JP2006071805A - Cleaning device for cylindrical substrate, and method for cleaning the cylindrical substrate - Google Patents

Cleaning device for cylindrical substrate, and method for cleaning the cylindrical substrate Download PDF

Info

Publication number
JP2006071805A
JP2006071805A JP2004252992A JP2004252992A JP2006071805A JP 2006071805 A JP2006071805 A JP 2006071805A JP 2004252992 A JP2004252992 A JP 2004252992A JP 2004252992 A JP2004252992 A JP 2004252992A JP 2006071805 A JP2006071805 A JP 2006071805A
Authority
JP
Japan
Prior art keywords
cleaning
substrate
cylindrical
cylindrical substrate
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004252992A
Other languages
Japanese (ja)
Inventor
Masamichi Seko
真路 瀬古
Wataru Nakabayashi
渉 中林
Hajime Tanaka
一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004252992A priority Critical patent/JP2006071805A/en
Publication of JP2006071805A publication Critical patent/JP2006071805A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent redeposition during cleaning a substrate, and to enhance cleanliness. <P>SOLUTION: The cleaning device 100 has cleaning tanks 40a, 40b, 40c, 40d in a form to be filled with a cleaning liquid 41 and to independently house each substrate 2. The cleaning liquid 41 is supplied from the bottom of a recovery tank 44 by a liquid supply pump 46 via a filter 48 and a liquid supply passage 50 to the bottom of each cleaning tank 40a, 40b, 40c, 40d; while the cleaning liquid 41 overflowing the upper open end of the cleaning tank 40a, 40b, 40c, 40d is once reserved in an overflow liquid receiving tank 42, then returned to the recovery tank 44 via a return passage 54 and reused. A plurality of substrates 2 are held by the inner surfaces, by a holding tool 30 provided in a holding device 21 and immersed in the respective cleaning tanks 40a, 40b, 40c, 40d. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、円筒体基材の洗浄装置および洗浄方法、円筒状基材並びに電子写真感光体の製造方法に関する。   The present invention relates to a cylindrical substrate cleaning apparatus and method, a cylindrical substrate, and an electrophotographic photoreceptor manufacturing method.

近年、電子写真技術を用いたプリンター、複写機等には、より一層の高画質が要求されている。これらプリンター、複写機等には電子写真感光体(OPC)が使用されていることが多く、電子写真感光体としては、現在、アルミニウム管等の導電性基材上に下引き層(UCL)、電荷発生層(CGL)及び電荷輸送層(CTL)を順次積層したものが主流となっている。この電子写真感光体に使用する導電性基材は、アルミニウム合金、銅、ニッケル、ステンレス、真鍮などの金属製、あるいは紙、プラスチック、ガラスなど多種の材質からなる円筒状基体が挙げられるが、低価格、加工の容易さ、得られる寸法や形状の精度、強度及び耐久性、重量などの点でアルミニウム合金がもっとも一般的である。   In recent years, printers and copiers using electrophotographic technology have been required to have higher image quality. An electrophotographic photosensitive member (OPC) is often used for these printers, copiers, etc., and as an electrophotographic photosensitive member, an undercoat layer (UCL) is currently formed on a conductive substrate such as an aluminum tube. A structure in which a charge generation layer (CGL) and a charge transport layer (CTL) are sequentially laminated is the mainstream. Examples of the conductive substrate used for the electrophotographic photosensitive member include a cylindrical substrate made of various materials such as aluminum alloy, copper, nickel, stainless steel, brass, and various materials such as paper, plastic, and glass. Aluminum alloys are most common in terms of price, ease of processing, accuracy of dimensions and shapes obtained, strength and durability, weight, and the like.

電子写真感光体用基体は形状精度、表面性を干渉縞防止等の観点から、所望の状態に形成する必要があり、切削、研削、ブラストなどの加工を施すことがある。例えば、図2に示すように、基体2の表面を所望の粗さにするために、基体2はホーニング装置60内にてホーニング処理される。ホーニング装置60には、移動用ガイド62に沿って上下動するスライド板64に支持された支持アーム66が設けられ、この支持アーム66の先端には、基体2の上端部を保持する保持装置61が設けられている。また、基体2の表面を所望の粗さにするための研磨剤を含有するホーニング液を基体2の表面に噴射するノズル68が設けられている。噴射後のホーニング液は循環路70を介してノズル68に戻される。このホーニング処理において、基体2の表面には、研磨剤等が若干残留することとなる。   The substrate for an electrophotographic photoreceptor needs to be formed in a desired state from the viewpoint of preventing the interference fringes and the like in terms of shape accuracy and surface properties, and may be subjected to processing such as cutting, grinding, and blasting. For example, as shown in FIG. 2, the substrate 2 is honed in a honing apparatus 60 in order to make the surface of the substrate 2 have a desired roughness. The honing device 60 is provided with a support arm 66 supported by a slide plate 64 that moves up and down along a moving guide 62, and a holding device 61 that holds the upper end of the base 2 at the tip of the support arm 66. Is provided. In addition, a nozzle 68 is provided for injecting a honing liquid containing an abrasive for making the surface of the substrate 2 a desired roughness onto the surface of the substrate 2. The injected honing liquid is returned to the nozzle 68 through the circulation path 70. In this honing process, a slight amount of abrasive or the like remains on the surface of the substrate 2.

これらの処理の後に、基体に付着している異物、油分を何らかの洗浄を施してから、塗膜形成を行う。このような塗膜は薄膜でかつ均一な厚さに塗工する必要があり、前処理として基体表面の汚れを十分に洗浄して除去する必要がある。洗浄で汚れを十分に除去できないと塗膜品質を損ない、画質上黒点、白点、ハーフトーンむらなどの欠陥を生じる。   After these treatments, the foreign matter and oil adhering to the substrate are subjected to some cleaning, and then the coating film is formed. Such a coating film needs to be applied in a thin film with a uniform thickness, and as a pretreatment, it is necessary to sufficiently clean and remove the surface of the substrate. If the dirt cannot be removed sufficiently by washing, the quality of the coating film is impaired, and defects such as black spots, white spots, and halftone unevenness are caused in terms of image quality.

洗浄剤には、従来フロンなどのハロゲン化炭化水素が多く使用されてきたが、地球環境保護の観点からオゾン層を破壊しない炭化水素系、水系、準水系の洗浄剤が使用されることが多くなってきている。   Conventionally, halogenated hydrocarbons such as chlorofluorocarbons have been used as cleaning agents. However, hydrocarbon-based, water-based, and semi-water-based cleaning agents that do not destroy the ozone layer are often used from the viewpoint of protecting the global environment. It has become to.

洗浄の方法としては、洗浄液を満たした槽に基体を導入し超音波をかける浸漬洗浄、ジェットノズルなどによる洗浄液の高圧噴射洗浄、ブラシやブレードなどの摺擦部材を用いるこすり洗浄など各種の手法が多く採用されている。いずれの洗浄法においても、基体表面に付着した洗浄剤を洗い流す目的で、洗浄の後にすすぎ洗浄の工程を設けるのが一般的である。すすぎは、すすぎ洗浄槽に純水をオーバーフロー循環しながら満たし、そこに基体を浸漬し、所定の時間保持した後に引き上げて基体表面の洗浄剤を純水と置換する。洗浄剤が十分に置換されるまで複数段のすすぎ洗浄槽でおこなわれることが多い。   As cleaning methods, there are various methods such as immersion cleaning in which a substrate is introduced into a tank filled with the cleaning liquid and ultrasonic waves are applied, high-pressure jet cleaning of the cleaning liquid using a jet nozzle or the like, and rubbing cleaning using a rubbing member such as a brush or blade. Many have been adopted. In any of the cleaning methods, a rinsing process is generally provided after cleaning for the purpose of washing away the cleaning agent adhering to the substrate surface. In the rinsing, pure water is filled into the rinsing washing tank while overflowing circulation, the substrate is immersed therein, held for a predetermined time, and then pulled up to replace the cleaning agent on the substrate surface with pure water. It is often performed in a multi-stage rinse tank until the cleaning agent is sufficiently replaced.

また、実際の生産工程では大量の基体表面を効率的に洗浄する必要があるため、一度に複数の基体を同時に洗浄にかけるのが一般的であり、図15に示すように、洗浄液41を満たした浸漬槽43に複数の基体2を浸漬用台45に多列に密集させて配列し、保持部47を用いて浸漬用台45を降下させて浸漬させ、適宜超音波を照射させながら洗浄した後引き上げて次工程へ送る浸漬洗浄がよく用いられている。すすぎに関しても同様であり、純水を満たした槽に複数の基体を多列に配列した状態で同時に浸漬させ、すすぎを施した後、その槽から引き上げて次工程へ送られるすすぎ洗浄が利用されている。   Further, since it is necessary to efficiently clean a large number of substrate surfaces in an actual production process, it is common to simultaneously wash a plurality of substrates at the same time. As shown in FIG. A plurality of bases 2 are arranged in a multi-row arrangement on the immersion table 45 in the immersion tank 43, and the immersion table 45 is lowered and immersed using the holding unit 47, and washed while appropriately irradiating ultrasonic waves. Immersion cleaning that is pulled up and sent to the next process is often used. The same is true for rinsing, and a rinsing cleaning is used in which a plurality of substrates are simultaneously immersed in a tank filled with pure water in a multi-row array, rinsed, and then lifted from the tank and sent to the next process. ing.

しかしながら、前述の浸漬洗浄方法には次のような問題点があり、感光体用基体の浄法として十分なものではなかった。   However, the above-described immersion cleaning method has the following problems, and is not sufficient as a method for cleaning a photoreceptor substrate.

すなわち、複数の基体を浸漬して洗浄またはすすぎを施す場合、浸漬槽中に空中あるいは基体から持ち込まれる油分や異物が浮遊し、そこから洗浄またはすすぎの終わった基体を引き上げる際に基体表面に再度付着してしまう。一般に槽中の異物を槽から除去するのに洗浄液をオーバーフロー循環などするが、複数の基体を一括して一つの洗浄槽中に導入するため槽が大きなものになり、槽中の異物が確実にオーバーフローされず十分な油分や異物の除去ができなかった。特に生産性を考慮し浸漬する基体の集積度を上げると、隣接する基体同士で、剥離される異物が再付着する現象が顕著になり、洗浄品質が低下する。   That is, when washing or rinsing by immersing a plurality of substrates, oil or foreign matter brought into the air or from the substrate floats in the dipping bath, and when the washed or rinsed substrate is pulled up from the substrate, the substrate surface is re-applied. It will stick. Generally, in order to remove foreign substances in the tank, the cleaning liquid is overflow-circulated. However, since multiple substrates are introduced into one cleaning tank at a time, the tank becomes large, and the foreign substances in the tank are reliably The oil did not overflow and sufficient oil and foreign matter could not be removed. In particular, when the degree of integration of the substrates to be immersed is increased in consideration of productivity, the phenomenon that the foreign matter to be peeled reattaches between adjacent substrates becomes remarkable, and the cleaning quality deteriorates.

本発明は、前記問題点を解消することを目的としてなされたもので、複数の感光体を一括的に洗浄あるいはすすぎ洗浄する場合においても、十分な油分や異物の除去が可能で良好な洗浄品質が確保できる方法を提供しようとするものである。   The present invention has been made for the purpose of solving the above-mentioned problems, and even when a plurality of photoconductors are cleaned or rinsed at once, sufficient oil and foreign matter can be removed and good cleaning quality can be obtained. Is intended to provide a method that can be secured.

本発明の円筒状基体の洗浄装置および洗浄方法は、以下の特徴を有する。   The cylindrical substrate cleaning apparatus and cleaning method of the present invention have the following characteristics.

(1)洗浄液供給を少なくとも備えた洗浄槽に、複数の円筒状基体を該円筒状基体の略軸方向に浸漬することにより洗浄する円筒状基体の洗浄装置において、前記洗浄槽は、各円筒状基体毎に浸漬可能な各々独立の洗浄室を有する。   (1) In a cleaning apparatus for a cylindrical substrate that is cleaned by immersing a plurality of cylindrical substrates in a substantially axial direction of the cylindrical substrate in a cleaning tank having at least a cleaning liquid supply, each of the cleaning tanks has a cylindrical shape. Each substrate has an independent cleaning chamber that can be immersed.

(2)上記(1)に記載の円筒状基体の洗浄装置において、前記円筒状基体の略軸方向に浸漬する際に、前記円筒状基体の上部を保持する保持装置が設けられている。   (2) In the cylindrical substrate cleaning apparatus according to (1), a holding device is provided that holds an upper portion of the cylindrical substrate when the cylindrical substrate is immersed in a substantially axial direction.

(3)上記(1)または(2)に記載の円筒状基体の洗浄装置において、前記円筒状基体の略軸方向に浸漬する際に、前記円筒状基体を保持する保持装置を備え、前記保持装置と前記円筒状基体の内面との間に形成される隙間部の前記略軸方向に対して直交する断面積Sが、前記円筒状基体の前記略軸方向に対して直交する断面積Saに対して、S/Sa≧0.5の関係にある。   (3) The apparatus for cleaning a cylindrical substrate according to (1) or (2), further comprising a holding device that holds the cylindrical substrate when immersed in the substantially axial direction of the cylindrical substrate. A cross-sectional area S perpendicular to the substantially axial direction of the gap formed between the apparatus and the inner surface of the cylindrical base is a cross-sectional area Sa perpendicular to the substantially axial direction of the cylindrical base. On the other hand, there is a relationship of S / Sa ≧ 0.5.

(4)洗浄液供給を少なくとも備えた洗浄槽に、複数の円筒状基体を該円筒状基体の略軸方向に浸漬することにより洗浄する円筒状基体の洗浄方法において、前記円筒状基体の略軸方向に浸漬する際に、前記円筒状基体を保持する保持装置を用い、前記保持装置と前記円筒状基体の内面との間に形成される隙間部の前記略軸方向に対して直交する断面積Sが、前記円筒状基体の前記略軸方向に対して直交する断面積Saに対して、S/Sa≧0.5の関係にある。   (4) In a cleaning method for a cylindrical substrate in which a plurality of cylindrical substrates are immersed in a cleaning tank having at least a cleaning liquid supply in the approximately axial direction of the cylindrical substrate, the approximately axial direction of the cylindrical substrate. A cross-sectional area S perpendicular to the substantially axial direction of the gap formed between the holding device and the inner surface of the cylindrical base is used using a holding device that holds the cylindrical base when immersed in However, there is a relationship of S / Sa ≧ 0.5 with respect to the cross-sectional area Sa orthogonal to the substantially axial direction of the cylindrical substrate.

本発明によれば、洗浄またはすすぎの終わった円筒状基体を浸漬槽から引き上げの際に、基体表面に再度異物等が再付着することを低減することができ、良好な洗浄品質を確保することができる。   According to the present invention, when a cylindrical substrate that has been cleaned or rinsed is pulled out of the immersion tank, it is possible to reduce the reattachment of foreign matter or the like to the surface of the substrate, and to ensure good cleaning quality. Can do.

通常、例えば、感光体用の基体の洗浄は、前述したように最初に洗浄剤に浸漬して洗浄する工程、その後に洗浄剤を洗い流すすすぎの工程、基体表面の水分を極力減少させる水切り工程、引き続いて基体表面に残留する水分を除去する乾燥工程から構成される。本発明はそのうち洗浄工程、すすぎ工程、水切り工程のいずれにも適用可能であり、所望の効果を発揮するものである。   Usually, for example, the cleaning of the substrate for the photoreceptor is performed by first immersing the substrate in a cleaning agent as described above, followed by a rinsing step for washing away the cleaning agent, a draining step for reducing the moisture on the substrate surface as much as possible, Subsequently, it comprises a drying step for removing moisture remaining on the surface of the substrate. The present invention can be applied to any of the washing process, the rinsing process, and the draining process, and exhibits a desired effect.

浸漬洗浄は上述したように、浸漬槽中に洗浄液を満たし、その中に被洗浄物である電子写真感光体用基体を浸漬し、所定の時間保持した後、槽から引き上げて洗浄する方法を言う。この際に洗浄性を向上させる目的で超音波を基体に照射しながら洗浄しても良い。   As described above, the immersion cleaning is a method in which the immersion bath is filled with a cleaning solution, the electrophotographic photosensitive member substrate to be cleaned is immersed in the immersion bath, held for a predetermined time, and then lifted from the bath for cleaning. . At this time, the substrate may be cleaned while being irradiated with ultrasonic waves for the purpose of improving the cleaning property.

本実施の形態の洗浄装置100は、図1に示すような構成を有する。すなわち、浸漬洗浄槽40a,40b,40c,40dは、洗浄液41が満たされており、個々の基体2に対し独立して収容できる形状を有している。一方、回収タンク44の底面部からは、送液ポンプ46、フィルタ48を介し送液路50を通じて個々の分岐した個別送液路52a,52b,52c,52dを経て洗浄槽40a,40b,40c,40dの底面部に洗浄液41が供給され、洗浄槽40a,40b,40c,40dの上部開放端からオーバーフローした洗浄液41は、一旦オーバーフロー液受槽42に貯留され、常時または随時戻し液路54を介して回収タンク44に戻され再度使用されることとなる。複数の基体2は、それぞれ保持装置21に設けられた保持具30によってその内面が保持され、洗浄槽40a,40b,40c,40dにそれぞれ浸漬される。なお、上記洗浄装置100では、洗浄槽は4基を一つの群として用いたが、これに限るものではなく、設置されるスペースに応じて洗浄槽の基数を適宜選択することが好ましい。   The cleaning apparatus 100 of the present embodiment has a configuration as shown in FIG. That is, the immersion cleaning tanks 40 a, 40 b, 40 c, and 40 d are filled with the cleaning liquid 41 and have a shape that can be accommodated independently with respect to the individual substrates 2. On the other hand, from the bottom surface of the recovery tank 44, the washing tanks 40a, 40b, 40c, through the individual liquid supply passages 52a, 52b, 52c, 52d branched through the liquid supply passage 50 through the liquid supply pump 46 and the filter 48, respectively. The cleaning liquid 41 is supplied to the bottom surface portion of 40d, and the cleaning liquid 41 overflowed from the upper open end of the cleaning tanks 40a, 40b, 40c, 40d is temporarily stored in the overflow liquid receiving tank 42 and is always or occasionally returned via the return liquid path 54. It is returned to the collection tank 44 and used again. The inner surfaces of the plurality of base bodies 2 are held by the holding tools 30 provided in the holding device 21, and are immersed in the cleaning tanks 40a, 40b, 40c, and 40d, respectively. In the cleaning apparatus 100, four cleaning tanks are used as one group. However, the number is not limited to this, and it is preferable to appropriately select the number of cleaning tanks according to the installation space.

洗浄装置100は、上述したように、一段で複数の基体を一度に洗浄処理する形式であってもよいが、例えば、図3に示す洗浄装置200のように、搬送装置1を用いて、各々保持装置21の保持具30によって保持された複数の基体2を洗浄槽群A,B,Cに順次移動させ浸漬させて、多段で洗浄処理をおこなってもよく、その場合、前段から後段に向けて、すなわち、洗浄槽群A,B,Cに連れて、徐々に洗浄液41の成分や濃度、液温を変えて洗浄してもよい。なお、図3において、図1に示す構成を同一の構成については同一の符号を付しその説明を省略した。また、上記同様、洗浄装置200は、洗浄槽は4基を一つの群としていたが、これに限るものではなく、設置されるスペースに応じて洗浄槽の基数を適宜選択することが好ましい。   As described above, the cleaning apparatus 100 may be of a type in which a plurality of substrates are cleaned at a time in a single stage. For example, each of the cleaning apparatuses 100 using the transport apparatus 1 like the cleaning apparatus 200 shown in FIG. The plurality of bases 2 held by the holding tool 30 of the holding device 21 may be sequentially moved and immersed in the cleaning tank groups A, B, and C to perform the cleaning process in multiple stages. That is, as the cleaning tank groups A, B, and C are used, cleaning may be performed by gradually changing the components, concentration, and liquid temperature of the cleaning liquid 41. In FIG. 3, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. Further, as described above, the cleaning apparatus 200 has four cleaning tanks as one group, but the present invention is not limited to this, and it is preferable to appropriately select the number of cleaning tanks according to the space to be installed.

上記洗浄液としては、基体を洗浄しうる液体であれば特に限定されないが、地球環境保護の観点、人体への害の少なさ、発火・爆発の危険性のなさ、取り扱いの容易さなどから水系洗浄液が使用される。例えば(1)市水、純水、イオン交換水、井戸水などの水、(2)ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン・ポリオキシプロピレン・ブロックコポリマー型及びノニルフェノールポリオキシエチレンエーテルなどのノニオン系界面活性剤、アルキルベンゼン、高級アルコール、α−オレフィンの硫酸、ケイ酸、リン酸及び炭酸などのオキシ酸塩などのアニオン系界面活性剤、(3)電解性アルカリイオン水の一種である超還元性水(日本電子アクティブ株式会社製、商品名:EKO−13、EKO−13ALなど)、(4) (1)から(3)の任意の混合物など公知の洗浄液があげられる。   The cleaning liquid is not particularly limited as long as it is a liquid that can clean the substrate, but it is an aqueous cleaning liquid from the viewpoint of protecting the global environment, less harm to the human body, no risk of ignition and explosion, and ease of handling. Is used. For example, (1) water such as city water, pure water, ion exchange water, well water, (2) nonionic series such as polyoxyethylene alkylphenyl ether, polyoxyethylene / polyoxypropylene / block copolymer type and nonylphenol polyoxyethylene ether Surfactant, alkylbenzene, higher alcohol, anionic surfactant such as oxyacid salt such as sulfuric acid, silicic acid, phosphoric acid and carbonic acid of α-olefin, (3) super reducing property which is a kind of electrolytic alkaline ionized water Known cleaning liquids such as water (manufactured by JEOL Active Ltd., trade names: EKO-13, EKO-13AL, etc.), (4) any mixture of (1) to (3), and the like.

すすぎ洗浄に関しても同様で、図1に示す洗浄槽40a,40b,40c,40dの代わりにすすぎ槽を用い、このすすぎ槽に洗浄液41の代わりに純水を満たし、その中に洗浄後の基体2を浸漬し、所定の時間保持した後、槽から引き上げてすすぎを施す。本発明のすすぎ槽は上記洗浄槽と同様で、個々の基体2に対し独立して収容可能な形状を有する。すすぎ槽底面部から純水を供給し、すすぎ槽の上部開放端からオーバーフローさせ、循環させて再使用する。すすぎも必要に応じて一つの基体2に対して複数のすすぎ槽を多段に設け、順次浸漬させてすすぎ処理を施してもよい。   The same applies to the rinsing, and a rinsing tank is used instead of the cleaning tanks 40a, 40b, 40c, and 40d shown in FIG. 1, and this rinsing tank is filled with pure water instead of the cleaning liquid 41, and the substrate 2 after cleaning is filled therein. After being dipped and held for a predetermined time, it is lifted from the tank and rinsed. The rinsing tank of the present invention is similar to the above-described cleaning tank, and has a shape that can be accommodated independently for each substrate 2. Pure water is supplied from the bottom of the rinsing tank, overflowed from the upper open end of the rinsing tank, circulated and reused. If necessary, a plurality of rinsing tanks may be provided in multiple stages with respect to one substrate 2 as necessary, and the rinsing treatment may be performed by sequentially immersing them.

また、図4に示す洗浄すすぎ装置300のように、搬送装置1を用いて、各々保持装置21の保持具30によって保持された鏡面切削加工少量後の複数の基体2を、脱脂洗浄1群、脱脂洗浄2群、濯ぎ洗浄1群、温純水浄群のそれぞれ複数の浸漬槽40に順次移動させ浸漬させて、多段で脱脂洗浄、濯ぎ、洗浄処理をおこなってもよい。なお、図4において、図1に示す構成と同一の構成については同一の符号を付しその説明を省略した。上記同様、洗浄すすぎ装置300では、洗浄槽またはすすぎ槽はそれぞれ4基の浸漬槽40で構成する一つの群としていたが、これに限るものではなく、設置されるスペースに応じて洗浄槽の基数を適宜選択することが好ましい。   Moreover, like the cleaning rinsing apparatus 300 shown in FIG. 4, a plurality of base bodies 2 after a small amount of mirror-cutting each held by the holding tool 30 of the holding apparatus 21 using the transport apparatus 1 are degreased and cleaned 1 group, The degreasing cleaning 2 group, the rinsing cleaning 1 group, and the warm pure water purification group may be sequentially moved and immersed in a plurality of immersion baths 40 to perform degreasing cleaning, rinsing, and cleaning processes in multiple stages. In FIG. 4, the same components as those shown in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted. As described above, in the cleaning and rinsing apparatus 300, each of the cleaning tank or the rinsing tank is a group composed of four immersion tanks 40, but is not limited to this, and the number of cleaning tanks depends on the installed space. Is preferably selected as appropriate.

洗浄槽またはすすぎ槽の形状は任意であるが、極力デッドスペースを排除し基体の配列に沿った形状であることが効率的である。この際、基体外表面と浸漬槽またはすすぎ槽の内壁の最短距離が各基体で同一となるように、浸漬槽またはすすぎ槽の中心軸と基体保持の中心軸が同列となるように設置することが望ましい。基体外表面と浸漬槽内壁の距離が異なると、洗浄液の流速が位置によって異なることになり、洗浄液中の異物が均一に排出され難くなる。   The shape of the washing tank or the rinsing tank is arbitrary, but it is efficient to eliminate the dead space as much as possible and to have a shape along the arrangement of the substrates. At this time, the central axis of the immersion tank or the rinsing tank and the central axis of the substrate holding should be aligned so that the shortest distance between the outer surface of the base and the inner wall of the immersion tank or rinsing tank is the same for each base. Is desirable. If the distance between the outer surface of the substrate and the inner wall of the immersion tank is different, the flow rate of the cleaning liquid varies depending on the position, and the foreign matter in the cleaning liquid is difficult to be discharged uniformly.

洗浄槽またはすすぎ槽からオーバーフローされた液は、必要に応じて一度回収タンク44に戻され、送液ポンプ46を通して洗浄槽40a,40b,40c,40dの下部または個別すすぎ槽下部から槽内に戻される。その際、循環経路内に異物粒子を捕獲するためのフィルタ48を設置すると効果的である。   The liquid overflowed from the washing tank or the rinsing tank is once returned to the recovery tank 44 as necessary, and returned to the tank through the liquid feed pump 46 from the lower part of the washing tanks 40a, 40b, 40c, 40d or the lower part of the individual rinsing tanks. It is. At that time, it is effective to install a filter 48 for capturing foreign particles in the circulation path.

洗浄槽またはすすぎ槽に送液される洗浄液または純水の流量は、5ml/秒以上であることが好ましく、より好ましくは20ml/秒以上である。送液の流量が5ml/秒未満である場合には、槽内に異物や油が溜まってしまい円筒状基材に再付着するという不都合がある。   The flow rate of the cleaning liquid or pure water fed to the cleaning tank or the rinsing tank is preferably 5 ml / second or more, more preferably 20 ml / second or more. When the flow rate of the liquid feeding is less than 5 ml / second, there is a disadvantage that foreign matter and oil accumulate in the tank and reattach to the cylindrical base material.

洗浄及びすすぎにおいて、洗浄槽またはすすぎ槽内に超音波発信装置を設置し、基体を浸漬中に超音波を照射すると基体からの異物剥離に有効である。このときの超音波は基体の表面にキャビテーションによるダメージを与えない種類のものが選択される。例えば基体にアルミニウム合金を用いる場合は、発振周波数28kHz以上150kHz程度のものが用いられる。また複数の周波数を周期的に切換えられる超音波発信装置も有効である。ブラスト加工を行った基材は、ピックアップと呼ばれるササクレ状欠陥の起き上がり防止の観点から80kHz以上の周波数を用いることが多い。また、基体の特定の位置にダメージが集中しないように、基体を上下方向に揺動することも行われる。   In cleaning and rinsing, if an ultrasonic transmission device is installed in a cleaning tank or a rinsing tank and ultrasonic waves are irradiated while the substrate is immersed, it is effective for removing foreign substances from the substrate. As the ultrasonic wave at this time, a type that does not damage the surface of the substrate due to cavitation is selected. For example, when an aluminum alloy is used for the substrate, one having an oscillation frequency of about 28 kHz to about 150 kHz is used. An ultrasonic transmission device that can periodically switch a plurality of frequencies is also effective. The base material subjected to the blasting process often uses a frequency of 80 kHz or more from the viewpoint of preventing the rise of a sacrificial defect called pickup. Further, the base is swung in the vertical direction so that the damage is not concentrated on a specific position of the base.

基体は、図1、図3および図4に示すように、上端部を保持具30により保持した状態で、浸漬および引き上げの動作を行われる。   As shown in FIGS. 1, 3, and 4, the base body is dipped and pulled up with the upper end held by the holder 30.

基体2の保持装置21の一例について、図12から図14を用いて以下に説明する。   An example of the holding device 21 for the substrate 2 will be described below with reference to FIGS.

搬送装置1は、保持対象物としての円筒状基体2を保持する保持装置21と、保持装置21を介して円筒状基体2を搬送する搬送機構4とを備えている。   The transport device 1 includes a holding device 21 that holds a cylindrical base 2 as a holding object, and a transport mechanism 4 that transports the cylindrical base 2 via the holding device 21.

搬送機構4は、水平な床面に直交する壁面5に沿って平行に且つ鉛直方向に延びるように敷設される複数本の鉛直レール6と、水平方向に延び、複数本の鉛直レール6に沿って昇降される昇降板8と、昇降板8を鉛直レール6に沿ってガイドさせる複数のガイド部材7とを備えている。   The transport mechanism 4 includes a plurality of vertical rails 6 laid so as to extend in the vertical direction in parallel along the wall surface 5 orthogonal to the horizontal floor surface, and extend in the horizontal direction along the plurality of vertical rails 6. And a plurality of guide members 7 that guide the elevating plate 8 along the vertical rail 6.

昇降板8は、昇降駆動機構9によって昇降されるようになっており、昇降駆動機構9は、昇降板8に接続固定され、上下動により昇降板8を鉛直レール6に沿って昇降させる駆動ロッド10と、駆動ロッド10を上下動させる駆動源11とで構成されている。従って、駆動源11により駆動ロッド10が上下動し、昇降板8が昇降するようになっている。なお、駆動源11は例えば直動エアシリンダで構成される。   The elevating plate 8 is moved up and down by an elevating drive mechanism 9. The elevating drive mechanism 9 is connected and fixed to the elevating plate 8, and is a drive rod that moves the elevating plate 8 up and down along the vertical rail 6 by moving up and down. 10 and a drive source 11 for moving the drive rod 10 up and down. Therefore, the drive rod 10 moves up and down by the drive source 11, and the elevating plate 8 moves up and down. In addition, the drive source 11 is comprised with a linear motion air cylinder, for example.

昇降板8の上面には、水平レール12a,12bが平行に敷設され、水平レール12a,12b上には、スライド板13が水平レール12a,12bに沿って移動可能に設けられている。スライド板13は、水平駆動機構14によって水平方向に沿ってスライド可能となっており、水平駆動機構14は、スライド板13に接続固定され水平レール12a,12bに平行に移動される駆動ロッド14aと、駆動ロッド14aを水平レール12a,12bに平行に移動させる駆動源15とで構成されている。従って、駆動源15により、駆動ロッド14aが水平レール12a,12bに平行に移動され、スライド板13が水平レール12a,12bと平行に移動されるようになっている。なお、駆動源15も、駆動源11と同様、例えば直動エアシリンダで構成される。   Horizontal rails 12a and 12b are laid in parallel on the upper surface of the lift plate 8, and a slide plate 13 is provided on the horizontal rails 12a and 12b so as to be movable along the horizontal rails 12a and 12b. The slide plate 13 can be slid along the horizontal direction by a horizontal drive mechanism 14, and the horizontal drive mechanism 14 is connected and fixed to the slide plate 13 and moved in parallel with the horizontal rails 12a and 12b. , And a drive source 15 that moves the drive rod 14a parallel to the horizontal rails 12a and 12b. Accordingly, the drive rod 14a is moved in parallel with the horizontal rails 12a and 12b by the drive source 15, and the slide plate 13 is moved in parallel with the horizontal rails 12a and 12b. In addition, the drive source 15 is comprised by the linear motion air cylinder, for example like the drive source 11.

さらにスライド板13には、水平レール12a,12bに直交する方向に延びる支持アーム16が固定されている。支持アーム16の先端には、保持装置21が固定されている。従って、保持装置21は、昇降駆動機構9及び水平駆動機構14を作動することによって、水平方向(図1のA1又はA2方向)及び鉛直方向(図1の矢印B方向)に自在に移動可能となっている。   Further, a support arm 16 extending in a direction perpendicular to the horizontal rails 12a and 12b is fixed to the slide plate 13. A holding device 21 is fixed to the tip of the support arm 16. Accordingly, the holding device 21 can move freely in the horizontal direction (A1 or A2 direction in FIG. 1) and the vertical direction (arrow B direction in FIG. 1) by operating the elevating drive mechanism 9 and the horizontal drive mechanism 14. It has become.

保持装置21について図13、図14を用いて詳細に説明する。図13は、保持装置21の主要部を示す分解斜視図、図14は、図13の保持機構を示す平面図である。図13及び図14に示すように、保持装置21は、円筒状基体2を保持するための保持機構23と、円筒状基体2を保持機構23で保持するように保持機構23を駆動する駆動部24とを備える。   The holding device 21 will be described in detail with reference to FIGS. 13 and 14. FIG. 13 is an exploded perspective view showing the main part of the holding device 21, and FIG. 14 is a plan view showing the holding mechanism of FIG. As shown in FIGS. 13 and 14, the holding device 21 includes a holding mechanism 23 for holding the cylindrical base 2, and a drive unit that drives the holding mechanism 23 so that the cylindrical base 2 is held by the holding mechanism 23. 24.

保持機構23はリング状の外歯車25を備えており、外歯車25の内周面にはギヤ部25aが形成されている。   The holding mechanism 23 includes a ring-shaped external gear 25, and a gear portion 25 a is formed on the inner peripheral surface of the external gear 25.

外歯車25の内側には3つの円盤状の内接平歯車(内歯車)26が配置され、各内接平歯車26の外周面にはギヤ部27が形成されている。なお、本実施形態において、3つの内接平歯車26については、説明の便宜上、必要に応じ、それぞれ26a〜26cと称する。内接平歯車26a〜26cは、外歯車25の内周面に沿って等間隔に配置されている。内接平歯車26a〜26cは、それらの中心を貫通する回転軸28の回りに回転可能となっている。   Three disc-shaped internal spur gears (internal gears) 26 are arranged inside the external gear 25, and a gear portion 27 is formed on the outer peripheral surface of each internal spur gear 26. In the present embodiment, the three internal spur gears 26 are referred to as 26a to 26c, respectively, for convenience of explanation. The internal spur gears 26 a to 26 c are arranged at equal intervals along the inner peripheral surface of the external gear 25. The internal spur gears 26a to 26c are rotatable around a rotation shaft 28 that passes through the centers thereof.

そして、外歯車25のギヤ部25aと、各内接平歯車26a〜26cのギヤ部27とは互いに噛み合わされている。従って、外歯車25を回転させると、その回転に連動して全ての内接平歯車26a〜26cが回転し、逆に、3つの内接平歯車26a〜26cのいずれかを回転させると、それに連動して外歯車25が回転し、それに連動して他の内歯車が回転するようになっている。   And the gear part 25a of the external gear 25 and the gear part 27 of each internal spur gear 26a-26c are meshed | engaged mutually. Therefore, when the external gear 25 is rotated, all the internal spur gears 26a to 26c rotate in conjunction with the rotation, and conversely, when any of the three internal spur gears 26a to 26c is rotated, The external gear 25 rotates in conjunction with it, and the other internal gears rotate in conjunction with it.

回転軸28には、回転軸28の延び方向に直交する面内で回転軸28の回転に伴って回転する回転アーム29が固定されている。回転アーム29は、内接平歯車26の半径よりも長くなっている。回転アーム29の長さを調整することにより、保持可能な円筒状基体2の最大内径を決定することが可能となる。具体的に述べると、回転アーム29を長くすれば、後述する保持ピン(保持具)30の回転半径が大きくなり、保持可能な円筒状基体2の最大内径を大きくすることができる。但し、回転アーム29が長すぎると、保持可能な円筒状基体2の最小内径が大きくなり、内径の小さい円筒状基体2を保持することができなくなる。そこで、3本の回転アーム29の先端を外歯車25の回転中心に向けた時に、先端同士が接触しない限度で回転アーム29を長くすることが好ましい。   A rotating arm 29 is fixed to the rotating shaft 28. The rotating arm 29 rotates in accordance with the rotation of the rotating shaft 28 in a plane orthogonal to the extending direction of the rotating shaft 28. The rotating arm 29 is longer than the radius of the internal spur gear 26. By adjusting the length of the rotary arm 29, it is possible to determine the maximum inner diameter of the cylindrical substrate 2 that can be held. Specifically, if the rotary arm 29 is lengthened, the radius of rotation of a holding pin (holding tool) 30 described later is increased, and the maximum inner diameter of the cylindrical base 2 that can be held can be increased. However, if the rotary arm 29 is too long, the minimum inner diameter of the cylindrical base 2 that can be held becomes large, and the cylindrical base 2 with a small inner diameter cannot be held. Therefore, it is preferable to lengthen the rotary arm 29 as long as the tips do not contact each other when the tips of the three rotary arms 29 are directed toward the rotation center of the external gear 25.

回転アーム29の先端には、回転アーム29の回転する面に直交し且つ回転軸28と反対側に延びる保持ピン(保持具)30が固定されている。保持ピン30は、例えば金属等、比較的強度の大きい材料で構成されている。ここで、保持ピン30は、円筒状基体2の内壁面に対して滑りにくくするために、天然ゴム等のゴム材で覆われることが好ましい。   A holding pin (holding tool) 30 that is orthogonal to the rotating surface of the rotating arm 29 and extends to the opposite side of the rotating shaft 28 is fixed to the tip of the rotating arm 29. The holding pin 30 is made of a relatively strong material such as metal. Here, the holding pin 30 is preferably covered with a rubber material such as natural rubber in order to make it difficult to slip with respect to the inner wall surface of the cylindrical substrate 2.

駆動部24は、3つの内接平歯車26のうちの内接平歯車26bの中心を貫通する回転軸28と、回転軸28に連結され回転軸28を回転駆動する駆動源31とで構成されている。駆動源31は、回転軸28に任意の回転駆動力を伝達できるものであればよく、例えばロータリアクチュエータで構成される。この場合、駆動源31に供給されるエアの圧力によって回転軸28に付与する回転駆動力を決定することができ、エア圧を一定にすれば、回転軸28の回転駆動力を一定に保持することができる。   The drive unit 24 includes a rotation shaft 28 that passes through the center of the internal spur gear 26b among the three internal spur gears 26, and a drive source 31 that is connected to the rotation shaft 28 and rotationally drives the rotation shaft 28. ing. The drive source 31 only needs to be able to transmit an arbitrary rotational drive force to the rotary shaft 28, and is constituted by a rotary actuator, for example. In this case, the rotational driving force applied to the rotary shaft 28 can be determined by the pressure of the air supplied to the drive source 31. If the air pressure is made constant, the rotational driving force of the rotary shaft 28 is kept constant. be able to.

次に、上記搬送装置1を用いた円筒状基体2の保持方法について説明する。   Next, a method for holding the cylindrical substrate 2 using the transfer apparatus 1 will be described.

まず床面上に直立状態で配置された円筒状基体2の近傍に、搬送装置1の作動により保持装置21を移動させる。保持装置21は、搬送機構4により移動させることができる。具体的には、水平駆動機構14の駆動源15を作動し、駆動ロッド14aを水平方向に移動させることによりスライド板13を水平レール12a,12bに沿って移動させる。スライド板13は、保持装置21の保持ピン30が、円筒状基体2の真上に位置するまで移動させる。   First, the holding device 21 is moved by the operation of the transport device 1 in the vicinity of the cylindrical base body 2 arranged in an upright state on the floor surface. The holding device 21 can be moved by the transport mechanism 4. Specifically, the slide plate 13 is moved along the horizontal rails 12a and 12b by operating the drive source 15 of the horizontal drive mechanism 14 and moving the drive rod 14a in the horizontal direction. The slide plate 13 is moved until the holding pin 30 of the holding device 21 is positioned directly above the cylindrical base 2.

次に、昇降駆動機構9の駆動源11を作動し、駆動ロッド10を下方に移動させることにより昇降板8を下降させる。昇降板8は、保持ピン30の上端が円筒状基体2の内側まで挿入された時点で停止させる。   Next, the drive source 11 of the lift drive mechanism 9 is operated, and the lift plate 8 is moved down by moving the drive rod 10 downward. The elevating plate 8 is stopped when the upper end of the holding pin 30 is inserted to the inside of the cylindrical base 2.

続いて、保持装置21を作動させる。具体的には、駆動部24の駆動源31にエアを供給してエア圧を所定値とする。このとき駆動源31により回転軸28に回転駆動力が付与され、回転軸28が回転し、これに伴って、駆動歯車である内接平歯車26bが回転する。このとき、保持ピン30同士の間隔が広がる方向に回転軸28を回転させる。図3を参照すれば、内接平歯車26bの回転方向は反時計回りの方向である。   Subsequently, the holding device 21 is operated. Specifically, air is supplied to the drive source 31 of the drive unit 24 to set the air pressure to a predetermined value. At this time, a rotational driving force is applied to the rotary shaft 28 by the drive source 31 to rotate the rotary shaft 28, and accordingly, the internal spur gear 26 b that is a drive gear rotates. At this time, the rotating shaft 28 is rotated in a direction in which the interval between the holding pins 30 is increased. Referring to FIG. 3, the rotation direction of the internal spur gear 26b is a counterclockwise direction.

内接平歯車26bが回転すると、それに連動して外歯車25が回転し、それに連動して内接平歯車26a,26cも回転し、結局、全内接平歯車26a〜26cが回転する。これに伴って、全内接平歯車26a〜26cの保持ピン30が回転アーム29を介して円弧状に移動し、やがて円筒状基体2の内壁面に押し当てられる。   When the internal spur gear 26b rotates, the external gear 25 rotates in conjunction with it, the internal spur gears 26a and 26c also rotate in conjunction with it, and eventually all the internal spur gears 26a to 26c rotate. Along with this, the holding pins 30 of all the inscribed spur gears 26 a to 26 c move in an arc shape via the rotating arm 29 and are finally pressed against the inner wall surface of the cylindrical base 2.

このとき、内歯車26a〜26cが回転することにより3本の保持ピン30同士の間隔を広げることが可能となる。このため、様々な内径の円筒状基体2を保持できる。従って、保持装置を別の保持装置に切り替えずに円筒状基体2を保持することが可能となり、別の保持装置への切替えロスによる感光体ドラム(円筒状基体2上に感光層を形成してなるもの)の生産効率の低下を回避できる。   At this time, the interval between the three holding pins 30 can be increased by rotating the internal gears 26a to 26c. For this reason, the cylindrical base 2 having various inner diameters can be held. Accordingly, the cylindrical substrate 2 can be held without switching the holding device to another holding device, and a photosensitive drum (a photosensitive layer is formed on the cylindrical substrate 2 due to a switching loss to another holding device). Can be avoided.

また保持ピン30が円弧状に移動している間、内接平歯車26a〜26cの回転中心は移動されず固定位置にあるため、保持ピン30を移動させる機構部を大きくする必要がない。むしろ、内接平歯車26の径を小さくすることにより外歯車25の径も小さくすることができ、保持ピン30を移動させる機構部を十分に小さくすることができる。これに対し、保持ピン30を直線状に移動させる場合、保持ピン30を移動させる機構部が直線状に移動されるため、保持ピン30を移動させる機構部を大きくせざるを得ない。このため、保持装置21によれば、保持ピン30を直線状に移動させる場合に比べて保持機構23をより十分に小型化することができ、ひいては搬送装置1を小型化することができる。   Further, while the holding pin 30 is moving in an arcuate shape, the center of rotation of the internal spur gears 26a to 26c is not moved and is in a fixed position, so there is no need to enlarge the mechanism for moving the holding pin 30. Rather, by reducing the diameter of the internal spur gear 26, the diameter of the external gear 25 can also be reduced, and the mechanism for moving the holding pin 30 can be made sufficiently small. On the other hand, when the holding pin 30 is moved linearly, the mechanism unit that moves the holding pin 30 is moved linearly, and thus the mechanism unit that moves the holding pin 30 must be enlarged. For this reason, according to the holding device 21, the holding mechanism 23 can be further reduced in size compared with the case where the holding pin 30 is moved linearly, and as a result, the transport device 1 can be reduced in size.

全保持ピン30は、円筒状基体2の内壁面に押し当てられた後は、保持ピン30によって円筒状基体2の内壁面に加えられる力と内壁面からの反力とが釣り合うまで移動される。このため、円筒状基体2が、保持ピン30によってしっかりと保持される。   After all the holding pins 30 are pressed against the inner wall surface of the cylindrical substrate 2, the holding pins 30 are moved until the force applied to the inner wall surface of the cylindrical substrate 2 by the holding pins 30 and the reaction force from the inner wall surface are balanced. . For this reason, the cylindrical base 2 is firmly held by the holding pins 30.

なお、円筒状基体2の内径が上記内径と異なる場合であっても、上記と同様にして、全ての保持ピン30は、保持ピン30によって円筒状基体2の内壁面に加えられる力と内壁面からの反力とが釣り合うまで移動されるため、円筒状基体2が、保持ピン30によってしっかりと保持される。従って、保持装置21によれば、円筒状基体2の内径と関係無く、円筒状基体2をしっかりと保持することができる。   Even if the inner diameter of the cylindrical substrate 2 is different from the inner diameter, the holding pins 30 are applied to the inner wall surface of the cylindrical substrate 2 by the holding pins 30 in the same manner as described above. Therefore, the cylindrical base 2 is firmly held by the holding pins 30. Therefore, according to the holding device 21, the cylindrical base body 2 can be firmly held regardless of the inner diameter of the cylindrical base body 2.

更にまた、保持装置21においては、内接平歯車26a〜26cが互いに離れて配置されることにより外歯車25の中央部に開口が設けられている。このため、円筒状基体2を保持装置21で保持しながら乾燥又は冷却するときに、開口を通して、熱交換の効率アップを図ることができる。また、電子写真感光体の製造においては、感光層の塗布前に円筒状基体2の水洗浄が行われるが、水洗浄後の水分乾燥工程の際、円筒状基体2が保持装置21により保持されると、上記のように開口を通して円筒状基体2の内側に温風を流すことが可能となり、乾燥時間の短縮及び乾燥温度の低減が可能となる。   Furthermore, in the holding device 21, the internal spur gears 26 a to 26 c are arranged apart from each other so that an opening is provided in the central portion of the external gear 25. For this reason, when drying or cooling while holding the cylindrical base | substrate 2 with the holding | maintenance apparatus 21, the efficiency improvement of heat exchange can be aimed at through opening. In the manufacture of the electrophotographic photosensitive member, the cylindrical substrate 2 is washed with water before the photosensitive layer is applied. The cylindrical substrate 2 is held by the holding device 21 during the moisture drying step after the water washing. Then, as described above, it is possible to flow warm air through the opening and inside the cylindrical base body 2, thereby shortening the drying time and reducing the drying temperature.

なお、上記保持方法においては、円筒状基体2を内側から保持する方法について説明したが、円筒状基体2を外側から保持することも勿論可能である。この場合、円筒状基体2の保持方法は、円筒状基体2を保持する前に保持ピン30同士の間隔を予め広げておき、保持ピン30同士の間隔を狭める方向に回転軸28を回転させる以外は円筒状基体2を内側から保持する方法と同様である。   In the above-described holding method, the method of holding the cylindrical base 2 from the inside has been described, but it is of course possible to hold the cylindrical base 2 from the outside. In this case, the cylindrical substrate 2 is held by a method in which the interval between the holding pins 30 is widened in advance before the cylindrical substrate 2 is held, and the rotary shaft 28 is rotated in a direction to reduce the interval between the holding pins 30. Is the same as the method of holding the cylindrical substrate 2 from the inside.

上述したような状態で浸漬槽である洗浄槽またはすすぎ槽に浸漬する際、液が基体内部に浸入しやすいように、基体2内面と保持具30との間に形成される間隙部の断面積が極力広くなるような保持具であることが効果的である。   The cross-sectional area of the gap formed between the inner surface of the base body 2 and the holder 30 so that the liquid can easily enter the base body when immersed in a cleaning tank or a rinsing tank that is an immersion tank in the state described above. It is effective to be a holding tool that makes as wide as possible.

すなわち、基体2の略軸方向に浸漬する際に、基体の上部または下部を保持する保持具を用い、保持具と基体2の内面との間に形成される隙間部の前記略軸方向に対して直交する断面積Sが、前記円筒状基体の前記略軸方向に対して直交する断面積Saに対して、S/Sa≧0.5の関係にあることが好ましく、より好ましくは0.5≦S/Sa≦0.85である。   That is, when immersing the base body 2 in the substantially axial direction, a holder that holds the upper or lower portion of the base body is used, and the gap formed between the holder and the inner surface of the base body 2 with respect to the substantially axial direction. It is preferable that the cross-sectional area S orthogonal to each other is in a relationship of S / Sa ≧ 0.5, more preferably 0.5 to the cross-sectional area Sa orthogonal to the substantially axial direction of the cylindrical base body. ≦ S / Sa ≦ 0.85.

上記S/Sa比の範囲外、特に隙間部の断面積が狭いと基体2内部への液の流通が悪くなり、液中の異物粒子が浸漬槽上方に移動しにくくなる。なお、基体の下端部を保持具により保持した状態でも同様の効果が得られるが、装置構成が複雑になるため、基体の上端部を保持する装置構成の方が好ましい。   When the cross-sectional area of the gap portion is narrow, especially when the cross-sectional area of the gap is narrow, the flow of the liquid into the substrate 2 is deteriorated, and the foreign particles in the liquid are difficult to move upward in the immersion tank. Although the same effect can be obtained even when the lower end portion of the base is held by the holder, the device configuration is more preferable because the device configuration is complicated.

本実施の形態で望ましい保持具は、図12〜図14を用いて説明した、図5および図5の破線で囲まれた部分Dの拡大断面図である図6に示すような保持具(保持ピン)30が望ましい。なお、図5において、図1に示した構成と同一の構成については同一の符号を付しその説明を省略する。   A desirable holding tool in the present embodiment is a holding tool (holding as shown in FIG. 6 which is an enlarged cross-sectional view of a portion D surrounded by a broken line in FIGS. 5 and 5 described with reference to FIGS. 30) is desirable. In FIG. 5, the same components as those shown in FIG.

本実施の形態の他の保持具としては、図7および図7の破線で囲まれたEの拡大断面図である図8および図9に示すように、基体下端部を保持する保持具90であってもよい。この保持具90は、基体載置台92上に、基体2の内面に当接する複数の支持棒94または1本の支持柱96が配設されている。   As another holding tool of the present embodiment, as shown in FIGS. 8 and 9 which are enlarged sectional views of E surrounded by a broken line in FIGS. 7 and 7, a holding tool 90 for holding the lower end portion of the base is used. There may be. In the holder 90, a plurality of support rods 94 or one support column 96 that is in contact with the inner surface of the substrate 2 is disposed on the substrate mounting table 92.

ここで、上述した「Sa」は、図6および図8に示す基体2の軸方向に直交する断面積であり、上記「S」は、図6,8に示す、基体2の内面と保持具30との間に形成される隙間部の略軸方向に対して直交する断面積、または、基体2の内面と複数の支持棒94または支持柱96との間に形成される隙間部の略軸方向に対して直交する断面積である。   Here, “Sa” mentioned above is a cross-sectional area perpendicular to the axial direction of the base 2 shown in FIGS. 6 and 8, and “S” is the inner surface of the base 2 and the holder shown in FIGS. 30 is a cross-sectional area perpendicular to the substantially axial direction of the gap formed between the substrate 30 and the substantially axis of the gap formed between the inner surface of the base 2 and the plurality of support rods 94 or the support columns 96. It is a cross-sectional area orthogonal to the direction.

なお、図10および図10の破線で囲まれたFの拡大断面図である図11に示す保持具は、中空軸99と、中空軸99の側面に取り付けられ中空軸99から気体を封入または排出可能な少なくとも1つ以上のゴム状のバルーン98とを有するエアチャックである。   11 is an enlarged cross-sectional view of F surrounded by a broken line in FIG. 10 and FIG. 10, the holder shown in FIG. 11 is attached to the side surface of the hollow shaft 99 and the hollow shaft 99 and encloses or discharges gas from the hollow shaft 99. An air chuck having at least one possible rubbery balloon 98.

ここで、上述した「Sa」は、図11に示す基体2の軸方向に直交する断面積であり、上記「S」は、図11に示す、基体2の内面と保持具のバルーン98との間に形成される隙間部の略軸方向に対して直交する断面積である。   Here, the above-described “Sa” is a cross-sectional area perpendicular to the axial direction of the base body 2 shown in FIG. 11, and the above “S” is the distance between the inner surface of the base body 2 and the balloon 98 of the holding tool shown in FIG. It is a cross-sectional area orthogonal to the substantially axial direction of the gap portion formed therebetween.

以下実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
円筒状基体2毎に独立浸漬可能な洗浄槽およびすすぎ槽を有する洗浄装置300を用いて洗浄処理を行った。以下に詳細に説明する。
Example 1
Cleaning processing was performed using a cleaning apparatus 300 having a cleaning tank and a rinsing tank that can be independently immersed for each cylindrical substrate 2. This will be described in detail below.

アルミニウム素管(JIS A1050)からなる円筒状基体を、ダイヤモンドバイトを用いて鏡面切削加工することにより、厚さ0.75mm×外径30mm×長さ340mmにした。その後、その表面を、Raが0.03〜0.04μmの平滑面に仕上げた。鏡面切削加工終了後、円筒状基材の脱脂洗浄を行った。脱脂洗浄は2つの洗浄槽で順次行った。各洗浄槽には、底部より、界面活性剤をイオン交換水に溶解させた洗浄液を供給し、上部からオーバーフローさせた。界面活性剤としては、非イオン性界面活性剤(ライオン(株)製LH?600F)を用い、洗浄液中の界面活性剤の濃度は、1つ目の洗浄槽では10〜20重量%とし、2つ目の洗浄槽では1〜2重量%とした。また、洗浄液のイオン交換水としては、電気伝導度が0.1μS/cm以下のものを使用した。更に円筒状基材には、30〜100Hzの複数の超音波発振機により洗浄液を介して超音波を印加した。こうして円筒状基材の脱脂洗浄を行った後、円筒状基材の濯ぎ洗浄を行った。濯ぎ洗浄は、洗浄液としてイオン交換水のみを用いた以外は脱脂洗浄と同様にして行った。濯ぎ洗浄を行った後は、円筒状基材を、35℃に保持した温純水中に50秒間浸漬した後、1500m/minの速さで引き上げた。このときも、円筒状基材には、超音波発振機により洗浄液を介して超音波を印加した。こうして得られた円筒状基体に対し湿式ホーニング装置によってその表面の粗面化処理を行った。粗面化処理においては、研磨材5.7kgを水51リットルに懸濁させた懸濁液を、10リットル/minの流量でガンに送り込み、0.1〜0.2MPaの圧縮空気圧で円筒状基体に吹き付け、表面粗さRaが0.1〜0.3μmになるようにした。なお、上記研磨材としては、粒径35μmの酸化アルミニウム(昭和タイタニウム社製アルナビーズ(CB?A35S))を用いた(図2参照)。   A cylindrical base body made of an aluminum base tube (JIS A1050) was mirror-cut using a diamond tool to obtain a thickness of 0.75 mm, an outer diameter of 30 mm, and a length of 340 mm. Thereafter, the surface was finished to a smooth surface with Ra of 0.03 to 0.04 μm. After completion of the mirror cutting, the cylindrical base material was degreased and washed. Degreasing cleaning was sequentially performed in two cleaning tanks. A cleaning solution in which a surfactant was dissolved in ion-exchanged water was supplied to each cleaning tank from the bottom, and overflowed from the top. As the surfactant, a nonionic surfactant (LH? 600F manufactured by Lion Corporation) is used, and the concentration of the surfactant in the cleaning liquid is 10 to 20% by weight in the first cleaning tank. In the second washing tank, the content was 1 to 2% by weight. In addition, as the ion exchange water for the cleaning liquid, one having an electric conductivity of 0.1 μS / cm or less was used. Furthermore, ultrasonic waves were applied to the cylindrical base material via a cleaning solution by a plurality of ultrasonic oscillators of 30 to 100 Hz. After the cylindrical substrate was degreased and washed, the cylindrical substrate was rinsed and washed. Rinse washing was performed in the same manner as degreasing washing except that only ion-exchanged water was used as the washing liquid. After rinsing and washing, the cylindrical substrate was immersed in warm pure water maintained at 35 ° C. for 50 seconds and then pulled up at a speed of 1500 m / min. Also at this time, ultrasonic waves were applied to the cylindrical base material via a cleaning liquid by an ultrasonic oscillator. The surface of the cylindrical substrate thus obtained was roughened by a wet honing apparatus. In the roughening treatment, a suspension obtained by suspending 5.7 kg of an abrasive in 51 liters of water is sent to a gun at a flow rate of 10 liters / min, and cylindrical with a compressed air pressure of 0.1 to 0.2 MPa. The substrate was sprayed so that the surface roughness Ra was 0.1 to 0.3 μm. As the abrasive, aluminum oxide having a particle size of 35 μm (Aluna beads (CB? A35S) manufactured by Showa Titanium Co., Ltd.) was used (see FIG. 2).

こうして粗面化処理した円筒状基材に対して以下の洗浄処理を行った。即ち先ず粗面化処理した円筒状基材に対し、25L/minで60秒間井戸水を吹きかけた後、0.2%界面活性剤を2L/minで吹きかけながら、押付ブラシで押付処理を行った。押付ブラシとしては、棒状の軸部材と、軸部材に放射状に取り付けられる多数のナイロン製ブラシとから構成されるものを用いた。ブラシの線径は65μm、ブラシ部分の外径は130mm、ブラシの長さは30mmとし、軸部材が円筒状基材の回転軸と平行になるように且つブラシの先端が円筒状基材の表面に接触するように配置した。押付処理は、円筒状基材及び押付ブラシの回転方向を同じ方向とし、回転速度を100rpmにして円筒状基材を上下に昇降しながら60秒間行った。   The following cleaning treatment was performed on the cylindrical substrate thus roughened. That is, first, well water was sprayed at 25 L / min for 60 seconds on the roughened cylindrical base material, and then a pressing process was performed with a pressing brush while spraying 0.2% surfactant at 2 L / min. As the pressing brush, one composed of a rod-shaped shaft member and a number of nylon brushes attached radially to the shaft member was used. The wire diameter of the brush is 65 μm, the outer diameter of the brush part is 130 mm, the length of the brush is 30 mm, the shaft member is parallel to the rotation axis of the cylindrical base material, and the tip of the brush is the surface of the cylindrical base material It arranged so that it might touch. The pressing process was performed for 60 seconds while the cylindrical base material and the pressing brush were rotated in the same direction, the rotational speed was 100 rpm, and the cylindrical base material was moved up and down.

こうして押付処理した円筒状基材について図1に示す洗浄装置100により洗浄を行った。   The cylindrical base material thus pressed was washed with a washing apparatus 100 shown in FIG.

以降、同様にして、洗浄装置200でも円筒状基材の洗浄を3槽繰り返し行った(図3)。このとき、ある洗浄槽において円筒状基材を浸漬する時点から次の洗浄槽において円筒状基材を浸漬する時点までの時間(以下、タクトタイムという)Tを60秒とした。また円筒状基材を洗浄液中に浸漬させている間は、30回/minで上下に振動させながら1.5分間濯ぎ洗浄を行った。   Thereafter, similarly, the cleaning of the cylindrical base material was repeated three times in the cleaning device 200 (FIG. 3). At this time, the time T (hereinafter referred to as tact time) T from the time when the cylindrical base material was immersed in a certain cleaning tank to the time when the cylindrical base material was immersed in the next cleaning tank was set to 60 seconds. Further, while the cylindrical substrate was immersed in the cleaning liquid, rinsing and cleaning were performed for 1.5 minutes while vibrating up and down at 30 times / min.

次に、有機ジルコニウム化合物(商品名:オルガチックスZC540、松本製薬(株)製)100部、シランカップリング剤(商品名:A1100、日本ユニカー(株)製)10部、ポリビニルブチラール樹脂(商品名:BM−S、積水化学(株)製)10部及びn−ブチルアルコール130部を混合して得られた塗布液で円筒状基材を浸漬塗布し、140℃で15分間加熱して、厚さ1.0μmの下引き層を形成した。次に、ポリビニルブチラール樹脂(商品名:BM−1、積水化学(株)製)の2%シクロヘキサノン溶液に、ヒドロキシガリウムフタロシアニン顔料を、顔料と樹脂との比が2:1となるように混合し、次いでサンドミルにより3時間分散処理を行った。得られた分散液をさらに酢酸n−ブチルで希釈して下引き層上に浸漬塗布し、厚さ0.15μmの電荷発生層を形成した。次に、N,N'−ジフェニル−N,N'−ビス(m−トリル)ベンジジン4部及びポリカーボネートZ樹脂6部をTHFとモノクロロベンゼン混合溶媒に溶解させた溶液を電荷発生層上に浸漬塗布し、115℃で40分間乾燥して、厚さ24μmの電荷輸送層を形成した。こうして電子写真感光体を得た。   Next, 100 parts of an organic zirconium compound (trade name: Orgatics ZC540, manufactured by Matsumoto Pharmaceutical Co., Ltd.), 10 parts of a silane coupling agent (trade name: A1100, manufactured by Nihon Unicar Co., Ltd.), polyvinyl butyral resin (trade name) : BM-S, manufactured by Sekisui Chemical Co., Ltd.) 10 parts and 130 parts of n-butyl alcohol were mixed, and the cylindrical substrate was dip-coated, heated at 140 ° C. for 15 minutes, A subbing layer having a thickness of 1.0 μm was formed. Next, a hydroxygallium phthalocyanine pigment is mixed with a 2% cyclohexanone solution of polyvinyl butyral resin (trade name: BM-1, manufactured by Sekisui Chemical Co., Ltd.) so that the ratio of the pigment to the resin is 2: 1. Then, a dispersion treatment was performed for 3 hours by a sand mill. The obtained dispersion was further diluted with n-butyl acetate and dip-coated on the undercoat layer to form a charge generation layer having a thickness of 0.15 μm. Next, a solution obtained by dissolving 4 parts of N, N′-diphenyl-N, N′-bis (m-tolyl) benzidine and 6 parts of polycarbonate Z resin in a mixed solvent of THF and monochlorobenzene is dip-coated on the charge generation layer. And dried at 115 ° C. for 40 minutes to form a charge transport layer having a thickness of 24 μm. Thus, an electrophotographic photosensitive member was obtained.

(比較例1)
上記実施例1の洗浄装置100の代わりに図16に示す洗浄装置400、すなわち、複数の円筒状基体2を一度に浸漬させる洗浄槽43を有する洗浄装置400を用い、また上記実施例1の洗浄装置200の代わりに図16の装置が多段に設けられている図17に示す洗浄装置を用いた以外は実施例1と同様にして洗浄を実施し、電子写真用感光体を得た。
(Comparative Example 1)
Instead of the cleaning apparatus 100 of the first embodiment, the cleaning apparatus 400 shown in FIG. 16, that is, the cleaning apparatus 400 having the cleaning tank 43 in which the plurality of cylindrical base bodies 2 are immersed at one time, is used. Cleaning was carried out in the same manner as in Example 1 except that the cleaning apparatus shown in FIG. 17 in which the apparatus of FIG. 16 was provided in multiple stages instead of the apparatus 200 was obtained to obtain an electrophotographic photoreceptor.

下記に示す実施例1及び比較例1により得られた電子写真感光体各々1000本について、CCDカメラと顕微鏡とからなる表面欠陥評価装置を用いて感光体表面の欠陥数を測定し、欠陥発生率を算出した。評価結果は次の通りである。   About 1000 electrophotographic photoreceptors obtained in Example 1 and Comparative Example 1 shown below, the number of defects on the surface of the photoreceptor is measured using a surface defect evaluation apparatus composed of a CCD camera and a microscope, and the defect occurrence rate. Was calculated. The evaluation results are as follows.

実施例1の欠陥発生率:0.1%
比較例1の欠陥発生率:3.8%
Defect occurrence rate of Example 1: 0.1%
Defect occurrence rate of Comparative Example 1: 3.8%

(実施例2,3)
上記実施例1の洗浄装置100の代わりに図5,6に示す洗浄装置を用いた以外は実施例1と同様にして洗浄を実施し、電子写真用感光体を得た。なお、実施例2,3は、表1に示すようにS/Sa比が異なる。
(Examples 2 and 3)
Cleaning was carried out in the same manner as in Example 1 except that the cleaning apparatus shown in FIGS. 5 and 6 was used instead of the cleaning apparatus 100 in Example 1 to obtain an electrophotographic photoreceptor. Examples 2 and 3 have different S / Sa ratios as shown in Table 1.

(実施例4,5)
上記実施例1の洗浄装置100の代わりに図7,8に示す洗浄装置を用いた以外は実施例1と同様にして洗浄を実施し、電子写真用感光体を得た。なお、実施例4,5は、表1に示すようにS/Sa比が異なる。
(Examples 4 and 5)
Cleaning was carried out in the same manner as in Example 1 except that the cleaning apparatus shown in FIGS. 7 and 8 was used instead of the cleaning apparatus 100 in Example 1 to obtain an electrophotographic photoreceptor. Examples 4 and 5 have different S / Sa ratios as shown in Table 1.

(実施例6,7)
上記実施例1の洗浄装置100の代わりに図7,9に示す洗浄装置を用いた以外は実施例1と同様にして洗浄を実施し、電子写真用感光体を得た。なお、実施例6,7は、表1に示すようにS/Sa比が異なる。
(Examples 6 and 7)
Cleaning was performed in the same manner as in Example 1 except that the cleaning apparatus shown in FIGS. 7 and 9 was used instead of the cleaning apparatus 100 in Example 1 to obtain an electrophotographic photoreceptor. Examples 6 and 7 have different S / Sa ratios as shown in Table 1.

(比較例2,3)
上記実施例1の洗浄装置100の代わりに図5,6に示す洗浄装置を用いた以外は実施例1と同様にして洗浄を実施し、電子写真用感光体を得た。なお、比較例2,3は、表1に示すようにS/Sa比が異なり、その比が0.5未満である。
(Comparative Examples 2 and 3)
Cleaning was carried out in the same manner as in Example 1 except that the cleaning apparatus shown in FIGS. 5 and 6 was used instead of the cleaning apparatus 100 in Example 1 to obtain an electrophotographic photoreceptor. In Comparative Examples 2 and 3, the S / Sa ratio is different as shown in Table 1, and the ratio is less than 0.5.

(比較例4,5)
上記実施例1の洗浄装置100の代わりに図7,8に示す洗浄装置を用いた以外は実施例1と同様にして洗浄を実施し、電子写真用感光体を得た。なお、比較例4,5は、表1に示すようにS/Sa比が異なり、その比が0.5未満である。
(Comparative Examples 4 and 5)
Cleaning was carried out in the same manner as in Example 1 except that the cleaning apparatus shown in FIGS. 7 and 8 was used instead of the cleaning apparatus 100 in Example 1 to obtain an electrophotographic photoreceptor. In Comparative Examples 4 and 5, the S / Sa ratio is different as shown in Table 1, and the ratio is less than 0.5.

(実施例6)
上記実施例1の洗浄装置100の代わりに図7,9に示す洗浄装置を用いた以外は実施例1と同様にして洗浄を実施し、電子写真用感光体を得た。
(Example 6)
Cleaning was performed in the same manner as in Example 1 except that the cleaning apparatus shown in FIGS. 7 and 9 was used instead of the cleaning apparatus 100 in Example 1 to obtain an electrophotographic photoreceptor.

(比較例7)
上記実施例1の洗浄装置100の代わりに図10,11に示す洗浄装置を用いた以外は実施例1と同様にして洗浄を実施し、電子写真用感光体を得た。
(Comparative Example 7)
Cleaning was carried out in the same manner as in Example 1 except that the cleaning apparatus shown in FIGS. 10 and 11 was used instead of the cleaning apparatus 100 in Example 1 to obtain an electrophotographic photoreceptor.

上記実施例2〜7及び比較例2〜7により得られた電子写真感光体各々1000本について、CCDカメラと顕微鏡とからなる表面欠陥評価装置を用いて感光体表面の欠陥数を測定し、欠陥発生率を算出した。評価結果は表1に示す。   For each 1000 electrophotographic photoreceptors obtained in Examples 2-7 and Comparative Examples 2-7, the number of defects on the surface of the photoreceptor was measured using a surface defect evaluation apparatus composed of a CCD camera and a microscope. Incidence was calculated. The evaluation results are shown in Table 1.

Figure 2006071805
Figure 2006071805

以上のように本発明の洗浄装置および洗浄方法によれば、効果的に基体の清浄度を上げることができることがわかった。基体の清浄度が上がることにより、この基体に感光層を形成して電子写真プロセスに供される電子写真感光体として用いたとき、画像上に白抜け、黒点、画像濃度むら等の発生がない良好な画質を得ることができるようになった。また、これにより電子写真用感光体基体を製造するコストが非常に安くなった。   As described above, it has been found that according to the cleaning apparatus and the cleaning method of the present invention, the cleanliness of the substrate can be effectively increased. Due to the increased cleanliness of the substrate, no white spots, black spots, uneven image density, etc. occur on the image when a photosensitive layer is formed on the substrate and used as an electrophotographic photoreceptor for use in an electrophotographic process. Good image quality can be obtained. This also greatly reduces the cost of manufacturing the electrophotographic photoreceptor substrate.

発明の洗浄装置および洗浄方法は、一般的な円筒状基体の表面洗浄に用いることができ、特に電子写真感光体に用いる円筒状基体の表面洗浄の用途に有用である。   The cleaning apparatus and the cleaning method of the invention can be used for cleaning the surface of a general cylindrical substrate, and are particularly useful for the surface cleaning of a cylindrical substrate used in an electrophotographic photosensitive member.

本発明の洗浄装置の一例の構成を示す概要図である。It is a schematic diagram which shows the structure of an example of the washing | cleaning apparatus of this invention. ホーニング装置の構成を示す概要図である。It is a schematic diagram which shows the structure of a honing apparatus. 本発明の洗浄装置の他の構成を示す概要図である。It is a schematic diagram which shows the other structure of the washing | cleaning apparatus of this invention. 本発明の洗浄措置の他の構成を示す概要図である。It is a schematic diagram which shows the other structure of the washing | cleaning measure of this invention. 本発明の洗浄装置における基体保持装置の一例の構成を示す概要図である。It is a schematic diagram which shows the structure of an example of the base | substrate holding | maintenance apparatus in the washing | cleaning apparatus of this invention. 図5の破線で囲まれた部分Dの拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a portion D surrounded by a broken line in FIG. 5. 本発明の洗浄装置における基体保持装置の他の例の構成を示す概要図である。It is a schematic diagram which shows the structure of the other example of the base | substrate holding | maintenance apparatus in the washing | cleaning apparatus of this invention. 図7の破線で囲まれた部分Eの一例の拡大断面図である。It is an expanded sectional view of an example of the part E surrounded by the broken line of FIG. 図7の破線で囲まれた部分Eの他の例の拡大断面図である。It is an expanded sectional view of the other example of the part E enclosed by the broken line of FIG. 洗浄装置における基体保持装置の他の例の構成を示す概要図である。It is a schematic diagram which shows the structure of the other example of the base | substrate holding | maintenance apparatus in a washing | cleaning apparatus. 図10の破線で囲まれた部分Eの拡大断面図である。It is an expanded sectional view of the part E enclosed with the broken line of FIG. 本発明の洗浄装置に用いる搬送装置の一例を概略的に示す斜視図である。It is a perspective view which shows roughly an example of the conveying apparatus used for the washing | cleaning apparatus of this invention. 図12の保持装置の主要部を示す分解斜視図である。It is a disassembled perspective view which shows the principal part of the holding | maintenance apparatus of FIG. 図13の保持装置を示す平面図である。It is a top view which shows the holding | maintenance apparatus of FIG. 従来の洗浄装置の構成を示す図である。It is a figure which shows the structure of the conventional washing | cleaning apparatus. 比較例に用いた1段の洗浄装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the 1 step | paragraph washing | cleaning apparatus used for the comparative example. 比較例に用いた多段の洗浄装置の構成を示す概要図である。It is a schematic diagram which shows the structure of the multistage washing | cleaning apparatus used for the comparative example.

符号の説明Explanation of symbols

1 搬送装置、2 円筒状基体、21 保持装置、40a,40b,40c,40d 洗浄槽、41 洗浄液、42 オーバーフロー液受槽、44 回収タンク、46 送液ポンプ、48 フィルタ、50 送液路、52a,52b,52c,52d 個別送液路。   DESCRIPTION OF SYMBOLS 1 Transfer apparatus, 2 Cylindrical base | substrate, 21 Holding apparatus, 40a, 40b, 40c, 40d Cleaning tank, 41 Cleaning liquid, 42 Overflow liquid receiving tank, 44 Collection tank, 46 Liquid feeding pump, 48 Filter, 50 Liquid feeding path, 52a, 52b, 52c, 52d Individual liquid supply paths.

Claims (4)

洗浄液を少なくとも備えた洗浄槽に、複数の円筒状基体を該円筒状基体の略軸方向に浸漬することにより洗浄する円筒状基体の洗浄装置において、
前記洗浄槽は、各円筒状基体毎に浸漬可能な各々独立の洗浄室を有することを特徴とする円筒状基体の洗浄装置。
In the cylindrical substrate cleaning apparatus for cleaning by immersing a plurality of cylindrical substrates in a substantially axial direction of the cylindrical substrate in a cleaning tank having at least a cleaning liquid,
The cleaning apparatus for a cylindrical substrate, wherein the cleaning tank has independent cleaning chambers that can be immersed in each cylindrical substrate.
請求項1に記載の円筒状基体の洗浄装置において、
前記円筒状基体の略軸方向に浸漬する際に、前記円筒状基体の上部を保持する保持装置が設けられていることを特徴とする円筒状基体の洗浄装置。
The cylindrical substrate cleaning apparatus according to claim 1,
A cylindrical substrate cleaning apparatus, comprising: a holding device that holds an upper portion of the cylindrical substrate when the cylindrical substrate is immersed in a substantially axial direction.
請求項1または請求項2に記載の円筒状基体の洗浄装置において、
前記円筒状基体の略軸方向に浸漬する際に、前記円筒状基体を保持する保持装置を備え、
前記保持装置と前記円筒状基体の内面との間に形成される隙間部の前記略軸方向に対して直交する断面積Sが、前記円筒状基体の前記略軸方向に対して直交する断面積Saに対して、S/Sa≧0.5の関係にあることを特徴とする円筒状基体の洗浄装置。
In the cylindrical substrate cleaning apparatus according to claim 1 or 2,
When dipping in the substantially axial direction of the cylindrical substrate, a holding device for holding the cylindrical substrate is provided,
A cross-sectional area S perpendicular to the substantially axial direction of the gap formed between the holding device and the inner surface of the cylindrical base is perpendicular to the substantially axial direction of the cylindrical base. A cylindrical substrate cleaning apparatus characterized by having a relationship of S / Sa ≧ 0.5 with respect to Sa.
洗浄液供給を少なくとも備えた洗浄槽に、複数の円筒状基体を該円筒状基体の略軸方向に浸漬することにより洗浄する円筒状基体の洗浄方法において、
前記円筒状基体の略軸方向に浸漬する際に、前記円筒状基体を保持する保持装置を用い、
前記保持装置と前記円筒状基体の内面との間に形成される隙間部の前記略軸方向に対して直交する断面積Sが、前記円筒状基体の前記略軸方向に対して直交する断面積Saに対して、S/Sa≧0.5の関係にあることを特徴とする円筒状基体の洗浄方法。
In a cleaning method for a cylindrical substrate, the cylindrical substrate is cleaned by immersing a plurality of cylindrical substrates in a substantially axial direction of the cylindrical substrate in a cleaning tank having at least a cleaning liquid supply.
When dipping in the substantially axial direction of the cylindrical substrate, using a holding device that holds the cylindrical substrate,
A cross-sectional area S perpendicular to the substantially axial direction of the gap formed between the holding device and the inner surface of the cylindrical base is perpendicular to the substantially axial direction of the cylindrical base. A method for cleaning a cylindrical substrate, wherein S / Sa ≧ 0.5 in relation to Sa.
JP2004252992A 2004-08-31 2004-08-31 Cleaning device for cylindrical substrate, and method for cleaning the cylindrical substrate Withdrawn JP2006071805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252992A JP2006071805A (en) 2004-08-31 2004-08-31 Cleaning device for cylindrical substrate, and method for cleaning the cylindrical substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252992A JP2006071805A (en) 2004-08-31 2004-08-31 Cleaning device for cylindrical substrate, and method for cleaning the cylindrical substrate

Publications (1)

Publication Number Publication Date
JP2006071805A true JP2006071805A (en) 2006-03-16

Family

ID=36152547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252992A Withdrawn JP2006071805A (en) 2004-08-31 2004-08-31 Cleaning device for cylindrical substrate, and method for cleaning the cylindrical substrate

Country Status (1)

Country Link
JP (1) JP2006071805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861834A (en) * 2014-04-10 2014-06-18 苏州创峰光电科技有限公司 Overflow washing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861834A (en) * 2014-04-10 2014-06-18 苏州创峰光电科技有限公司 Overflow washing device

Similar Documents

Publication Publication Date Title
TWI403368B (en) Immersive oxidation and etching process for cleaning silicon electrodes
US8551253B2 (en) Post polish disk cleaning process
US6969456B2 (en) Method of using vertically configured chamber used for multiple processes
TWI397116B (en) Substrate processing apparatus and substrate processing method
US20030041879A1 (en) Wafer edge cleaning method and apparatus
JP2001246331A (en) Cleaning device
CN109585263A (en) Method for cleaning wafer
US7380560B2 (en) Wafer cleaning apparatus with probe cleaning and methods of using the same
JP2003290724A (en) Method and apparatus for cleaning cylindrical base material, and method for manufacturing cylindrical base material and electrophotographic photoreceptor
JP2006071805A (en) Cleaning device for cylindrical substrate, and method for cleaning the cylindrical substrate
TW200809948A (en) Cleaning apparatus
JP2009157193A (en) Substrate cleaning method and device,and manufacturing method of electrophotographic photoreceptor using it
JP4914107B2 (en) Method for producing electrophotographic photosensitive member
JP2009021617A (en) Substrate processing method
JP2002351097A (en) Method for cleaning electrophotographic photoreceptor base body
JP2005142309A (en) Substrate cleaning method, apparatus, and system
JP2007108395A (en) Method and apparatus for regenerating base holder
KR101014520B1 (en) The apparatus and method of single wafer cleaning
JP2000225381A (en) Method and apparatus for cleaning substrate for electrophotographic photosensitive body
JP2008243342A (en) Ultrasonic cleaning device and ultrasonic cleaning method for glass substrate for magnetic disk, magnetic disk manufacturing method, and magnetic disk
JP2020035988A (en) Workpiece cleaning method and cleaning device
KR20060025836A (en) Apparatus and method for cleaning substrates
JP2002273352A (en) Method and apparatus for washing optical part
JP2004233544A (en) Method for washing substrate for electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
KR20090069380A (en) Scrubber equipped with hf module and wafer cleaning method using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080617