JP2006073857A - Stabilized light source device - Google Patents

Stabilized light source device Download PDF

Info

Publication number
JP2006073857A
JP2006073857A JP2004256766A JP2004256766A JP2006073857A JP 2006073857 A JP2006073857 A JP 2006073857A JP 2004256766 A JP2004256766 A JP 2004256766A JP 2004256766 A JP2004256766 A JP 2004256766A JP 2006073857 A JP2006073857 A JP 2006073857A
Authority
JP
Japan
Prior art keywords
laser diode
drive current
light source
ambient temperature
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004256766A
Other languages
Japanese (ja)
Other versions
JP4080468B2 (en
Inventor
Keita Kato
敬太 加藤
Osamu Yamashita
治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2004256766A priority Critical patent/JP4080468B2/en
Publication of JP2006073857A publication Critical patent/JP2006073857A/en
Application granted granted Critical
Publication of JP4080468B2 publication Critical patent/JP4080468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stabilized light source device which can be manufactured at lower costs than a conventional stabilized light source device requiring a photo-diode. <P>SOLUTION: This stabilized light source device is provided with a laser diode 10 for outputting the rays of light to an optical fiber 4; a temperature measuring part 11 for measuring the peripheral temperature of the laser diode 10; and a driving current control unit 12 for controlling the driving currents of the laser diode 10, so that the intensity of the rays of light to be outputted by the laser diode 10 can be made constant according to a peripheral temperature measured by the temperature measuring part 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一定の強度の光を出力する安定化光源装置に関し、例えば、光ファイバの心線対照用に一定の強度の光を出力する安定化光源装置に関するものである。   The present invention relates to a stabilized light source device that outputs light having a constant intensity, and, for example, relates to a stabilized light source device that outputs light having a constant intensity for optical fiber core line contrast.

従来、一定の強度の光を出力するものとしては、例えば、APC(Automatic Power Control)という技術が知られている(例えば、非特許文献1参照)。APCを適用した従来の安定化光源装置は、図5に示すように、レーザダイオード20と、レーザダイオード20によって出力された光を受けて電気信号に変換するフォトダイオード21と、フォトダイオード21によって変換された電気信号を増幅する差動増幅器22と、差動増幅器22によって増幅された電気信号に基づいてレーザダイオード20の駆動電流を制御する駆動電流制御回路23とを備え、出力する光の強度が温度によって変化するレーザダイオード20の駆動電流を制御することによって、レーザダイオード20から出力される光の強度を一定にしていた。
「光半導体デバイス」日本電気株式会社出版、平成元年12月29日、p.42
2. Description of the Related Art Conventionally, for example, a technique called APC (Automatic Power Control) is known as one that outputs light with a constant intensity (see, for example, Non-Patent Document 1). As shown in FIG. 5, a conventional stabilized light source device to which APC is applied includes a laser diode 20, a photodiode 21 that receives light output from the laser diode 20 and converts it into an electrical signal, and a conversion by the photodiode 21. And a drive current control circuit 23 for controlling the drive current of the laser diode 20 based on the electrical signal amplified by the differential amplifier 22, and the intensity of the output light is The intensity of light output from the laser diode 20 is kept constant by controlling the drive current of the laser diode 20 that varies with temperature.
“Optical Semiconductor Device”, published by NEC Corporation, December 29, 1989, p. 42

しかしながら、従来の安定化光源装置は、フォトダイオードを要するため、製造コストが高くなるといった問題があった。   However, since the conventional stabilized light source device requires a photodiode, there is a problem that the manufacturing cost increases.

本発明は、従来の問題を解決するためになされたもので、フォトダイオードを要する従来の安定化光源装置と比較して安価に製造することができる安定化光源装置を提供することを目的とする。   The present invention has been made to solve the conventional problems, and an object of the present invention is to provide a stabilized light source device that can be manufactured at a lower cost than a conventional stabilized light source device that requires a photodiode. .

本発明の安定化光源装置(5)は、レーザダイオード(10)と、前記レーザダイオードの周辺温度を測定する温度測定部(11)と、前記温度測定部によって測定された周辺温度に応じて前記レーザダイオードの駆動電流を前記レーザダイオードによって出力される光の強度が一定になるように制御する駆動電流制御部(12)とを備えた構成を有している。   The stabilized light source device (5) of the present invention includes a laser diode (10), a temperature measuring unit (11) for measuring the ambient temperature of the laser diode, and the ambient temperature measured by the temperature measuring unit according to the ambient temperature. And a drive current control unit (12) for controlling the drive current of the laser diode so that the intensity of light output by the laser diode is constant.

この構成により、レーザダイオードの周辺温度に応じてレーザダイオードの駆動電流を制御することによって、フォトダイオードを要せずにレーザダイオードによって出力される光の強度を一定にするため、フォトダイオードを要する従来の安定化光源装置と比較して安価に製造することができる。   With this configuration, by controlling the drive current of the laser diode in accordance with the ambient temperature of the laser diode, the intensity of light output by the laser diode is made constant without the need for the photodiode. Compared with the stabilized light source device, it can be manufactured at low cost.

なお、前記駆動電流制御部は、前記温度測定部によって測定された周辺温度を独立変数として前記レーザダイオードの駆動電流を従属変数とした前記周辺温度の2次関数等の多項式関数に基づいて前記レーザダイオードの駆動電流を制御するようにしてもよい。   The drive current control unit is configured to generate the laser based on a polynomial function such as a quadratic function of the ambient temperature using the ambient temperature measured by the temperature measurement unit as an independent variable and the drive current of the laser diode as a dependent variable. You may make it control the drive current of a diode.

また、前記駆動電流制御部は、前記温度測定部によって測定された周辺温度を独立変数として前記レーザダイオードの駆動電流を従属変数とした指数関数に基づいて前記レーザダイオードの駆動電流を制御するようにしてもよい。ここで、前記指数関数の底は、自然対数の底としてもよい。   The drive current control unit controls the drive current of the laser diode based on an exponential function using the ambient temperature measured by the temperature measurement unit as an independent variable and the drive current of the laser diode as a dependent variable. May be. Here, the base of the exponential function may be the base of the natural logarithm.

また、本発明の安定化光源係数設定方法は、レーザダイオード(10)と、前記レーザダイオードの周辺温度を測定する温度測定部(11)と、前記温度測定部によって測定された周辺温度を独立変数として前記レーザダイオードの駆動電流を従属変数とした、出力光強度一定の条件で求めた2次関数に基づいて前記レーザダイオードの駆動電流を制御する駆動電流制御部(12)とを備えた安定化光源装置(5)における前記2次関数の係数を設定する安定化光源係数設定方法であって、前記レーザダイオードの周辺温度を段階的に変化させ、各周辺温度において前記レーザダイオードに所定の強度の光を出力させるための駆動電流値をそれぞれ測定し、測定した前記各駆動電流値の近似曲線となるように前記2次関数の係数を設定する。   The stabilized light source coefficient setting method of the present invention includes a laser diode (10), a temperature measuring unit (11) for measuring the ambient temperature of the laser diode, and the ambient temperature measured by the temperature measuring unit as an independent variable. And a drive current control unit (12) for controlling the drive current of the laser diode based on a quadratic function obtained under the condition that the output current intensity is constant with the drive current of the laser diode as a dependent variable. A stabilized light source coefficient setting method for setting a coefficient of the quadratic function in a light source device (5), wherein the ambient temperature of the laser diode is changed stepwise, and the laser diode has a predetermined intensity at each ambient temperature. The drive current values for outputting light are measured, and the coefficients of the quadratic function are set so as to be approximate curves of the measured drive current values.

この方法により、レーザダイオードとして適用される部品の特性の差に関わらずに安定化光源装置に一定の強度の光を出力させることができる。   According to this method, it is possible to cause the stabilized light source device to output light having a constant intensity regardless of the difference in the characteristics of components applied as a laser diode.

また、本発明の安定化光源係数設定方法は、レーザダイオード(10)と、前記レーザダイオードの周辺温度を測定する温度測定部(11)と、前記温度測定部によって測定された周辺温度を独立変数として前記レーザダイオードの駆動電流を従属変数とした、出力光強度一定の条件で求めた2次関数に基づいて前記レーザダイオードの駆動電流を制御する駆動電流制御部(12)とを備えた安定化光源装置(5)における前記2次関数の係数を設定する安定化光源係数設定方法であって、複数のレーザダイオードに対して、それぞれ周辺温度を段階的に変化させ、各周辺温度において前記各レーザダイオードに所定の強度の光を出力させるための駆動電流値をそれぞれ測定し、測定した前記各駆動電流値の近似曲線となるように前記周辺温度を独立変数とした2次関数の係数をレーザダイオード毎に決定し、決定した係数の平均値を項毎に算出する準備ステップと、前記準備ステップで算出された前記各係数の平均値を前記安定化光源装置における前記2次関数の各係数として設定する設定ステップと、前記安定化光源装置に設けられたレーザダイオードの周辺温度を所定の温度に設定し、前記所定の温度において前記安定化光源装置に設けられたレーザダイオードに前記所定の強度の光を出力させるための駆動電流値を測定し、測定した駆動電流値を含むように前記2次関数の定数項を調整する調整ステップとを備える。   The stabilized light source coefficient setting method of the present invention includes a laser diode (10), a temperature measuring unit (11) for measuring the ambient temperature of the laser diode, and the ambient temperature measured by the temperature measuring unit as an independent variable. And a drive current control unit (12) for controlling the drive current of the laser diode based on a quadratic function obtained under the condition that the output current intensity is constant with the drive current of the laser diode as a dependent variable. A stabilized light source coefficient setting method for setting a coefficient of the quadratic function in a light source device (5), wherein the ambient temperature is changed stepwise for each of a plurality of laser diodes, and each laser at each ambient temperature. Drive current values for causing the diode to output light of a predetermined intensity are measured, and the ambient temperature is set to be an approximate curve of the measured drive current values. A coefficient of a quadratic function with the independent variable is determined for each laser diode, a preparation step for calculating an average value of the determined coefficients for each term, and an average value of each coefficient calculated in the preparation step as the stable A setting step for setting each coefficient of the quadratic function in the light source, and a temperature around the laser diode provided in the stabilized light source device is set to a predetermined temperature, and the stabilized light source device at the predetermined temperature. And adjusting the constant term of the quadratic function so as to include the measured drive current value.

この方法により、安定化光源装置の駆動電流制御部に設定する2次関数の係数の設定を2次関数の定数項を調整することによって行うことができるため、安定化光源装置の駆動電流制御部に設定する2次関数の係数の設定を容易に行うことができる。   According to this method, the coefficient of the quadratic function set in the drive current control unit of the stabilized light source device can be set by adjusting the constant term of the quadratic function, so that the drive current control unit of the stabilized light source device The coefficient of the quadratic function set to can be easily set.

本発明は、フォトダイオードを要する従来の安定化光源装置と比較して安価に製造することができる安定化光源装置を提供することができる。また、レーザダイオードにおける駆動電流と光強度の特性の経年変化に対し、2次関数の定数項を調整することで大まかに補正できるため、定期校正を容易に行うことができる。さらに、同じ製造ロットのレーザダイオード間の駆動電流と光強度の特性のばらつきや異なる製造ロット間でのばらつき等に対しても、請求項7の方法を用いることで、2次関数の各項の値を、各項毎に求めた平均値からわずかにずらした値に設定するだけで、対応可能である。   The present invention can provide a stabilized light source device that can be manufactured at a lower cost than a conventional stabilized light source device that requires a photodiode. In addition, regular calibration can be easily performed because it can be roughly corrected by adjusting the constant term of the quadratic function to the secular change of the characteristics of the drive current and light intensity in the laser diode. Furthermore, by using the method of claim 7 for variations in driving current and light intensity characteristics between laser diodes in the same production lot, variations in different production lots, etc. This can be handled by setting the value to a value slightly shifted from the average value obtained for each term.

以下、本発明の実施の形態について、図面を参照して説明する。なお、本実施の形態は、本発明の一実施の形態に係る安定化光源装置を図1(a)に示すようなPON(Passive Optical Network)型のFTTH(Fiber To The Home)サービスに適用した例を説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, the stabilized light source apparatus according to the embodiment of the present invention is applied to a PON (Passive Optical Network) type FTTH (Fiber To The Home) service as shown in FIG. An example will be described.

図1(a)において、加入者側に設けられたONU(Optical Network Unit)1は、光を分岐するスプリッタ2を介して局用装置3と光ファイバ4で接続されている。ONU1は、コンピュータ装置等の通信機器が接続され、通信機器との間で送受信される電気信号と光ファイバ4を介して送受信される光信号とを光電変換するものである。   In FIG. 1A, an ONU (Optical Network Unit) 1 provided on the subscriber side is connected to a station apparatus 3 and an optical fiber 4 via a splitter 2 that branches light. The ONU 1 is connected to a communication device such as a computer device, and photoelectrically converts an electrical signal transmitted / received to / from the communication device and an optical signal transmitted / received via the optical fiber 4.

光ファイバの長さ、損失の測定、および破断箇所の検知等の光ファイバの試験を行うものとしてOTDR(Optical Time Domain Reflectometer)というものが知られている。OTDRは、ONU1に代えて光ファイバ4に接続され、局用装置3に向けて光を出力し、出力した光が光ファイバ4の端部や破断箇所で反射された反射光の強度や時刻に基づいて光ファイバ4の長さ、損失の測定、および破断箇所の検知を行うものである。   An OTDR (Optical Time Domain Reflectometer) is known as an optical fiber test for measuring the length and loss of an optical fiber and detecting a broken portion. The OTDR is connected to the optical fiber 4 instead of the ONU 1, outputs light toward the station apparatus 3, and the output light is reflected at the intensity and time of the reflected light reflected at the end of the optical fiber 4 or at the breakage point. Based on this, the length and loss of the optical fiber 4 are measured, and the breakage point is detected.

このOTDRによる試験に先立って、破断箇所の大まかな特定や心線対照を行うために、図1(b)に示すように、本発明の一実施の形態に係る安定化光源装置5と心線対照器(IDテスタともいう)6を用いた試験が行われる。心線対照器6は、光ファイバ4を湾曲させて漏洩した安定化光源装置5によって出力された光を検知するものである。なお、心線対照器6に代えて光パワーメータを用いてもよい。   Prior to this OTDR test, as shown in FIG. 1B, the stabilized light source device 5 and the core wire according to an embodiment of the present invention are used to roughly specify the breakage point and to perform the core wire contrast. A test using a control device (also referred to as an ID tester) 6 is performed. The cord contrast device 6 detects light output from the stabilized light source device 5 that has leaked by bending the optical fiber 4. An optical power meter may be used in place of the core wire contrast device 6.

図2は、本発明の一実施の形態に係る安定化光源装置5のブロック図である。   FIG. 2 is a block diagram of the stabilized light source device 5 according to one embodiment of the present invention.

安定化光源装置5は、光ファイバ4に光を出力するレーザダイオード10と、レーザダイオード10の周辺温度を測定する温度測定部11と、温度測定部11によって測定された周辺温度に応じてレーザダイオード10の駆動電流をレーザダイオード10によって出力される光の強度が一定になるように制御する駆動電流制御部12とを備えている。   The stabilized light source device 5 includes a laser diode 10 that outputs light to the optical fiber 4, a temperature measurement unit 11 that measures the ambient temperature of the laser diode 10, and a laser diode according to the ambient temperature measured by the temperature measurement unit 11. And a drive current control unit 12 that controls the drive current of 10 so that the intensity of light output by the laser diode 10 is constant.

温度測定部11は、温度を検知する温度センサを有している。駆動電流制御部12は、CPU(Central Processing Unit)および電流制御回路を有しており、温度センサによって検知された温度に基づいてCPUが電流制御回路を制御するように構成されている。   The temperature measuring unit 11 has a temperature sensor that detects the temperature. The drive current control unit 12 includes a CPU (Central Processing Unit) and a current control circuit, and is configured such that the CPU controls the current control circuit based on the temperature detected by the temperature sensor.

図3は、レーザダイオード10の各周辺温度における駆動電流と光強度の特性を示すグラフである。図3に示したようなレーザダイオード10の各周辺温度における駆動電流と光強度の特性を表すグラフに基づいて、レーザダイオード10によって出力される光の強度を一定にするためのレーザダイオード10の周辺温度と駆動電流との特性を得ることができる。   FIG. 3 is a graph showing characteristics of drive current and light intensity at each ambient temperature of the laser diode 10. The periphery of the laser diode 10 for making the intensity of the light output by the laser diode 10 constant based on the graph representing the characteristics of the drive current and the light intensity at each ambient temperature of the laser diode 10 as shown in FIG. Characteristics of temperature and driving current can be obtained.

図4は、レーザダイオード10によって出力される光の強度を一定にするためのレーザダイオード10の周辺温度と駆動電流との特性を示すグラフである。なお、図4において、一定にする光の強度を2mWとし、レーザダイオード10として同一メーカの同一形名製品のレーザダイオードA〜Dを使用した。   FIG. 4 is a graph showing the characteristics of the ambient temperature and drive current of the laser diode 10 for making the intensity of light output by the laser diode 10 constant. In FIG. 4, the constant light intensity is 2 mW, and the laser diodes A to D of the same model and the same manufacturer are used as the laser diode 10.

図4に示したように、レーザダイオード10によって出力される光の強度を一定にするためのレーザダイオード10の周辺温度と駆動電流との特性は、2次関数によって近似できる。図4には、レーザダイオードA〜Dに対してそれぞれ得られた2次関数a〜dが示されている。各2次関数a〜dは、xをレーザダイオード10の周辺温度とし、yを駆動電流とするとそれぞれ式(a)〜(d)のようになる。   As shown in FIG. 4, the characteristics of the ambient temperature of the laser diode 10 and the drive current for making the intensity of light output by the laser diode 10 constant can be approximated by a quadratic function. FIG. 4 shows quadratic functions a to d obtained for the laser diodes A to D, respectively. Each quadratic function a to d is expressed by equations (a) to (d), respectively, where x is the ambient temperature of the laser diode 10 and y is the drive current.

(a) y = 0.0086x2 + 0.1366x + 20.706
(b) y = 0.0047x2 + 0.2094x + 18.878
(c) y = 0.0068x2 + 0.2408x + 19.94
(d) y = 0.0064x2 + 0.1974x + 20.047
これにより、駆動電流制御部12は、温度測定部11によって測定された周辺温度を独立変数としてレーザダイオード10の駆動電流を従属変数とした、2次関数に基づいてレーザダイオード10の駆動電流を制御するように構成する。
(a) y = 0.0086x 2 + 0.1366x + 20.706
(b) y = 0.0047x 2 + 0.2094x + 18.878
(c) y = 0.0068x 2 + 0.2408x + 19.94
(d) y = 0.0064x 2 + 0.1974x + 20.047
Thus, the drive current control unit 12 controls the drive current of the laser diode 10 based on a quadratic function using the ambient temperature measured by the temperature measurement unit 11 as an independent variable and the drive current of the laser diode 10 as a dependent variable. To be configured.

例えば、レーザダイオード10にレーザダイオードAを適用したときに、レーザダイオード10の周辺温度が30℃で光の強度を2mWにする場合には、2次関数aによって0.086×302+0.1366×30+20.706=32.544が求まり、レーザダイオード10の駆動電流が32.544mAになるように駆動電流制御部12がレーザダイオード10の駆動電流を制御する。 For example, when the laser diode A is applied to the laser diode 10 and the ambient temperature of the laser diode 10 is 30 ° C. and the light intensity is 2 mW, 0.086 × 30 2 + 0.1366 × 30 + 20.706 = 32.544 is obtained, and the drive current control unit 12 controls the drive current of the laser diode 10 so that the drive current of the laser diode 10 becomes 32.544 mA.

なお、図4から分かるように、駆動電流制御部12は、2次関数に代えて3次関数等の他の多項式関数や指数関数に基づいてレーザダイオード10の駆動電流を制御するように構成することもできる。なお、駆動電流制御部12が指数関数に基づいてレーザダイオード10の駆動電流を制御する場合には、指数関数の底は、自然対数の底(ネイピア数ともいう)とする。   As can be seen from FIG. 4, the drive current control unit 12 is configured to control the drive current of the laser diode 10 based on another polynomial function such as a cubic function or an exponential function instead of the quadratic function. You can also When the drive current control unit 12 controls the drive current of the laser diode 10 based on the exponential function, the base of the exponential function is the base of the natural logarithm (also called the Napier number).

次に、駆動電流制御部12に2次関数の係数を設定する安定化光源係数設定方法について説明する。安定化光源係数設定方法としては、以下に示すように2つの方法がある。   Next, a stabilized light source coefficient setting method for setting a coefficient of a quadratic function in the drive current control unit 12 will be described. There are two methods for setting the stabilized light source coefficient as described below.

第1の安定化光源係数設定方法においては、図4に示したように、レーザダイオード10の周辺温度を段階的に変化させ、各周辺温度においてレーザダイオード10に所定の強度の光を出力させるための駆動電流値をそれぞれ測定し、測定した各駆動電流値の近似曲線となるように係数を決定し、決定した係数を駆動電流制御部12に設定する。   In the first stabilized light source coefficient setting method, as shown in FIG. 4, the ambient temperature of the laser diode 10 is changed stepwise to cause the laser diode 10 to output light of a predetermined intensity at each ambient temperature. The drive current values are measured, coefficients are determined so as to be approximate curves of the measured drive current values, and the determined coefficients are set in the drive current control unit 12.

第2の安定化光源係数設定方法においては、複数のレーザダイオードを対象として大まかな係数を算出する準備ステップと、準備ステップで算出された大まかな係数を駆動電流制御部12に設定する設定ステップと、駆動電流制御部12に設定した係数を調整する調整ステップとからなる。   In the second stabilized light source coefficient setting method, a preparation step for calculating a rough coefficient for a plurality of laser diodes, and a setting step for setting the rough coefficient calculated in the preparation step in the drive current control unit 12; And an adjustment step for adjusting the coefficient set in the drive current control unit 12.

なお、準備ステップは、安定化光源装置5の製造を開始する前に実行され、設定ステップは、安定化光源装置5の製造時に実行され、調整ステップは、安定化光源装置5の出荷前やメンテナンス時などの製造後に実行される。   The preparation step is executed before the manufacture of the stabilized light source device 5 is started, the setting step is executed when the stabilized light source device 5 is manufactured, and the adjustment step is performed before shipment of the stabilized light source device 5 or maintenance. Performed after manufacture such as time.

準備ステップにおいては、複数のレーザダイオードに対して、それぞれ周辺温度を段階的に変化させ、各周辺温度において各レーザダイオードに所定の強度の光を出力させるための駆動電流値をそれぞれ測定し、測定した各駆動電流値の近似曲線となるように周辺温度を独立変数とした2次関数の係数をレーザダイオード毎に決定し、決定した係数の平均値を項毎に算出する。   In the preparation step, for each of the laser diodes, the ambient temperature is changed step by step, and the drive current value for causing each laser diode to output light of a predetermined intensity at each ambient temperature is measured and measured. A coefficient of a quadratic function with the ambient temperature as an independent variable is determined for each laser diode so as to obtain an approximate curve of each driving current value, and an average value of the determined coefficients is calculated for each term.

設定ステップにおいては、準備ステップで算出された各係数の平均値を2次関数の各係数として駆動電流制御部12に設定する。   In the setting step, the average value of each coefficient calculated in the preparation step is set in the drive current control unit 12 as each coefficient of the quadratic function.

調整ステップにおいては、レーザダイオード10の周辺温度を所定の温度に設定し、所定の温度においてレーザダイオード10に所定の強度の光を出力させるための駆動電流値を測定し、測定した駆動電流値を含むように駆動電流制御部12に設定した2次関数の定数項を調整する。   In the adjustment step, the ambient temperature of the laser diode 10 is set to a predetermined temperature, a drive current value for causing the laser diode 10 to output light of a predetermined intensity at the predetermined temperature is measured, and the measured drive current value is determined. The constant term of the quadratic function set in the drive current control unit 12 is adjusted so as to be included.

以上説明したように、本発明の一実施の形態に係る安定化光源装置5によれば、レーザダイオード10の周辺温度に応じてレーザダイオード10の駆動電流を制御することによって、フォトダイオードを要せずにレーザダイオード10によって出力される光の強度を一定にするため、フォトダイオードを要する従来の安定化光源装置と比較して安価に製造することができる。   As described above, according to the stabilized light source device 5 according to the embodiment of the present invention, the photodiode is not required by controlling the drive current of the laser diode 10 according to the ambient temperature of the laser diode 10. Therefore, since the intensity of the light output by the laser diode 10 is made constant, it can be manufactured at a lower cost than a conventional stabilized light source device that requires a photodiode.

本発明の一実施の形態に係る安定化光源装置の適用例を示すネットワーク構成図1 is a network configuration diagram showing an application example of a stabilized light source device according to an embodiment of the present invention. 本発明の一実施の形態に係る安定化光源装置の構成を示すブロック図The block diagram which shows the structure of the stabilization light source device which concerns on one embodiment of this invention 本発明の一実施の形態に係る安定化光源装置を構成するレーザダイオードの各周辺温度における駆動電流と光強度の特性を示すグラフThe graph which shows the characteristic of the drive current and light intensity in each ambient temperature of the laser diode which comprises the stabilization light source device which concerns on one embodiment of this invention 本発明の一実施の形態に係る安定化光源装置を構成するレーザダイオードによって出力される光の強度を一定にするためのレーザダイオードの周辺温度と駆動電流の特性を示すグラフThe graph which shows the ambient temperature of a laser diode and the characteristic of a drive current for making constant the intensity | strength of the light output by the laser diode which comprises the stabilized light source device which concerns on one embodiment of this invention 従来の安定化光源装置の構成を示すブロック図Block diagram showing the configuration of a conventional stabilized light source device

符号の説明Explanation of symbols

1 ONU
2 スプリッタ
3 局用装置
4 光ファイバ
5 安定化光源装置
6 心線対照器
10、20 レーザダイオード
11 温度測定部
12 駆動電流制御部
21 フォトダイオード
22 差動増幅器
23 駆動電流制御回路
1 ONU
DESCRIPTION OF SYMBOLS 2 Splitter 3 Station apparatus 4 Optical fiber 5 Stabilized light source device 6 Core wire contrast device 10 and 20 Laser diode 11 Temperature measurement part 12 Drive current control part 21 Photodiode 22 Differential amplifier 23 Drive current control circuit

Claims (7)

レーザダイオード(10)と、
前記レーザダイオードの周辺温度を測定する温度測定部(11)と、
前記温度測定部によって測定された周辺温度に応じて前記レーザダイオードの駆動電流を前記レーザダイオードによって出力される光の強度が一定になるように制御する駆動電流制御部(12)とを備えた安定化光源装置。
A laser diode (10);
A temperature measuring unit (11) for measuring the ambient temperature of the laser diode;
A stable drive current control unit (12) for controlling the drive current of the laser diode so that the intensity of light output by the laser diode is constant according to the ambient temperature measured by the temperature measurement unit; Light source device.
前記駆動電流制御部は、前記温度測定部によって測定された周辺温度を独立変数として前記レーザダイオードの駆動電流を従属変数とした多項式関数に基づいて前記レーザダイオードの駆動電流を制御することを特徴とする請求項1に記載の安定化光源装置。   The drive current control unit controls the drive current of the laser diode based on a polynomial function with the ambient temperature measured by the temperature measurement unit as an independent variable and the drive current of the laser diode as a dependent variable. The stabilized light source device according to claim 1. 前記多項式関数は、前記周辺温度の2次関数であることを特徴とする請求項2に記載の安定化光源装置。   The stabilized light source device according to claim 2, wherein the polynomial function is a quadratic function of the ambient temperature. 前記駆動電流制御部は、前記温度測定部によって測定された周辺温度を独立変数として前記レーザダイオードの駆動電流を従属変数とした指数関数に基づいて前記レーザダイオードの駆動電流を制御することを特徴とする請求項1に記載の安定化光源装置。   The drive current control unit controls the drive current of the laser diode based on an exponential function using the ambient temperature measured by the temperature measurement unit as an independent variable and the drive current of the laser diode as a dependent variable. The stabilized light source device according to claim 1. 前記指数関数の底は、自然対数の底とすることを特徴とする請求項4に記載の安定化光源装置。   The stabilized light source device according to claim 4, wherein a base of the exponential function is a base of a natural logarithm. レーザダイオード(10)と、前記レーザダイオードの周辺温度を測定する温度測定部(11)と、前記温度測定部によって測定された周辺温度を独立変数として前記レーザダイオードの駆動電流を従属変数とした、出力光強度一定の条件で求めた2次関数に基づいて前記レーザダイオードの駆動電流を制御する駆動電流制御部(12)とを備えた安定化光源装置(5)における前記2次関数の係数を設定する安定化光源係数設定方法であって、
前記レーザダイオードの周辺温度を段階的に変化させ、
各周辺温度において前記レーザダイオードに所定の強度の光を出力させるための駆動電流値をそれぞれ測定し、
測定した前記各駆動電流値の近似曲線となるように前記2次関数の係数を設定する安定化光源係数設定方法。
A laser diode (10), a temperature measurement unit (11) for measuring the ambient temperature of the laser diode, and the ambient temperature measured by the temperature measurement unit as an independent variable, and the drive current of the laser diode as a dependent variable, The coefficient of the quadratic function in the stabilized light source device (5) including the drive current control unit (12) for controlling the drive current of the laser diode based on the quadratic function obtained under the condition of constant output light intensity A stabilized light source coefficient setting method to be set,
The ambient temperature of the laser diode is changed stepwise,
Measure the drive current value for causing the laser diode to output light of a predetermined intensity at each ambient temperature,
A stabilized light source coefficient setting method for setting a coefficient of the quadratic function so as to be an approximate curve of the measured drive current values.
レーザダイオード(10)と、前記レーザダイオードの周辺温度を測定する温度測定部(11)と、前記温度測定部によって測定された周辺温度を独立変数として前記レーザダイオードの駆動電流を従属変数とした、出力光強度一定の条件で求めた2次関数に基づいて前記レーザダイオードの駆動電流を制御する駆動電流制御部(12)とを備えた安定化光源装置(5)における前記2次関数の係数を設定する安定化光源係数設定方法であって、
複数のレーザダイオードに対して、それぞれ周辺温度を段階的に変化させ、各周辺温度において前記各レーザダイオードに所定の強度の光を出力させるための駆動電流値をそれぞれ測定し、測定した前記各駆動電流値の近似曲線となるように前記周辺温度を独立変数とした2次関数の係数をレーザダイオード毎に決定し、決定した係数の平均値を項毎に算出する準備ステップと、
前記準備ステップで算出された前記各係数の平均値を前記安定化光源装置における前記2次関数の各係数として設定する設定ステップと、
前記安定化光源装置に設けられたレーザダイオードの周辺温度を所定の温度に設定し、前記所定の温度において前記安定化光源装置に設けられたレーザダイオードに前記所定の強度の光を出力させるための駆動電流値を測定し、測定した駆動電流値を含むように前記2次関数の定数項を調整する調整ステップとを備えた安定化光源係数設定方法。
A laser diode (10), a temperature measurement unit (11) for measuring the ambient temperature of the laser diode, and the ambient temperature measured by the temperature measurement unit as an independent variable, and the drive current of the laser diode as a dependent variable, The coefficient of the quadratic function in the stabilized light source device (5) including the drive current control unit (12) for controlling the drive current of the laser diode based on the quadratic function obtained under the condition of constant output light intensity A stabilized light source coefficient setting method to be set,
For each of the plurality of laser diodes, the ambient temperature is changed stepwise, and a drive current value for causing each laser diode to output light of a predetermined intensity is measured at each ambient temperature, and each measured drive is measured. A preparatory step of determining, for each laser diode, a coefficient of a quadratic function having the ambient temperature as an independent variable so as to be an approximate curve of a current value, and calculating an average value of the determined coefficients for each term;
A setting step of setting an average value of each coefficient calculated in the preparation step as each coefficient of the quadratic function in the stabilized light source device;
For setting the ambient temperature of the laser diode provided in the stabilized light source device to a predetermined temperature, and causing the laser diode provided in the stabilized light source device to output light of the predetermined intensity at the predetermined temperature A stabilized light source coefficient setting method comprising: an adjustment step of measuring a drive current value and adjusting a constant term of the quadratic function so as to include the measured drive current value.
JP2004256766A 2004-09-03 2004-09-03 Coefficient setting method for stabilized light source device Expired - Fee Related JP4080468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256766A JP4080468B2 (en) 2004-09-03 2004-09-03 Coefficient setting method for stabilized light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256766A JP4080468B2 (en) 2004-09-03 2004-09-03 Coefficient setting method for stabilized light source device

Publications (2)

Publication Number Publication Date
JP2006073857A true JP2006073857A (en) 2006-03-16
JP4080468B2 JP4080468B2 (en) 2008-04-23

Family

ID=36154129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256766A Expired - Fee Related JP4080468B2 (en) 2004-09-03 2004-09-03 Coefficient setting method for stabilized light source device

Country Status (1)

Country Link
JP (1) JP4080468B2 (en)

Also Published As

Publication number Publication date
JP4080468B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US7634197B2 (en) Compensation for temperature and voltage effects when monitoring parameters in a transceiver module
US6947455B2 (en) Maintaining desirable performance of optical emitters at extreme temperatures
US20040052299A1 (en) Temperature correction calibration system and method for optical controllers
US8208814B2 (en) Optical transceiver calibration system and method
US9749043B2 (en) Method for referencing an optical power loss measurement system, and associated computer readable memory and OPLM system
WO2015036131A1 (en) Method and device for measuring a link loss of an optical transmission line
JP6315950B2 (en) Optical power monitoring circuit, optical module, station side device, optical power monitoring method and program
US7920788B2 (en) Optical transceiver with clock for providing maintenance and lifetime information
EP1248389A3 (en) Method and apparatus for measuring Raman gain
JP5884251B2 (en) Optical data link manufacturing method
CN112204369B (en) Method for measuring transmission loss of optical fiber and OTDR measuring device
JPH085686A (en) Field sensor
JP4986407B2 (en) LASER MODULE, ITS CONTROL METHOD, CONTROL DATA GENERATION METHOD FOR CONTROL, AND CONTROL DATA
TW200422668A (en) Fiber Bragg grating sensing system of light intensity and wave-divided multiplex
EP1073227A2 (en) Wavelength multiplexing transmitter
JP4080468B2 (en) Coefficient setting method for stabilized light source device
JP4429912B2 (en) Method and apparatus for compensating a photodetector
US8045860B2 (en) Optical transceiver
JP2006115524A (en) Method and apparatus for distortion control for optical transmitter
CN111835429B (en) Optical module, method for correcting transmitting optical power of optical module and controller
JP2013197200A (en) Photoreceiver control method and communication control method
JP5496525B2 (en) Semiconductor laser test method and laser test apparatus
CN108337046B (en) FTTx terminal line tester
KR101476610B1 (en) Multi-junction detector system
JP6624638B2 (en) Photocurrent sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees