JP2006075685A - Inclined flow channel module - Google Patents

Inclined flow channel module Download PDF

Info

Publication number
JP2006075685A
JP2006075685A JP2004260420A JP2004260420A JP2006075685A JP 2006075685 A JP2006075685 A JP 2006075685A JP 2004260420 A JP2004260420 A JP 2004260420A JP 2004260420 A JP2004260420 A JP 2004260420A JP 2006075685 A JP2006075685 A JP 2006075685A
Authority
JP
Japan
Prior art keywords
suspension
channel module
plates
flow
sedimentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004260420A
Other languages
Japanese (ja)
Other versions
JP4413108B2 (en
Inventor
Kazuhiro Fujisaki
一裕 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2004260420A priority Critical patent/JP4413108B2/en
Publication of JP2006075685A publication Critical patent/JP2006075685A/en
Application granted granted Critical
Publication of JP4413108B2 publication Critical patent/JP4413108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inclined flow channel module capable of keeping the separation efficiency of a suspended substance to be treated high by optimizing the height of an inclined flow channel corresponding to the kind of the suspended substance to be treated or the concentration, flow rate or flow velocity of a suspension and capable of easily altering the height of the inclined flow channel. <P>SOLUTION: The inclined flow channel module 1 is sunk in a suspension separation tank and constituted so as to separate the suspended substance to be treated from the suspension to take out a clarified liquid and has a housing 2 and a large number of inclined plates 3 are attached to the housing 2 in a vertically laminated state to form a large number of inclined flow channels. The inclined plates 3 are connected through bellows 4 to freely alter the mutual intervals between the inclined plates 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固液分離や油水分離など、懸濁液中に浮遊する懸濁物質を分散媒から分離するための傾斜流路モジュールに関し、特に、懸濁液の濃度の違いに応じてその形態を調整することのできる傾斜流路モジュールに関する。   The present invention relates to an inclined channel module for separating a suspended substance suspended in a suspension from a dispersion medium, such as solid-liquid separation or oil-water separation, and in particular, depending on the difference in the concentration of the suspension The present invention relates to an inclined channel module capable of adjusting the angle.

従来から、特に水処理において、懸濁液から懸濁物質を除去する方法として、重力分離による方法が広く知られている(例えば、非特許文献1参照)。水処理の分野で多く使用されているのが、傾斜沈降分離装置である。傾斜沈降分離装置は、沈澱槽内に傾斜板や水平板を挿入すると、板の下面に清澄液が生長し、挿入面積分だけ沈降面積が多くなり、清澄液の生長速度が速くなるという原理を用いている。傾斜沈降分離装置は、板の挿入面積に比例して分離面積を大きくすることができ、水面積負荷を小さくできるので、沈降速度の小さい懸濁粒子の分離が可能となる。   Conventionally, a method using gravity separation is widely known as a method for removing suspended substances from a suspension, particularly in water treatment (see, for example, Non-Patent Document 1). Inclined sedimentation separators are widely used in the field of water treatment. The inclined sedimentation separator is based on the principle that when an inclined plate or horizontal plate is inserted into the settling tank, the clarified liquid grows on the lower surface of the plate, the sedimentation area increases by the insertion area, and the clarified liquid grows faster. Used. The inclined sedimentation separator can increase the separation area in proportion to the insertion area of the plate, and can reduce the water area load, so that suspended particles having a low sedimentation speed can be separated.

従来の傾斜沈降分離装置は、大きく分けて、横向流式、縦向流式、及び円錐向流式の3種類に分類することができる。横向流式の傾斜沈降分離装置は、水平方向の分散媒の流れの中に傾斜板(又は傾斜管)を挿入するものである(例えば、特許文献1〜3参照)。縦向流式の傾斜沈降装置は、垂直方向の分散媒の流れの中に傾斜板(又は傾斜管)を挿入するものである(例えば、特許文献4〜6参照)。円錐向流式は、円錐形の多段の傾斜板を設け、円錐軸に沿って分散媒を排出又は流入させるものである(例えば、特許文献7〜10参照)。   Conventional inclined sedimentation separators can be broadly classified into three types: a transverse flow type, a longitudinal flow type, and a conical counter flow type. A lateral flow type inclined sedimentation separator is one in which an inclined plate (or inclined tube) is inserted into a flow of a dispersion medium in a horizontal direction (for example, see Patent Documents 1 to 3). A vertical flow type inclined settling device inserts an inclined plate (or inclined tube) into the flow of a dispersion medium in the vertical direction (see, for example, Patent Documents 4 to 6). In the conical counterflow type, a conical multistage inclined plate is provided, and the dispersion medium is discharged or introduced along the conical axis (see, for example, Patent Documents 7 to 10).

このうち、円錐向流式は、懸濁液が流れる流路が円錐形であるため、円錐軸に近いほど、傾斜板間の流路内の流速が増す。従って、分散媒の流れの均一化が困難であるため、他の2つの方式に比べて、重力分離による分離効率は劣る。そのため、通常の下水処理場などの水処理施設では、主として横向流式又は縦向流式の傾斜沈降分離装置が用いられている。   Among these, in the conical counterflow type, since the flow path through which the suspension flows is conical, the flow velocity in the flow path between the inclined plates increases as the position is closer to the conical axis. Therefore, since it is difficult to make the flow of the dispersion medium uniform, the separation efficiency by gravity separation is inferior to the other two methods. For this reason, in a water treatment facility such as a normal sewage treatment plant, a lateral flow type or vertical flow type inclined sedimentation separation apparatus is mainly used.

縦向流式の傾斜沈降分離装置は、最も早くから実用化されている。この方式は、懸濁液の流れが上に向かうので、密度流による底流れ現象の悪影響を受けにくい。また、沈降スラッジは沈降分離槽の底部に集積するが、この沈降スラッジを一箇所に誘導しやすいので、集泥が容易である。しかしながら、通常の自然沈降分離装置(傾斜板を使用しないもの。非特許文献1参照)と比較すると水面積負荷は小さいものの、横向流式と比較すると水面積負荷は大きくなる。そのため、処理液量に比例した設置面積を必要とする。   Longitudinal flow type inclined sedimentation separators have been put into practical use since the earliest. This method is less susceptible to the adverse effects of the bottom flow phenomenon due to the density flow because the suspension flow is directed upward. Moreover, although sedimentation sludge accumulates in the bottom part of a sedimentation separation tank, since this sedimentation sludge is easy to guide | induced to one place, mud collection is easy. However, although the water area load is smaller than that of a normal natural sedimentation separator (which does not use an inclined plate; see Non-Patent Document 1), the water area load is larger than that of a lateral flow type. Therefore, an installation area proportional to the amount of processing liquid is required.

横向流式の傾斜沈降分離装置は、傾斜板を垂直方向に多段に積層することにより、水面積負荷を小さくすることが可能である。ただ、この方式では、流入する懸濁液が高濁度の場合、密度流による底流れ現象が顕著となり、下方の分離流路に負荷が集中する問題がある。この場合、下方の分離流路を通って、十分に清澄化されていない懸濁液が短絡的に流出する量が増加し、十分な分離効果が得にくいという問題がある。通常は、密度流の発生を抑えるために、流入・流出整流壁を設けて流れの均一化を図る対策が取られている。   The lateral flow type inclined sedimentation separator can reduce the water area load by stacking inclined plates in multiple stages in the vertical direction. However, in this method, when the inflowing suspension has high turbidity, the bottom flow phenomenon due to the density flow becomes remarkable, and there is a problem that the load is concentrated on the lower separation flow path. In this case, there is a problem that the amount of the suspension that is not sufficiently clarified flows out in a short circuit through the lower separation channel, and it is difficult to obtain a sufficient separation effect. Usually, in order to suppress the generation of density flow, measures are taken to make the flow uniform by providing inflow and outflow rectifying walls.

横向流式の傾斜沈降分離装置にも、複数の多段傾斜板の集合体を横向流に沿って多段に配置した方式(特許文献1)、分散媒の流出口の左右に多段傾斜板を配置した方式(特許文献2,3)などの幾つかの方式が考案されている。   Also in the lateral flow type inclined sedimentation separator, a system in which a plurality of multi-stage inclined plates are arranged in multiple stages along the transverse flow (Patent Document 1), and multi-stage inclined plates are arranged on the left and right of the outlet of the dispersion medium. Several methods, such as a method (patent documents 2 and 3), have been devised.

また、本願発明の発明者は、多数の傾斜板を備えた沈降水路モジュールを沈降分離槽に沈設した懸濁液分離装置を提案している(特許文献11)。   The inventor of the present invention has proposed a suspension separation device in which a settling channel module having a large number of inclined plates is set in a settling tank (Patent Document 11).

図6は複数の多段傾斜板の集合体を横向流に沿って多段に配置した横向流式の傾斜沈降分離装置の構成を表す図である(特許文献1参照)。この方式の傾斜沈降分離装置101では、沈降分離処理を行う被処理液である懸濁液(ここでは、分散媒が水なので、以下「懸濁水」という。)は、フロック形成池103に投入される。フロック形成池103では、フロキュレータ(緩速攪拌装置)102により、懸濁水の緩やかな攪拌が行われる。この過程で、懸濁水中の懸濁物質のフロック(凝集体)が生長し、沈降速度が大きくなる。次に、懸濁水は、上流側整流壁104を通って沈降分離槽105に流入する。沈降分離槽105において、懸濁水は水とフロックとに分離され、清澄化される。そして、清澄化された水は、4段に並べられた傾斜板集合体106を通過した後に、下流側整流壁107を通って流出槽108に流入する。上流側整流壁104及び下流側整流壁107により水流は整流され、密度流の発生が抑制される。流出槽108内の水は、流出槽108の上部から、取水路109に排出される。   FIG. 6 is a diagram showing a configuration of a lateral flow type inclined sedimentation separation apparatus in which an assembly of a plurality of multistage inclined plates is arranged in multiple stages along a lateral flow (see Patent Document 1). In the inclined sedimentation separation apparatus 101 of this system, a suspension that is a liquid to be treated for sedimentation separation (herein, since the dispersion medium is water, hereinafter referred to as “suspended water”) is input to the floc formation pond 103. The In the flock formation pond 103, the suspension water is gently stirred by a flocculator (slow stirring device) 102. In this process, flocs (aggregates) of suspended substances in the suspension water grow and settling speed increases. Next, the suspended water flows into the settling separation tank 105 through the upstream flow straightening wall 104. In the settling tank 105, the suspended water is separated into water and floc and clarified. The clarified water passes through the inclined plate assemblies 106 arranged in four stages, and then flows into the outflow tank 108 through the downstream rectifying wall 107. The water flow is rectified by the upstream rectifying wall 104 and the downstream rectifying wall 107, and the generation of density flow is suppressed. The water in the outflow tank 108 is discharged from the upper part of the outflow tank 108 to the intake channel 109.

傾斜板集合体106は、図6(b)に示すように、多数の傾斜板110が間隔をおいて垂直に積層された構成とされている。この構成により、傾斜板110間に形成される流路111においては、フロックの沈降距離が短くなるため、清澄水の生長が速くなる。流路111底面に堆積したフロックは、傾斜板に沿って流動し、流路111の下方に排出される。排出されたフロックは、沈降分離槽105の底部に沈澱する。   As shown in FIG. 6B, the inclined plate assembly 106 has a configuration in which a large number of inclined plates 110 are vertically stacked at intervals. With this configuration, in the flow path 111 formed between the inclined plates 110, the floc settled distance is shortened, so that the growth of clarified water is accelerated. The floc accumulated on the bottom surface of the channel 111 flows along the inclined plate and is discharged below the channel 111. The discharged floc settles at the bottom of the sedimentation tank 105.

ここで、傾斜板110間の流路111において、清澄水と懸濁物質を重力沈降によって分離する沈降分離の原理を説明する。   Here, the principle of sedimentation separation in which the clear water and the suspended solids are separated by gravity sedimentation in the flow path 111 between the inclined plates 110 will be described.

図7は水平に置かれた管内の流路に懸濁液を通過させた場合を表す断面図である。流路に一定の流速で懸濁液を流す。一般に流速は管壁近傍と中央とでは異なるが、簡単のため管壁近傍での効果は無視して、懸濁液は平均流速u0で一様に流れているとする。懸濁液のレイノルズ数Rは臨界レイノルズ数Rcよりも十分小さく、懸濁液の流れは平行層流であるとする。 FIG. 7 is a cross-sectional view showing a case where a suspension is passed through a flow path in a horizontally placed tube. Let the suspension flow through the channel at a constant flow rate. In general, the flow velocity is different between the vicinity of the tube wall and the center, but for the sake of simplicity, the effect near the tube wall is ignored, and the suspension flows uniformly at an average flow velocity u 0 . The Reynolds number of the suspension R is sufficiently smaller than the critical Reynolds number R c, the suspension flow is assumed to be parallel laminar flow.

理想懸濁液(粒子間の力が剛体反発だけの懸濁液)の場合、懸濁液中の懸濁粒子には、浮力と重力が働く。ここでは浮力に比べて重力が大きい場合を考える。この場合、懸濁粒子は分散媒の抵抗を受けながら沈降し、やがて一定の沈降速度(終末沈降速度)で沈降するようになる。懸濁粒子の終末沈降速度をw0とする。終末沈降速度w0〔cm/sec〕はレイノルズ数の大きさによって(数1)のように表される。ここで、gは重力加速度〔cm/sec2〕、ρs,ρは懸濁粒子および分散媒の密度〔g/cm3〕、dは粒子直径〔cm〕、μは水の粘度〔g/(cm・sec)〕、R(=d w0ρ/μ)はレイノルズ数である。 In the case of an ideal suspension (a suspension in which the force between particles is only a rigid body repulsion), buoyancy and gravity act on the suspended particles in the suspension. Here, the case where gravity is larger than buoyancy is considered. In this case, the suspended particles settle while receiving the resistance of the dispersion medium, and eventually settle at a constant sedimentation rate (terminal sedimentation rate). The terminal settling velocity of suspended particles and w 0. The terminal sedimentation velocity w 0 [cm / sec] is expressed as (Equation 1) depending on the magnitude of the Reynolds number. Here, g is the acceleration of gravity [cm / sec 2 ], ρ s , ρ is the density of suspended particles and dispersion medium [g / cm 3 ], d is the particle diameter [cm], μ is the viscosity of water [g / cm (cm · sec)], R (= dw 0 ρ / μ) is the Reynolds number.

Figure 2006075685
Figure 2006075685

流路の流入端の最上部(点A)の懸濁粒子が、流されながら沈降し流路の端の点Cにおいて流路底面に到達したとする。流路の長さをLとする。流路の高さをHとする。このとき、(数2)が成り立つ。   It is assumed that suspended particles at the uppermost portion (point A) at the inflow end of the flow channel settle while flowing and reach the flow channel bottom surface at point C at the end of the flow channel. Let L be the length of the channel. Let H be the height of the channel. At this time, (Equation 2) holds.

Figure 2006075685
Figure 2006075685

なお、流路の流入端の最上部(点A)よりも下の懸濁粒子は、点Cよりも手前で流路底面に到達する。従って、流路には、流入側から流出側にかけて、漸次、清澄液が生長していく。そして、流路の流出側で、すべての懸濁粒子が分離し、清澄液のみが流出する。   The suspended particles below the uppermost portion (point A) of the inflow end of the flow channel reach the bottom surface of the flow channel before point C. Accordingly, the clarified liquid gradually grows in the flow path from the inflow side to the outflow side. And all the suspended particles are separated on the outflow side of the flow path, and only the clarified liquid flows out.

一方、流路の幅をWdとする。流入する懸濁液の量Qは(数3)で表される。 On the other hand, let W d be the width of the flow path. The amount Q of the inflowing suspension is expressed by (Equation 3).

Figure 2006075685
Figure 2006075685

流路を平面視したときの面積Sは、S=Wd・Lである。従って、水面積負荷Q/Sは(数4)のようになる。 The area S when the channel is viewed in plan is S = W d · L. Therefore, the water area load Q / S is as shown in (Expression 4).

Figure 2006075685
Figure 2006075685

(数4)は、一定の沈降速度の懸濁液を処理するときには、処理量は沈澱槽の面積Sに比例することを表している。従って、処理量を大きくするためには、沈澱槽の面積Sを大きくする必要がある。   (Equation 4) indicates that when a suspension having a constant sedimentation rate is processed, the processing amount is proportional to the area S of the precipitation tank. Therefore, in order to increase the processing amount, it is necessary to increase the area S of the precipitation tank.

次に、傾斜流路について説明する。図8は傾斜して置かれた分離板間の流路に懸濁液を通過させた場合を表す断面図である。図8(a)のように、分離板AD及び分離板BCは、仰角θで傾斜して配置されている。両分離板AD,BCは、間隔dで平行に配置され、その間に流路が形成されている。流路の長さはL*である。流路には、一定の流速u0で懸濁液が流入し、流路内部には平行層流が形成されている。考察を容易にするために、図4(a)の流路を、角度θだけ時計回りに回転させると図8(b)のようになる。この場合、懸濁粒子の沈降方向が鉛直方向に対して角度θだけ傾いていることを除けば、図3と同様に考えることができる。従って、(数2)と同様に考えて、(数5)(数6)が得られる。 Next, the inclined channel will be described. FIG. 8 is a cross-sectional view showing the case where the suspension is passed through the flow path between the separation plates placed at an inclination. As illustrated in FIG. 8A, the separation plate AD and the separation plate BC are disposed to be inclined at the elevation angle θ. Both separation plates AD and BC are arranged in parallel at a distance d, and a flow path is formed therebetween. The length of the flow path is L * . The suspension flows into the channel at a constant flow velocity u 0 , and a parallel laminar flow is formed inside the channel. For ease of consideration, the flow path of FIG. 4A is rotated clockwise by an angle θ as shown in FIG. 8B. In this case, it can be considered in the same manner as in FIG. 3 except that the sedimentation direction of the suspended particles is inclined by an angle θ with respect to the vertical direction. Therefore, (Formula 5) and (Formula 6) are obtained in the same manner as (Formula 2).

Figure 2006075685
Figure 2006075685

Figure 2006075685
Figure 2006075685

(数6)が傾斜流路における沈降分離の基礎式である。(数6)の右辺のu0d=qは、この傾斜流路における単位幅当たりの懸濁水の処理量を表す。また、分母は、傾斜流路の水平面への投影面積(単位幅あたり)を表す。 (Equation 6) is the basic formula for sedimentation separation in the inclined channel. U 0 d = q on the right side of (Expression 6) represents the amount of suspended water treated per unit width in this inclined channel. The denominator represents the projected area (per unit width) of the inclined channel onto the horizontal plane.

したがって、図6に示したように、傾斜板110を垂直方向に積層して傾斜板集合体106を形成することにより、単位面積あたりの処理効率が10倍以上にも達するような沈降分離操作を行うことが可能となる。
Therefore, as shown in FIG. 6, by forming the inclined plate aggregate 106 by laminating the inclined plates 110 in the vertical direction, a sedimentation operation is performed such that the processing efficiency per unit area reaches 10 times or more. Can be done.

特開昭62−163713号公報Japanese Patent Laid-Open No. 62-163713 特公昭52−41507号公報Japanese Examined Patent Publication No. 52-41507 特公昭55−35962号公報Japanese Patent Publication No.55-35962 特開平8−112505号公報JP-A-8-112505 米国特許4305819号明細書US Pat. No. 4,305,819 特公昭55−37927号公報Japanese Patent Publication No.55-37927 特公昭44−623号公報Japanese Examined Patent Publication No. 44-623 実開昭52−22373号公報Japanese Utility Model Publication No. 52-22373 実公昭44−5491号公報Japanese Utility Model Publication No. 44-5491 実公昭56−46806号公報Japanese Utility Model Publication No. 56-46806 特願2004−240106号明細書Japanese Patent Application No. 2004-240106 水処理管理便覧編集委員会編,「水処理管理便覧」,初版,日本国,丸善,1998年9月30日,pp.131−132.Water Treatment Management Handbook Editorial Committee, “Water Treatment Management Handbook”, first edition, Japan, Maruzen, September 30, 1998, pp. 131-132.

図6に示したように、横行流式の傾斜沈降分離装置101では、沈降分離槽105内に、多数の傾斜板110を垂直方向に等間隔で積層した傾斜板集合体106を、沈降分離槽105の上流から下流に向けて配列している。   As shown in FIG. 6, in the transverse flow type inclined sedimentation separation apparatus 101, an inclined plate aggregate 106 in which a large number of inclined plates 110 are stacked in the vertical direction at equal intervals in a sedimentation separation tank 105. 105 are arranged from upstream to downstream.

一方、沈降分離槽105内を流れる懸濁水中のフロックは、上流側から下流側に行くに従って、重力沈降によって沈降分離するから、沈降分離槽105内を流れる懸濁液中のフロック濃度は、上流側から下流側に向けて漸次低下する。また、フロック濃度は深さ方向についても変化する。一般には、水深が浅い方がフロック濃度が小さく、水深が深くなるに従って、フロック濃度が小さくなる。   On the other hand, the floc in the suspension water flowing in the sedimentation separation tank 105 settles and separates by gravity sedimentation from the upstream side to the downstream side, so the floc concentration in the suspension flowing in the sedimentation separation tank 105 is upstream. It gradually decreases from the side toward the downstream side. The floc density also changes in the depth direction. In general, the shallower the water, the smaller the flock concentration, and the smaller the water depth, the smaller the flock concentration.

また、実在の懸濁液は理想懸濁液ではないから、粒子間に相互干渉が生じる。そのためフロック濃度が増加するにつれてフロック相互間の干渉作用が強くなり、フロックの沈降は遅くなる。   Moreover, since an actual suspension is not an ideal suspension, mutual interference occurs between particles. Therefore, as the floc concentration increases, the interfering action between the flocs becomes stronger and the sedimentation of the flocs becomes slower.

良質の清澄液を得るためには、懸濁液が傾斜流路の出口に達するまでに全てのフロックが流路底面に到達していなければならないから、傾斜流路内の懸濁液の流速と、フロックの沈降速度は(数6)の関係を満足する必要がある。つまり、沈降速度w0に合わせて、傾斜流路内の懸濁液の流速u0あるいは傾斜流路の高さdを変える必要がある。一方、沈降速度の低下に合わせて、傾斜流路内の懸濁液の流速を遅くすると懸濁液分離装置の処理能力が低下するという問題が生じる。 In order to obtain a high-quality clear solution, all flocs must reach the bottom of the channel before the suspension reaches the outlet of the inclined channel. In addition, the sedimentation speed of floc needs to satisfy the relationship of (Equation 6). That is, it is necessary to change the flow velocity u 0 of the suspension in the inclined channel or the height d of the inclined channel in accordance with the settling velocity w 0 . On the other hand, if the flow rate of the suspension in the inclined flow path is decreased in accordance with the decrease in the sedimentation speed, there arises a problem that the processing capacity of the suspension separator is reduced.

結局、良質の清澄液を能率良く得るためには、沈降速度の低下に合わせて、傾斜流路の高さを変える必要がある訳である。
しかしながら、沈降分離槽に多数設置される傾斜流路の高さを、それぞれに最適に設計し、製造することは容易ではなかった。
Eventually, in order to efficiently obtain a high-quality clarified liquid, it is necessary to change the height of the inclined channel in accordance with the decrease in the sedimentation speed.
However, it has been difficult to optimally design and manufacture the heights of the inclined channels installed in the sedimentation separation tank.

また、例えば洪水時などのように時間の経過とともに、懸濁液の濃度や流量が変動する場合がある。また、工場排水処理用の装置においては、製造する製品の変更、操業の繁閑によって排水の量と性質が変化する。また、土木工事の現場等に一時的に設置する可搬式の傾斜沈降分離装置では、設置場所によって懸濁液の性状は大きく変化する。このような場合に、傾斜流路の高さを最適化したいという要請もある。   Also, the suspension concentration and flow rate may vary with time, such as during a flood. Also, in the factory wastewater treatment equipment, the amount and nature of the wastewater change due to changes in the products to be manufactured and the busyness of operations. In addition, in a portable inclined sedimentation separator that is temporarily installed at a civil engineering site, the properties of the suspension vary greatly depending on the installation location. In such a case, there is a demand for optimizing the height of the inclined channel.

傾斜流路集合体をモジュール化して、傾斜流路高さの異なるモジュールを多数準備しておいて、必要に応じて前記モジュールを交換すれば、前述の問題は多少解決するが、多数のモジュールの製造、保管、管理に要するコストを勘案すれば、実用的な方法ではなかった。   If the inclined channel assembly is modularized and a large number of modules with different inclined channel heights are prepared and the modules are replaced as necessary, the above-mentioned problems are solved somewhat. Considering the cost of manufacturing, storage and management, it was not a practical method.

そこで、本発明の目的は、処理対象の懸濁物質の種類、懸濁液の濃度あるいは流量・流速に応じて傾斜流路の高さを最適化して、懸濁物質の沈降分離の効率を高く保つことができ、しかも傾斜流路の高さの変更が容易な傾斜流路モジュールを提供することにある。   Therefore, the object of the present invention is to optimize the height of the inclined flow path according to the type of suspended substance to be treated, the concentration of the suspended liquid, the flow rate / flow velocity, and increase the efficiency of sedimentation and separation of suspended substances. An object of the present invention is to provide an inclined channel module that can be maintained and can easily change the height of the inclined channel.

本発明に係る傾斜流路モジュールの第1の構成は、懸濁液分離槽に沈設されて、懸濁液から懸濁物質を分離して清澄液を取り出す傾斜流路モジュールにおいて、筐体と、前記筐体に垂直方向に積層して取り付けられて複数の傾斜流路を形成する複数の傾斜板を有すると共に、前記傾斜流路の高さを自在に変更する変更機構を備えたことを特徴とする。   The first configuration of the inclined channel module according to the present invention is a tilted channel module that is set in a suspension separation tank, separates suspended substances from the suspension, and extracts a clarified liquid. The apparatus includes a plurality of inclined plates that are stacked and attached to the casing in a vertical direction to form a plurality of inclined flow paths, and includes a change mechanism that freely changes the height of the inclined flow paths. To do.

この構成によると、傾斜板の相互の間隔を自在に変更することができるので、フロックの沈降速度または浮上速度に応じた傾斜流路高さを設定することができる。このため、懸濁物質の分離の能率が向上する。   According to this configuration, since the interval between the inclined plates can be freely changed, the inclined flow path height can be set in accordance with the floc settling speed or the ascending speed. For this reason, the efficiency of separation of suspended substances is improved.

本発明に係る傾斜流路モジュールの第2の構成は、前記第1の構成に加えて、前記傾斜板を蛇腹を介して連結したことを特徴とする。   The second configuration of the inclined channel module according to the present invention is characterized in that, in addition to the first configuration, the inclined plate is connected via a bellows.

この構成によると、傾斜流路内の懸濁液が他の傾斜流路に流れないので、懸濁物質の分離の能率が向上する。   According to this configuration, since the suspension in the inclined channel does not flow to other inclined channels, the efficiency of separation of suspended substances is improved.

本発明に係る傾斜流路モジュールの第3の構成は、前記第1または第2の構成に加えて、前記筐体の側板に穴を開け、前記穴に締結手段を差し込んで前記傾斜板を任意の高さで前記筐体に固定することを特徴とする。   According to a third configuration of the inclined channel module according to the present invention, in addition to the first or second configuration, a hole is formed in a side plate of the housing, and a fastening means is inserted into the hole to arbitrarily use the inclined plate. It fixes to the said housing | casing with the height of.

この構成によると、傾斜板の相互の間隔を個別に調整できるので、水深によってフロックの沈降速度または浮上速度が変化する場合に、水深に応じて最適な傾斜流路高さを設定することができる。このため、懸濁物質の分離の能率が向上する。   According to this configuration, since the interval between the inclined plates can be individually adjusted, the optimum inclined channel height can be set according to the water depth when the sedimentation speed or the rising speed of the flock changes depending on the water depth. . For this reason, the efficiency of separation of suspended substances is improved.

本発明に係る傾斜流路モジュールの第4の構成は、前記第1の構成に加えて、前記筐体に多数の溝を設け、前記傾斜板を任意の前記溝に差し込んで固定することを特徴とする。   A fourth configuration of the inclined channel module according to the present invention is characterized in that, in addition to the first configuration, a plurality of grooves are provided in the housing, and the inclined plate is inserted into and fixed to the arbitrary grooves. And

この構成によると、傾斜板の増減や位置の変更によって傾斜流路高さ変更できるので、構造が簡単で安価な傾斜流路モジュールを実現することができる。   According to this configuration, since the inclined channel height can be changed by increasing or decreasing the inclined plate or changing the position, an inclined channel module that is simple in structure and inexpensive can be realized.

本発明に係る傾斜流路モジュールの第5の構成は、前記第1ないし第4の構成に加えて、前記各傾斜流路の終端に接続された吸引管と、前記傾斜流路内に流入する液体を前記吸引管からそれぞれの傾斜流路ごとに個別に吸引排出する吸引手段と、を備えていることを特徴とする。   According to a fifth configuration of the inclined channel module of the present invention, in addition to the first to fourth configurations, a suction pipe connected to a terminal end of each inclined channel and the inclined channel flows into the inclined channel. A suction means for individually sucking and discharging the liquid from the suction pipe for each inclined flow path.

この構成によると、傾斜流路内に流入する液体をそれぞれの傾斜流路ごとに個別に吸引排出する吸引手段を備えたので、各傾斜流路のフロックの沈降速度または浮上速度に応じた懸案濁液の流速を設定することができる。このため、懸濁物質の分離の能率がさらに向上する。   According to this configuration, since the suction means for sucking and discharging the liquid flowing into the inclined flow path is provided for each inclined flow path, the suspension according to the floc settling speed or the rising speed of each inclined flow path is provided. The liquid flow rate can be set. For this reason, the efficiency of separation of suspended substances is further improved.

以上のように、この発明によると、傾斜板の間隔を変更することによって、傾斜流路の高さをフロックの沈降速度あるいは浮上速度に応じた高さに設定することが出来るので、懸濁物質の沈降分離の能率が向上するという効果がある。   As described above, according to the present invention, by changing the interval between the inclined plates, the height of the inclined channel can be set to a height corresponding to the settling speed or the rising speed of the floc. This has the effect of improving the efficiency of sedimentation separation.

また、この発明を下水処理プラントに適用すると、例えば洪水時などのように時間の経過とともに、懸濁液の濃度や流量が変動する場合であっても、その変動に応じて傾斜流路の高さを最適に保つことができるので、懸濁液の濃度や流量の変動に関わらず、懸濁物質を十分に除去することができ、環境の保全に資するところが大きい。   In addition, when the present invention is applied to a sewage treatment plant, even if the concentration and flow rate of the suspension fluctuate with time, such as during floods, Therefore, the suspended solids can be sufficiently removed regardless of fluctuations in the concentration and flow rate of the suspension, which greatly contributes to environmental conservation.

また、この発明を工場排水処理装置に適用すると、製造する製品の変更、操業の繁閑によって排水の量や性質が変化しても、その変化に応じて傾斜流路の高さを最適に保つことができるので、懸濁物質を十分に除去することができ、工場排水の浄化に資するところが大きい。   In addition, when this invention is applied to a factory wastewater treatment device, even if the amount and nature of wastewater changes due to changes in the products to be manufactured and the busyness of operations, the height of the inclined flow path can be kept optimal according to the changes. Therefore, the suspended solids can be removed sufficiently, which greatly contributes to the purification of industrial wastewater.

また、土木工事の現場等で発生する濁水の性状は、現場等の環境によって大きく変化するが、この発明を土木工事の現場等に一時的に設置する可搬式の傾斜沈降分離装置に適用すると、設置場所の環境に応じて、最適化した傾斜沈降分離装置を設置することができるので、土木工事の現場等近隣の環境の保全に資するところが大きい。   In addition, the nature of the muddy water generated at the site of civil engineering works greatly depending on the environment of the site, etc., but when this invention is applied to a portable inclined sedimentation separation device temporarily installed at the site of civil engineering work, Depending on the environment of the installation location, an optimized inclined sedimentation separator can be installed, which greatly contributes to the preservation of the surrounding environment such as civil engineering work sites.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1に係る傾斜流路モジュールの外形図であり、(a)は正面図であり、(b)は側面図である。図1において、1は傾斜流路モジュールである。傾斜流路モジュール1は、図6に示した傾斜沈降分離装置101の傾斜板集合体106に代えて、沈降分離槽に配置されるモジュールである。   1A and 1B are external views of an inclined channel module according to Embodiment 1 of the present invention, where FIG. 1A is a front view and FIG. 1B is a side view. In FIG. 1, reference numeral 1 denotes an inclined channel module. The inclined channel module 1 is a module arranged in a sedimentation tank instead of the inclined plate assembly 106 of the inclined sedimentation apparatus 101 shown in FIG.

傾斜流路モジュール1は、筐体2と複数の傾斜板3と傾斜板3を相互に連結する蛇腹4から構成されている。   The inclined channel module 1 includes a housing 2, a plurality of inclined plates 3, and a bellows 4 that connects the inclined plates 3 to each other.

筐体2は、底板21と左右の側板22、23からなり、左右の側板22、23には、筐体2の高さ方向に延びる長穴24が開けられている。   The housing 2 includes a bottom plate 21 and left and right side plates 22 and 23, and a long hole 24 extending in the height direction of the housing 2 is formed in the left and right side plates 22 and 23.

傾斜板3は、ボルト31およびナット32で側板22,23に固定されている。傾斜板3の材質は、用途に応じて、各種の金属、合成樹脂あるいはこれらの複合材料などのなかから適当なものを選択できる。また傾斜板13の形状は平板に限られない。波板であっても良いし、補強用のリブを備えてもよい。   The inclined plate 3 is fixed to the side plates 22 and 23 with bolts 31 and nuts 32. As the material of the inclined plate 3, an appropriate material can be selected from various metals, synthetic resins, or composite materials thereof according to the application. The shape of the inclined plate 13 is not limited to a flat plate. It may be a corrugated plate or may be provided with reinforcing ribs.

ボルト31は、側板22,23の長穴24を通って、側板22,23の外側に突出し、側板22,23の外側でナット32と螺合している。ナット32を緩めると、ボルト31は長穴24の中で上下に移動できるから、傾斜板3を筐体2の高さ方向に移動することができる。   The bolt 31 passes through the long holes 24 of the side plates 22 and 23, protrudes to the outside of the side plates 22 and 23, and is screwed to the nut 32 on the outside of the side plates 22 and 23. When the nut 32 is loosened, the bolt 31 can move up and down in the elongated hole 24, so that the inclined plate 3 can be moved in the height direction of the housing 2.

本実施例では、傾斜板3を筐体2の側板22,23に固定する締結手段として、傾斜板に固定したボルト31を側板22,23の外側からナット32で締め上げる構成をとったが、締結手段はこれに限られるものではない。例えば、傾斜板3の側端にねじ穴を加工して、側板22,23の外側からボルトを差し込んでもよい。あるいは、ねじ以外の締結手段(たとえば、くさびやばねを利用した締め具など)であってもよい。また、締結手段を差し込む穴は長穴には限られない。多数の丸穴あるいは角穴を開けて、所望の高さの穴に締結手段を差し込んでもよい。   In the present embodiment, as a fastening means for fixing the inclined plate 3 to the side plates 22 and 23 of the housing 2, the bolt 31 fixed to the inclined plate is tightened from the outside of the side plates 22 and 23 with the nut 32. The fastening means is not limited to this. For example, a screw hole may be formed in the side end of the inclined plate 3 and a bolt may be inserted from the outside of the side plates 22 and 23. Alternatively, fastening means other than screws (for example, a fastener using a wedge or a spring) may be used. Moreover, the hole which inserts a fastening means is not restricted to a long hole. A large number of round holes or square holes may be formed, and the fastening means may be inserted into holes having a desired height.

図2は、図1の傾斜板と蛇腹の詳細を示す斜視図であり、上下に積層された多数の傾斜板3と蛇腹4の中から、2枚の傾斜板3とそれらを連結する蛇腹4を取り出して、右上斜め後方から見た図である。   FIG. 2 is a perspective view showing details of the inclined plate and the bellows of FIG. 1, and among the many inclined plates 3 and bellows 4 stacked one above the other, the two inclined plates 3 and the bellows 4 connecting them. It is the figure which took out and was seen from the upper right diagonally backward.

上下に間隔を開けて配置された2枚の傾斜板3の間の空間は、両側面と後面が蛇腹4で塞がれて、独立した傾斜流路を形成している。また、蛇腹4の後面には、図示しない吸引管を接続する開口41が穿たれ、前記吸引管は前記傾斜流路内の液体を所望の流速で吸引排出する図示しない吸引手段(ポンプ等)に接続される。前記傾斜流路には正面から処理対象の液体が流入し、開口41から吸引排出される。前記吸引手段を前記傾斜流路ごとに独立して設ければ、前記傾斜流路の流速を個別に独立して調整することができる。なお、前述のボルト31は傾斜板3の側端に2本ずつ植え込まれている。   The space between the two inclined plates 3 arranged at intervals in the vertical direction is closed by the bellows 4 on both side surfaces and the rear surface to form independent inclined channels. The rear surface of the bellows 4 is provided with an opening 41 for connecting a suction pipe (not shown). The suction pipe serves as a suction means (pump or the like) (not shown) for sucking and discharging the liquid in the inclined flow path at a desired flow rate. Connected. The liquid to be processed flows into the inclined channel from the front and is sucked and discharged from the opening 41. If the suction means is provided independently for each inclined channel, the flow velocity of the inclined channel can be adjusted independently. Note that two bolts 31 described above are implanted in each side end of the inclined plate 3.

蛇腹4は、ゴムあるいは柔軟な合成樹脂材料で構成され、上下方向に伸縮するように折り癖が付けられている。そのため、2枚の傾斜板3相互の間隔は自在に変更することができる。   The bellows 4 is made of rubber or a flexible synthetic resin material, and has a crease so as to expand and contract in the vertical direction. Therefore, the interval between the two inclined plates 3 can be freely changed.

図3は、図1の傾斜流路モジュールの傾斜板の間隔を狭めた状態を示す外形図であり、(a)は正面図であり、(b)は側面図である。   3A and 3B are external views showing a state in which the interval between the inclined plates of the inclined channel module of FIG. 1 is narrowed, (a) is a front view, and (b) is a side view.

処理対象の液体中のフロックの粒径、あるいは濃度が変化して、フロックの沈降速度が
減少するときに、傾斜流路モジュール1を沈降分離槽から引き上げて、傾斜板3の相互の
間隔を狭くする。具体的には、ナット32を緩めて傾斜板3を上下方向に移動自在にし、蛇腹4を縮めて、傾斜板3相互の間隔を狭めて、再びナット32を締めて傾斜板3を固定をすればよい。
When the floc particle size or concentration in the liquid to be treated changes and the sedimentation speed of the floc decreases, the inclined channel module 1 is pulled up from the sedimentation separation tank, and the interval between the inclined plates 3 is narrowed. To do. Specifically, the nut 32 is loosened to make the inclined plate 3 movable in the vertical direction, the bellows 4 is contracted, the interval between the inclined plates 3 is narrowed, and the nut 32 is tightened again to fix the inclined plate 3. That's fine.

なお、図3では、複数の傾斜板3の間隔を等しくした例を示したが、傾斜板3の高さは任意に決められるので、例えば、下層の傾斜板3の間隔を狭くして、上層に行くにつれて、間隔を広くするようにしてもよい。
また、傾斜板3の間隔を狭くすると、筐体2の上部の空間が空くので、蛇腹4で連結した傾斜板3の組を別途用意しておいて、前記空間に追加的に組み付けてもよい。
Although FIG. 3 shows an example in which the intervals between the plurality of inclined plates 3 are equal, the height of the inclined plate 3 can be arbitrarily determined. You may make it a space | interval wide as it goes to.
Further, if the interval between the inclined plates 3 is narrowed, the upper space of the housing 2 is vacant. Therefore, a group of inclined plates 3 connected by the bellows 4 may be separately prepared and additionally assembled to the space. .

図4は、本発明の実施例2に係る傾斜流路モジュールの側面図であり、(a)は傾斜板の間隔を広げて、傾斜流路高さを上げた状態を示し、(b)は傾斜板の間隔を狭めて、傾斜流路高さを下げた状態を示す。なお、図4では、説明の便宜の為に、筐体と蛇腹を省略している。図4において、1’は傾斜流路モジュールであり、図示しない筐体に複数の傾斜板3’を取り付けて構成されている。   4A and 4B are side views of the inclined channel module according to the second embodiment of the present invention, in which FIG. 4A shows a state where the interval between the inclined plates is widened to increase the inclined channel height, and FIG. The state which narrowed the space | interval of an inclination board and lowered the inclination flow path height is shown. In FIG. 4, the casing and the bellows are omitted for convenience of explanation. In FIG. 4, reference numeral 1 'denotes an inclined channel module, which is configured by attaching a plurality of inclined plates 3' to a housing (not shown).

複数の傾斜板3’の内、最下層の傾斜板3’は前記筐体に固定され、他の傾斜板3’は、図の上下方向にのみ移動するように前記筐体にガイドされ、他の方向の移動は拘束されている。   Of the plurality of inclined plates 3 ′, the lowermost inclined plate 3 ′ is fixed to the casing, and the other inclined plates 3 ′ are guided by the casing so as to move only in the vertical direction in the figure. Movement in the direction of is restricted.

また、複数の傾斜板3’は、リンク33を介して連結されている。リンク33は複数のロッドを各節点で回転自在に組み合わせて、複数の平行四辺形を構成したものであり、「レージートング(lazy tongs)」と呼ばれる機構を構成している。   The plurality of inclined plates 3 ′ are connected via a link 33. The link 33 is formed by combining a plurality of rods so as to be rotatable at each node to form a plurality of parallelograms, and constitutes a mechanism called “lazy tongs”.

このように、複数の傾斜板3’は、リンク33を介して連結されているので、複数の傾斜板3’の最上層の傾斜板3’を上下に移動させると、他の傾斜板3’も連動する。また、全ての傾斜板3’の間隔はレージートング機構の働きによって互いに等しい状態を保って増減する。したがって、前述の実施例1と同様に、前記筐体に長穴を開けて、最上層の傾斜板3’だけをボルト・ナットで前記筐体に固定すれば、すべての傾斜板3’を固定することができる。そのため傾斜板3’の相互の間隔の変更作業が簡便になる。   In this way, since the plurality of inclined plates 3 ′ are connected via the link 33, when the uppermost inclined plate 3 ′ of the plurality of inclined plates 3 ′ is moved up and down, another inclined plate 3 ′. Is also linked. Further, the intervals of all the inclined plates 3 'are increased or decreased while maintaining the same state by the action of the lazy tong mechanism. Therefore, as in the first embodiment, all the inclined plates 3 'can be fixed by making a long hole in the case and fixing only the uppermost inclined plate 3' to the case with bolts and nuts. can do. Therefore, the operation for changing the interval between the inclined plates 3 ′ is simplified.

また、最上層の傾斜板3’を前記筐体の上部からワイヤ等で吊り下げて、前記ワイヤ等の巻き上げ・巻き下げによって最上層の傾斜板3’を上下動させる機構を採用してもよい。あるいは、アクチュエータ(例えば、油圧・気圧シリンダ、ボールねじ、ラックアンドピニオン機構を利用するものなど)で最上層の傾斜板3’を上下動させてもよい。   Alternatively, a mechanism may be employed in which the uppermost inclined plate 3 ′ is suspended from the upper part of the housing with a wire or the like, and the uppermost inclined plate 3 ′ is moved up and down by winding or lowering the wire or the like. . Alternatively, the uppermost inclined plate 3 ′ may be moved up and down by an actuator (for example, a hydraulic / barometric cylinder, a ball screw, a rack and pinion mechanism or the like).

図5は、本発明の実施例3を示す傾斜流路モジュールの外形図であり、(a)は正面図であり、(b)は側面図である。図5において、1”は傾斜流路モジュールであり、筐体2”と複数の傾斜板3”から構成されている。   FIGS. 5A and 5B are external views of an inclined channel module showing Example 3 of the present invention, in which FIG. 5A is a front view and FIG. 5B is a side view. In FIG. 5, reference numeral 1 ″ denotes an inclined channel module, which includes a housing 2 ″ and a plurality of inclined plates 3 ″.

筐体2”は、底板21”と左右の側板22”、23”からなり、左右の側板22”、23”には、多数の溝25が筐体2”の高さ方向に並んで刻まれている。溝25の幅は傾斜板3”の板厚に若干の余裕を加えた大きさであり、傾斜板3”は筐体の前端から溝25に差し入れられて、保持される。   The housing 2 "is composed of a bottom plate 21" and left and right side plates 22 ", 23", and the left and right side plates 22 ", 23" have a large number of grooves 25 arranged in the height direction of the housing 2 ". The width of the groove 25 is a size obtained by adding a slight margin to the thickness of the inclined plate 3 ″, and the inclined plate 3 ″ is inserted into the groove 25 from the front end of the housing and held.

傾斜板3’は、任意の溝25に差し入れられるから、傾斜板3’の取り付け位置は溝25のピッチ単位で任意に選ぶことができる。また、筐体2’に取り付ける傾斜板3’の枚数は任意に選ぶことができる。したがって、傾斜板3’の相互の間隔は溝25のピッチ単位で任意に調整することができる。   Since the inclined plate 3 ′ is inserted into the arbitrary groove 25, the attachment position of the inclined plate 3 ′ can be arbitrarily selected in units of the pitch of the groove 25. Further, the number of inclined plates 3 ′ attached to the housing 2 ′ can be arbitrarily selected. Accordingly, the interval between the inclined plates 3 ′ can be arbitrarily adjusted in pitch units of the grooves 25.

なお、溝25は傾斜板3”を差し込んで支持固定できる凹部であれば、その形成方法は問わない。側板22”,23”を切削加工して溝を彫り込む、プレス加工で凹部を形成する、あるいは側板22”,23”に多数の桟を取り付けるなど、種々の構造、工作法が選択できる。   The groove 25 can be formed by any method as long as the inclined plate 3 ″ is inserted and supported and fixed. The side plates 22 ″ and 23 ″ are cut and engraved to form the recess. Alternatively, various structures and work methods can be selected, such as attaching a large number of crosspieces to the side plates 22 ", 23".

以上、実施例1ないし実施例3では、沈降分離に使用する傾斜流路モジュールについて説明したが、本発明は沈降分離のみを目的にしたものではなく、傾斜板の傾斜を逆にすれば、油のような比重の軽い懸濁物質を分離する浮上分離用の傾斜流路モジュールとして使用できることは言うまでもない。   As described above, in the first to third embodiments, the inclined channel module used for sedimentation separation has been described. However, the present invention is not intended only for sedimentation separation, and if the slope of the inclined plate is reversed, Needless to say, it can be used as an inclined channel module for floating separation for separating suspended substances having a light specific gravity.

本発明の実施例1に係る傾斜流路モジュールの外形図である。It is an external view of the inclined flow path module which concerns on Example 1 of this invention. 図1の傾斜板と蛇腹の詳細を示す斜視図である。It is a perspective view which shows the detail of the inclination board and bellows of FIG. 図1の傾斜流路モジュールの傾斜板の間隔を狭めた状態を示す外形図である。It is an external view which shows the state which narrowed the space | interval of the inclination board of the inclination channel module of FIG. 本発明の実施例2に係る傾斜流路モジュールの側面図である。It is a side view of the inclination channel module concerning Example 2 of the present invention. 本発明の実施例3に係る傾斜流路モジュールの側面図である。It is a side view of the inclined flow path module which concerns on Example 3 of this invention. 複数の多段傾斜板の集合体を横向流に沿って多段に配置した横向流式の傾斜沈降分離装置の構成を表す図である。It is a figure showing the structure of the horizontal flow type inclination sedimentation separation apparatus which has arrange | positioned the assembly of a several multistage inclination board in multistage along the horizontal flow. 水平に置かれた分離板間の流路に懸濁液を通過させた場合を表す断面図である。It is sectional drawing showing the case where a suspension is made to pass through the flow path between the separation plates placed horizontally. 傾斜して置かれた分離板間の流路に懸濁液を通過させた場合を表す断面図である。It is sectional drawing showing the case where a suspension is made to pass through the flow path between the separating plates placed in inclination.

符号の説明Explanation of symbols

1,1’,1”傾斜流路モジュール
2,2’筐体
21,21”底板
22,22”右側板
23,23”左側板
24 長穴
25 溝
3,3’,3”傾斜板
31 ボルト
32 ナット
33 リンク


1, 1 ', 1 "inclined channel module 2, 2' housing 21, 21" bottom plate 22, 22 "right side plate 23, 23" left side plate 24 long hole 25 groove 3, 3 ', 3 "inclined plate 31 bolt 32 Nut 33 Link


Claims (5)

懸濁液分離槽に沈設されて、懸濁液から懸濁物質を分離して清澄液を取り出す傾斜流路モジュールにおいて、筐体と、前記筐体に垂直方向に積層して取り付けられて複数の傾斜流路を形成する複数の傾斜板を有すると共に、前記傾斜流路の高さを自在に変更する変更機構を備えたことを特徴とする傾斜流路モジュール。 In an inclined channel module that is set in a suspension separation tank and separates suspended substances from a suspension and extracts a clarified liquid, a casing and a plurality of stacks are attached to the casing in a vertical direction. An inclined channel module comprising a plurality of inclined plates forming an inclined channel and a change mechanism for freely changing the height of the inclined channel. 前記傾斜板を蛇腹を介して連結したことを特徴とする請求項1に記載の傾斜流路モジュール。 The inclined channel module according to claim 1, wherein the inclined plates are connected via a bellows. 前記筐体の側板に穴を開け、前記穴に締結手段を差し込んで前記傾斜板を任意の高さで前記筐体に固定することを特徴とする請求項1または請求項2に記載の傾斜流路モジュール。 The inclined flow according to claim 1 or 2, wherein a hole is made in a side plate of the casing, and a fastening means is inserted into the hole to fix the inclined plate to the casing at an arbitrary height. Road module. 筐体と、前記筐体に垂直方向に積層して取り付けられて複数の傾斜流路を形成する複数の傾斜板を有すると共に、前記筐体に多数の溝を設け、前記傾斜板を任意の前記溝に差し込んで固定することを特徴とする請求項1に記載の傾斜流路モジュール。 A housing, and a plurality of inclined plates that are stacked and attached to the housing in a vertical direction to form a plurality of inclined flow paths, the housing is provided with a plurality of grooves, and the inclined plate The inclined channel module according to claim 1, wherein the inclined channel module is fixed by being inserted into a groove. 前記各傾斜流路の終端に接続された吸引管と、前記傾斜流路内に流入する液体を前記吸引管から、それぞれの傾斜流路ごとに個別に吸引排出する吸引手段と、を備えていることを特徴とする請求項1ないし請求項4のいずれかに1項に記載の傾斜流路モジュール。




A suction pipe connected to the end of each inclined flow path; and suction means for individually sucking and discharging the liquid flowing into the inclined flow path from the suction pipe for each inclined flow path. The inclined channel module according to any one of claims 1 to 4, wherein the inclined channel module is provided.




JP2004260420A 2004-09-08 2004-09-08 Inclined channel module Expired - Fee Related JP4413108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260420A JP4413108B2 (en) 2004-09-08 2004-09-08 Inclined channel module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260420A JP4413108B2 (en) 2004-09-08 2004-09-08 Inclined channel module

Publications (2)

Publication Number Publication Date
JP2006075685A true JP2006075685A (en) 2006-03-23
JP4413108B2 JP4413108B2 (en) 2010-02-10

Family

ID=36155592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260420A Expired - Fee Related JP4413108B2 (en) 2004-09-08 2004-09-08 Inclined channel module

Country Status (1)

Country Link
JP (1) JP4413108B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260515A (en) * 2006-03-28 2007-10-11 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Sludge separator and sludge separation method
KR100797196B1 (en) 2007-06-08 2008-01-23 케이팩코리아주식회사 Inclined settling tank
JP2008207162A (en) * 2007-02-27 2008-09-11 Nippon Solid Co Ltd Partition plate
JP2010149081A (en) * 2008-12-26 2010-07-08 Toto Sekisui Kk Setting device
JP2011025233A (en) * 2009-07-01 2011-02-10 Mitsubishi Rayon Co Ltd SEPARATION UNIT, SEPARATION DEVICE, SEPARATION METHOD, AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2013043140A (en) * 2011-08-25 2013-03-04 Institute Of National Colleges Of Technology Japan Inclined separation device and separation method using the inclined separation device
JP2021000609A (en) * 2019-06-24 2021-01-07 株式会社日立製作所 Inclination type sedimentation apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4712205Y1 (en) * 1968-11-07 1972-05-06
JPS4916972A (en) * 1972-06-10 1974-02-14
JPS4939863A (en) * 1972-08-24 1974-04-13
JPS5096265U (en) * 1973-12-31 1975-08-12
JPS5186875U (en) * 1974-12-30 1976-07-12
JPS5363778U (en) * 1976-11-02 1978-05-29
JPS5378676U (en) * 1976-12-02 1978-06-30
JPS59138407U (en) * 1983-03-02 1984-09-14 三菱化工機株式会社 Inclined plate separation device
JPS63122606U (en) * 1987-02-03 1988-08-09
JPH06304410A (en) * 1993-04-26 1994-11-01 Kaizaka Kogyo Kk Flocculating, precipitating, and separating apparatus and flocculating, precipitating, and separating system
JP2002119980A (en) * 2000-10-16 2002-04-23 Toyobo Co Ltd Apparatus and method for continuously treating water
JP2005169380A (en) * 2003-11-21 2005-06-30 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Suspension separation method, suspension separation apparatus, settlement passageway module, and suspension separation apparatus unit

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4712205Y1 (en) * 1968-11-07 1972-05-06
JPS4916972A (en) * 1972-06-10 1974-02-14
JPS4939863A (en) * 1972-08-24 1974-04-13
JPS5096265U (en) * 1973-12-31 1975-08-12
JPS5186875U (en) * 1974-12-30 1976-07-12
JPS5363778U (en) * 1976-11-02 1978-05-29
JPS5378676U (en) * 1976-12-02 1978-06-30
JPS59138407U (en) * 1983-03-02 1984-09-14 三菱化工機株式会社 Inclined plate separation device
JPS63122606U (en) * 1987-02-03 1988-08-09
JPH06304410A (en) * 1993-04-26 1994-11-01 Kaizaka Kogyo Kk Flocculating, precipitating, and separating apparatus and flocculating, precipitating, and separating system
JP2002119980A (en) * 2000-10-16 2002-04-23 Toyobo Co Ltd Apparatus and method for continuously treating water
JP2005169380A (en) * 2003-11-21 2005-06-30 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Suspension separation method, suspension separation apparatus, settlement passageway module, and suspension separation apparatus unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
上妻佳奈恵、藤崎一裕、飯森智: "傾斜管による沈降促進装置の開発", 第38回日本水環境学会年会講演集, JPN6009049573, 17 March 2004 (2004-03-17), JP, pages 57, ISSN: 0001454193 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260515A (en) * 2006-03-28 2007-10-11 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Sludge separator and sludge separation method
JP2008207162A (en) * 2007-02-27 2008-09-11 Nippon Solid Co Ltd Partition plate
KR100797196B1 (en) 2007-06-08 2008-01-23 케이팩코리아주식회사 Inclined settling tank
JP2010149081A (en) * 2008-12-26 2010-07-08 Toto Sekisui Kk Setting device
JP2011025233A (en) * 2009-07-01 2011-02-10 Mitsubishi Rayon Co Ltd SEPARATION UNIT, SEPARATION DEVICE, SEPARATION METHOD, AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2013043140A (en) * 2011-08-25 2013-03-04 Institute Of National Colleges Of Technology Japan Inclined separation device and separation method using the inclined separation device
JP2021000609A (en) * 2019-06-24 2021-01-07 株式会社日立製作所 Inclination type sedimentation apparatus

Also Published As

Publication number Publication date
JP4413108B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
CN100594984C (en) High-frequency vibrating multi-channel integration sloping plate grading thickening equipment
EP1735070B1 (en) Separator device
KR100971879B1 (en) Rectangular clarifier with auto-flocculation effect
CN204910896U (en) High -efficient incorgruous class of swash plate (pipe) sedimentation tank
KR100938775B1 (en) The water treatment apparatus having settling tank with multi-stage inclined plate
BRPI0919152B1 (en) sedimentation device for a fluid containing liquid, gas and particulate material, purifier, and method for aerobic or anaerobic purification of a wastewater fluid
JP2013542071A (en) Gangue sewage quick sediment concentration tank
US20230295025A1 (en) Anaerobic waste water purification tower
JP4413108B2 (en) Inclined channel module
JP3681003B2 (en) Suspension separation method, suspension separator, sedimentation channel module, suspension separator unit
CN210103529U (en) Mariculture waste water solid-liquid separation equipment
US4783255A (en) Split countercurrent flow tube settler
CN1898001A (en) Precipitation tank
CN202173819U (en) Modular precipitation separation device
JP2020062612A (en) Upflow inclined plate sedimentary sand tank
KR200421719Y1 (en) A high efficiency multi settling tank
US7717275B2 (en) Integrated perforated flocculating baffle system
KR100717429B1 (en) A high efficiency multi settling tank
CN202983295U (en) Horizontal current precipitation and separation device
JP2006198571A (en) Precipitator
Fujisaki Enhancement of settling tank capacity using a new type of tube settler
KR100781400B1 (en) Precipitating method in settling pond of sewage disposal plant and settling pond for precipitating
KR101133316B1 (en) Sludge circulation type sedimentation apparatus with tubular inclined lamella modules
JP5899536B2 (en) Inclination separator and separation method using the inclination separator
CN106215469A (en) A kind of immersion settler and settling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees