higher than the above range, the reduction ability is lowered, and thus heavy metal removal treatment becomes impossible.

本発明の排水浄化処理材を使用する際、必要に応じて、硫酸第一鉄、塩化第一鉄など2価の鉄系塩類を添加し、また、非酸化性雰囲気に調整することによって還元反応をさらに促進することができる。 When using the waste water purification treatment material of the present invention, a divalent iron-based salt such as ferrous sulfate or ferrous chloride is added as necessary, and the reduction reaction is performed by adjusting to a non-oxidizing atmosphere. Can be further promoted.

上記排水浄化処理材に排水を接触することによって排水に含まれる重金属は上記鉄系沈澱物に取り込まれて澱物化し、排水から除去される。例えば、カドミウム、鉛、亜鉛、ニッケル、マンガン等の重金属イオンはグリーンラストの層間などに取り込まれる。また、6価セレンや6価クロムなどのオキシアニオンは、4価セレンや金属セレン、または3価クロムに還元され、上記鉄系沈殿物に取り込まれる。さらに、セレンおよびクロム以外のオキシアニオン、たとえば5価ヒ素、3価ヒ素はいずれもグリーンラストの緩い層状構造に中に取り込まれ、澱物となって排水から除去される。 When the waste water is brought into contact with the waste water purification treatment material, the heavy metal contained in the waste water is taken into the iron-based precipitate, becomes a starch, and is removed from the waste water. For example, heavy metal ions such as cadmium, lead, zinc, nickel and manganese are taken in between layers of green last. In addition, oxyanions such as hexavalent selenium and hexavalent chromium are reduced to tetravalent selenium, metal selenium, or trivalent chromium, and incorporated into the iron-based precipitate. Furthermore, oxyanions other than selenium and chromium, for example, pentavalent arsenic and trivalent arsenic, are all taken into the loose lamellar structure of green last and are removed from the waste water as starch.

上記排水浄化処理材に排水を繰り返し通液し、あるいは連続的に通液し、排水中の重金属が上記鉄系沈殿物に取り込まれることによって、排水浄化処理材の還元力が低下してきたら、該排水浄化処理材をカラム等から取り出して還元力の強い新しい排水浄化処理材に交換すれば良い。 If the reducing power of the waste water purification treatment material is reduced by repeatedly passing the waste water through the waste water purification treatment material or continuously passing it, and the heavy metal in the waste water is taken into the iron-based precipitate, What is necessary is just to take out a waste water purification processing material from a column etc. and replace | exchange for the new waste water purification processing material with a strong reduction power.

本発明の排水浄化処理材は、排水に含まれる重金属を鉄系沈澱物中に取り込むので、重金属を効果的に排水から除去することができる。また、本発明の排水浄化処理材を使用する場合には加熱する必要がなく、常温で排水の重金属を取り込んで沈殿物の鉄フェライト化が進む。なお、沈澱物はマグネタイトを主体とするため磁性を帯びており、沈澱物を磁石に吸着させて処理することができる。さらに、繊維状物質と一体に取り出して除去することができるので取り扱が容易であり、澱物の後処理の負担が少なく、経済性および取扱性に優れる。 Since the wastewater purification treatment material of the present invention takes in heavy metals contained in wastewater into iron-based precipitates, heavy metals can be effectively removed from wastewater. Moreover, when using the waste water purification treatment material of this invention, it is not necessary to heat, and the heavy metal of a waste water is taken in at normal temperature, and precipitation of iron progresses. In addition, since the precipitate is mainly composed of magnetite, it is magnetic and can be treated by adsorbing the precipitate to a magnet. Furthermore, since it can be taken out and removed integrally with the fibrous material, it is easy to handle, the post-treatment burden of starch is small, and it is excellent in economic efficiency and handleability.

繊維状物質として金属製錬の副産物であるスラグウールを用いることによって安価で環境負荷の低い排水処理が可能である。また、本発明の排水浄化処理材は中性〜弱アルカリ性下で使用することができ、pHの調整が容易であり、単一充填層内で重金属の還元による無害化と濃縮分離を達成することができる。例えば、重金属濃度が低い汚染排水を処理する場合、従来は塩化鉄などの共沈剤を用いるために大量のスラッジ量が発生し、シックナーなどの固液分離手段を必要とするが、本発明の浄化処理材によれば、従来のような固液分離手段を必要とせず、排水中の重金属は澱物となって繊維状物質に沈着するので、これを一体に取り出すことによってそのまま排水と分離することができ、後処理が格段に容易である。 By using slag wool, which is a by-product of metal smelting, as a fibrous material, wastewater treatment with low cost and low environmental impact is possible. In addition, the wastewater purification treatment material of the present invention can be used under neutral to weak alkalinity, is easy to adjust pH, and achieves detoxification and concentration separation by reduction of heavy metals in a single packed bed. Can do. For example, when treating contaminated wastewater with a low concentration of heavy metals, conventionally, a large amount of sludge is generated due to the use of a coprecipitation agent such as iron chloride, and a solid-liquid separation means such as a thickener is required. According to the purification treatment material, conventional solid-liquid separation means is not required, and the heavy metal in the wastewater becomes starch and deposits on the fibrous material. And post-processing is much easier.

〔実施例〕
グリーンラストと鉄フェライトの混合物からなり、全鉄に対する2価鉄の比〔Fe2+/T-Fe〕が0.4〜0.65なるように調製した沈殿物20g/Lを含むスラリー1000mLにスラグ繊維20gを浸漬し、十分に攪拌して繊維を馴染ませ、繊維の表面を上記沈殿物によって被覆する。上記沈澱物によって被覆されたスラグ繊維(被覆後の重量25g)を回収してカラム(直径5cm×高さ6cm)に均一に充填する。このカラムの上部から排水を液線流速2mm/minで内部に通液して流下させた。流下前の排水に含まれる重金属濃度と、流下後の重金属濃度を表1に示した。
〔Example〕
1000 mL of a slurry containing 20 g / L of a precipitate made of a mixture of green last and iron ferrite and prepared such that the ratio of divalent iron to total iron [Fe 2+ / T-Fe] is 0.4 to 0.65. 20 g of slag fiber is dipped, thoroughly agitated to adjust the fiber, and the surface of the fiber is covered with the precipitate. The slag fiber covered with the precipitate (weight after coating 25 g) is recovered and uniformly packed in a column (diameter 5 cm × height 6 cm). Waste water was allowed to flow from the top of the column through the interior at a liquid flow rate of 2 mm / min. Table 1 shows the heavy metal concentration contained in the wastewater before flowing down and the heavy metal concentration after flowing down.

表1に示すように、本発明の排水浄化処理材を通過した排水の重金属イオンは大幅に低減されており、この処理効果は流下量500mLと2000mLの何れにおいても大きな違いはなく、排水の処理流量が増えても安定に重金属を除去できる。 As shown in Table 1, the amount of heavy metal ions in the wastewater that passed through the wastewater purification treatment material of the present invention is greatly reduced, and this treatment effect is not significantly different between the flow-down amounts of 500 mL and 2000 mL. Even if the flow rate increases, heavy metals can be removed stably.

Figure 2006075760
Figure 2006075760

Claims (5)

繊維状物質を担体とし、鉄水酸化物、グリーンラスト、またはグリーンラストと鉄フェライトとの混合物である還元性の鉄系沈澱物を担持させてなることを特徴とする排水浄化処理材。
A wastewater purification treatment material comprising a fibrous substance as a carrier and carrying a reducing iron-based precipitate, which is iron hydroxide, green last, or a mixture of green last and iron ferrite.
鉄水酸化物、グリーンラスト、またはグリーンラストと鉄フェライトとの混合物からなり、全鉄に対する2価鉄の比〔Fe2+/全Fe〕が0.3以上である還元性の鉄系沈澱物を繊維状物質に担持させてなる請求項1の排水浄化処理材。
A reducing iron-based precipitate comprising iron hydroxide, green last, or a mixture of green last and iron ferrite and having a ratio of divalent iron to total iron [Fe 2+ / total Fe] of 0.3 or more. The waste water purification treatment material according to claim 1, which is supported on a fibrous material.
繊維状物質が、石英ウール、ガラスウール、ロックウール、セラミックウール、スチールウール、またはスラグウールなどの無機繊維、あるいは有機繊維である請求項1または請求項2に記載する排水浄化処理材。
The wastewater purification treatment material according to claim 1 or 2, wherein the fibrous substance is an inorganic fiber such as quartz wool, glass wool, rock wool, ceramic wool, steel wool, or slag wool, or an organic fiber.
排水を通じる容器に請求項1〜請求項3の何れかに記載する排水浄化処理材を充填してなる排水浄化処理材。
A wastewater purification treatment material obtained by filling a wastewater purification treatment material according to any one of claims 1 to 3 into a container through which wastewater flows.
請求項1〜請求項3の何れかに記載する排水浄化処理材を容器に充填し、該容器に排水を通じて上記排水浄化処理材に接触させることによって、排水に含まれるセレン、銅、六価クロム、モリブデン、ホウ素、アンチモン、鉛、ヒ素、亜鉛、カドミウム、ニッケル、マンガン、フッ素、スズ、燐、コバルト、またはトリクロロエチレンやジクロロエチレンなど有機塩素化合物のいずれか1種または2種以上を除去する排水浄化処理方法。


The selenium, copper, hexavalent chromium contained in the wastewater is filled by filling the wastewater purification treatment material according to any one of claims 1 to 3 into the container and contacting the wastewater purification treatment material through the wastewater. , Molybdenum, Boron, Antimony, Lead, Arsenic, Zinc, Cadmium, Nickel, Manganese, Fluorine, Tin, Phosphorus, Cobalt, or any one or more of organic chlorine compounds such as trichlorethylene and dichloroethylene Method.


JP2004263735A 2004-09-10 2004-09-10 Waste water purification treatment material and treatment method Expired - Fee Related JP4380478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263735A JP4380478B2 (en) 2004-09-10 2004-09-10 Waste water purification treatment material and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263735A JP4380478B2 (en) 2004-09-10 2004-09-10 Waste water purification treatment material and treatment method

Publications (2)

Publication Number Publication Date
JP2006075760A true JP2006075760A (en) 2006-03-23
JP4380478B2 JP4380478B2 (en) 2009-12-09

Family

ID=36155660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263735A Expired - Fee Related JP4380478B2 (en) 2004-09-10 2004-09-10 Waste water purification treatment material and treatment method

Country Status (1)

Country Link
JP (1) JP4380478B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108399A1 (en) * 2012-09-10 2014-03-13 Soraya Heuss-Aßbichler Reducing the concentration of at least one dissolved heavy metal in an aqueous solution, comprises precipitating at least one heavy metal partially by preparing a reaction mixture from the aqueous solution and green rust as a precipitate
RU2633913C1 (en) * 2016-07-19 2017-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Method of extracting ions of heavy metals from aqueous solutions
CN107352676A (en) * 2017-07-04 2017-11-17 中国科学院生态环境研究中心 The processing method of the waste water containing heavy-metal stain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012108399A1 (en) * 2012-09-10 2014-03-13 Soraya Heuss-Aßbichler Reducing the concentration of at least one dissolved heavy metal in an aqueous solution, comprises precipitating at least one heavy metal partially by preparing a reaction mixture from the aqueous solution and green rust as a precipitate
DE102012108399B4 (en) * 2012-09-10 2018-02-22 Soraya Heuss-Aßbichler A method for reducing the concentration of at least one dissolved heavy metal in an aqueous solution
RU2633913C1 (en) * 2016-07-19 2017-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Method of extracting ions of heavy metals from aqueous solutions
CN107352676A (en) * 2017-07-04 2017-11-17 中国科学院生态环境研究中心 The processing method of the waste water containing heavy-metal stain

Also Published As

Publication number Publication date
JP4380478B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
KR100853970B1 (en) Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus
Li et al. Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants
JP2013075252A (en) Treatment method removing cesium and heavy metal from wastewater
US20060049091A1 (en) Reactive adsorbent for heavy elements
He et al. Sequestration of chelated copper by structural Fe (II): Reductive decomplexation and transformation of CuII-EDTA
JP2013177575A (en) Treatment agent, and method for treating polluted water or polluted soil
JP4827541B2 (en) Immobilizing agent for harmful components and immobilizing method
Han et al. Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag
JP2009148749A (en) Heavy metal-containing water treating method
JP4870423B2 (en) Heavy metal treatment material and heavy metal treatment method using the same
JP3928650B2 (en) Reducing water purification material and method for producing the same
Sahu et al. Utilization of ferrous slags as coagulants, filters, adsorbents, neutralizers/stabilizers, catalysts, additives, and bed materials for water and wastewater treatment: A review
JP2006263699A (en) Heavy metal-containing water treatment method and apparatus
Rao et al. Simultaneous removal of lead (II) and nitrate from water at low voltage
Zeng et al. Efficient removal of arsenite by a composite of amino modified silica supported MnO2/Fe–Al hydroxide (SNMFA) prepared from biotite
JP4380478B2 (en) Waste water purification treatment material and treatment method
KR20120033863A (en) Iron and manganese-coated sand, methods for producing the same, and methods for purifying sewage that contains heavy metals using the same
KR102287933B1 (en) Method for preparing hybrid adsorbent for removing cationic and anionic contaminants simultaneously and hybrid adsorbent prepared thereby
JP2011156470A (en) Method for treatment of contaminant components
CN105858853A (en) Nano powder aqueous suspension for heavy metal ion wastewater treatment and preparation method thereof
JP2007117923A (en) Anion adsorbing material, its manufacturing method, method for removing anion, method for regenerating anion adsorbing material and method for recovering element
Goren et al. Combined influence of some cations on arsenic removal by an air-injection EC reactor using aluminum ball electrodes
JP2004076027A (en) Environmental clean-up material, and manufacturing and operating method therefor
Chakravarty et al. Arsenic removal using iron and manganese based adsorbents: scope of utilizing natural resources and waste
Newcombe Arsenic removal from drinking water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees