JP2006073720A - Wire bonding method and wire bonding device - Google Patents

Wire bonding method and wire bonding device Download PDF

Info

Publication number
JP2006073720A
JP2006073720A JP2004254220A JP2004254220A JP2006073720A JP 2006073720 A JP2006073720 A JP 2006073720A JP 2004254220 A JP2004254220 A JP 2004254220A JP 2004254220 A JP2004254220 A JP 2004254220A JP 2006073720 A JP2006073720 A JP 2006073720A
Authority
JP
Japan
Prior art keywords
wire
wire bonding
bonding
shape
bonding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004254220A
Other languages
Japanese (ja)
Other versions
JP2006073720A5 (en
Inventor
Masaya Kouno
賢哉 河野
Satoshi Konishi
聡 小西
Tsuneo Endo
恒雄 遠藤
Tomio Yamada
富男 山田
Mamoru Iizuka
守 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2004254220A priority Critical patent/JP2006073720A/en
Publication of JP2006073720A publication Critical patent/JP2006073720A/en
Publication of JP2006073720A5 publication Critical patent/JP2006073720A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide wire bonding method and wire bonding device for permitting long life wire bonding by optimizing the shape of loop of a wire to reduce a strain generated in the wire since the strain generated in the wire depends on the shape of loop of the wire. <P>SOLUTION: A relation between the strain generated in the wire bonding and the shape of loop of the same is formalized through a function to optimize the shape of loop of the wire bonding so that the strain generated in the wire becomes lower than a predetermined prescribed value. In addition, the life of wire is estimated from the fatigue-life curve of wire, and is programmed so as to obtain the shape of loop which satisfies an objective life. Further, this program is incorporated into the wire bonding device whereby the bonding can be effected automatically through the shape of loop which minimizes the strain in the wire. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体チップの接続部と前記半導体チップの周囲に配置された接続部とをワイヤで接続するワイヤボンディング方法、及びそれを用いたワイヤボンディング装置に関わる。   The present invention relates to a wire bonding method for connecting a connection part of a semiconductor chip and a connection part arranged around the semiconductor chip with a wire, and a wire bonding apparatus using the same.

半導体装置の製造工程の1つに、半導体チップの接続部であるボンディングパッドと、半導体チップの周囲に配置された接続部である配線基板の電極やリードフレームのリードとをワイヤで電気的に接続するワイヤボンディング工程がある。このワイヤボンディング工程において、ボンディングパッド表面とワイヤの接合は、例えば金(Au)やアルミ(Al)などのワイヤを用いて配線する超音波ボンディング方法が主として用いられている。すなわち、ボンディングパッド表面とワイヤとの接合は、例えば電気トーチによりワイヤ先端を溶融して形成されたボールをキャピラリの先端で加圧して、さらに超音波振動を加えて金属間化合物を形成して接合する。また、配線基板の電極表面もしくはリードフレームのリード表面とワイヤとの接合は、先端部が半導体チップのボンディングパッド表面に接合されたワイヤがキャピラリの移動によって前記通過孔から繰り出されループを描きながらキャピラリ先端面によって配線基板の電極表面もしくはリードフレームのリード表面に押し付けることによって行う。   In one of the manufacturing processes of a semiconductor device, a bonding pad, which is a connection part of a semiconductor chip, and a wiring board electrode or a lead frame lead, which is a connection part arranged around the semiconductor chip, are electrically connected by a wire. There is a wire bonding process. In this wire bonding process, the bonding of the bonding pad surface and the wire is mainly performed by an ultrasonic bonding method in which wiring is performed using a wire such as gold (Au) or aluminum (Al). In other words, the bonding pad surface and the wire are bonded by, for example, pressing a ball formed by melting the tip of the wire with an electric torch at the tip of the capillary and further applying ultrasonic vibration to form an intermetallic compound. To do. Also, the wire surface is bonded to the electrode surface of the wiring board or the lead surface of the lead frame and the wire, and the capillary wire is drawn out from the passage hole by drawing the loop with the wire bonded to the bonding pad surface of the semiconductor chip. This is done by pressing the electrode surface of the wiring board or the lead surface of the lead frame with the tip surface.

配線基板の電極表面もしくはリードフレームのリード表面とワイヤとの接合が完了すると、ワイヤをキャピラリにクランプしつつキャピラリを上昇させるとワイヤは切断される。このような動作を繰り返すことによって、ワイヤのボンディング作業が行われる。   When the bonding between the electrode surface of the wiring board or the lead surface of the lead frame and the wire is completed, the wire is cut by raising the capillary while clamping the wire to the capillary. By repeating such an operation, a wire bonding operation is performed.

このような接合方式の場合、ワイヤボンディング後に半導体チップ周辺に充填される例えばエポキシやシリコーンなどの封止樹脂の熱膨張収縮によってワイヤに大きなひずみが生じ、最悪の場合早期に疲労断線するという問題がある。このため、ワイヤの信頼性確保にはワイヤのループ形状を適正化する必要があり、特開2000−311916号公報には、半導体チップのボンディングバッドからの立ち上がり角度と最大ループ高さの関係を規定するよう開示してある。これにより、ワイヤの断線を防止することを目指している。   In the case of such a bonding method, there is a problem that a large strain occurs in the wire due to thermal expansion and contraction of a sealing resin such as epoxy or silicone filled around the semiconductor chip after wire bonding, and in the worst case, the wire breaks early. is there. For this reason, it is necessary to optimize the wire loop shape in order to ensure the reliability of the wire, and Japanese Patent Application Laid-Open No. 2000-311916 defines the relationship between the rising angle of the semiconductor chip from the bonding pad and the maximum loop height. Is disclosed. Thereby, it aims at preventing disconnection of a wire.

特開2000―311916号公報JP 2000-311916 A

しかしながら、近年、製造コストの低減化のため、使用されるワイヤは細線化され疲労断線寿命へのマージンが小さくなってきている。また、半導体チップを複数枚積層したスタック実装構造が実用化され、ワイヤの高ループ化が一層進んでおり、ワイヤに発生するひずみは増加の一途をたどっている。さらに、半導体装置の小型・高密度化が加速され、従来にも増して熱密度増加により半導体装置内部での熱応力が増大傾向にある。   However, in recent years, in order to reduce the manufacturing cost, the wires used have been thinned, and the margin for fatigue disconnection life has been reduced. In addition, a stack mounting structure in which a plurality of semiconductor chips are stacked has been put into practical use, the number of loops of wires has been further increased, and the strain generated in the wires has been increasing. Furthermore, the miniaturization and high density of the semiconductor device are accelerated, and the thermal stress inside the semiconductor device tends to increase due to the increase in the heat density as compared with the prior art.

従って、ワイヤのループ形状の適正化はより高信頼化が望まれ、さらにコストとの両立が可能なボンディング方法の必要が生じてきた。公知例のボンディング方法だけでは、ワイヤひずみを低減するには難しく高寿命化への対応も十分ではなくなってきた。   Therefore, higher reliability is desired for the optimization of the wire loop shape, and there has been a need for a bonding method that is compatible with cost. The conventional bonding method alone is difficult to reduce wire strain and has not been sufficient for long life.

そこで、本発明の目的は、上記課題を解決することのできる高信頼度のワイヤボンディング方法とそれを用いたワイヤボンディング装置を提供することにある。
本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。
Accordingly, an object of the present invention is to provide a highly reliable wire bonding method and a wire bonding apparatus using the same that can solve the above-mentioned problems.
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

上記課題を解決するのに、本発明では、ワイヤの力学的特性を考慮した高信頼度なループ形状を形成する手法を見出した。これは、ワイヤに発生するひずみがワイヤのループ形状に依存することから、このループ形状を適正化することでワイヤに発生するひずみを低減し、高寿命のワイヤボンディングを可能にすることである。   In order to solve the above problems, the present invention has found a technique for forming a highly reliable loop shape in consideration of the mechanical characteristics of the wire. This is because the strain generated in the wire depends on the loop shape of the wire, and by optimizing the loop shape, the strain generated in the wire is reduced, and long-life wire bonding is possible.

簡単に説明すると、例えばワイヤのループ形状を複数の形状パラメータで視覚的に定義し、この形状パラメータとワイヤに発生するひずみの関係を、例えば関数などで近似的に定式化しておく。次に、ワイヤに発生するひずみと疲労断線寿命の関係を、例えばCoffin−Manson則などの寿命曲線であらかじめ整理しておく。これにより、ワイヤのループ形状が決定した際に前述の近似関数と寿命曲線からワイヤの断線寿命をあらかじめ推定することが可能となる。これを基に、所定の寿命に満たない場合は、ループ形状を変更して所定の寿命を満たすループ形状を設計しなおすことで、初期の設計段階において高寿命のループ形状が形成可能となる。   Briefly, for example, a loop shape of a wire is visually defined by a plurality of shape parameters, and the relationship between the shape parameter and strain generated in the wire is approximately formulated by a function, for example. Next, the relationship between the strain generated in the wire and the fatigue disconnection life is arranged in advance using a life curve such as the Coffin-Manson rule. Thereby, when the loop shape of the wire is determined, the wire breakage life can be estimated in advance from the above approximate function and the life curve. Based on this, when the predetermined life is not reached, the loop shape is changed and the loop shape satisfying the predetermined life is redesigned, so that the loop shape with a long life can be formed at the initial design stage.

また、この一連の流れをプログラム化し、ワイヤボンディング装置に組み込むことで、高寿命のワイヤループを形成するワイヤボンディング装置の提供が可能となる。さらに、半導体チップの接続電極位置と基板の電極位置を例えばカメラなどで認識することで、自動的に所定の寿命を満足するループ形状を自動的に計算しワイヤボンディングを行う装置が提供できる。   Further, by programming this series of flows and incorporating them into the wire bonding apparatus, it is possible to provide a wire bonding apparatus that forms a long-life wire loop. Furthermore, by recognizing the connection electrode position of the semiconductor chip and the electrode position of the substrate with, for example, a camera, it is possible to provide an apparatus that automatically calculates a loop shape that satisfies a predetermined life and performs wire bonding.

以上により、ワイヤが細線化され積層実装などで高ループ化し、さらに半導体装置内部の熱応力が増大化しても、高寿命なワイヤボンディングが可能となり、高信頼度な半導体装置の製造が可能となる。   As described above, even if the wire is thinned and the number of loops is increased to increase the number of loops, and the thermal stress inside the semiconductor device is increased, a long-life wire bonding is possible, and a highly reliable semiconductor device can be manufactured. .

具体的には、例えば以下のワイヤボンディング方法及びワイヤボンディング装置を提供することができる。
(1);第1の接続部と第2の接続部とをワイヤで電気的に接続するワイヤボンディング方法において、前記ワイヤのループ形状を複数の形状パラメータで定義し、前記形状パラメータと前記ワイヤに発生するひずみの関係を関数で与え、前記ワイヤひずみを低減するよう前記関数に従い前記形状パラメータを自動的に計算してループ形状を決定しワイヤボンディングを行うことを特徴とするワイヤボンディング方法。
Specifically, for example, the following wire bonding method and wire bonding apparatus can be provided.
(1); In the wire bonding method of electrically connecting the first connection portion and the second connection portion with a wire, a loop shape of the wire is defined by a plurality of shape parameters, and the shape parameter and the wire are A wire bonding method characterized in that a relationship between generated strains is given as a function, and the shape parameters are automatically calculated according to the function so as to reduce the wire strain, a loop shape is determined, and wire bonding is performed.

(2);上記(1)記載のワイヤボンディング方法において、既知の形状パラメータが入力されると、未知の形状パラメータを前記関数に従い自動的に計算して求め、ループ形状を決定しワイヤボンディングを行うことを特徴とするワイヤボンディング方法。 (2); In the wire bonding method described in (1) above, when a known shape parameter is input, an unknown shape parameter is automatically calculated according to the function to determine a loop shape and wire bonding is performed. The wire bonding method characterized by the above-mentioned.

(3);上記(2)記載のワイヤボンディング方法において、既知の形状パラメータと前記関数から求めた未知の形状パラメータを一旦記憶装置に記憶し、その記憶に従いワイヤボンディングを行うことを特徴とするワイヤボンディング方法。 (3); A wire bonding method according to (2), wherein the known shape parameter and the unknown shape parameter obtained from the function are temporarily stored in a storage device, and wire bonding is performed according to the storage. Bonding method.

(4);上記(1)記載のワイヤボンディング方法において、形状パラメータである前記第1の接続部と前記第2の接続部の位置情報をカメラで認識すると、未知の形状パラメータを前記関数に従い自動的に計算して求め、ループ形状を決定しワイヤボンディングを行うことを特徴とするワイヤボンディング方法。 (4); In the wire bonding method described in (1) above, when the position information of the first connection portion and the second connection portion, which are shape parameters, is recognized by the camera, the unknown shape parameter is automatically determined according to the function. A wire bonding method characterized in that a wire shape is determined by calculating and calculating a loop shape and performing wire bonding.

(5);上記(4)記載のワイヤボンディング方法において、前記カメラで認識した位置情報と前記関数から求めた未知の形状パラメータを一旦記憶装置に記憶し、その記憶に従いワイヤボンディングを行うことを特徴とするワイヤボンディング方法。 (5); In the wire bonding method described in (4) above, the position information recognized by the camera and the unknown shape parameter obtained from the function are temporarily stored in a storage device, and wire bonding is performed according to the storage. Wire bonding method.

(6);上記(1)乃至(5)のうち何れか1つに記載のワイヤボンディング方法を用いたことを特徴とするワイヤボンディング装置。 (6) A wire bonding apparatus using the wire bonding method according to any one of (1) to (5) above.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。
本発明によれば、ワイヤのひずみがワイヤループの形状パラメータによって自動的に求められることで、容易にかつ簡便にループ形状の適正化が可能となり、高信頼度なワイヤボンディング方法の提供が可能となる。また、ワイヤ形状パラメータを入力すると自動的にループ形状を決定してワイヤボンディングを行うことで、ワイヤの断線寿命は的確に向上させることが可能となり、高信頼度なワイヤボンディング装置の提供が可能となる。さらに、半導体チップの接続電極位置と基板の電極位置を例えばカメラなどで認識することで、自動的に所定の寿命を満足するループ形状を自動的に計算しワイヤボンディングを行う装置が提供できる。
また、これらのワイヤボンディング方法及びワイヤボンディング装置で製造された半導体装置も高信頼を有するのは明白である。
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
According to the present invention, since the wire strain is automatically determined by the shape parameter of the wire loop, the loop shape can be easily and simply optimized, and a highly reliable wire bonding method can be provided. Become. In addition, when wire shape parameters are input, the loop shape is automatically determined and wire bonding is performed, so that the wire breakage life can be improved accurately, and a highly reliable wire bonding apparatus can be provided. Become. Furthermore, by recognizing the connection electrode position of the semiconductor chip and the electrode position of the substrate with a camera or the like, for example, it is possible to provide an apparatus that automatically calculates a loop shape that satisfies a predetermined life and performs wire bonding.
In addition, it is obvious that the semiconductor devices manufactured by these wire bonding methods and wire bonding apparatuses also have high reliability.

これにより、ワイヤの力学的特性を考慮した最適なワイヤループ形状を決定することが可能となり、さらに自動的にワイヤボンディングを行うことで、ワイヤが細線化され積層実装などで高ループ化し、さらに半導体装置内部の熱応力が増大化しても、高信頼度な半導体装置の製造が可能となる。   This makes it possible to determine the optimal wire loop shape that takes into account the mechanical properties of the wire, and further by automatically performing wire bonding, the wire is thinned and the loop is increased to a high loop, such as stacked mounting. Even if the thermal stress inside the device increases, a highly reliable semiconductor device can be manufactured.

以下、本発明のワイヤボンディング方法の一実施例について、図面を参照して詳細に説明する。
図9は、半導体装置の製造工程を示す図である。図では一般的な半導体装置の製造工程の概要であり、詳細な説明は省略してある。
Hereinafter, an embodiment of the wire bonding method of the present invention will be described in detail with reference to the drawings.
FIG. 9 is a diagram illustrating a manufacturing process of a semiconductor device. In the figure, a general process for manufacturing a semiconductor device is outlined, and detailed description is omitted.

まず、半導体ウェハ上にトランジスタ素子を形成する〈191〉。半導体材料としては、例えばシリコン(Si)やゲルマニウム(Ge)及びガリウムヒ素(GaAs)などを用いる。   First, a transistor element is formed on a semiconductor wafer <191>. As the semiconductor material, for example, silicon (Si), germanium (Ge), gallium arsenide (GaAs), or the like is used.

次に、トランジスタ素子の周辺や表面に外部との電気的導通を確保するため配線を形成する〈192〉。配線の形成方法は、例えばウェハ上に全面めっきした後に配線以外をエッチングなどで取り除く方法がある。配線の材料としては、例えばアルミニウム(Al)などを用いると電気抵抗を小さくすることが可能であり、さらに銅(Cu)などを用いることでより電気抵抗を小さくすることが可能となる。このあと、外部からの汚染や機械的強度確保のため、半導体ウェハ上に保護膜を形成する〈193〉と信頼性が向上する。   Next, wiring is formed around the transistor element and on the surface to ensure electrical continuity with the outside <192>. As a method of forming the wiring, for example, there is a method of removing all other than the wiring by etching after plating the entire surface of the wafer. As the wiring material, for example, when aluminum (Al) or the like is used, the electric resistance can be reduced, and by using copper (Cu) or the like, the electric resistance can be further reduced. Thereafter, in order to ensure contamination from the outside and mechanical strength, a reliability is improved by forming a protective film on the semiconductor wafer <193>.

次に、半導体ウェハからパターンに従ってチップ状に切り出す、いわゆるダイシングを行う〈194〉。ダイシングされた半導体チップは基板に搭載される〈195〉。基板材料としては、例えば樹脂基板などが一般的であるが、電力用途の大電流半導体装置であれば例えばセラミックや銅(Cu)及びステンレス合金(42アロイ)などのリードフレームである。搭載に用いる接着材は、導電性が必要な場合は例えばはんだを用いると良いが、例えばエポキシなどの熱硬化性樹脂に、熱伝導性や導電性を向上させるよう例えばAgなどの金属性フィラーを充填した樹脂性接着材を用いる。   Next, so-called dicing is performed by cutting the semiconductor wafer into chips according to a pattern <194>. The diced semiconductor chip is mounted on the substrate <195>. As a substrate material, for example, a resin substrate is generally used. For example, a lead frame made of ceramic, copper (Cu), stainless steel alloy (42 alloy) or the like is used for a high-current semiconductor device for electric power. The adhesive used for mounting may be solder, for example, when electrical conductivity is required. However, for example, a metallic filler such as Ag is added to a thermosetting resin such as epoxy to improve thermal conductivity and electrical conductivity. A filled resinous adhesive is used.

次に、半導体チップの電極と基板電極とを電気的に接合するためワイヤボンディングを行う〈196〉。ワイヤ材料は、例えば金(Au)等が一般的に使用されているが、電力用途の大電流を流す半導体装置の場合はアルミニウム(Al)などを用いる。   Next, wire bonding is performed to electrically bond the electrode of the semiconductor chip and the substrate electrode <196>. For example, gold (Au) or the like is generally used as the wire material, but aluminum (Al) or the like is used in the case of a semiconductor device that supplies a large current for power use.

次に、半導体チップとその周辺を封止する〈197〉。封止材には例えば熱硬化性の樹脂を用い、封止は例えば金型を用いたトランスファーモールド工法で行うと大量生産に向いている。
最後に、成型や切断〈198〉によって半導体装置が形成される。
本発明は、図9に示した半導体装置製造工程の中で、ワイヤボンディング工程に関するものである。
Next, the semiconductor chip and its periphery are sealed <197>. For example, a thermosetting resin is used as the sealing material, and the sealing is suitable for mass production, for example, by a transfer mold method using a mold.
Finally, a semiconductor device is formed by molding or cutting <198>.
The present invention relates to a wire bonding process in the semiconductor device manufacturing process shown in FIG.

図1は、本発明の一実施例であるワイヤボンディング方法に使用されるワイヤ形状パラメータの概略図であって、半導体装置の内部構造の一部を示す模式的断面図である。図ではわかりやすくワイヤ周辺のみを図示してある。   FIG. 1 is a schematic diagram of wire shape parameters used in a wire bonding method according to an embodiment of the present invention, and is a schematic cross-sectional view showing a part of the internal structure of a semiconductor device. In the figure, only the periphery of the wire is shown for easy understanding.

図1に示すように、半導体装置は、配線基板(以下、単に基板と呼ぶ)4の主面上にダイボンディング材6を介在して半導体チップ2が搭載されている。半導体チップ2の表面(主面)には、ボンディングワイヤ1の第1の接続部としてボンディングパッド(第1の電極)3が設けられている。基板4の表面(主面)には、ボンディングワイヤ1の第2の接続部として、例えば配線の一部からなる電極(第2の電極)5が設けられている。基板4の電極5は、半導体チップ2の周囲に配置されている。   As shown in FIG. 1, a semiconductor device has a semiconductor chip 2 mounted on a main surface of a wiring substrate (hereinafter simply referred to as a substrate) 4 with a die bonding material 6 interposed therebetween. A bonding pad (first electrode) 3 is provided on the surface (main surface) of the semiconductor chip 2 as a first connection portion of the bonding wire 1. On the surface (main surface) of the substrate 4, as a second connection portion of the bonding wire 1, for example, an electrode (second electrode) 5 made of a part of wiring is provided. The electrode 5 of the substrate 4 is disposed around the semiconductor chip 2.

半導体チップ2のボンディングパッド3は、ボンディングワイヤ1を介して基板4の電極5と電気的に接続されている。ボンディングワイヤ1は、一端側が半導体チップ2のボンディングパッド3に接続され、一端側と反対側の他端側が基板4の電極5に接続されている。本実施例において、ボンディングワイヤ1は、例えば、半導体チップ2のボンディングパッド3を一次接続、基板4の電極5を二次接続とするネイルヘッドボンディング法により、半導体チップ2のボンディングパッド3と基板4の電極5との間を機械的にかつ電気的に接続している。   The bonding pad 3 of the semiconductor chip 2 is electrically connected to the electrode 5 of the substrate 4 through the bonding wire 1. The bonding wire 1 has one end connected to the bonding pad 3 of the semiconductor chip 2 and the other end opposite to the one end connected to the electrode 5 of the substrate 4. In this embodiment, the bonding wire 1 is bonded to the bonding pad 3 of the semiconductor chip 2 and the substrate 4 by, for example, a nail head bonding method in which the bonding pad 3 of the semiconductor chip 2 is primary connected and the electrode 5 of the substrate 4 is secondary connected. The electrode 5 is mechanically and electrically connected.

ボンディングワイヤ1としては例えば金(Au)等が一般的に使用されているが、電力用途の大電流を流す半導体装置の場合はアルミニウム(Al)などを用いるとコストの面で有利である。また、基板4の材料としては、例えば樹脂が一般的であるが電力用途の大電流半導体装置では例えばセラミックやなどを用いても良い。   For example, gold (Au) or the like is generally used as the bonding wire 1. However, in the case of a semiconductor device that supplies a large current for power use, it is advantageous in terms of cost to use aluminum (Al) or the like. As a material of the substrate 4, for example, resin is generally used, but ceramic or the like may be used in a high-current semiconductor device for power use.

ダイボンディング材6の材料としては、導電性が必要な場合は例えばはんだを用いると良いが、例えばエポキシなどの熱硬化性樹脂に、熱伝導性や導電性を向上させるよう例えばAgなどの金属性フィラーを充填した樹脂性接着材を用いるとコストの面で有利である。   As the material of the die bonding material 6, for example, solder is preferably used when conductivity is required. However, for example, a metallic material such as Ag is used to improve thermal conductivity and conductivity, for example, a thermosetting resin such as epoxy. Use of a resinous adhesive filled with a filler is advantageous in terms of cost.

半導体チップ2、ボンディングワイヤ1等は、封止樹脂7によって樹脂封止されている。樹脂封止は、例えば大量生産に好適なトランスファモールディング法で行われている。この場合、封止樹脂7としては、例えばエポキシ系の熱硬化性樹脂が用いられる。また、封止樹脂7として例えばシリコーンなどの低弾性樹脂を用いることで、モジュール内部の熱応力を低減することができる。   The semiconductor chip 2, the bonding wire 1, and the like are sealed with a sealing resin 7. Resin sealing is performed by, for example, a transfer molding method suitable for mass production. In this case, as the sealing resin 7, for example, an epoxy-based thermosetting resin is used. Moreover, the thermal stress inside a module can be reduced by using low elastic resin, such as silicone, for example as the sealing resin 7.

図1中に示す記号pc,pw,lc,lw,hc,hw,dwはワイヤ形状パラメータと称し、ボンディングワイヤ1のループ形状を定量的に表すパラメータとして定義してある。   The symbols pc, pw, lc, lw, hc, hw, and dw shown in FIG. 1 are called wire shape parameters and are defined as parameters that quantitatively represent the loop shape of the bonding wire 1.

pcは第1の電極からボンディングワイヤループ頂までの水平距離、pwはボンディングワイヤループ頂における水平部長さ、lcは半導体チップ端から第1の電極までの距離、lwは第1の電極と第2の電極間の水平距離、hcは半導体チップの厚さ、hwは第1の電極からボンディングワイヤループ頂までの高さ及びdwはボンディングワイヤ径である。   pc is the horizontal distance from the first electrode to the top of the bonding wire loop, pw is the length of the horizontal portion at the top of the bonding wire loop, lc is the distance from the end of the semiconductor chip to the first electrode, and lw is the first electrode and the second The horizontal distance between the electrodes, hc is the thickness of the semiconductor chip, hw is the height from the first electrode to the top of the bonding wire loop, and dw is the bonding wire diameter.

本発明者らは、これらの形状パラメータが、例えば半導体装置の信頼性加速試験である温度サイクル試験時にボンディングワイヤ1に発生するひずみに影響を与えているのではないかと考え、形状パラメータとボンディングワイヤ1に発生するひずみの関係について検討を行った。   The present inventors consider that these shape parameters may affect the strain generated in the bonding wire 1 during, for example, a temperature cycle test that is a reliability acceleration test of a semiconductor device. The relationship between the strain generated in Fig. 1 was examined.

本発明者らは、形状パラメータとボンディングワイヤ1の関係を明らかにするため、実験計画法に基づく直交評価を行った。   The present inventors performed orthogonal evaluation based on the experimental design method in order to clarify the relationship between the shape parameter and the bonding wire 1.

表1は、本発明の一実施例であるワイヤボンディング方法を導き出すために用いた形状パラメータと水準である。また、表2は、本発明の一実施例であるボンディングワイヤ方法を導き出すために用いた直交表である。   Table 1 shows the shape parameters and levels used to derive the wire bonding method according to one embodiment of the present invention. Table 2 is an orthogonal table used for deriving the bonding wire method according to one embodiment of the present invention.

Figure 2006073720
Figure 2006073720

Figure 2006073720
Figure 2006073720

表1より、pcの水準は0〜30〜60μm、hcは80〜180〜280μm、lcは80〜160〜240μm、hwは80〜160〜240μm、pwは50〜125〜200μm、dwは20〜25〜30μm及びlwは650〜975〜1300μmとし、因子No.Aは空欄にしてある。また、表2は、実験計画法に基づきL18の直交割付に従い18通りの組合せとしてある。   From Table 1, the level of pc is 0-30-60 μm, hc is 80-180-280 μm, lc is 80-160-240 μm, hw is 80-160-240 μm, pw is 50-125-200 μm, dw is 20- 25-30 μm and lw are 650-975-1300 μm. A is left blank. Table 2 shows 18 combinations in accordance with the L18 orthogonal assignment based on the experimental design method.

図5は、本発明の一実施例であるワイヤボンディング方法を導き出すために用いた形状パラメータのひずみ要因効果図である。これは、本発明者らが、表2に示した18通りの組合せについて、有限要素法を用いて信頼性試験である温度サイクル試験下で発生するボンディングワイヤ1のひずみ範囲Δεを解析して求め、その結果を望小特性(感度)で整理した図である。この図は、各形状パラメータがゼロに近いほど、ワイヤに発生するひずみ範囲Δεを小さくすることができることを示している。ボンディングワイヤ1のひずみ範囲Δεは疲労断線の原因となるひずみであり、解析した温度範囲は、一般的な温度サイクル試験の温度範囲である−55℃〜150℃である。   FIG. 5 is a distortion factor effect diagram of the shape parameters used to derive the wire bonding method according to an embodiment of the present invention. This is obtained by analyzing the strain range Δε of the bonding wire 1 generated under the temperature cycle test, which is a reliability test, using the finite element method for the 18 combinations shown in Table 2. FIG. 4 is a diagram in which the results are arranged by small and desired characteristics (sensitivity). This figure shows that the strain range Δε generated in the wire can be reduced as the shape parameters are closer to zero. The strain range Δε of the bonding wire 1 is strain that causes fatigue breakage, and the analyzed temperature range is −55 ° C. to 150 ° C., which is a temperature range of a general temperature cycle test.

この結果から明らかなように、ボンディングワイヤに発生するひずみ範囲Δεは、ワイヤの形状パラメータで変化することがわかる。例えば、pc(第1の電極からボンディングワイヤループ頂までの水平距離)やlc(半導体チップ端から第1の電極までの距離)は大きいほど、hw(第1の電極からボンディングワイヤループ頂までの高さ)は小さいほどワイヤのひずみ範囲Δεを小さくすることが可能である。   As is apparent from this result, it is understood that the strain range Δε generated in the bonding wire varies depending on the wire shape parameter. For example, as pc (horizontal distance from the first electrode to the top of the bonding wire loop) or lc (distance from the end of the semiconductor chip to the first electrode) increases, hw (from the first electrode to the top of the bonding wire loop) The smaller the (height), the smaller the wire strain range Δε.

具体的には検討した水準範囲内では、例えば、hc(半導体チップの厚さ)が280μm、pw(ボンディングワイヤループ頂における水平部長さ)が200μm、dw(ボンディングワイヤ径)が30μm及びlw(第1の電極と第2の電極間の水平距離)が1300μmであった場合、pcは60μm、lcは240μm及びhwは80μmとすることで、ワイヤのひずみ範囲Δεを最も小さくすることが可能である。   Specifically, within the examined standard range, for example, hc (semiconductor chip thickness) is 280 μm, pw (horizontal length at the top of the bonding wire loop) is 200 μm, dw (bonding wire diameter) is 30 μm and lw (first). When the horizontal distance between the first electrode and the second electrode is 1300 μm, the strain range Δε of the wire can be minimized by setting pc to 60 μm, lc to 240 μm, and hw to 80 μm. .

さらに本発明者らは、図5に示した要因効果図を基に分散分析を行い、ワイヤの形状パラメータとボンディングワイヤ1に発生するひずみ範囲Δεの関係を近似的に関数(1)で表現できることを見出した。   Furthermore, the present inventors can perform an analysis of variance based on the factor-effect diagram shown in FIG. 5, and can approximately represent the relationship between the wire shape parameter and the strain range Δε generated in the bonding wire 1 by the function (1). I found.

[数1]
Δε=f(pc,pw,lc,lw,hc,hw,dw) ・・・・(1)
このときの近似関数fは、例えば本発明の一実施例である実験計画法の直交評価を基にした直交関数でも良いし、例えば重回帰分析や応答曲面法などの統計法などを用いても良い。また、精度を高めるには、例えばニューラルネットワークなどを用いても良い。例えば、2次の直交関数を用いれば(2)式のようになる。
[Equation 1]
Δε = f (pc, pw, lc, lw, hc, hw, dw) (1)
The approximate function f at this time may be, for example, an orthogonal function based on the orthogonal evaluation of the experimental design which is an embodiment of the present invention, or may be a statistical method such as multiple regression analysis or response surface method. good. In order to increase the accuracy, for example, a neural network may be used. For example, if a quadratic orthogonal function is used, equation (2) is obtained.

[数2]
Δε=A0+B1×pc+B2×pc^2+C1×pw+C2×pw^2+D1×lc+D2×lc^2+E1×lw+E2×lw^2+F1×hc+F2×hc^2+G1×hw+G2×hw^2+H1×dw+H2×dw^2・・・・(2)
ここで、A0,B1,B2,C1,C2,D1,D2,E1,E2,F1,F2,G1,G2,H1,H2は係数であり、例えば18個の連立方程式を解くことで得ることができる。
[Equation 2]
Δε = A0 + B1 * pc + B2 * pc ^ 2 + C1 * pw + C2 * pw ^ 2 + D1 * lc + D2 * lc ^ 2 + E1 * lw + E2 * lw ^ 2 + F1 * hc + F2 * hc ^ 2 + G1 * hw + G2 * hw ^ 2 + H1 * dw + 2)
Here, A0, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, G1, G2, H1, and H2 are coefficients, and can be obtained, for example, by solving 18 simultaneous equations. it can.

これにより、ワイヤ形状パラメータが既知であれば、近似関数(1)によりワイヤに発生するひずみ範囲Δεを簡単に求めることが可能となる。   Thus, if the wire shape parameter is known, the strain range Δε generated in the wire can be easily obtained by the approximation function (1).

さらに本発明者らは、ボンディングワイヤ1に使用される材料の断線疲労寿命データと照らし合わせることで、ワイヤ形状パラメータを設定した段階である程度簡便に精度良くワイヤの断線寿命を予測できることを見出した。   Furthermore, the present inventors have found that the wire breakage life of the wire can be predicted to some extent simply and accurately at the stage of setting the wire shape parameter by comparing with the wire breakage fatigue life data of the material used for the bonding wire 1.

図2に本発明で使用されるボンディングワイヤ材料の疲労寿命曲線の模式図を示す。図の縦軸は温度サイクル試験1サイクルあたりに発生するワイヤのひずみ範囲Δε(%)であり、横軸は繰り返し数Nf(回)であり両対数で表示してある。ボンディングワイヤ1に使用される材料は、例えば金(Au)やアルミニウム(Al)などの延性金属材料が多く用いられており、これらの疲労破壊モードは低サイクル疲労のため例えばCoffin−Manson則の寿命予測式(3)の関係がある。   FIG. 2 shows a schematic diagram of a fatigue life curve of the bonding wire material used in the present invention. In the figure, the vertical axis represents the strain range Δε (%) of the wire generated per cycle of the temperature cycle test, and the horizontal axis represents the number of repetitions Nf (times) and is expressed as a logarithm. As the material used for the bonding wire 1, for example, a ductile metal material such as gold (Au) or aluminum (Al) is often used, and these fatigue failure modes are, for example, the life of Coffin-Manson law because of low cycle fatigue. There is a relationship of prediction formula (3).

[数3]
Nf=(Δε/ε0)−1/m ・・・・・(3)
このとき、ε0は疲労寿命曲線の切片であり、mは曲線の傾きである。
[Equation 3]
Nf = (Δε / ε0) −1 / m (3)
At this time, ε0 is the intercept of the fatigue life curve, and m is the slope of the curve.

これにより、ワイヤの形状パラメータが既知であれば、近似関数(1)によりワイヤに発生するひずみ範囲Δεが簡単に精度良く求まり、さらに寿命予測式(3)により温度サイクル試験下でのワイヤの疲労寿命Nfを求めることが可能となる。   As a result, if the wire shape parameter is known, the strain range Δε generated in the wire can be easily and accurately obtained by the approximation function (1), and further, the fatigue of the wire under the temperature cycle test can be obtained by the life prediction formula (3). The lifetime Nf can be obtained.

従って、所定の目標寿命に満たない場合は、近似関数(1)により形状パラメータを変更し所定の目標寿命を満たすループ形状を設計しなおすことが可能となり、初期の設計段階において高寿命のループ形状が形成できる。
以上の一連の流れは以下のようになる。
Therefore, when the predetermined target life is not reached, it is possible to redesign the loop shape satisfying the predetermined target life by changing the shape parameter by the approximate function (1). Can be formed.
The above series of flows is as follows.

図3に本発明の一実施例であるワイヤボンディング方法の概念図を示す。まず、ワイヤ形状パラメータを初期設定する〈131〉。次に、近似関数により温度サイクル試験下でワイヤに発生するひずみ範囲を求める〈132〉。続いて、寿命予測式によりワイヤの疲労断線寿命を求める〈133〉。このとき、所定の目標寿命を満足する場合〈Yes〉は、初期に設定したワイヤ形状パラメータを正式採用して〈134〉、ワイヤボンディングを実施する〈135〉。一方、所定の目標寿命に満たない場合〈No〉は、再度ワイヤ形状パラメータを設定しなおし、目標寿命を満たすワイヤ形状パラメータを再計算して求め、ワイヤボンディングを実施する。この一連の流れによりワイヤボンディングを実施することが本発明の簡単な説明である。
具体的には以下の方法で実施される。
FIG. 3 shows a conceptual diagram of a wire bonding method according to an embodiment of the present invention. First, wire shape parameters are initially set <131>. Next, the strain range generated in the wire under the temperature cycle test is obtained by an approximate function <132>. Subsequently, the fatigue disconnection life of the wire is obtained by a life prediction formula <133>. At this time, if the predetermined target life is satisfied <Yes>, the wire shape parameter set initially is formally adopted <134>, and wire bonding is performed <135>. On the other hand, when the predetermined target life is not reached <No>, the wire shape parameter is set again, the wire shape parameter satisfying the target life is recalculated, and wire bonding is performed. It is a simple description of the present invention to perform wire bonding by this series of flows.
Specifically, it is carried out by the following method.

図4は、本発明の一実施例であるワイヤ形状パラメータの初期設定からワイヤボンディングまでの具体的な流れを示す。   FIG. 4 shows a specific flow from initial setting of wire shape parameters to wire bonding according to an embodiment of the present invention.

まず、図1に従いワイヤ形状パラメータ(pc,pw,lc,lw,hc,hw,dw)を初期設定する〈141〉。次に、近似式(1)により、温度サイクル試験下でワイヤに発生するひずみ範囲Δεを求める〈142〉。続いて、寿命予測式(3)によりワイヤの疲労断線寿命Nfを求める〈143〉。このとき、Nfが所定の目標寿命Ntよりも大きければ〈Yes〉、初期に設定したワイヤ形状パラメータを正式採用して〈144〉、ワイヤボンディングを実施する〈145〉。一方、Nfが所定の目標寿命Ntより小さい場合〈No〉は、再度ワイヤ形状パラメータを設定しなおし、目標寿命を満足するワイヤ形状パラメータを再計算して求め、ワイヤボンディングを実施する。   First, wire shape parameters (pc, pw, lc, lw, hc, hw, dw) are initialized according to FIG. 1 <141>. Next, a strain range Δε generated in the wire under the temperature cycle test is obtained by the approximate expression (1) <142>. Subsequently, the fatigue disconnection life Nf of the wire is obtained from the life prediction formula (3) <143>. At this time, if Nf is larger than the predetermined target life Nt <Yes>, the wire shape parameters set initially are formally adopted <144>, and wire bonding is performed <145>. On the other hand, when Nf is smaller than the predetermined target life Nt, <No>, the wire shape parameter is set again, the wire shape parameter satisfying the target life is recalculated, and wire bonding is performed.

これにより、ワイヤ形状パラメータを初期に設定した段階において、疲労断線寿命をある程度簡便に精度良く求め、さらには高寿命化となるようループ形状を適正化することが可能となり、ワイヤひずみを低減できる高信頼度なワイヤループ形状を製造することが可能となる。   As a result, at the stage where the wire shape parameters are initially set, it is possible to obtain the fatigue disconnection life to a certain degree simply and accurately, and further to optimize the loop shape so as to increase the life. A reliable wire loop shape can be manufactured.

また、半導体チップ2の表面(主面)にある第1の電極(接続部)であるボンディングパッド3と基板4の表面(主面)にある第2の電極(接続部)である電極5の位置は、形状パラメータのlc(半導体チップ端から第1の電極までの距離)とlw(第1の電極と第2の電極間の水平距離)に相当する。従って、例えばワイヤボンディング装置に付随したカメラなどでボンディングパッド3と電極5の位置を認識することで、自動的に所定の目標寿命を満足するよう他の形状パラメータを自動的に計算しワイヤボンディングを行う装置の提供が可能となる。
具体的には以下のように実施される。
In addition, the bonding pad 3 which is the first electrode (connecting portion) on the surface (main surface) of the semiconductor chip 2 and the electrode 5 which is the second electrode (connecting portion) on the surface (main surface) of the substrate 4. The position corresponds to the shape parameters lc (distance from the end of the semiconductor chip to the first electrode) and lw (horizontal distance between the first electrode and the second electrode). Therefore, for example, by recognizing the positions of the bonding pad 3 and the electrode 5 with a camera attached to the wire bonding apparatus, other shape parameters are automatically calculated so as to satisfy a predetermined target life, and wire bonding is performed. It is possible to provide a device to perform.
Specifically, it is carried out as follows.

図7は、本発明の一実施例であるワイヤ形状パラメータをカメラで位置認識するワイヤボンディング方法の流れである。   FIG. 7 shows a flow of a wire bonding method for recognizing the position of a wire shape parameter with a camera according to an embodiment of the present invention.

まず、ボンディング装置に付随された例えばカメラによって、ワイヤ形状パラメータである第1の電極と第2の電極の位置を認識する〈171〉。次に、その他の形状パラメータが実現可能な範囲で適当に設定され〈172〉、近似式(1)により、温度サイクル試験下でワイヤに発生するひずみ範囲Δεを求める〈173〉。続いて、寿命予測式(3)によりワイヤの疲労断線寿命Nfを求める〈174〉。このとき、Nfが所定の目標寿命Ntよりも大きければ〈Yes〉、初期に設定したワイヤ形状パラメータを正式採用して〈175〉、ワイヤボンディングを実施する〈176〉。一方、Nfが所定の目標寿命Ntより小さい場合〈No〉は、再度ワイヤ形状パラメータを設定しなおし、目標寿命を満足するワイヤ形状パラメータを再計算して求め、ワイヤボンディングを実施する。   First, the positions of the first electrode and the second electrode, which are wire shape parameters, are recognized by, for example, a camera attached to the bonding apparatus <171>. Next, other shape parameters are appropriately set within a feasible range <172>, and a strain range Δε generated in the wire under the temperature cycle test is obtained by the approximate expression (1) <173>. Subsequently, the fatigue disconnection life Nf of the wire is obtained from the life prediction formula (3) <174>. At this time, if Nf is greater than the predetermined target life Nt <Yes>, the wire shape parameters set initially are formally adopted <175>, and wire bonding is performed <176>. On the other hand, when Nf is smaller than the predetermined target life Nt, <No>, the wire shape parameter is set again, the wire shape parameter satisfying the target life is recalculated, and wire bonding is performed.

これにより、ワイヤボンディング装置に付随したカメラによって電極位置を認識するだけで、高寿命化となるようループ形状を適正化することが可能となり、ワイヤひずみを低減できる高信頼度なワイヤループ形状を製造することが可能となる。   This makes it possible to optimize the loop shape so as to extend the life by simply recognizing the electrode position with a camera attached to the wire bonding apparatus, and manufacture a highly reliable wire loop shape that can reduce wire strain. It becomes possible to do.

これら一連の流れをプログラム化し、ワイヤボンディング装置に組み込むことで、高寿命のワイヤループを形成するワイヤボンディング装置の提供が可能となる。   By programming these series of flows and incorporating them into the wire bonding apparatus, it is possible to provide a wire bonding apparatus that forms a long-life wire loop.

図6は、本発明の一実施例であるワイヤ形状パラメータを一時記憶するワイヤボンディング方法の流れである。   FIG. 6 is a flowchart of a wire bonding method for temporarily storing wire shape parameters according to an embodiment of the present invention.

まず、図1に従いワイヤ形状パラメータ(pc,pw,lc,lw,hc,hw,dw)を初期設定する〈161〉。次に、近似式(1)により、温度サイクル試験下でワイヤに発生するひずみ範囲Δεを求める〈162〉。続いて、寿命予測式(3)によりワイヤの疲労断線寿命Nfを求める〈163〉。このとき、Nfが所定の目標寿命Ntよりも大きければ〈Yes〉、初期に設定したワイヤ形状パラメータを正式採用して〈164〉、ワイヤボンディングを実施する〈166〉。一方、Nfが所定の目標寿命Ntより小さい場合〈No〉は、再度ワイヤ形状パラメータを設定しなおし、目標寿命を満足するワイヤ形状パラメータを再計算して求める。このとき、採用した形状パラメータは例えばワイヤボンディング装置に付随されたメモリなどの記憶装置に一旦保存され〈165〉、ワイヤボンディングは、その記憶情報に従い実施される。これにより、同一構造の半導体装置に対し一度の設定で大量生産が可能となるので、コスト及び生産性の面で有利となる。   First, wire shape parameters (pc, pw, lc, lw, hc, hw, dw) are initialized according to FIG. 1 <161>. Next, a strain range Δε generated in the wire under the temperature cycle test is obtained by the approximate expression (1) <162>. Subsequently, the fatigue disconnection life Nf of the wire is obtained from the life prediction formula (3) <163>. At this time, if Nf is greater than the predetermined target life Nt <Yes>, the wire shape parameters set initially are formally adopted <164>, and wire bonding is performed <166>. On the other hand, if Nf is smaller than the predetermined target life Nt, <No> is obtained by setting the wire shape parameter again and recalculating the wire shape parameter that satisfies the target life. At this time, the adopted shape parameter is temporarily stored in a storage device such as a memory attached to the wire bonding apparatus <165>, and the wire bonding is performed according to the stored information. As a result, mass production can be performed once for a semiconductor device having the same structure, which is advantageous in terms of cost and productivity.

図8は、本発明の一実施例であるワイヤ形状パラメータをカメラに認識し一時記憶するワイヤボンディング方法の流れを示す。   FIG. 8 shows a flow of a wire bonding method according to an embodiment of the present invention in which a wire shape parameter is recognized by a camera and temporarily stored.

まず、ボンディング装置に付随された例えばカメラによって、ワイヤ形状パラメータである第1の電極と第2の電極の位置を認識する181〉。次に、その他の形状パラメータが実現可能な範囲で適当に設定され〈182〉、近似式(1)により、温度サイクル試験下でワイヤに発生するひずみ範囲Δεを求める〈183〉。続いて、寿命予測式(3)によりワイヤの疲労断線寿命Nfを求める〈184〉。このとき、Nfが所定の目標寿命Ntよりも大きければ〈Yes〉、初期に設定したワイヤ形状パラメータを正式採用して〈185〉、ワイヤボンディングを実施する〈187〉。一方、Nfが所定の目標寿命Ntより小さい場合〈No〉は、再度ワイヤ形状パラメータを設定しなおし、目標寿命を満足するワイヤ形状パラメータを再計算して求める。このとき、採用した形状パラメータは例えばワイヤボンディング装置に付随されたメモリなどの記憶装置に一旦保存され〈186〉、ワイヤボンディングは、その記憶情報に従い実施される。 First, the positions of the first electrode and the second electrode, which are wire shape parameters, are recognized by, for example, a camera attached to the bonding apparatus < 181>. Next, other shape parameters are appropriately set within a feasible range <182>, and a strain range Δε generated in the wire under the temperature cycle test is obtained by approximate expression (1) <183>. Subsequently, the fatigue disconnection life Nf of the wire is obtained from the life prediction formula (3) <184>. At this time, if Nf is greater than the predetermined target life Nt <Yes>, the wire shape parameters set initially are formally adopted <185>, and wire bonding is performed <187>. On the other hand, if Nf is smaller than the predetermined target life Nt, <No> is obtained by setting the wire shape parameter again and recalculating the wire shape parameter that satisfies the target life. At this time, the adopted shape parameter is temporarily stored in a storage device such as a memory attached to the wire bonding apparatus <186>, and the wire bonding is performed according to the stored information.

これにより、ワイヤボンディング装置に付随したカメラによって電極位置を認識するだけで、高寿命化となるようループ形状を適正化することが可能となり、ワイヤひずみを低減できる高信頼度なワイヤループ形状を製造することが可能となる。さらに、同一構造の半導体装置に対し一度の設定で大量生産が可能となるので、コスト及び生産性の面で有利となる。   This makes it possible to optimize the loop shape so as to extend the life by simply recognizing the electrode position with a camera attached to the wire bonding apparatus, and manufacture a highly reliable wire loop shape that can reduce wire strain. It becomes possible to do. Furthermore, mass production is possible with a single setting for semiconductor devices having the same structure, which is advantageous in terms of cost and productivity.

このように、ワイヤのひずみがワイヤ形状パラメータによって自動的に求められることで、容易にかつ簡便にループ形状の適正化が可能となり、高信頼度なワイヤボンディング方法の提供が可能となる。また、ワイヤ形状パラメータを入力し、もしくはカメラなどで電極位置を認識するだけで自動的に高信頼度なループ形状を求めてワイヤボンディングを行うため、ワイヤの断線寿命を的確に向上させることができる。さらに、本発明では、所定の目標寿命に対しループ形状を適正化することが可能であるため、例えば信頼度を要求されない半導体装置に適用する場合には、要求寿命に応じたループ形状を形成すれば良い。従って、対象の半導体装置の構造に見合ったループ形状の作製も可能であり、複雑なワイヤボンディングにも容易に適用可能であり、高価な材料を必要とせず製造コストに対しても十分有利である。
これらのワイヤボンディング方法及び装置で製造された半導体装置も高信頼を有するのは明白である。
As described above, since the strain of the wire is automatically obtained by the wire shape parameter, the loop shape can be optimized easily and simply, and a highly reliable wire bonding method can be provided. In addition, by inputting wire shape parameters or recognizing the electrode position with a camera or the like, a highly reliable loop shape is automatically obtained and wire bonding is performed, so the wire breakage life can be improved accurately. . Furthermore, in the present invention, since it is possible to optimize the loop shape for a predetermined target life, for example, when applied to a semiconductor device that does not require reliability, a loop shape corresponding to the required life should be formed. It ’s fine. Therefore, it is possible to produce a loop shape suitable for the structure of the target semiconductor device, it can be easily applied to complicated wire bonding, and it is sufficiently advantageous for manufacturing cost without requiring expensive materials. .
It is obvious that semiconductor devices manufactured by these wire bonding methods and apparatuses also have high reliability.

以上、本発明者によってなされた発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。   As mentioned above, the invention made by the present inventor has been specifically described based on the above embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Of course.

例えば、前述の実施例では、半導体チップ2のボンディングパッド3を一次接続、基板4の電極5を二次接続とするネイルヘッドボンディング法により、半導体チップ2のボンディングパッド3と基板4の電極5とをボンディングワイヤ1で接続する例について説明したが、本発明は、基板4の電極5を一次接続、半導体チップ2のボンディングパッド3を二次接続とするネイルヘッドボンディング法により、半導体チップ2のボンディングパッド3と基板4の電極5とをボンディングワイヤ1で接続する場合においても適用することができる。   For example, in the above-described embodiment, the bonding pad 3 of the semiconductor chip 2 and the electrode 5 of the substrate 4 are bonded by the nail head bonding method in which the bonding pad 3 of the semiconductor chip 2 is primary connected and the electrode 5 of the substrate 4 is secondary connected. In the present invention, the bonding of the semiconductor chip 2 is performed by the nail head bonding method in which the electrode 5 of the substrate 4 is primary connected and the bonding pad 3 of the semiconductor chip 2 is secondary connected. The present invention can also be applied when the pad 3 and the electrode 5 of the substrate 4 are connected by the bonding wire 1.

また、前述の実施例では、半導体チップ2のボンディングパッド3と基板4の電極5とをボンディングワイヤ1で接続する方法としてネイルヘッドボンディング法について説明したが、本発明は、ウェッジボンディング法など他のボンディング法においても適用することができる。   In the above embodiment, the nail head bonding method has been described as a method of connecting the bonding pad 3 of the semiconductor chip 2 and the electrode 5 of the substrate 4 with the bonding wire 1. However, the present invention is not limited to the wedge bonding method. It can also be applied in the bonding method.

また、前述の実施例では、半導体チップ2のボンディングパッド3を第1の接続部とし、基板4の電極5を第2の接続部として両者をボンディングワイヤ1で接続する例について説明したが、本発明は、半導体チップのボンディングパッドを第1の接続部とし、リードフレームのリードや、半導体チップが搭載されたチップ装着台(例えばダイパッド,タブ,ヒートスプレッタ)や、他の半導体チップのボンディングパッドを第2の接続部として両者をボンディングワイヤで接続する場合においても適用することができる。   In the above-described embodiment, the example in which the bonding pad 3 of the semiconductor chip 2 is used as the first connection portion and the electrode 5 of the substrate 4 is used as the second connection portion and both are connected by the bonding wire 1 has been described. The present invention uses a bonding pad of a semiconductor chip as a first connecting portion, and leads of a lead frame, a chip mounting table (for example, a die pad, a tab, a heat spreader) on which a semiconductor chip is mounted, and a bonding pad of another semiconductor chip. The present invention can also be applied to the case where the two connecting portions are connected by a bonding wire.

本発明の一実施例であるワイヤボンディング方法に使用されるワイヤ形状パラメータの概略図であって、半導体装置の内部構造の一部を示す模式的断面である。It is the schematic of the wire shape parameter used for the wire bonding method which is one Example of this invention, Comprising: It is a typical cross section which shows a part of internal structure of a semiconductor device. 本発明で使用されるボンディングワイヤ材料の疲労寿命曲線の模式図である。It is a schematic diagram of the fatigue life curve of the bonding wire material used in the present invention. 本発明の一実施例であるワイヤボンディング方法の概念図である。It is a conceptual diagram of the wire bonding method which is one Example of this invention. 本発明の一実施例であるワイヤ形状パラメータの初期設定からワイヤボンディングまでの具体的な流れを示す図である。It is a figure which shows the specific flow from the initial setting of the wire shape parameter which is one Example of this invention to wire bonding. 本発明の一実施例であるワイヤボンディング方法を導き出すために用いた形状パラメータのひずみ要因効果図である。It is the distortion factor effect figure of the shape parameter used in order to derive the wire bonding method which is one Example of this invention. 本発明の一実施例であるワイヤ形状パラメータを一時記憶するワイヤボンディング方法の流れを示す図である。It is a figure which shows the flow of the wire bonding method which temporarily memorize | stores the wire shape parameter which is one Example of this invention. 本発明の一実施例であるワイヤ形状パラメータをカメラで位置認識するワイヤボンディング方法の流れを示す図である。It is a figure which shows the flow of the wire bonding method which recognizes the position of the wire shape parameter which is one Example of this invention with a camera. 本発明の一実施例であるワイヤ形状パラメータをカメラに認識し一時記憶するワイヤボンディング方法の流れを示す図である。It is a figure which shows the flow of the wire bonding method which recognizes the wire shape parameter which is one Example of this invention in a camera, and memorize | stores it temporarily. 半導体装置の製造工程を示す図である。It is a figure which shows the manufacturing process of a semiconductor device.

符号の説明Explanation of symbols

1…ボンディングワイヤ、2…半導体チップ、3…ボンディングパッド、4…基板、5…電極、6…ダイボンディング材、7…封止樹脂   DESCRIPTION OF SYMBOLS 1 ... Bonding wire, 2 ... Semiconductor chip, 3 ... Bonding pad, 4 ... Substrate, 5 ... Electrode, 6 ... Die bonding material, 7 ... Sealing resin

Claims (7)

第1の接続部と第2の接続部とをワイヤで電気的に接続するワイヤボンディング方法において、
前記ワイヤのループ形状を複数の形状パラメータで定義し、前記形状パラメータと前記ワイヤに発生するひずみの関係を関数で与え、前記ワイヤひずみを低減するよう前記関数に従い前記形状パラメータを自動的に計算してループ形状を決定しワイヤボンディングを行うことを特徴とするワイヤボンディング方法。
In the wire bonding method of electrically connecting the first connection portion and the second connection portion with a wire,
The loop shape of the wire is defined by a plurality of shape parameters, the relationship between the shape parameter and the strain generated in the wire is given as a function, and the shape parameter is automatically calculated according to the function so as to reduce the wire strain. A wire bonding method characterized by determining a loop shape and performing wire bonding.
請求項1に記載のワイヤボンディング方法において、
既知の形状パラメータが入力されると、未知の形状パラメータを前記関数に従い自動的に計算して求め、ループ形状を決定しワイヤボンディングを行うことを特徴とするワイヤボンディング方法。
The wire bonding method according to claim 1,
A wire bonding method characterized in that when a known shape parameter is inputted, an unknown shape parameter is automatically calculated according to the function, a loop shape is determined, and wire bonding is performed.
請求項2に記載のワイヤボンディング方法において、
既知の形状パラメータと前記関数から求めた未知の形状パラメータを一旦記憶装置に記憶し、その記憶に従いワイヤボンディングを行うことを特徴とするワイヤボンディング方法。
The wire bonding method according to claim 2,
A wire bonding method characterized in that a known shape parameter and an unknown shape parameter obtained from the function are temporarily stored in a storage device, and wire bonding is performed according to the storage.
請求項1に記載のワイヤボンディング方法において、
形状パラメータである前記第1の接続部と前記第2の接続部の位置情報をカメラで認識すると、未知の形状パラメータを前記関数に従い自動的に計算して求め、ループ形状を決定しワイヤボンディングを行うことを特徴とするワイヤボンディング方法。
The wire bonding method according to claim 1,
When the position information of the first connection portion and the second connection portion, which are shape parameters, is recognized by the camera, an unknown shape parameter is automatically calculated according to the function, a loop shape is determined, and wire bonding is performed. The wire bonding method characterized by performing.
請求項4に記載のワイヤボンディング方法において、
前記カメラで認識した位置情報と前記関数から求めた未知の形状パラメータを一旦記憶装置に記憶し、その記憶に従いワイヤボンディングを行うことを特徴とするワイヤボンディング方法。
The wire bonding method according to claim 4, wherein
A wire bonding method characterized in that position information recognized by the camera and an unknown shape parameter obtained from the function are temporarily stored in a storage device, and wire bonding is performed according to the storage.
請求項1に記載のワイヤボンディング方法において、
前記第1の接続部は、半導体チップに設けられており、
前記第2の接続部は、配線基板、若しくはリードフレームのリードに設けられていることを特徴とするワイヤボンディング方法。
The wire bonding method according to claim 1,
The first connection portion is provided on a semiconductor chip;
The wire bonding method, wherein the second connection portion is provided on a lead of a wiring board or a lead frame.
請求項1乃至請求項6のうち何れか1項に記載のワイヤボンディング方法を用いたことを特徴とするワイヤボンディング装置。
A wire bonding apparatus using the wire bonding method according to any one of claims 1 to 6.
JP2004254220A 2004-09-01 2004-09-01 Wire bonding method and wire bonding device Pending JP2006073720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254220A JP2006073720A (en) 2004-09-01 2004-09-01 Wire bonding method and wire bonding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254220A JP2006073720A (en) 2004-09-01 2004-09-01 Wire bonding method and wire bonding device

Publications (2)

Publication Number Publication Date
JP2006073720A true JP2006073720A (en) 2006-03-16
JP2006073720A5 JP2006073720A5 (en) 2006-11-24

Family

ID=36154028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254220A Pending JP2006073720A (en) 2004-09-01 2004-09-01 Wire bonding method and wire bonding device

Country Status (1)

Country Link
JP (1) JP2006073720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258215A (en) * 2007-03-31 2008-10-23 Fukuoka Pref Gov Sangyo Kagaku Gijutsu Shinko Zaidan Actual shape verifying apparatus
CN113218956A (en) * 2021-05-13 2021-08-06 厦门多彩光电子科技有限公司 Welding wire evaluation method for LED lamp bead
CN113962189A (en) * 2021-11-25 2022-01-21 中国电子科技集团公司第二十九研究所 Automatic lead bonding arc quantitative control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258215A (en) * 2007-03-31 2008-10-23 Fukuoka Pref Gov Sangyo Kagaku Gijutsu Shinko Zaidan Actual shape verifying apparatus
CN113218956A (en) * 2021-05-13 2021-08-06 厦门多彩光电子科技有限公司 Welding wire evaluation method for LED lamp bead
CN113962189A (en) * 2021-11-25 2022-01-21 中国电子科技集团公司第二十九研究所 Automatic lead bonding arc quantitative control method
CN113962189B (en) * 2021-11-25 2023-04-21 中国电子科技集团公司第二十九研究所 Automatic wire bonding arc quantization control method

Similar Documents

Publication Publication Date Title
Chauhan et al. Copper wire bonding
US11735505B2 (en) Semiconductor device
US9257403B2 (en) Copper ball bond interface structure and formation
JP2004289153A (en) Wire-bonding for semiconductor package
TW200416915A (en) Wirebonding insulated wire
KR20070120984A (en) Semiconductor device and semiconductor device manufacturing method
US5124277A (en) Method of ball bonding to non-wire bonded electrodes of semiconductor devices
EP1367644A1 (en) Semiconductor electronic device and method of manufacturing thereof
US8012869B2 (en) Bonded structure and bonding method
US20080054052A1 (en) Method of manufacturing semiconductor device
Tan et al. Wire-bonding process development for low-k materials
US20090206459A1 (en) Quad flat non-leaded package structure
JP2006073720A (en) Wire bonding method and wire bonding device
JP2016157880A (en) Method of manufacturing semiconductor device, and semiconductor device
US20080286959A1 (en) Downhill Wire Bonding for QFN L - Lead
US20070262446A1 (en) Stacked bump structure and manufacturing method thereof
US7009305B2 (en) Methods and apparatus for integrated circuit ball bonding using stacked ball bumps
JPWO2004030075A1 (en) Manufacturing method of semiconductor device
US11024599B2 (en) Semiconductor device and method of manufacturing thereof
US6784545B2 (en) Semiconductor device having pad electrode connected to wire
KR940003563B1 (en) Semiconductor device and making method thereof
JP6172058B2 (en) Manufacturing method of semiconductor device
KR100968008B1 (en) A Semiconductor device and a method of manufacturing the same
KR0148883B1 (en) Semiconductor package using double wire bonding
Figueroa et al. Wire Bond Qualification Challenges and Development of First Silver (Ag) Alloy Wire on Clip Bond Surface Mount Package

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215