JP2006073449A - Planar light source - Google Patents
Planar light source Download PDFInfo
- Publication number
- JP2006073449A JP2006073449A JP2004257910A JP2004257910A JP2006073449A JP 2006073449 A JP2006073449 A JP 2006073449A JP 2004257910 A JP2004257910 A JP 2004257910A JP 2004257910 A JP2004257910 A JP 2004257910A JP 2006073449 A JP2006073449 A JP 2006073449A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- planar
- backlight
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 41
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 238000000149 argon plasma sintering Methods 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 description 18
- 239000004973 liquid crystal related substance Substances 0.000 description 14
- 229910002601 GaN Inorganic materials 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 11
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- -1 gallium nitride compound Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 210000002858 crystal cell Anatomy 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910017083 AlN Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000344 low-energy electron-beam lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Led Device Packages (AREA)
- Planar Illumination Modules (AREA)
- Led Devices (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
Abstract
Description
本発明は、チャネルレターやコンピュータ、ワードプロセッサ、テレビジョン等の画像表示に用いる液晶表示素子のバックライト光源などに利用される光拡散フィルムを有する面状光源に係り、特に高輝度化と均一発光及び高混色性を高度にバランスをとった面状光源に関する。 The present invention relates to a planar light source having a light diffusing film used for a backlight light source of a liquid crystal display element used for image display such as a channel letter, a computer, a word processor, and a television. The present invention relates to a planar light source that balances high color mixing.
近年、バックライト光源を有する液晶表示装置が携帯電子機器や各種画像表示機器に利用され始めている。液晶表示装置は、偏光板と液晶セル及びバックライトから構成されている。現在主流であるTNモードTFT液晶表示装置においては、光学補償フィルムを偏光板と液晶セルの間に挿入し、背面からバックライトの光を照射して表示品位の高い液晶表示装置が実現されている。このような液晶表示装置を用いた表示機器は大型化の傾向が強まり低消費電力と長寿命を考慮して、高輝度化が急速に進んでいる発光ダイオードをバックライトの光源として利用され始めようとしている。 In recent years, liquid crystal display devices having a backlight light source have begun to be used in portable electronic devices and various image display devices. The liquid crystal display device includes a polarizing plate, a liquid crystal cell, and a backlight. In the current mainstream TN mode TFT liquid crystal display device, an optical compensation film is inserted between the polarizing plate and the liquid crystal cell, and the backlight light is irradiated from the back surface to realize a liquid crystal display device with high display quality. . Display devices using such a liquid crystal display device are becoming larger, and light emitting diodes that are rapidly increasing in brightness are being used as the light source of the backlight, considering low power consumption and long life. It is said.
例えば、RGB(赤色、緑色及び青色)が発光可能な発光ダイオードを面状に形成され内部が反射性を有する筐体にそれぞれ個々に配置させ、点光源である発光ダイオードからの光を液晶表示装置のバックライトとして利用させることができる。点光源である発光ダイオードを面状にさせるためには、筐体内に配置させた発光ダイオード上に拡散フィルムを配置させる。RGBの発光ダイオードは電流量等を多し、高輝度に発光させることで大型化の傾向にある表示機器に対応することができる。 For example, light emitting diodes capable of emitting RGB (red, green, and blue) are individually arranged in a casing formed with a planar shape and the inside thereof is reflective, and light from the light emitting diode that is a point light source is liquid crystal display device It can be used as a backlight. In order to make the light-emitting diode, which is a point light source, into a planar shape, a diffusion film is disposed on the light-emitting diode disposed in the housing. RGB light-emitting diodes have a large amount of current and can be used for display devices that tend to increase in size by emitting light with high luminance.
しかし、高輝度化のために電流量等を増やすにつれ発光ダイオードから放出される熱を効率よく放出する必要がある。RGBの発光ダイオードは個別に配置すると放熱性を向上させることができるものの、発光ダイオード自身が点光源であるためバックライトして面状に均一発光させることが難しいだけではなく、輝点となる。LEDはこの輝点をなくし均一発光に近づけるためには、拡散剤が多量に入った厚膜の光拡散シートをバックライト全面に配置させるか、拡散剤含有の光拡散シートをバックライト光源から距離をおいて配置させる必要がある。他方、このような拡散剤を配置させるか距離を離間させると光の利用効率が極端に低下するとのトレードオフの関係にある。
例えば、発光ダイオードと拡散フィルムとの距離が40cm以上の距離をとらざるを得ず薄型の面状光源とすることが難しい。したがって、更なる特性改善が求められる現在においては十分ではない。
However, it is necessary to efficiently release the heat released from the light emitting diode as the amount of current is increased to increase the brightness. Although the RGB light emitting diodes can improve heat dissipation when arranged individually, the light emitting diodes themselves are point light sources, so it is not only difficult to backlight and uniformly emit light in a planar shape, but also become bright spots. In order for the LED to eliminate this bright spot and bring it closer to uniform light emission, a thick light diffusion sheet containing a large amount of a diffusing agent is disposed on the entire surface of the backlight, or the light diffusing agent-containing light diffusing sheet is spaced from the backlight light source. It is necessary to arrange them. On the other hand, when such a diffusing agent is arranged or the distance is separated, there is a trade-off relationship that the light use efficiency is extremely lowered.
For example, the distance between the light emitting diode and the diffusion film must be a distance of 40 cm or more, and it is difficult to obtain a thin planar light source. Therefore, it is not sufficient at present when further improvement of characteristics is required.
このように本発明と比較のために示した面状光源では、輝度むらや色むらを低減させようとすると面状光源自身の厚みが大きくなるか発光ダイオードの輝度を十分に向上させることができない。本発明はこのような課題を解決するためになされたもので、大型化可能且つ薄型で、輝度むら及び色むらを低減させた面状光源を提供するものである。 As described above, in the planar light source shown for comparison with the present invention, when the luminance unevenness and the color unevenness are reduced, the thickness of the planar light source itself is increased or the luminance of the light emitting diode cannot be sufficiently improved. . The present invention has been made to solve such problems, and provides a planar light source that can be increased in size and is thin and has reduced luminance unevenness and color unevenness.
本発明は筐体内に、少なくとも第一の発光色を発光する第一の発光素子と、第一の発光色とは異なる第二の発光色を発光する第二の発光素子を有するバックライトと、該バックライト上に配してなる光拡散フィルムとを有する面状光源であって、光拡散フィルムはバックライトと対向する第一の面側にハーフミラーと、バックライトと反対側の第二の面側に光拡散層とを有する面状光源である。
この構成により、複数種の発光ダイオードが分離して配置されていても、発光ダイオードからの直接光の一部がハーフミラーで反射され、筐体で反射、混色された光としてを再び光拡散層側に提供することが可能になる。従って、各発光ダイオードの明るさを、維持したまま全体として色、明るさが均一に変化する面状光源を得ることができる。また、外光からの光を拡散層を介して反射吸収させることができるため、液晶表示装置の下に配置させた場合には視野角特性を向上させることができるという効果も奏する。なお、発光素子が少なくとも3種類であって補色によって白色が発光可能な発光ダイオードとすることでモノカラー、マルチカラー及びフルカラー表示可能とできることはいうまでもない。さらに、フィルムの物理強度が向上し浪打を低減させることができる。本発明の面状光源では、光拡散フィルムの表面に偏向フィルムを有する。接着剤を介して偏向フィルムを形成させることで液晶表示装置においては更に光利用率を向上させると共に薄型化に貢献させることができる。
The present invention includes a backlight having a first light emitting element that emits at least a first light emission color and a second light emitting element that emits a second light emission color different from the first light emission color in the housing, A planar light source having a light diffusing film disposed on the backlight, the light diffusing film having a half mirror on the first surface facing the backlight and a second mirror opposite to the backlight. A planar light source having a light diffusion layer on the surface side.
With this configuration, even if a plurality of types of light emitting diodes are arranged separately, a part of the direct light from the light emitting diodes is reflected by the half mirror, and the light reflected and mixed by the housing is again used as the light diffusion layer. Can be provided to the side. Accordingly, it is possible to obtain a planar light source in which the color and brightness change uniformly as a whole while maintaining the brightness of each light emitting diode. In addition, since light from outside light can be reflected and absorbed through the diffusion layer, the viewing angle characteristic can be improved when it is disposed under the liquid crystal display device. It goes without saying that mono-color, multi-color, and full-color display can be achieved by using a light-emitting diode that can emit at least three kinds of light-emitting elements and emit white light by a complementary color. Furthermore, the physical strength of the film can be improved, and ramming can be reduced. The planar light source of the present invention has a deflection film on the surface of the light diffusion film. By forming the deflecting film through the adhesive, the liquid crystal display device can further improve the light utilization rate and contribute to the thinning.
本発明の請求項2に記載の面状光源では、光拡散フィルムの光拡散層は樹脂中に針状、フィラー状の拡散剤が含有されている面状光源である。これによって、光拡散フィルム に含有される透光性の樹脂内部の散乱効果により拡散されればされるほど、視野角特性は良くなる。特に、ハーフミラーを透過した光が層状に光が広がる傾向にあるため、点状光源である発光ダイオードの輝度ムラ色むらにおいて顕著な効果を奏する。さらに、本発明においては拡散層の裏面側にハーフミラーがあるため、後方散乱を抑制し、正面輝度の低下を抑制し、液晶表示装置を用いた場合には画像鮮明性の劣化(画像の呆け)を抑制することもできる。
In the planar light source according to
本発明の請求項3に記載の面状光源は、光拡散フィルムのハーフミラーが部分的に開口部を有する穴あきミラーである。これによって、輝度ムラ及び色むらを抑制しつつ更に正面輝度を向上させることができる。
The planar light source according to
本発明の請求項4に記載の面状光源は、光拡散フィルムの光拡散層及び/又はハーフミラー表面が凹凸である。これによって、光拡散層の拡散層側表面に適度な凹凸を設け、外光を表面散乱させる効果により外光の写り込みを抑えることができる。他方、ハーフミラー側に凹凸を設けることで色むら及び輝度ムラを更に低減させることができる。
In the planar light source according to
以上説明したように本発明は、各発光ダイオードが発する光の一部を反射させるミラーを設け、発散した光を前面に放出することで、均一に混色した発光面を得ることができ、高輝度且つ均一な薄型可能な面状光源が得られるという優れた効果を有するものである。 As described above, the present invention provides a mirror that reflects a part of the light emitted from each light emitting diode and emits the diverged light to the front surface, whereby a uniformly mixed light emitting surface can be obtained, and high brightness In addition, the present invention has an excellent effect that a uniform and thin surface light source can be obtained.
以下、本発明の光拡散フィルム を用いた面状光源について詳細に説明する。 本発明の作用は詳細には定かではないが、発光ダイオードからの光をハーフミラーで一部反射させることによって再度筐体内に光を反射させることによって混色性を向上させると共に透過光をそのまま光拡散層によって拡散させることによって、輝度ムラ及び色むらを低減しつつ光の利用効率を向上させることができると考えられる。
(光拡散フィルムのハーフミラー)
本発明のハーフミラーは混色性を向上させるためには透過率50%以上が好ましく、輝度の低下を抑制させつつ混色性を向上させるために、より好ましくは透過率が70%以上であり、更に好ましくは透過率が90%以上である。このようなハーフミラーは樹脂中に拡散剤が含有された拡散層上にAg、Al、AuやRhなどの金属をスパッタ法や蒸着法などによって形成させることができる。なお、穴あきミラーにする場合は、ハーフミラー形成後エッチングによって形成することができる。穴の開口部はLEDの直下でなければハーフミラーといっても反射率をさらに上げて輝度ムラをさらに低減させることもできる。穴の形状や大きさも発光ダイオードの数や配置によって適宜調整することができる。
(光拡散フィルムの凹凸)
また視認性の観点から、光拡散層の拡散層側表面に適度な凹凸を設け、外光を表面散乱させる効果により外光の写り込みを抑えることができる。他方、ハーフミラー側に凹凸を設けることで色むら及び輝度ムラを更に低減させることができる。光拡散フィルム の表面凹凸を制御するには、透光性樹脂微粒子の塗布液溶剤による膨潤での体積増加率制御したり、拡散層自体の形成時に凹凸の形成された金型でプレスしたりして形成することができる。
(拡散層の拡散剤)
拡散層内に使用する拡散剤としては、アクリル−スチレン共重合体粒子、ポリスチレン粒子、アクリル樹脂粒子、ジビニルベンゼン粒子等の有機物や酸化チタン、酸化ケイ素、タルクなどの無機物を利用することができる。有機物の場合は、重合性モノマーおよび架橋剤の乳化重合、ソープフリー重合、懸濁重合、シード重合、二段階膨潤重合、分散重合法等で得られる重合体からなる架橋樹脂を好適に利用できる。
(拡散層の樹脂)
拡散層の樹脂は光拡散フィルムのベースともなり得るし、ベース樹脂上に形成させても良い。内部に拡散剤が含有されるものであり好適には約50μmから400μm、量産性を考慮してより好ましくは約90μm150μmである。また、ベース樹脂材料としては、ポリエステルやポリカーボネート樹脂が好適に利用できる。ベース樹脂上に拡散層を形成させる場合は、ポリエステル(PET)樹脂上に拡散剤をスクリーン印刷(設備が比較的に簡単に作れ小型少量多品種に向いているスクリーン印刷法や。機材の厚みに関わらず拡散剤の膜厚を一定にすることができるリバースコーティング法、拡散シートの膜厚制御が簡単なトップコーティング法で形成させることができる。
(発光素子)
発光素子は、GB(緑色や青色)などが発光可能な発光ダイオードとして利用する場合は、窒化ガリウム系化合物半導体が好適に上げられる。窒化ガリウム系化合物半導体を用いた発光素子は、MOCVD法等により基板上にInGaN等の窒化ガリウム系半導体を発光層として形成することにより作製される。発光素子の構造としては、pn接合などを有するホモ構造ヘテロ構造あるいはダブルヘテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる程度に薄く形成した単一量子井戸構造や多重量子井戸構造とすることもできる。
Hereinafter, the planar light source using the light diffusion film of the present invention will be described in detail. Although the operation of the present invention is not clear in detail, the light from the light emitting diode is partially reflected by the half mirror to reflect the light again into the housing, thereby improving the color mixing property and transmitting the light as it is. It is considered that the light utilization efficiency can be improved while reducing the luminance unevenness and the color unevenness by diffusing by the layer.
(Half mirror of light diffusion film)
The half mirror of the present invention preferably has a transmittance of 50% or more in order to improve color mixing properties, more preferably has a transmittance of 70% or more in order to improve color mixing properties while suppressing a decrease in luminance. The transmittance is preferably 90% or more. In such a half mirror, a metal such as Ag, Al, Au, or Rh can be formed on a diffusion layer containing a diffusing agent in a resin by a sputtering method or a vapor deposition method. In the case of forming a perforated mirror, it can be formed by etching after forming the half mirror. If the opening of the hole is not directly under the LED, it can be said to be a half mirror, and the reflectance can be further increased to further reduce luminance unevenness. The shape and size of the hole can also be adjusted as appropriate depending on the number and arrangement of the light emitting diodes.
(Unevenness of light diffusion film)
In addition, from the viewpoint of visibility, it is possible to suppress reflection of external light by providing an appropriate unevenness on the diffusion layer side surface of the light diffusion layer and scattering the external light on the surface. On the other hand, color unevenness and luminance unevenness can be further reduced by providing irregularities on the half mirror side. In order to control the surface unevenness of the light diffusion film, the volume increase rate by the swelling of the translucent resin fine particles by the coating solution solvent can be controlled, or the mold can be pressed with the unevenness when forming the diffusion layer itself. Can be formed.
(Diffusion agent for diffusion layer)
As a diffusing agent used in the diffusion layer, organic substances such as acrylic-styrene copolymer particles, polystyrene particles, acrylic resin particles, and divinylbenzene particles, and inorganic substances such as titanium oxide, silicon oxide, and talc can be used. In the case of an organic substance, a crosslinked resin made of a polymer obtained by emulsion polymerization of a polymerizable monomer and a crosslinking agent, soap-free polymerization, suspension polymerization, seed polymerization, two-stage swelling polymerization, dispersion polymerization, or the like can be suitably used.
(Diffusion layer resin)
The resin of the diffusion layer can be the base of the light diffusion film or may be formed on the base resin. A diffusing agent is contained inside, preferably about 50 μm to 400 μm, and more preferably about 90 μm to 150 μm in view of mass productivity. Further, as the base resin material, polyester or polycarbonate resin can be suitably used. When forming a diffusion layer on the base resin, screen printing of a diffusing agent on polyester (PET) resin (screen printing method that is relatively easy to make and suitable for small and many types. Regardless, it can be formed by a reverse coating method in which the film thickness of the diffusing agent can be made constant, or a top coating method in which the film thickness control of the diffusion sheet is simple.
(Light emitting element)
When the light-emitting element is used as a light-emitting diode capable of emitting GB (green or blue) or the like, a gallium nitride compound semiconductor is preferably raised. A light emitting element using a gallium nitride compound semiconductor is manufactured by forming a gallium nitride semiconductor such as InGaN as a light emitting layer on a substrate by MOCVD or the like. Examples of the structure of the light emitting element include a homostructure heterostructure having a pn junction and a double heterostructure. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed thin enough to produce a quantum effect can be used.
窒化ガリウム系化合物半導体を使用した場合、半導体基板にはサファイヤ、スピネル、SiC、Si、ZnO等の材料が用いることができるが、結晶性の良い窒化ガリウムを形成させるためにはGaN基板を用いることが好ましいが、コスト及び量産性の点からは現在のところサファイヤ基板やシリコン基板を用いることが多い。このサファイヤ基坂上などにGaN、AlN、AlGaN等のバッファー層を介してpn接合を形成するように窒化ガリウム半導体層を形成する。窒化ガリウム系半導体は、不純物をドーブしない状態でn型導電性を示すが、発光効率を向上させるなど所望の特性(キャリヤ濃度等)のn型窒化ガリウム半導体を形成するためには、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜ドープすることが好ましい。一方、p型窒化ガリウム半導体を形成する場合は、p型ドーパンドであるZn、Mg、Be、Ca、Sr、Ba等をドープする。尚、窒化ガリウム系化合物半導体は、p型ドーパントをドーブしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱、低速電子線照射やプラズマ照射等によりp型化させることが好ましい。エッチングなどによりp型及びN型の窒化ガリウム半導体の表面を露出させた後、各半導体層上にスバッタリング法や真空蒸着法などを用いて所望の形状の各電極を形成する。 When a gallium nitride compound semiconductor is used, a material such as sapphire, spinel, SiC, Si, or ZnO can be used for the semiconductor substrate, but a GaN substrate is used to form gallium nitride with good crystallinity. However, from the viewpoint of cost and mass productivity, a sapphire substrate or a silicon substrate is often used at present. A gallium nitride semiconductor layer is formed on the sapphire base slope so as to form a pn junction through a buffer layer of GaN, AlN, AlGaN or the like. A gallium nitride semiconductor exhibits n-type conductivity without doping impurities, but an n-type dopant is needed to form an n-type gallium nitride semiconductor having desired characteristics (carrier concentration, etc.) such as improving luminous efficiency. It is preferable to appropriately dope Si, Ge, Se, Te, C and the like. On the other hand, when forming a p-type gallium nitride semiconductor, it is doped with Zn, Mg, Be, Ca, Sr, Ba, etc. which are p-type dopants. In addition, since the gallium nitride-based compound semiconductor is difficult to be converted into a p-type simply by doping a p-type dopant, it is preferable to convert the p-type dopant into p-type by heating in a furnace, low-energy electron beam irradiation, plasma irradiation, or the like. After exposing the surfaces of the p-type and N-type gallium nitride semiconductors by etching or the like, each electrode having a desired shape is formed on each semiconductor layer by using a sputtering method, a vacuum deposition method, or the like.
次に、以上のようにして形成された半導体ウエハー等を、ダイシングソーにより直接フルカットする方法、又は刃先幅よりも広い幅の溝を切り込んだ後(ハーフカット)、外力によって半導体ウエハーを割る方法、あるいは、先端のダイヤモンド針が往復直線運動するスクライバーにより半導体ウエハーに極めて細いスクライブライン(経線)を例えば碁盤目状に引いた後、外力によってウエハーを割る方法等を用いて、半導体ウエハーをチップ状にカットする。このようにして窒化ガリウム系化合物半導体からなる発光素子を形成することができる。
このような発光素子をリード電極が形成された樹脂パッケージ内にダイボンドしワイヤーボンディングによりリード電極とワイヤーとを電気的に接続させることによって発光素子としてSMD型の発光ダイオードを形成させることができる。なお、凹部を有するパッケージだけでなく、キャビティを持たない発光ダイオードとしても利用できる。光の拡散性、小型化及び実装製については、SMD型発光ダイオードを好適に利用できるが、これのみに限られない。赤色のLEDについては同様にMOCVD法やMOVEP法などを用いて、GaP、GaAlP、GaAlInPなどの材料で形成させることができる。
本発明において第一の発光素子を青色、第二の発光素子を緑色、第三の発光素子を赤色とすることでフルカラーの液晶表示装置を構成することができるがこれのみに限られない。
(筐体)
本発明の筐体はバックライトを構成する一部であり、内部に発光素子を配置させると共に電気的に接続させられればよい。本発明のハーフミラーの効果をより向上させるためには筐体はエポキシ樹脂中に拡散剤が混入されたパッケージなどが好適に利用することができる。本発明の光拡散フィルムを配置させる場合は、光拡散フィルムの支持体としてアクリル樹脂を筐体の上面に配置させてもよいし、アクリル樹脂を導光板として利用することも可能である。
Next, a method of directly cutting a semiconductor wafer or the like formed as described above with a dicing saw, or a method of cutting a groove having a width wider than the cutting edge width (half cut) and then breaking the semiconductor wafer with an external force Or, by drawing a very thin scribe line (meridian line) on the semiconductor wafer with a scriber in which the diamond needle at the tip moves linearly, for example, in a grid pattern, the wafer is divided into chips by using an external force or the like. Cut into. In this way, a light emitting element made of a gallium nitride compound semiconductor can be formed.
An SMD type light emitting diode can be formed as a light emitting element by die-bonding such a light emitting element in a resin package in which a lead electrode is formed and electrically connecting the lead electrode and the wire by wire bonding. It can be used not only as a package having a recess but also as a light emitting diode without a cavity. For light diffusibility, miniaturization, and mounting, SMD type light emitting diodes can be suitably used, but are not limited thereto. Similarly, the red LED can be formed of a material such as GaP, GaAlP, or GaAlInP using the MOCVD method, the MOVEP method, or the like.
In the present invention, a full-color liquid crystal display device can be configured by setting the first light-emitting element to blue, the second light-emitting element to green, and the third light-emitting element to red. However, the present invention is not limited to this.
(Casing)
The housing of the present invention is a part constituting the backlight, and it is sufficient that the light emitting element is disposed inside and electrically connected. In order to further improve the effect of the half mirror of the present invention, a package in which a diffusing agent is mixed in an epoxy resin can be suitably used as the casing. When the light diffusing film of the present invention is disposed, acrylic resin may be disposed on the upper surface of the housing as a support for the light diffusing film, or acrylic resin may be used as the light guide plate.
以下、本発明の実施例を説明するが、これのみ限られないことは言うまでもない。図1は本発明の一実施例であるRGBの各発光ダイオードを用いた面状光源の模式的断面図である。本発明実施例の面状光源は、RGBの発光ダイオードを各ワンセットとして、それぞれ表面実装型の発光ダイオードを直下型バックライトとしてチタン酸バリウムが含有された樹脂からなる筐体内に配置させると共に電気的に接続させてある。筐体の上部にはアクリル樹脂の支持体を配置させてその上に光拡散シートを配置させる。発光ダイオードからのアクリル板上面との距離は約22cmで形成させてある。光拡散シートは厚さ100μmのポリエステル樹脂上にリバースコーティングを用いて針状酸化ケイ素含有樹脂を拡散層として塗布硬化して形成させる。他方、このシートの拡散層が形成されていない面側にロールtoロールでAl蒸着膜を形成させる。バックライトを構成する透光性アクリル板上に光拡散フィルムを配置させることによって本発明の面状光源を構成できる。 Examples of the present invention will be described below, but it is needless to say that the present invention is not limited thereto. FIG. 1 is a schematic sectional view of a planar light source using RGB light emitting diodes according to an embodiment of the present invention. The planar light source according to the embodiment of the present invention includes an RGB light-emitting diode as a set, and a surface-mounted light-emitting diode as a direct-type backlight in a housing made of a resin containing barium titanate and an electric light source. Connected. An acrylic resin support is disposed on the top of the housing, and a light diffusion sheet is disposed thereon. The distance from the light emitting diode to the top surface of the acrylic plate is about 22 cm. The light diffusion sheet is formed by applying and curing a needle-like silicon oxide-containing resin as a diffusion layer on a polyester resin having a thickness of 100 μm using a reverse coating. On the other hand, an Al vapor deposition film is formed by roll-to-roll on the side of the sheet where the diffusion layer is not formed. The planar light source of the present invention can be constituted by arranging a light diffusion film on a translucent acrylic plate constituting the backlight.
以上に述べたように 本発明は、チャネルレターやコンピュータ、ワードプロセッサ、テレビジョン等の画像表示に用いる液晶表示素子のバックライト光源などに利用される面状光源として利用できる。 As described above, the present invention can be used as a planar light source used for a backlight light source of a liquid crystal display element used for image display such as a channel letter, a computer, a word processor, and a television.
1・・・ハーフミラー
2・・・拡散層を有する光拡散フィルム
3・・・光散乱フィルムを支持するアクリル板
4・・・赤色が発光可能な表面実装型発光ダイオード
5・・・緑色が発光可能な表面実装型発光ダイオード
6・・・青色が発光可能な表面実装型発光ダイオード
7・・・筐体
DESCRIPTION OF SYMBOLS 1 ...
Claims (4)
前記光拡散フィルムはバックライトと対向する第一の面側にハーフミラーと、バックライトと反対側の第二の面側に光拡散層とを有することを特徴とする面状光源。 A backlight having a first light emitting element that emits at least a first light emission color, a second light emitting element that emits a second light emission color different from the first light emission color, and the backlight. A planar light source having a light diffusing film disposed thereon,
The planar light source, wherein the light diffusion film has a half mirror on the first surface facing the backlight and a light diffusion layer on the second surface opposite to the backlight.
The planar light source according to claim 1, wherein a light diffusion layer and / or a half mirror surface of the light diffusion film is uneven.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257910A JP4453492B2 (en) | 2004-09-06 | 2004-09-06 | Planar light source and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004257910A JP4453492B2 (en) | 2004-09-06 | 2004-09-06 | Planar light source and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006073449A true JP2006073449A (en) | 2006-03-16 |
JP4453492B2 JP4453492B2 (en) | 2010-04-21 |
Family
ID=36153827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004257910A Expired - Fee Related JP4453492B2 (en) | 2004-09-06 | 2004-09-06 | Planar light source and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4453492B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027916A (en) * | 2006-07-24 | 2008-02-07 | Samsung Electronics Co Ltd | Backlight assembly, its manufacturing method, and display device including it |
KR101008389B1 (en) * | 2008-06-27 | 2011-01-26 | 주식회사 미래산업 | device for cover and manufacturing method thereof |
JP2011022565A (en) * | 2009-06-17 | 2011-02-03 | Keiwa Inc | Translucent reflection sheet, and backlight unit employing the same |
JP2012068449A (en) * | 2010-09-24 | 2012-04-05 | Gunze Ltd | Anisotropic light diffusion film for led illumination and led illumination employing the same |
JP2012523080A (en) * | 2009-04-02 | 2012-09-27 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Reflector with mixing chamber |
KR101194272B1 (en) | 2012-07-11 | 2012-10-29 | 주식회사 파인테크닉스 | Surface source of light type led illuminator |
WO2015001816A1 (en) * | 2013-07-04 | 2015-01-08 | シャープ株式会社 | Lighting module and lighting system |
CN110707189A (en) * | 2017-02-08 | 2020-01-17 | 首尔半导体株式会社 | Light emitting module |
US11804571B2 (en) | 2017-02-08 | 2023-10-31 | Seoul Semiconductor Co., Ltd. | Light emitting diode and light emitting module comprising the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101478124B1 (en) * | 2012-12-12 | 2015-01-02 | 경북대학교 산학협력단 | Led package and menufacturing method of the same |
-
2004
- 2004-09-06 JP JP2004257910A patent/JP4453492B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027916A (en) * | 2006-07-24 | 2008-02-07 | Samsung Electronics Co Ltd | Backlight assembly, its manufacturing method, and display device including it |
KR101008389B1 (en) * | 2008-06-27 | 2011-01-26 | 주식회사 미래산업 | device for cover and manufacturing method thereof |
JP2012523080A (en) * | 2009-04-02 | 2012-09-27 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Reflector with mixing chamber |
JP2011022565A (en) * | 2009-06-17 | 2011-02-03 | Keiwa Inc | Translucent reflection sheet, and backlight unit employing the same |
JP2012068449A (en) * | 2010-09-24 | 2012-04-05 | Gunze Ltd | Anisotropic light diffusion film for led illumination and led illumination employing the same |
KR101194272B1 (en) | 2012-07-11 | 2012-10-29 | 주식회사 파인테크닉스 | Surface source of light type led illuminator |
WO2015001816A1 (en) * | 2013-07-04 | 2015-01-08 | シャープ株式会社 | Lighting module and lighting system |
CN110707189A (en) * | 2017-02-08 | 2020-01-17 | 首尔半导体株式会社 | Light emitting module |
CN110707189B (en) * | 2017-02-08 | 2023-09-01 | 首尔半导体株式会社 | Light emitting module |
US11804571B2 (en) | 2017-02-08 | 2023-10-31 | Seoul Semiconductor Co., Ltd. | Light emitting diode and light emitting module comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP4453492B2 (en) | 2010-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5613361B2 (en) | Low profile side-emitting LED | |
US8080828B2 (en) | Low profile side emitting LED with window layer and phosphor layer | |
US7652301B2 (en) | Optical element coupled to low profile side emitting LED | |
US9188310B2 (en) | Member for backlight unit using quantum dots and method of manufacturing the same | |
TWI658308B (en) | Light emitting devices | |
US9417380B2 (en) | Light emitting device array and backlight unit | |
TWI537526B (en) | Lighting device with light sources positioned near the bottom surface of a waveguide | |
US8104907B2 (en) | Remote wavelength converting material configuration for lighting | |
JP2006253336A (en) | Light source device | |
JP2006134975A (en) | Lighting device and indicating device using the same | |
JP2005109289A (en) | Light-emitting device | |
JP4453492B2 (en) | Planar light source and manufacturing method thereof | |
JP3409666B2 (en) | Surface light emitting device and display device using the same | |
JP4107086B2 (en) | Planar light emitting device and display device using the same | |
KR20080062259A (en) | Light divice, method of fabricating the same, backlight unit and liquid crystal display divice having the same | |
KR101888603B1 (en) | Light emitting device package and display device | |
JP2009099881A (en) | Light-emitting device, and light-emitting module and backlight device using the device | |
JP2007103981A (en) | Light source device | |
JP3834188B2 (en) | Semiconductor light emitting device | |
KR102509061B1 (en) | Light emitting device package | |
CN213876244U (en) | Direct type backlight module | |
JP2003282956A (en) | Semiconductor light-emitting device | |
KR20120045541A (en) | Light emitting device | |
KR20160080486A (en) | Light emitting diode package and backlight unit including the same | |
KR101824881B1 (en) | Backlight Unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100112 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100125 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4453492 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |