JP2006074257A - High frequency bandpass filter and cable connector unit with built-in filter - Google Patents

High frequency bandpass filter and cable connector unit with built-in filter Download PDF

Info

Publication number
JP2006074257A
JP2006074257A JP2004253379A JP2004253379A JP2006074257A JP 2006074257 A JP2006074257 A JP 2006074257A JP 2004253379 A JP2004253379 A JP 2004253379A JP 2004253379 A JP2004253379 A JP 2004253379A JP 2006074257 A JP2006074257 A JP 2006074257A
Authority
JP
Japan
Prior art keywords
frequency
main
inductive coupling
path
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253379A
Other languages
Japanese (ja)
Inventor
Hideo Oi
英夫 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITO KIYOUCHIYOU TOKUSHU KIKI
SAITO KIYOUCHIYOU TOKUSHU KIKI KK
Original Assignee
SAITO KIYOUCHIYOU TOKUSHU KIKI
SAITO KIYOUCHIYOU TOKUSHU KIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITO KIYOUCHIYOU TOKUSHU KIKI, SAITO KIYOUCHIYOU TOKUSHU KIKI KK filed Critical SAITO KIYOUCHIYOU TOKUSHU KIKI
Priority to JP2004253379A priority Critical patent/JP2006074257A/en
Publication of JP2006074257A publication Critical patent/JP2006074257A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a narrow-band high frequency bandpass filter for applying superior characteristics on frequency dependency of signal intensity in a bandpass flat region in consideration of coordination with frequency characteristics of a peripheral circuit. <P>SOLUTION: The bandpass filter is mainly composed of a bandpass filter main unit 7M(including a slope formation inductive coupling unit 83), and auxiliary resonance circuits 90A, 90B. In the slope formation inductive coupling unit 83, a first induction coupling distribution constant line unit 82A between a signal input terminal 84 and a first main LC type parallel resonance circuit 14A in a first line LM1, and a second induction coupling distribution constant line unit 82B between a signal output terminal 86 and a second main LC type parallel resonance circuit 14B in a second line LM2, are put opposite in parallel at prescribed intervals. In the bandpass characteristics of a bandpass filter 7, this structure has a function for applying a gradient to a flat frequency characteristic region between each resonance trap electrodes on the low frequency edge side and the high frequency edge side, so that the intensity of the passing signal increases or decreases continuously according to the frequency. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、放送受信波に混入する妨害波などをフィルタリングするための高周波用バンドパスフィルタと、該高周波用バンドパスフィルタを用いて構成されるとともに、放送受信機のケーブルに中間挿入する形で使用されるフィルタ内蔵型ケーブルコネクタユニットとに関する。   The present invention is configured using a high-frequency bandpass filter for filtering interference waves mixed in a broadcast reception wave, and the high-frequency bandpass filter, and is inserted into a cable of a broadcast receiver in the middle. The present invention relates to a filter built-in type cable connector unit.

特開平9−51241号公報JP-A-9-51241

テレビ放送などの受信機においては、アンテナからの受信信号を同軸ケーブルなどの信号ケーブルを介して受信回路に入力するようにしている。周知の課題として、受信信号には、ノイズや電波干渉などの様々な要因により妨害波が重畳し、受信障害を生ずることがある。このような妨害波は、受信機が設置される地域や周辺環境によって程度も周波数帯も異なるため、希望波は通過させ妨害波は遮断する高周波用フィルタを受信機に設けて解決を図ることが多い。特許文献1には、そのような高周波用フィルタの一例として、ケーブルコネクタユニットに内蔵されたLC型バンドエリミネートフィルタが開示されている。バンドエリミネートフィルタは、その遮断帯域を妨害波の周波数域に合せこむことで、妨害波を選択的に除去するものであるが、当然、バンドパスフィルタの通過帯域を、希望波の周波数域に合せこみ、希望波を選択的に通過させることも可能である。   In a receiver such as a television broadcast, a received signal from an antenna is input to a receiving circuit via a signal cable such as a coaxial cable. As a well-known problem, there are cases where interference is superimposed on a received signal due to various factors such as noise and radio wave interference, resulting in reception failure. Since such interference waves vary in degree and frequency band depending on the area where the receiver is installed and the surrounding environment, it is possible to solve the problem by providing a high-frequency filter in the receiver that allows the desired wave to pass and blocks the interference wave. Many. Patent Document 1 discloses an LC type band eliminate filter built in a cable connector unit as an example of such a high frequency filter. The band-eliminate filter selectively removes the interference wave by adjusting its cutoff band to the frequency band of the interference wave. Naturally, the pass band of the band-pass filter is adjusted to the frequency band of the desired wave. It is also possible to pass the desired wave selectively.

バンドパスフィルタの通過特性は従来、通過域の周波数特性の平坦性が重視されてきたが、フィルタが組み込まれる回路全体の信号特性を考慮した場合、平坦なフィルタ通過特性が常に好適であるとは限らない状況も生じてきている。特に、フィルタ周辺の回路の信号特性が、バンドパスフィルタの通過帯域において比較的強い周波数依存性を示す場合、バンドパスフィルタ側でどれほど平坦な通過特性を実現しても、周辺回路部分の周波数依存特性の影響が大きく現れ、通信機器全体としてみれば良好な信号周波数特性が実現できないことも生じうる。   Conventionally, the flatness of the frequency characteristics of the passband has been emphasized as the pass characteristic of the bandpass filter, but when considering the signal characteristics of the entire circuit in which the filter is incorporated, the flat filter pass characteristic is always suitable. Unlimited situations are also emerging. In particular, if the signal characteristics of the circuit surrounding the filter show a relatively strong frequency dependence in the passband of the bandpass filter, no matter how flat the pass characteristic is on the bandpass filter side, the frequency dependence of the peripheral circuit part The influence of the characteristics appears greatly, and it may occur that good signal frequency characteristics cannot be realized as a whole communication device.

本発明の課題は、通過帯域の平坦領域において、その信号強度の周波数依存性に、周辺回路の周波数特性との協調等を図る上で好都合な特性を付加的に施すことができる高周波用バンドパスフィルタと、それを用いたフィルタ内蔵型ケーブルコネクタユニットとを提供することにある。   An object of the present invention is to provide a high-frequency bandpass capable of additionally providing a characteristic that is advantageous in coordinating with a frequency characteristic of a peripheral circuit in the frequency dependence of the signal strength in a flat region of the passband. An object of the present invention is to provide a filter and a filter built-in type cable connector unit using the filter.

課題を解決するための手段及び作用・効果Means and actions / effects for solving the problems

上記の課題を解決するために、本発明の高周波用バンドパスフィルタは、
信号入力端子と信号出力端子とを結ぶとともに、信号入力端子側の第一経路と信号出力端子側の第二経路とに分割された信号主経路と、信号主経路の第一経路から分岐するとともに、該第一経路と接地とを短絡する形で設けられた第一主LC型並列共振回路と、信号主経路の第二経路から分岐するとともに、該第一経路と接地とを短絡する形で設けられた第二主LC型並列共振回路とを有するとともに、予め定められた中心周波数の帯域通過特性を示すバンドパスフィルタ主要部と、
バンドパスフィルタ主要部が形成する通過帯域の低周波端側と高周波端側とのそれぞれに共振トラップ極を形成する補助共振回路と、
第一経路において信号入力端子と第一主LC型並列共振回路との間に設けられた第一の誘導結合用分布定数線路部と、第二経路において信号出力端子と第二主LC型並列共振回路との間に設けられた第二の誘導結合用分布定数線路部とを予め定められた間隔で並列対向させることにより、バンドパスフィルタの帯域通過特性において、低周波端側及び高周波端側の各共振トラップ極の間に挟まれた平坦周波数特性領域に、通過信号強度が周波数に応じて連続的に増加ないし減少する勾配を付与する勾配形成用誘導結合部と、を有したことを特徴とする。
In order to solve the above problems, the high-frequency bandpass filter of the present invention is:
The signal input terminal and the signal output terminal are connected, and the signal main path divided into the first path on the signal input terminal side and the second path on the signal output terminal side is branched from the first path of the signal main path. The first main LC type parallel resonance circuit provided in such a manner as to short-circuit the first path and ground, and a branch from the second path of the signal main path, and short-circuiting the first path and ground A bandpass filter main part having a second main LC type parallel resonant circuit provided and exhibiting a bandpass characteristic of a predetermined center frequency;
An auxiliary resonance circuit that forms a resonance trap pole on each of the low-frequency end side and the high-frequency end side of the passband formed by the main part of the bandpass filter;
A first distributed constant line for inductive coupling provided between the signal input terminal and the first main LC type parallel resonance circuit in the first path, and a signal output terminal and the second main LC type parallel resonance in the second path. In parallel with the second inductive coupling distributed constant line section provided between the circuit and the circuit at predetermined intervals, the bandpass characteristics of the bandpass filter can be reduced between the low frequency end side and the high frequency end side. And a slope-forming inductive coupling portion that imparts a slope in which the passing signal intensity continuously increases or decreases depending on the frequency in a flat frequency characteristic region sandwiched between the resonance trap electrodes. To do.

信号入出力の主経路上にコンデンサを設け、その両端に2つの主LC型並列共振回路をぶら下げたπ形フィルタは、バンドパスフィルタとしての特性を示す。しかし、該π形フィルタのままでは通過帯域がブロードとなり、選択性の良好な通過特性を実現することができない。この場合、通過帯域の低周波端側と高周波端側とのそれぞれに共振トラップ極を形成する補助共振回路を設けることで、選択性の良好な通過特性を実現できる。   A π-type filter in which a capacitor is provided on a signal input / output main path and two main LC type parallel resonant circuits are suspended at both ends thereof exhibits characteristics as a bandpass filter. However, if the π-type filter is used as it is, the pass band becomes broad, and a pass characteristic with good selectivity cannot be realized. In this case, it is possible to realize pass characteristics with good selectivity by providing auxiliary resonance circuits that form resonance trap poles on the low-frequency end side and the high-frequency end side of the pass band.

本発明者らは、上記の構成のπ形フィルタにおいて、そのコンデンサを、分布定数線路部を並列に対向させた誘導結合部に置き換えた回路をバンドパスフィルタ主要部として用いることにより、低周波端側及び高周波端側の各共振トラップ極の間に挟まれた平坦周波数特性領域に、通過信号強度が周波数に応じて連続的に増加ないし減少する勾配を付与することができることを見出して、本発明を完成するに至った。分布定数線路部の並列対向構造という簡単な構成により、バンドパスフィルタの平坦周波数特性領域に勾配的な周波数特性を安価にかつ確実に付与することができる。例えば、バンドパスフィルタが接続される周辺回路がフィルタの通過帯域において、周波数特性上望まざる勾配を有している場合に、フィルタの平坦周波数特性領域に付与した勾配特性を利用してこれを抑制するなど、周辺回路との周波数特性上の協調も容易に図ることが可能となる。   In the π-type filter having the above-described configuration, the present inventors use a circuit in which the capacitor is replaced with an inductive coupling unit in which the distributed constant line unit is opposed in parallel as a main part of the band-pass filter. The present invention finds that a flat frequency characteristic region sandwiched between the resonance trap poles on the side and the high frequency end side can be given a gradient in which the passing signal intensity continuously increases or decreases depending on the frequency. It came to complete. With a simple configuration of a parallel facing structure of distributed constant line portions, a gradient frequency characteristic can be reliably and inexpensively imparted to the flat frequency characteristic region of the bandpass filter. For example, if the peripheral circuit to which the bandpass filter is connected has an undesired gradient in terms of frequency characteristics in the passband of the filter, this can be suppressed by using the gradient characteristic assigned to the flat frequency characteristic region of the filter. For example, the frequency characteristics can be easily coordinated with peripheral circuits.

通過帯域に形成する勾配の符号(向き)は、第一の誘導結合用分布定数線路部と第二の誘導結合用分布定数線路部とをそれぞれ通過する信号の位相関係により、容易に設定できる。この場合、第一の誘導結合用分布定数線路部と第二の誘導結合用分布定数線路部との、各々信号入力端子及び信号出力端子から第一主LC型並列共振回路及び第二主LC型並列共振回路の接地に向う方向を順方向として定める。
(正勾配の場合)
勾配形成用誘導結合部において、第一の誘導結合用分布定数線路部と第二の誘導結合用分布定数線路部とを、順方向が互い逆となるように対向させることにより、平坦周波数特性領域に、通過信号強度が周波数の増加に応じて連続的に増加する正勾配を付与することができる。
(負勾配の場合)
勾配形成用誘導結合部において、第一の誘導結合用分布定数線路部と第二の誘導結合用分布定数線路部とを、順方向が互いに一致するように対向させることにより、平坦周波数特性領域に、通過信号強度が周波数の増加に応じて連続的に減少する負勾配を付与することができる。
The sign (orientation) of the gradient formed in the passband can be easily set by the phase relationship of the signals passing through the first inductive coupling distributed constant line portion and the second inductive coupling distributed constant line portion. In this case, the first main LC type parallel resonant circuit and the second main LC type from the signal input terminal and the signal output terminal of the first distributed constant line part for inductive coupling and the second distributed constant line part for inductive coupling, respectively. The direction toward the ground of the parallel resonant circuit is defined as the forward direction.
(For positive slope)
In the inductive coupling portion for forming the gradient, the first inductive coupling distributed constant line portion and the second inductive coupling distributed constant line portion face each other so that the forward directions are opposite to each other, thereby obtaining a flat frequency characteristic region. Further, it is possible to give a positive gradient in which the passing signal intensity continuously increases as the frequency increases.
(For negative slope)
In the inductive coupling part for forming the gradient, the first inductive coupling distributed constant line part and the second inductive coupling distributed constant line part are opposed to each other so that the forward directions coincide with each other. In addition, a negative gradient in which the passing signal intensity continuously decreases as the frequency increases can be provided.

特に、信号入力端子と信号出力端子とに、通過信号強度が周波数の増加に応じて連続的に減少する負の周波数特性を有した信号ケーブルの接続が予定されている場合、勾配形成用誘導結合部が形成する正勾配特性により、信号ケーブルの負の周波数特性を少なくとも部分的に相殺することができる。すなわち、バンドパスフィルタの周辺回路として信号ケーブル(特に同軸ケーブルなどのシールドケーブル)が存在する場合、信号ケーブルは、高周波域となるほど信号の輻射損失が大きくなり、シールド効果も薄れるので、伝送信号強度は負の周波数依存性を示すことになる。しかし、バンドパスフィルタの周波数特性をる上記のような正勾配特性としておけば、信号ケーブル側の周波数依存性をキャンセルでき、バンドパスフィルタ及び信号ケーブルからなる回路全体で見たときに、より平坦な周波数特性を実現することができる。   In particular, when the signal input terminal and the signal output terminal are scheduled to be connected to a signal cable having a negative frequency characteristic in which the passing signal intensity continuously decreases as the frequency increases, inductive coupling for gradient formation is planned. The negative frequency characteristic of the signal cable can be at least partially offset by the positive slope characteristic formed by the section. That is, when a signal cable (especially a shielded cable such as a coaxial cable) exists as a peripheral circuit of a bandpass filter, the signal cable has a higher signal radiation loss and a lower shielding effect as the frequency becomes higher. Indicates negative frequency dependence. However, if the frequency characteristics of the bandpass filter are set to the positive slope characteristics as described above, the frequency dependency on the signal cable side can be canceled, and the frequency characteristics of the entire circuit comprising the bandpass filter and the signal cable are flatter. Frequency characteristics can be realized.

次に、第一主LC型並列共振回路及び第二主LC型並列共振回路に含まれるインダクタンスは、いずれも誘電体共振器により構成することができる。これにより、並列共振回路のQ値が一層高められ、フィルタの周波数選択特性(あるいはトラップの減衰効果)を一層向上することができる。この場合、信号入力端子側及び信号出力端子側において、第一経路及び第二経路には、バンドパスフィルタの入出力のインピーダンスを誘電体共振器を含む各共振回路の入力インピーダンスに近づけるためのインピーダンス調整部を設けることができる。並列共振回路は、これに含まれる誘電体共振器のQ値が非常に大きく高インピーダンスである。従って、その入力及び出力のインピーダンスを並列共振回路側のインピーダンスに近づけるために、上記のようなインピーダンス調整部を設けることが、インピーダンス不整合による反射損失を抑制し、フィルタの利得を向上させる観点において好都合である。インピーダンス調整部は、希望する周波数帯で高インピーダンスを示すように回路定数が定められたインダクタやコンデンサを利用できる。   Next, the inductances included in the first main LC type parallel resonant circuit and the second main LC type parallel resonant circuit can both be constituted by dielectric resonators. Thereby, the Q value of the parallel resonant circuit can be further increased, and the frequency selection characteristic (or trap attenuation effect) of the filter can be further improved. In this case, on the signal input terminal side and the signal output terminal side, the impedance for making the input / output impedance of the bandpass filter close to the input impedance of each resonance circuit including the dielectric resonator is provided on the first path and the second path. An adjustment part can be provided. In the parallel resonance circuit, the dielectric resonator included therein has a very large Q value and high impedance. Therefore, in order to bring the impedance of the input and output closer to the impedance on the parallel resonant circuit side, the provision of the impedance adjusting unit as described above is effective in suppressing reflection loss due to impedance mismatch and improving the gain of the filter. Convenient. The impedance adjustment unit can use an inductor or a capacitor in which circuit constants are determined so as to exhibit high impedance in a desired frequency band.

次に、本発明のフィルタ内蔵型ケーブルコネクタユニットは、
機器の信号ケーブルを接続するための第一コネクタ部及び第二コネクタ部が形成されたフィルタハウジングと、
上記本発明の高周波用バンドパスフィルタが搭載され、信号入力端子と信号出力端子がそれぞれ第一コネクタ部及び第二コネクタ部に導通するようにフィルタハウジング内に収容される回路基板とを有し、
第一主LC型並列共振回路及び第二主LC型並列共振回路に含まれるキャパシタの静電容量の少なくとも一部がトリマコンデンサにて構成され、該トリマコンデンサの容量調整部が、目的とする信号周波数にバンドパスフィルタの通過帯域を同調させるための可変同調部とされてなることを特徴とする。
Next, the filter built-in type cable connector unit of the present invention includes:
A filter housing formed with a first connector part and a second connector part for connecting a signal cable of the device;
The high-frequency bandpass filter of the present invention is mounted, and has a circuit board accommodated in the filter housing so that the signal input terminal and the signal output terminal are electrically connected to the first connector part and the second connector part, respectively.
At least a part of the capacitance of the capacitors included in the first main LC type parallel resonant circuit and the second main LC type parallel resonant circuit is constituted by a trimmer capacitor, and the capacitance adjusting unit of the trimmer capacitor has a target signal. It is a variable tuning unit for tuning the pass band of the band pass filter to the frequency.

上記構成によると、2つの主LC型並列共振回路に含まれる静電容量をトリマコンデンサとして可変に構成したので、例えば妨害波の周波数に対し、フィルタの通過帯域を容易に同調させることができる。   According to the above configuration, since the capacitance included in the two main LC type parallel resonant circuits is variably configured as a trimmer capacitor, for example, the pass band of the filter can be easily tuned with respect to the frequency of the disturbing wave.

以下、本発明の実施の形態を添付の図面に基づいて説明する。図1は、本発明の一実施形態を示すフィルタ内蔵型ケーブルコネクタユニット(以下、単に「コネクタユニット」ともいう)1の外観を示す平面図及び左右の側面図であり、図2は、正面断面図である。コネクタユニット1は、各々機器の信号ケーブル6を接続するための第一コネクタ部11及び第二コネクタ部12が形成されたフィルタハウジング13と、フィルタハウジング13内に収容され、第一コネクタ部11と第二コネクタ部12との間に挿入されるバンドパスフィルタ回路7が搭載された回路基板70と、回路基板70上のバンドパスフィルタ7に組み込まれた可変同調部71(トリマコンデンサ15:図4の回路図にて後述)とを有する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a plan view and left and right side views showing an external appearance of a filter built-in type cable connector unit (hereinafter also simply referred to as “connector unit”) 1 according to an embodiment of the present invention. FIG. FIG. The connector unit 1 includes a filter housing 13 in which a first connector portion 11 and a second connector portion 12 for connecting the signal cables 6 of the devices are formed, and is accommodated in the filter housing 13. A circuit board 70 on which the band-pass filter circuit 7 to be inserted between the second connector part 12 is mounted and a variable tuning part 71 (trimmer capacitor 15: FIG. 4) incorporated in the band-pass filter 7 on the circuit board 70. (Described later in the circuit diagram).

図3は、バンドパスフィルタ7の回路構成例を示すものである。この回路は、UHFテレビ放送受信用のものであり(UHF帯の周波数範囲は、U13Ch〜U62Chで470MHz〜770MHzである)、バンドパスフィルタ主要部7M(勾配形成用誘導結合部83を含む)と補助共振回路90A,90Bとをその要部として構成されている。バンドパスフィルタ主要部7Mは、信号入力端子84と信号出力端子86とを結ぶとともに、信号入力端子84側の第一経路LM1と信号出力端子86側の第二経路LM2とに分割された信号主経路と、信号主経路の第一経路LM1から分岐するとともに、該第一経路LM1と接地とを短絡する形で設けられた第一主LC型並列共振回路14Aと、信号主経路の第二経路LM2から分岐するとともに、該第一経路LM1と接地とを短絡する形で設けられた第二主LC型並列共振回路14Bとを有し、予め定められた中心周波数の帯域通過特性を示すものである。補助共振回路90A,90Bは、バンドパスフィルタ主要部7Mが形成する通過帯域の低周波端側と高周波端側とのそれぞれに共振トラップ極を形成する。なお、信号入力端子84と信号出力端子86との間において、信号主経路と並列に、不要周波数成分をカットするための図示しないチョークコイルを適宜設けることも可能である。   FIG. 3 shows a circuit configuration example of the bandpass filter 7. This circuit is for UHF television broadcast reception (the UHF band frequency range is 470 MHz to 770 MHz for U13Ch to U62Ch), and the bandpass filter main part 7M (including the gradient forming inductive coupling part 83) The auxiliary resonance circuits 90A and 90B are configured as the main parts. The bandpass filter main part 7M connects the signal input terminal 84 and the signal output terminal 86, and is divided into a first path LM1 on the signal input terminal 84 side and a second path LM2 on the signal output terminal 86 side. A first main LC-type parallel resonance circuit 14A that is branched from the first path LM1 of the signal main path and the first path LM1 and the ground, and a second path of the signal main path It has a second main LC type parallel resonant circuit 14B which is branched from LM2 and short-circuited between the first path LM1 and the ground, and exhibits a band pass characteristic of a predetermined center frequency. is there. The auxiliary resonance circuits 90A and 90B form resonance trap poles on the low frequency end side and the high frequency end side of the pass band formed by the bandpass filter main portion 7M. Note that a choke coil (not shown) for cutting unnecessary frequency components may be provided as appropriate between the signal input terminal 84 and the signal output terminal 86 in parallel with the signal main path.

勾配形成用誘導結合部83は、第一経路LM1において信号入力端子84と第一主LC型並列共振回路14Aとの間に設けられた第一の誘導結合用分布定数線路部82Aと、第二経路LM2において信号出力端子86と第二主LC型並列共振回路14Bとの間に設けられた第二の誘導結合用分布定数線路部82Bとを予め定められた間隔で並列対向させたものである。該構造により、バンドパスフィルタ7の帯域通過特性において、低周波端側及び高周波端側の各共振トラップ極の間に挟まれた平坦周波数特性領域に、通過信号強度が周波数に応じて連続的に増加ないし減少する勾配を付与する機能を果たす。図3の回路構成では、勾配形成用誘導結合部83は、第一の誘導結合用分布定数線路部82Aと第二の誘導結合用分布定数線路部82Bとを、順方向が互い逆となるように対向させることにより形成され、平坦周波数特性領域に、通過信号強度が周波数の増加に応じて連続的に増加する正勾配が付与される。しかし、目的によっては、図7に示すように、第一の誘導結合用分布定数線路部82Aと第二の誘導結合用分布定数線路部82Bとを、順方向が互いに一致するように対向させることにより、平坦周波数特性領域に、通過信号強度が周波数の増加に応じて連続的に減少する負勾配を付与することも可能である。以下、正勾配付与の場合で代表させて説明する。   The gradient forming inductive coupling portion 83 includes a first inductive coupling distributed constant line portion 82A provided between the signal input terminal 84 and the first main LC type parallel resonant circuit 14A in the first path LM1, and a second In the path LM2, a second inductive coupling distributed constant line portion 82B provided between the signal output terminal 86 and the second main LC type parallel resonant circuit 14B is opposed in parallel at a predetermined interval. . With this structure, in the band-pass characteristics of the band-pass filter 7, the pass signal intensity is continuously increased according to the frequency in the flat frequency characteristic region sandwiched between the resonance trap electrodes on the low frequency end side and the high frequency end side. Serves to provide an increasing or decreasing gradient. In the circuit configuration of FIG. 3, the inductive coupling portion 83 for forming gradients causes the first inductive coupling distributed constant line portion 82 </ b> A and the second inductive coupling distributed constant line portion 82 </ b> B to have their forward directions opposite to each other. And a positive gradient in which the passing signal intensity continuously increases as the frequency increases is given to the flat frequency characteristic region. However, depending on the purpose, as shown in FIG. 7, the first inductive coupling distributed constant line portion 82A and the second inductive coupling distributed constant line portion 82B are opposed to each other so that the forward directions thereof coincide with each other. Thus, it is also possible to give a negative gradient in which the passing signal intensity continuously decreases as the frequency increases in the flat frequency characteristic region. In the following, the case where a positive gradient is applied will be described as a representative.

第一主LC型並列共振回路14A及び第二主LC型並列共振回路14Bに含まれるインダクタンスは、いずれも誘電体共振器17A,17B(本実施形態では、共振周波数約880MHz、無負荷時のQ値が約1500)により構成されている。そして、主経路LMの入力側と出力側とにそれぞれインピーダンス調整部80A,80Bが設けられている。インピーダンス調整部80A,80Bは、フィルタの入力及び出力のインピーダンス(例えば約50Ω)を並列共振回路14A,14Bのインピーダンスに近づけて、インピーダンス不整合による反射損失を抑制する役割を果たす。   The inductances included in the first main LC type parallel resonant circuit 14A and the second main LC type parallel resonant circuit 14B are both dielectric resonators 17A and 17B (in this embodiment, the resonance frequency is about 880 MHz, the Q at no load). The value is about 1500). Impedance adjusting units 80A and 80B are provided on the input side and the output side of the main path LM, respectively. The impedance adjusters 80A and 80B serve to suppress the reflection loss due to impedance mismatch by bringing the input and output impedances (for example, about 50Ω) of the filter closer to the impedance of the parallel resonant circuits 14A and 14B.

インピーダンス調整部は、上記第一主LC型並列共振回路14A及び第二主LC型並列共振回路14Bに、入出力インピーダンス(50Ω)が整合するように回路定数が定められたインダクタ181A,181Bや、コンデンサ180A,180Bを利用できる(本実施形態では両者を組み合わせているが、各々単独でも採用可能である)。また、分布定数線路部をインピーダンス調整部として採用することもできるが、回路基板70のコンパクト化を考慮すると、インダクタやコンデンサのような集中定数回路素子を用いることが望ましい。本実施形態では、インピーダンス調整部80A,80Bとして、インダクタ181A,181Bは、数ターン(3ターン以上15ターン以下:インダクタンスは30〜150nH)程度の巻線コイル(インダクタ)181A,181Bを利用し、コンデンサ180A,180Bは、静電容量が1000pFのチップコンデンサ(直流を遮断して高周波信号を通過させる役割を果たす)を利用している。   The impedance adjuster includes inductors 181A and 181B whose circuit constants are determined so that the input / output impedance (50Ω) matches the first main LC parallel resonant circuit 14A and the second main LC parallel resonant circuit 14B, Capacitors 180A and 180B can be used (in the present embodiment, both are combined, but each can be used alone). In addition, although the distributed constant line portion can be adopted as the impedance adjusting portion, it is desirable to use a lumped constant circuit element such as an inductor or a capacitor in view of making the circuit board 70 compact. In the present embodiment, the inductors 181A and 181B use winding coils (inductors) 181A and 181B of about several turns (3 to 15 turns: inductance is 30 to 150 nH) as the impedance adjusters 80A and 80B, Capacitors 180A and 180B use chip capacitors having a capacitance of 1000 pF (playing a role of cutting off direct current and allowing high-frequency signals to pass).

第一LC型並列共振回路14A及び第二LC型並列共振回路14Bに含まれるキャパシタの静電容量は、トリマコンデンサ15A,15B(本実施形態では容量調整範囲1.0pF〜10pF)にて構成されている。該トリマコンデンサ15A,15Bの容量調整部が、目的とする信号周波数にバンドパスフィルタの通過帯域を同調させるための可変同調部71とされている。   Capacitances of capacitors included in the first LC type parallel resonant circuit 14A and the second LC type parallel resonant circuit 14B are constituted by trimmer capacitors 15A and 15B (capacitance adjustment range 1.0 pF to 10 pF in this embodiment). ing. The capacitance adjusting units of the trimmer capacitors 15A and 15B are a variable tuning unit 71 for tuning the pass band of the bandpass filter to a target signal frequency.

補助共振回路は、第一経路LM1及び第二経路LM2に対し、勾配形成用誘導結合部83の形成されているのと反対側において、各々接地との間で第一主LC型並列共振回路14A及び第二主LC型並列共振回路14Bに対し並列に接続された、各々インダクタ91A,91B(インダクタンス:20〜50nH)及びコンデンサ93A,93B(静電容量:0.5pF)からなる第一及び第二の補助LC直列共振回路90A,90Bにて構成されている。インピーダンス調整部80A,80Bは、第一経路LM1及び第二経路LM2においてそれぞれ、補助LC直列共振回路の分岐点と主LC並列共振回路の分岐点との間に配置されている。これにより、バンドパスフィルタ主要部7Mが形成する帯域通過特性の両端に、より急峻で深いトラップ極を形成でき、フィルタの選択性が向上するとともに、狭帯域の通過特性も容易に実現できる。なお、本実施形態では、トラップ極の急峻性をさらに高めるために、インダクタ91に並列共振結合する補助コンデンサ92A,92Bを設けている。   The auxiliary resonant circuit has a first main LC type parallel resonant circuit 14A between the first path LM1 and the second path LM2 and the ground on the opposite side of the slope forming inductive coupling portion 83 from each other. And first and second inductors 91A and 91B (inductance: 20 to 50 nH) and capacitors 93A and 93B (capacitance: 0.5 pF) respectively connected in parallel to the second main LC type parallel resonant circuit 14B. It is composed of two auxiliary LC series resonance circuits 90A and 90B. Impedance adjusting units 80A and 80B are arranged between the branch point of the auxiliary LC series resonant circuit and the branch point of the main LC parallel resonant circuit in each of the first path LM1 and the second path LM2. Thereby, steeper and deep trap poles can be formed at both ends of the band pass characteristic formed by the main part 7M of the band pass filter, the filter selectivity can be improved, and the narrow band pass characteristic can be easily realized. In the present embodiment, auxiliary capacitors 92A and 92B that are coupled in parallel resonance with the inductor 91 are provided in order to further increase the steepness of the trap pole.

図4は回路基板70の部品レイアウト例をそれぞれ示すもので、上は表面側のレイアウトを、下は裏面側のレイアウトをそれぞれ示すものである。第一主LC型並列共振回路16と第二主LC型並列共振回路17の各トリマコンデンサ15A,15Bは、インピーダンス調整部をなす巻線コイル80A,80Bとともに、回路基板70の裏面側にそれぞれ実装されている。一方、第一主LC型並列共振回路16と第二主LC型並列共振回路17の各誘電体共振器17A,17Bは回路基板70の表面側に実装されている。   FIG. 4 shows an example of component layout of the circuit board 70. The upper part shows the layout on the front surface side, and the lower part shows the layout on the back surface side. The trimmer capacitors 15A and 15B of the first main LC type parallel resonance circuit 16 and the second main LC type parallel resonance circuit 17 are mounted on the back side of the circuit board 70 together with the winding coils 80A and 80B forming the impedance adjustment unit. Has been. On the other hand, the dielectric resonators 17A and 17B of the first main LC type parallel resonant circuit 16 and the second main LC type parallel resonant circuit 17 are mounted on the surface side of the circuit board 70.

誘電体共振器17A,17Bを用いた上記回路構成において、回路基板70上に実装された第一主LC型並列共振回路14A及び第二主LC型並列共振回路14Bの各誘電体共振器17A,17Bのリード線82A,82Bは、その先端が、回路基板70上の第一経路LM1及び第二経路LM2に接続されている。それらリード線82A,82Bが、第一の誘導結合用分布定数線路部82Aと第二の誘導結合用分布定数線路部82Bとして使用されている。このように構成すると、誘電体共振器17A,17Bのリード線部分を誘導結合用分布定数線路部82A,82Bに併用する形で勾配形成用誘導結合部83を形成することができ、勾配形成用誘導結合部83のためのプリント配線部等を回路基板70上に敢えて形成する必要がなくなるので、基板構成の簡略化を果たすことができる。また、図4に「要部」として示すように、誘導結合用分布定数線路部をなすリード線82A,82Bを、基板主両面から浮かせて配置することで、回路基板70主表面のリード線82A,82Bの直下位置にもプリント配線部を引き回すことができ、限られた基板面積を有効活用できる。   In the above circuit configuration using the dielectric resonators 17A and 17B, the dielectric resonators 17A and 14A of the first main LC type parallel resonant circuit 14A and the second main LC type parallel resonant circuit 14B mounted on the circuit board 70 are provided. The leading ends of the lead wires 82A and 82B of 17B are connected to the first route LM1 and the second route LM2 on the circuit board 70. The lead wires 82A and 82B are used as the first inductive coupling distributed constant line portion 82A and the second inductive coupling distributed constant line portion 82B. With this configuration, the gradient forming inductive coupling portion 83 can be formed in such a manner that the lead portions of the dielectric resonators 17A and 17B are used in combination with the distributed constant line portions 82A and 82B for inductive coupling. Since it is not necessary to dare to form a printed wiring portion or the like for the inductive coupling portion 83 on the circuit board 70, the board configuration can be simplified. Further, as shown as “main part” in FIG. 4, the lead wires 82A and 82B forming the distributed constant line portion for inductive coupling are arranged so as to float from both the main surfaces of the substrate, whereby the lead wires 82A on the main surface of the circuit board 70 are arranged. , 82B can be routed to a position directly below the terminal board 82B, and a limited board area can be effectively utilized.

勾配形成用誘導結合部83によりバンドパスフィルタ7の平坦周波数特性領域に形成する周波数特性の勾配の大きさは、第一の誘導結合用分布定数線路部82Aと第二の誘導結合用分布定数線路部82Bとの対向間隔σ又は対向区間長LSにより容易に調整することができる。特に対向間隔σは、対向区間長LSと比較して勾配変化に与える影響が大きく現れるので、該勾配の主要な調整因子として活用できる。他方、対向区間長LSの変更は、勾配の微調整等に有効利用できる。   The magnitude of the frequency characteristic gradient formed in the flat frequency characteristic region of the band-pass filter 7 by the gradient forming inductive coupling unit 83 is determined by the first inductive coupling distributed constant line unit 82A and the second inductive coupling distributed constant line. It can be easily adjusted by the facing interval σ with the portion 82B or the facing section length LS. In particular, the facing interval σ has a larger influence on the gradient change than the facing section length LS, and therefore can be used as a main adjustment factor of the gradient. On the other hand, the change of the opposing section length LS can be effectively used for fine adjustment of the gradient.

誘電体共振器17A,17Bのリード線82A,82Bは、回路基板70上のプリント配線部LM1,LM2をなすCu箔厚さよりも径大のリード線82A,82Bとされている。プリント配線部LM1,LM2は、基板をなす高分子材料等からなる誘電体と接するためQが比較的小さい(例えば50前後)が、リード線82A,82Bは空気中に配置されるのでQが大きい〈例えば1000以上〉。これにより、勾配形成用誘導結合部83に用いる分布定数線路のQ及びインダクタンスを高めることができ、プリント配線部を利用して誘導結合部を形成するよりは、誘導結合効果ひいては通過特性への勾配付与効果をはるかに顕著に達成できる。リード線82A,82Bの太さは例えば0.3mm以上1mm以下の範囲で選定する。   The lead wires 82A and 82B of the dielectric resonators 17A and 17B are lead wires 82A and 82B having a diameter larger than the Cu foil thickness forming the printed wiring portions LM1 and LM2 on the circuit board 70. Since the printed wiring portions LM1 and LM2 are in contact with a dielectric made of a polymer material or the like forming a substrate, the Q is relatively small (for example, around 50), but the lead wires 82A and 82B are arranged in the air, so the Q is large. <For example, 1000 or more>. As a result, the Q and inductance of the distributed constant line used for the inductive coupling portion 83 for forming the gradient can be increased. Rather than forming the inductive coupling portion using the printed wiring portion, the gradient to the inductive coupling effect and thus the pass characteristic is obtained. The imparting effect can be achieved much more significantly. The thickness of the lead wires 82A and 82B is selected in the range of 0.3 mm to 1 mm, for example.

本実施形態では、第一主LC型並列共振回路14A及び第二主LC型並列共振回路14Bの誘電体共振器17A,17Bを、リード線82A,82Bが引き出される側の端面同士が互いに対向するように回路基板70上に実装し、両リード線82A,82Bを、順方向が互いに逆向きとなるように回路基板70上にて対向配置する構成を採用している。これにより、正の勾配特性を実現するために、リード線82A,82Bの順方向を互いに逆転させた位置関係で配置するレイアウトが容易に得られる。   In the present embodiment, the dielectric resonators 17A and 17B of the first main LC type parallel resonant circuit 14A and the second main LC type parallel resonant circuit 14B are opposed to each other at the end surfaces on the side from which the lead wires 82A and 82B are drawn. In this way, the circuit board 70 is mounted on the circuit board 70, and the lead wires 82A and 82B are arranged opposite to each other on the circuit board 70 so that the forward directions are opposite to each other. Thereby, in order to realize a positive gradient characteristic, a layout in which the lead wires 82A and 82B are arranged in a positional relationship in which the forward directions are reversed from each other can be easily obtained.

図3の回路構成のバンドパスフィルタ7について、通過特性を測定した例を図6に示す。ただし、勾配形成用誘導結合部83において、第一の誘導結合用分布定数線路部82Aと第二の誘導結合用分布定数線路部82Bをなす各リード線の線径は約0.5mmであり、対向間隔σは平均値で約3mm、対向区間長LSは約10mmに定めている。通過帯域の中心周波数は約730MHzである(なお、低域側のトラップ極はスケール外であり、図示されていない)。   FIG. 6 shows an example of measurement of pass characteristics of the bandpass filter 7 having the circuit configuration of FIG. However, in the inductive coupling portion 83 for forming the gradient, the diameter of each lead wire forming the first inductive coupling distributed constant line portion 82A and the second inductive coupling distributed constant line portion 82B is about 0.5 mm, The opposing interval σ is set to an average value of about 3 mm, and the opposing section length LS is set to about 10 mm. The center frequency of the pass band is about 730 MHz (note that the trapping pole on the lower side is out of the scale and is not shown).

上記バンドパスフィルタ7は、通過帯域の中心周波数fがUHF帯に定められており、信号入力端子84と信号出力端子86とには、第一コネクタ11及び第二コネクタ12により、信号ケーブルとして同軸ケーブル6(図1参照)がそれぞれ接続されている。同軸ケーブル6は、高周波域となるほど信号の輻射損失が大きくなり、シールド効果も薄れるので、図5に破線で示すように、伝送信号強度は負の周波数依存性を示す。しかし、バンドパスフィルタ7の周波数特性が、上記勾配形成用誘導結合部83の作用により、一点鎖線で示すような正勾配特性となっていれば、破線で示す同軸ケーブル6側の周波数依存性をキャンセルでき、バンドパスフィルタ7及び同軸ケーブル6からなる回路全体で見たときに、実線で示すように、より平坦な周波数特性を実現することができる。また、正勾配の周波数特性では、通過帯域の低周波側の信号に適度な減衰をかけることができ、例えば帯域内で隣接した2つのチャンネル(例えば地上波デジタルと地上波アナログの隣接チャンネル)の低周波側のものの通過出力を制限するような機能も実現できる。 The bandpass filter 7 has a passband center frequency f 0 determined in the UHF band, and the signal input terminal 84 and the signal output terminal 86 are connected to each other as a signal cable by the first connector 11 and the second connector 12. Coaxial cables 6 (see FIG. 1) are connected to each other. Since the coaxial cable 6 has a higher signal radiation loss and a lower shielding effect as the frequency becomes higher, the transmission signal strength has a negative frequency dependency as shown by a broken line in FIG. However, if the frequency characteristic of the bandpass filter 7 is a positive gradient characteristic as indicated by a one-dot chain line due to the action of the gradient forming inductive coupling portion 83, the frequency dependency on the coaxial cable 6 side indicated by the broken line is reduced. Cancellation is possible, and a flatter frequency characteristic can be realized as shown by a solid line when viewed in the entire circuit including the bandpass filter 7 and the coaxial cable 6. In addition, with positive frequency characteristics, moderate attenuation can be applied to the signal on the low frequency side of the pass band. For example, two adjacent channels (for example, adjacent channels of terrestrial digital and terrestrial analog) It is also possible to realize a function for limiting the passing output of the low frequency side.

以上でバンドパスフィルタ7の説明を終わり、以下、本実施形態特有の細部について補足的に説明を行なう。図1及び図2に示すように、フィルタハウジング13は、一端に第一コネクタ部11が形成され、他端に開口を有する筒状に構成された本体部2と、第二コネクタ部12が形成されるとともに本体部2の開口を着脱可能に塞ぐ蓋部4とを有する。本体部2及び蓋部4は、いずれもステンレス鋼などの金属製である。横長に形成された回路基板70は通常のプリント配線基板であり、長手方向の一端が蓋部4の内側端面に固定され、該回路基板70を本体部2の内側に挿入しつつ蓋部4を本体部2に装着するようにしている。このように構成することで、フィルタハウジング13内部への回路基板70の組付けを非常に容易に行うことができる。本実施形態においては、蓋部4は、蓋部本体42の外周面に形成された雄ねじ部43が、本体部2の開口内周面に形成された雌ねじ部24に螺合するようになっており、蓋部本体42の後端側には、本体部2の開口内径よりも径大に構成されたフランジ部41が一体化されている。   This is the end of the description of the bandpass filter 7, and a supplementary description of details specific to the present embodiment will be given below. As shown in FIGS. 1 and 2, the filter housing 13 is formed with a main body portion 2 formed in a cylindrical shape having a first connector portion 11 at one end and an opening at the other end, and a second connector portion 12. And a lid portion 4 that detachably closes the opening of the main body portion 2. Both the main body 2 and the lid 4 are made of metal such as stainless steel. The circuit board 70 formed in a horizontally long shape is a normal printed wiring board, and one end in the longitudinal direction is fixed to the inner end surface of the lid portion 4, and the lid portion 4 is inserted while the circuit board 70 is inserted inside the main body portion 2. The main body 2 is attached. With this configuration, the circuit board 70 can be assembled very easily into the filter housing 13. In the present embodiment, the lid portion 4 is configured such that a male screw portion 43 formed on the outer peripheral surface of the lid portion main body 42 is screwed into a female screw portion 24 formed on the inner peripheral surface of the opening of the main body portion 2. In addition, a flange portion 41 having a diameter larger than the opening inner diameter of the main body 2 is integrated with the rear end side of the lid main body 42.

図2に示すように、回路基板70の長手方向の各端部からは、信号入力部及び信号出力部をなすリード線84,86が延出している。そして、それら入出力用のリード線84,86が本体部2及び蓋部4側に形成されたリード取出用貫通孔2h,4hを経て各々第一コネクタ部11及び第二コネクタ部12に引き出されている。そして、リード取出用貫通孔2h,4hの内部において、蓋部4又は本体部2をなす導体部とリード線84,86との間が防水用の高分子材料部54,94にて充填されている。これにより、コネクタ側からフィルタハウジング13内への水滴等の侵入を効果的に防止することができる。   As shown in FIG. 2, lead wires 84 and 86 forming a signal input portion and a signal output portion extend from each end portion in the longitudinal direction of the circuit board 70. The input / output lead wires 84 and 86 are drawn out to the first connector portion 11 and the second connector portion 12 through lead extraction through holes 2h and 4h formed on the main body portion 2 and the lid portion 4 side, respectively. ing. And, between the lead extraction through holes 2h, 4h, the gap between the conductor portion forming the lid portion 4 or the main body portion 2 and the lead wires 84, 86 is filled with the waterproof polymer material portions 54, 94. Yes. Thereby, the penetration | invasion of the water drop etc. in the filter housing 13 from a connector side can be prevented effectively.

本実施形態において第二コネクタ12は、蓋部4の後端面から突出する筒状部49(外周面に、ケーブル固定用のナット5を螺合させるための雄ねじ部31が形成されている)にて構成され、結合対象となる同軸ケーブルの芯線端部を保持するためのソケット金具48が内蔵された雌コネクタとされている。ソケット金具48は、挿入される同軸ケーブル6の芯線を導通状態で狭持するためのもので、回路基板70からのリード線86とはんだ付けされている。また、第一コネクタ11は、本体部2の反対側の端面から突出する筒状部56にて構成され、雌ねじ部52を有したケーブル固定用のナット5’が、摺動リング23を介して筒状部56の外周面に回転可能に嵌め込まれている。そして、図1に示すように、同軸ケーブル6の末端に装着された端子用ボルトリング6T(図1)を、ナット5’の雌ねじ部に螺合することで接続を行う。   In the present embodiment, the second connector 12 has a cylindrical portion 49 protruding from the rear end surface of the lid portion 4 (a male screw portion 31 for screwing the cable fixing nut 5 is formed on the outer peripheral surface). The female connector has a built-in socket fitting 48 for holding the core wire end of the coaxial cable to be coupled. The socket fitting 48 is for holding the core wire of the inserted coaxial cable 6 in a conductive state, and is soldered to the lead wire 86 from the circuit board 70. Further, the first connector 11 is constituted by a cylindrical portion 56 protruding from the end surface on the opposite side of the main body portion 2, and a cable fixing nut 5 ′ having a female screw portion 52 is interposed via the sliding ring 23. A cylindrical portion 56 is rotatably fitted on the outer peripheral surface. Then, as shown in FIG. 1, the terminal bolt ring 6T (FIG. 1) attached to the end of the coaxial cable 6 is screwed into the female thread portion of the nut 5 'for connection.

図2に示すように、回路基板70の長手方向の端部からは前述のリード線84が延出し、回路基板70のリード線84の延出側基端部に対応する位置に、該リード線84の周囲を取り囲むシールド導体89が設けられている。シールド導体89は、回路基板70に形成された接地導体箔に導通している。これにより、高周波の接地効果がより高められている。   As shown in FIG. 2, the above-described lead wire 84 extends from the longitudinal end portion of the circuit board 70, and the lead wire is positioned at a position corresponding to the extending-side base end portion of the lead wire 84 of the circuit board 70. A shield conductor 89 surrounding the periphery of 84 is provided. The shield conductor 89 is electrically connected to the ground conductor foil formed on the circuit board 70. Thereby, the high-frequency grounding effect is further enhanced.

本実施形態において、シールド導体89は、帯状の金属板をU字形状に湾曲させ、両末端の突起を回路基板70の実装孔に挿入して、回路基板70側の接地導体箔と導通するようにはんだ付け固定した構成としている。該シールド導体89は、フィルタハウジング13の内壁面と当接し、接地経路の一部を形成する。図8に示すように、シールド導体89の一部を、フィルタハウジング13(ここでは本体部2)の内面との当接により弾性変形するばね当接部89aとしておけば、基板70のハウジング内での位置決め不正やねじれなどの変形が生じても、該ばね当接部89aが弾性復帰力によってフィルタハウジング13側に付勢され、接地のための当接をより確実なものとすることができる。本実施形態では、本体部2の底部内面と当接し、基板70の挿入軸線方向に弾性付勢されるばね当接部89aを設けている。これにより、蓋部7を本体部2に螺合装着させるとき、その螺進ストローク(例えば後述の操作孔21と容量調整ねじ部71との位置決め位相によって決まる)が多少変動しても、ばね当接部89aの弾性変形によりその変動を吸収でき、常に良好な接地当接状態が得られる。ここでは、シールド導体89をなす帯状の金属板に対し、その幅方向における基板長手方向後端側の縁部に沿って、金属板の長手方向端縁から一定長さの切込みを入れ、その切込みにより分離された細長い舌状の金属片部を、金属板幅方向において該切込みから遠ざかる向きに曲げ起こすことによって、上記のばね当接部89aを形成している。また、シールド導体89をフィルタハウジング13に対し安定的にばね当接できるよう、該ばね当接部89aは帯状の金属板の両端部に形成している。金属板の一部をそのままばね当接部89aとして用いるために、該金属板の全体をばね用金属材料、ここではリン青銅にて構成してある。   In the present embodiment, the shield conductor 89 is formed such that a belt-shaped metal plate is bent into a U shape, and protrusions at both ends are inserted into the mounting holes of the circuit board 70 so as to be electrically connected to the ground conductor foil on the circuit board 70 side. The structure is fixed by soldering. The shield conductor 89 is in contact with the inner wall surface of the filter housing 13 and forms a part of the ground path. As shown in FIG. 8, if a part of the shield conductor 89 is a spring contact portion 89 a that is elastically deformed by contact with the inner surface of the filter housing 13 (here, the main body portion 2), the shield conductor 89 is formed inside the housing of the substrate 70. Even if deformation such as misalignment or torsion occurs, the spring contact portion 89a is biased toward the filter housing 13 by the elastic return force, so that contact for grounding can be made more reliable. In the present embodiment, a spring abutting portion 89 a that abuts against the inner surface of the bottom portion of the main body portion 2 and is elastically biased in the insertion axis direction of the substrate 70 is provided. Thus, when the lid portion 7 is screwed and attached to the main body portion 2, even if the screw stroke (determined by a positioning phase between an operation hole 21 and a capacity adjusting screw portion 71 described later) slightly varies, The variation can be absorbed by the elastic deformation of the contact portion 89a, and a good ground contact state can always be obtained. Here, with respect to the strip-shaped metal plate forming the shield conductor 89, a certain length of cut is made from the longitudinal edge of the metal plate along the edge on the rear side in the longitudinal direction of the substrate in the width direction. The above-described spring contact portion 89a is formed by bending the elongated tongue-shaped metal piece portion separated by the above in a direction away from the notch in the metal plate width direction. Further, the spring contact portions 89a are formed at both ends of the belt-shaped metal plate so that the shield conductor 89 can be stably spring-contacted with the filter housing 13. In order to use a part of the metal plate as it is as the spring contact portion 89a, the entire metal plate is made of a spring metal material, here phosphor bronze.

また、図2に示すように、蓋部4の内側端面には、回路基板70の一端部を挟圧保持する基板保持スロット部86が形成され、該回路基板70の各主表面を覆う接地導体箔が、該基板保持スロット部86及び蓋部4を介して本体部2に導通している。基板保持スロット部86は蓋部4の端面から突出形成された1対の金属リブ部からなり、リブ部の間に形成された溝状のスペースに回路基板70の端部を差し込み、その状態でリブ部間の距離が縮小するように加締めることで回路基板70を保持する。加締め止めによって、基板70の裏表の接地導体箔が金属リブ部としっかり接触し、フィルタハウジング13を介した回路の接地効果を高めることができる。また、回路基板70の非支持側の端部が振動開放端となるので、外部から衝撃を受けた場合も基板振動により吸収でき、破損や断線等を生じにくい。具体的には、図1に示すように、本体部2は、第一コネクタ部11及び第二コネクタ部12に各々信号ケーブルをなす同軸ケーブル6を接続した状態において、該同軸ケーブル6のシールド導体部6sに導通するものとされている。   Further, as shown in FIG. 2, a board holding slot part 86 for holding and holding one end part of the circuit board 70 is formed on the inner end face of the lid part 4, and a ground conductor covering each main surface of the circuit board 70 is formed. The foil is electrically connected to the main body portion 2 through the substrate holding slot portion 86 and the lid portion 4. The board holding slot portion 86 is composed of a pair of metal rib portions protruding from the end face of the lid portion 4, and the end portion of the circuit board 70 is inserted into a groove-like space formed between the rib portions. The circuit board 70 is held by caulking so that the distance between the rib portions is reduced. By the caulking, the ground conductor foils on the front and back of the substrate 70 are in firm contact with the metal rib portion, and the grounding effect of the circuit through the filter housing 13 can be enhanced. In addition, since the end portion of the circuit board 70 on the non-supporting side becomes a vibration release end, even when an impact is applied from the outside, the circuit board 70 can be absorbed by the board vibration and hardly cause breakage or disconnection. Specifically, as shown in FIG. 1, the main body 2 has a shield conductor of the coaxial cable 6 in a state in which the coaxial cable 6 forming the signal cable is connected to the first connector portion 11 and the second connector portion 12. It is supposed to conduct to the part 6s.

なお、以上説明した実施形態では、高周波用バンドパスフィルタをいずれもフィルタ内蔵型ケーブルコネクタユニットに組み込んだ構成としていたが、本発明の高周波用バンドパスフィルタの使用形態はこれに限られるものではなく、例えば、箱型ケース(パネルに入出力の同軸コネクタを配置したもの)内に組み込まれた形状や、通信機器に内蔵されたバンドパスフィルタとして構成することも可能である。   In the embodiment described above, all the high-frequency bandpass filters are incorporated in the cable connector unit with a built-in filter. However, the usage mode of the high-frequency bandpass filter of the present invention is not limited to this. For example, a shape incorporated in a box-type case (a panel in which input / output coaxial connectors are arranged) or a band-pass filter built in a communication device can be used.

本発明のフィルタ内蔵型ケーブルコネクタユニットの、外観構造の一例を示す平面図。The top view which shows an example of an external appearance structure of the filter built-in type cable connector unit of this invention. 図1のコネクタユニットの内部構造を示す正面断面図。FIG. 2 is a front sectional view showing an internal structure of the connector unit of FIG. 1. フィルタ回路の第一例を示す回路図。The circuit diagram which shows the 1st example of a filter circuit. フィルタ回路の基板実装形態の一例を示す説明図。Explanatory drawing which shows an example of the board | substrate mounting form of a filter circuit. 本発明のバンドパスフィルタの作用の一例を示す模式図。The schematic diagram which shows an example of an effect | action of the band pass filter of this invention. 図3の回路によるバンドパスフィルタの通過特性の一例を示すグラフ。The graph which shows an example of the pass characteristic of the band pass filter by the circuit of FIG. フィルタ回路の第二例を示す回路図。The circuit diagram which shows the 2nd example of a filter circuit.

符号の説明Explanation of symbols

1 フィルタ内蔵型ケーブルコネクタユニット
6 信号ケーブル(同軸ケーブル)
7 バンドパスフィルタ回路
7M バンドパスフィルタ主要部
LM1,LM2 主経路(第一経路/第二経路)
14A,B 主LC型並列共振回路
15A,B トリマコンデンサ(可変同調部)
17A,B 誘電体共振器
70 回路基板
71 同調操作部
82A,B リード線(第一及び第二の誘導結合用分布定数線路)
83 勾配形成用誘導結合部
84 信号入力端子(リード線)
86 信号出力端子(リード線)
90A,90B 補助共振回路
1 Built-in cable connector unit 6 Signal cable (coaxial cable)
7 Band pass filter circuit 7M Main part of band pass filter LM1, LM2 Main route (first route / second route)
14A, B Main LC type parallel resonant circuit 15A, B Trimmer capacitor (variable tuning part)
17A, B Dielectric resonator 70 Circuit board 71 Tuning operation part 82A, B Lead wire (first and second distributed constant lines for inductive coupling)
83 Inductive coupling for slope formation 84 Signal input terminal (lead wire)
86 Signal output terminal (lead wire)
90A, 90B Auxiliary resonance circuit

Claims (10)

信号入力端子と信号出力端子とを結ぶとともに、信号入力端子側の第一経路と信号出力端子側の第二経路とに分割された信号主経路と、前記信号主経路の前記第一経路から分岐するとともに、該第一経路と接地とを短絡する形で設けられた第一主LC型並列共振回路と、前記信号主経路の前記第二経路から分岐するとともに、該第一経路と接地とを短絡する形で設けられた第二主LC型並列共振回路とを有するとともに、予め定められた中心周波数の帯域通過特性を示すバンドパスフィルタ主要部と、
前記バンドパスフィルタ主要部が形成する通過帯域の低周波端側と高周波端側とのそれぞれに共振トラップ極を形成する補助共振回路と、
前記第一経路において前記信号入力端子と前記第一主LC型並列共振回路との間に設けられた第一の誘導結合用分布定数線路部と、前記第二経路において前記信号出力端子と前記第二主LC型並列共振回路との間に設けられた第二の誘導結合用分布定数線路部とを予め定められた間隔で並列対向させることにより、バンドパスフィルタの帯域通過特性において、前記低周波端側及び高周波端側の各前記共振トラップ極の間に挟まれた平坦周波数特性領域に、通過信号強度が周波数に応じて連続的に増加ないし減少する勾配を付与する勾配形成用誘導結合部と、
を有したことを特徴とする高周波用バンドパスフィルタ。
A signal main path is connected to the signal input terminal and the signal output terminal, and is divided into a first path on the signal input terminal side and a second path on the signal output terminal side, and branches from the first path of the signal main path And a first main LC parallel resonant circuit provided in such a manner as to short-circuit the first path and the ground, a branch from the second path of the signal main path, and the first path and the ground A second main LC type parallel resonant circuit provided in a short-circuited manner, and a main part of a bandpass filter showing a bandpass characteristic of a predetermined center frequency;
An auxiliary resonance circuit for forming a resonance trap pole on each of a low frequency end side and a high frequency end side of a pass band formed by the main part of the band pass filter;
A first distributed constant line section for inductive coupling provided between the signal input terminal and the first main LC type parallel resonant circuit in the first path; and the signal output terminal and the first in the second path. By making the second inductive coupling distributed constant line portion provided between the two main LC parallel resonant circuits face each other in parallel at a predetermined interval, the low-frequency characteristics of the bandpass filter can be reduced. A gradient forming inductive coupling unit that gives a flat frequency characteristic region sandwiched between the resonance trap poles on the end side and the high frequency end side to a gradient in which the passing signal intensity continuously increases or decreases according to the frequency; ,
A high-frequency band-pass filter characterized by comprising:
前記勾配形成用誘導結合部は、前記第一の誘導結合用分布定数線路部と前記第二の誘導結合用分布定数線路部との対向間隔又は対向区間長により前記勾配の大きさを調整するものである請求項1記載の高周波用バンドパスフィルタ。 The gradient forming inductive coupling unit adjusts the magnitude of the gradient according to a facing interval or a section length of the first inductive coupling distributed constant line unit and the second inductive coupling distributed constant line unit. The high-frequency band-pass filter according to claim 1. 前記第一の誘導結合用分布定数線路部と前記第二の誘導結合用分布定数線路部との、各々前記信号入力端子及び前記信号出力端子から前記第一主LC型並列共振回路及び第二主LC型並列共振回路の接地に向う方向を順方向として、前記勾配形成用誘導結合部は、それら第一の誘導結合用分布定数線路部と前記第二の誘導結合用分布定数線路部とを、前記順方向が互い逆となるように対向させることにより、前記平坦周波数特性領域に、通過信号強度が周波数の増加に応じて連続的に増加する正勾配を付与するものである請求項1又は請求項2に記載の高周波用バンドパスフィルタ。 The first main LC type parallel resonant circuit and the second main distributed constant line section for the first inductive coupling and the second distributed constant line section for the inductive coupling from the signal input terminal and the signal output terminal, respectively. With the direction toward the ground of the LC parallel resonant circuit as the forward direction, the inductive coupling unit for forming a gradient includes the first distributed constant line unit for inductive coupling and the second distributed constant line unit for inductive coupling. 2. The positive frequency gradient in which the pass signal intensity continuously increases with an increase in frequency is imparted to the flat frequency characteristic region by facing the forward directions so as to be opposite to each other. Item 3. A high-frequency bandpass filter according to Item 2. 前記信号入力端子と前記信号出力端子とに、通過信号強度が周波数の増加に応じて連続的に減少する負の周波数特性を有した信号ケーブルの接続が予定され、前記勾配形成用誘導結合部が形成する前記正勾配特性により、前記信号ケーブルの負の周波数特性を少なくとも部分的に相殺するものである請求項3記載の高周波用バンドパスフィルタ。 The signal input terminal and the signal output terminal are planned to be connected to a signal cable having a negative frequency characteristic in which the passing signal intensity continuously decreases as the frequency increases. 4. The high-frequency band-pass filter according to claim 3, wherein the positive frequency characteristic to be formed at least partially cancels the negative frequency characteristic of the signal cable. 前記第一の誘導結合用分布定数線路部と前記第二の誘導結合用分布定数線路部との、各々前記信号入力端子及び前記信号出力端子から前記第一主LC型並列共振回路及び第二主LC型並列共振回路の接地に向う方向を順方向として、前記勾配形成用誘導結合部は、それら第一の誘導結合用分布定数線路部と前記第二の誘導結合用分布定数線路部とを、前記順方向が互いに一致するように対向させることにより、前記平坦周波数特性領域に、通過信号強度が周波数の増加に応じて連続的に減少する負勾配を付与するものである請求項1又は請求項2に記載の高周波用バンドパスフィルタ。 The first main LC type parallel resonant circuit and the second main distributed constant line section for the first inductive coupling and the second distributed constant line section for the inductive coupling from the signal input terminal and the signal output terminal, respectively. With the direction toward the ground of the LC parallel resonant circuit as the forward direction, the inductive coupling unit for forming a gradient includes the first distributed constant line unit for inductive coupling and the second distributed constant line unit for inductive coupling. The negative frequency gradient in which the passing signal intensity continuously decreases as the frequency increases is imparted to the flat frequency characteristic region by facing each other so that the forward directions coincide with each other. 2. A high-frequency bandpass filter according to 2. 前記第一主LC型並列共振回路及び前記第二主LC型並列共振回路に含まれるインダクタンスがいずれも誘電体共振器により構成され、
前記信号入力端子側及び前記信号出力端子側において、前記第一経路及び前記第二経路には、バンドパスフィルタの入出力のインピーダンスを前記誘電体共振器を含む各共振回路の入力インピーダンスに近づけるためのインピーダンス調整部が設けられている請求項1ないし請求項5のいずれか1項に記載の高周波用バンドパスフィルタ。
The inductances included in the first main LC type parallel resonant circuit and the second main LC type parallel resonant circuit are both configured by dielectric resonators,
In the signal input terminal side and the signal output terminal side, the input and output impedances of the band pass filter are made close to the input impedance of each resonance circuit including the dielectric resonator in the first path and the second path. The high-frequency band-pass filter according to claim 1, wherein an impedance adjusting unit is provided.
回路基板上に実装された前記第一主LC型並列共振回路及び第二主LC型並列共振回路の各前記誘電体共振器のリード線の先端を、前記回路基板上の前記第一経路及び前記第二経路に接続するとともに、それらリード線を前記第一の誘導結合用分布定数線路部と前記第二の誘導結合用分布定数線路部として使用する請求項6記載の高周波用バンドパスフィルタ。 Lead ends of the dielectric resonators of the first main LC type parallel resonant circuit and the second main LC type parallel resonant circuit mounted on the circuit board are connected to the first path on the circuit board and the The high-frequency bandpass filter according to claim 6, wherein the lead wire is connected to the second path and the lead wires are used as the first inductive coupling distributed constant line portion and the second inductive coupling distributed constant line portion. 請求項3記載の要件を備えるとともに、前記第一主LC型並列共振回路及び第二主LC型並列共振回路の前記誘電体共振器は、前記リード線が引き出される側の端面同士が互いに対向するように前記回路基板上に実装されており、前記リード線は前記順方向が互いに逆向きとなるように前記回路基板上にて対向配置されている請求項7記載の高周波用バンドパスフィルタ。 The dielectric resonators of the first main LC type parallel resonant circuit and the second main LC type parallel resonant circuit have the requirements according to claim 3, and end faces on the side from which the lead wires are drawn face each other. The high-frequency band-pass filter according to claim 7, wherein the lead wires are mounted on the circuit board so that the forward directions are opposite to each other on the circuit board. 前記補助共振回路は、前記第一経路及び前記第二経路に対し、前記勾配形成用誘導結合部の形成されているのと反対側において、各々接地との間で前記第一主LC型並列共振回路及び第二主LC型並列共振回路に対し並列に接続された、第一及び第二の補助LC並列共振回路にて構成されており、前記インピーダンス調整部は、前記第一経路及び前記第二経路においてそれぞれ、前記補助LC並列共振回路の分岐点と前記主LC並列共振回路の分岐点との間に配置されている請求項7又は請求項8に記載の高周波用バンドパスフィルタ。 The auxiliary resonant circuit includes the first main LC type parallel resonance between the first path and the second path and the ground on the opposite side of the slope forming inductive coupling portion. A first auxiliary LC parallel resonance circuit connected in parallel to the circuit and the second main LC type parallel resonance circuit, wherein the impedance adjustment unit includes the first path and the second 9. The high-frequency bandpass filter according to claim 7, wherein each of the paths is disposed between a branch point of the auxiliary LC parallel resonant circuit and a branch point of the main LC parallel resonant circuit. 機器の信号ケーブルを接続するための第一コネクタ部及び第二コネクタ部が形成されたフィルタハウジングと、
請求項1ないし請求項9のいずれか1項に記載の高周波用バンドパスフィルタが搭載され、前記信号入力端子と前記信号出力端子がそれぞれ前記第一コネクタ部及び第二コネクタ部に導通するようにフィルタハウジング内に収容される回路基板とを有し、
前記第一主LC型並列共振回路及び前記第二主LC型並列共振回路に含まれるキャパシタの静電容量の少なくとも一部がトリマコンデンサにて構成され、該トリマコンデンサの容量調整部が、目的とする信号周波数に前記バンドパスフィルタの通過帯域を同調させるための可変同調部とされてなることを特徴とするフィルタ内蔵型ケーブルコネクタユニット。
A filter housing formed with a first connector part and a second connector part for connecting a signal cable of the device;
The high-frequency bandpass filter according to any one of claims 1 to 9 is mounted so that the signal input terminal and the signal output terminal are electrically connected to the first connector part and the second connector part, respectively. A circuit board housed in the filter housing,
At least a part of the capacitance of the capacitors included in the first main LC type parallel resonant circuit and the second main LC type parallel resonant circuit is constituted by a trimmer capacitor, and the capacitance adjusting unit of the trimmer capacitor has the purpose A cable connector unit with a built-in filter, characterized by being a variable tuning unit for tuning the pass band of the bandpass filter to a signal frequency to be transmitted.
JP2004253379A 2004-08-31 2004-08-31 High frequency bandpass filter and cable connector unit with built-in filter Pending JP2006074257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253379A JP2006074257A (en) 2004-08-31 2004-08-31 High frequency bandpass filter and cable connector unit with built-in filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253379A JP2006074257A (en) 2004-08-31 2004-08-31 High frequency bandpass filter and cable connector unit with built-in filter

Publications (1)

Publication Number Publication Date
JP2006074257A true JP2006074257A (en) 2006-03-16

Family

ID=36154425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253379A Pending JP2006074257A (en) 2004-08-31 2004-08-31 High frequency bandpass filter and cable connector unit with built-in filter

Country Status (1)

Country Link
JP (1) JP2006074257A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312221A (en) * 2006-05-19 2007-11-29 Sony Corp Semiconductor bonding equipment, semiconductor element and high frequency module
JP2008005182A (en) * 2006-06-22 2008-01-10 Nec Electronics Corp Band-pass filter circuit
US7760045B2 (en) 2006-05-19 2010-07-20 Sony Corporation Semiconductor device interconnecting unit, semiconductor device, high-frequency module, and semiconductor device interconnecting method
KR101237008B1 (en) 2012-05-31 2013-02-25 주식회사 이너트론 Cavity filter with bias-t of cylindrical structure
CN104378081A (en) * 2014-12-02 2015-02-25 王少夫 Absorption type filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312221A (en) * 2006-05-19 2007-11-29 Sony Corp Semiconductor bonding equipment, semiconductor element and high frequency module
US7760045B2 (en) 2006-05-19 2010-07-20 Sony Corporation Semiconductor device interconnecting unit, semiconductor device, high-frequency module, and semiconductor device interconnecting method
US7907924B2 (en) 2006-05-19 2011-03-15 Sony Corporation Semiconductor device interconnecting unit, semiconductor device and high-frequency module having a millimeter wave band
JP4702178B2 (en) * 2006-05-19 2011-06-15 ソニー株式会社 Semiconductor coupling device, semiconductor element, and high-frequency module
JP2008005182A (en) * 2006-06-22 2008-01-10 Nec Electronics Corp Band-pass filter circuit
KR101237008B1 (en) 2012-05-31 2013-02-25 주식회사 이너트론 Cavity filter with bias-t of cylindrical structure
CN104378081A (en) * 2014-12-02 2015-02-25 王少夫 Absorption type filter

Similar Documents

Publication Publication Date Title
JP2578366B2 (en) Surface mount dielectric block filter and wireless transceiver duplexer using the surface mount dielectric block filter
US10110196B2 (en) Electronic component
US20150318890A1 (en) High-frequency switch module
US7652548B2 (en) Bandpass filter, high-frequency module, and wireless communications equipment
KR101727066B1 (en) Wireless Frequency Filter
US11283153B2 (en) Antenna for mobile communication device
JP5457931B2 (en) Communication device using non-waveguide line-waveguide converter and non-waveguide line-waveguide converter
JP2006074257A (en) High frequency bandpass filter and cable connector unit with built-in filter
JP4838048B2 (en) Polarized bandstop filter
KR100249838B1 (en) High frequency filter with u-type resonator
US5032807A (en) Notch filter using helical transmission line and coaxial capacitor
JPH088499A (en) Printed circuit board structure of distributed constant circuit
JP2006067522A (en) Band pass filter for high frequency and cable connector with built-in filter using the same
CN115051127B (en) Cavity filter
JP7021723B1 (en) Coil devices, circuit element modules and electronic devices
JP5849660B2 (en) Filter circuit
KR100598867B1 (en) Micro strip transmission line with filter
US20030090340A1 (en) Signal filter
JP3009331B2 (en) Broadband dielectric filter
JP6294688B2 (en) Filter device and frequency conversion device
JPH0832307A (en) Dielectric device
JP2689151B2 (en) Microwave mixing / branching device
JPH09307390A (en) Concentrated constant type filter
JP3440669B2 (en) Frequency filter
JPH1093474A (en) Antenna multicoupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Effective date: 20080407

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080826

Free format text: JAPANESE INTERMEDIATE CODE: A02