JP2006071322A - Method and system for disposing of radioactive metal waste - Google Patents

Method and system for disposing of radioactive metal waste Download PDF

Info

Publication number
JP2006071322A
JP2006071322A JP2004252049A JP2004252049A JP2006071322A JP 2006071322 A JP2006071322 A JP 2006071322A JP 2004252049 A JP2004252049 A JP 2004252049A JP 2004252049 A JP2004252049 A JP 2004252049A JP 2006071322 A JP2006071322 A JP 2006071322A
Authority
JP
Japan
Prior art keywords
waste
radioactive metal
waste container
drying
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004252049A
Other languages
Japanese (ja)
Inventor
Takeo Yamashita
雄生 山下
Hironori Kumanomidou
宏徳 熊埜御堂
Tatsuaki Sato
龍明 佐藤
Michitaka Mikura
通孝 三倉
Jiro Sakurai
次郎 櫻井
Takao Takada
孝夫 高田
Emiko Hirose
恵美子 廣瀬
Kazuji Natsui
和司 夏井
Fumio Tajima
文夫 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2004252049A priority Critical patent/JP2006071322A/en
Publication of JP2006071322A publication Critical patent/JP2006071322A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To conveniently prepare radioactive metal waste bodies which do not emit any gases. <P>SOLUTION: A method and a system in this invention have processes of: (3) pouring radioactive metal waste 2 into a waste container 1; (4) drying the inside of the waste container 1 after the process 3; (6) drying particulates 5 made of inorganic substances; and (7) pouring the particulates 5 into the waste container 1 after the processes 4 and 6 and filling the interstices of metal waste 2 in the waste container 1 with the particulates 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、原子力施設などより発生する放射性金属廃棄物を処理するための方法およびシステムに関する。   The present invention relates to a method and system for treating radioactive metal waste generated from nuclear facilities and the like.

原子力施設より発生する放射性金属廃棄物には、チャンネルボックスやハルなど長期間の中性子照射により放射化され、高い放射性核種濃度となる廃棄物がある。これら放射性金属廃棄物について、現在処理方法が検討されているところであるが、現状実用段階には至っていない。一般に放射性廃棄物の廃棄体とするための固化処理方法には、セメント固化、ガラス固化、溶融固化などが想定されている。この中で、セメント固化方法は安価で処理が容易なため、多くの廃棄物の固化に適用が想定されている(たとえば特許文献1参照)。
特開2003−307592号公報
Radioactive metal wastes generated from nuclear facilities include wastes that are activated by long-term neutron irradiation, such as channel boxes and hulls, resulting in high radionuclide concentrations. A treatment method for these radioactive metal wastes is currently being studied, but has not yet reached a practical stage. In general, cement solidification, glass solidification, melt solidification, and the like are assumed as a solidification treatment method for forming a radioactive waste waste. Among these, since the cement solidification method is inexpensive and easy to process, application to the solidification of many wastes is assumed (for example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 2003-307592

しかし、放射性廃棄物に含有される放射性核種濃度が高いと、充填されたセメント固化物質中に存在する間隙水や結晶水などが放射線により分解して、放射線分解ガスを発生することが懸念される。固化体容器からのガスの放出を押さえるため、容器を密封するようなことも考えられるが、長期間の保管では内部圧力の上昇が懸念される。そのため、高濃度の放射能を含有するチャンネルボックスやハルなどの金属廃棄物については、廃棄体とするための処理方法としてセメント固化が適切とは言い難い。   However, if the concentration of radionuclide contained in the radioactive waste is high, there is a concern that the pore water or crystallization water present in the filled cement solidified material is decomposed by radiation and generates a radiolytic gas. . In order to suppress the release of gas from the solidified container, it is conceivable to seal the container, but there is a concern that the internal pressure will increase during long-term storage. Therefore, it is difficult to say that cement solidification is appropriate as a treatment method for making wastes such as channel boxes and hulls containing high concentrations of radioactivity.

一方、溶融固化等は、高温にする処理であるため、溶融炉の材料に長期間の耐熱性が求められることや、高温下で気相に移行する放射性核種の処理機器が困難で高価となるという問題がある。そのため、簡便でガスを発生しない廃棄体作成方法が求められている。   On the other hand, since melting and solidification are high temperature processing, long-term heat resistance is required for the material of the melting furnace, and radionuclide processing equipment that moves to the gas phase at high temperatures is difficult and expensive. There is a problem. Therefore, there is a demand for a waste body preparation method that is simple and does not generate gas.

本発明は、上記課題に鑑み、ガス発生を抑えた放射性金属廃棄体を簡便に作成する方法およびそのためのシステムを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a method for easily producing a radioactive metal waste body in which gas generation is suppressed and a system therefor.

上記目的を達成するために、本発明に係る放射性金属廃棄物処理方法は、放射性金属廃棄物を廃棄容器に投入する廃棄物投入工程と、前記廃棄物投入工程の後に前記廃棄容器内を乾燥させる廃棄物乾燥工程と、無機物からなる粉粒体を乾燥させる粉粒体乾燥工程と、前記廃棄物乾燥工程および粉粒体乾燥工程の後に、前記廃棄容器内に前記粉粒体を投入し、前記廃棄容器内の前記金属廃棄物の間隙に前記粉粒体を充填する充填工程と、を有することを特徴とする。   In order to achieve the above object, a radioactive metal waste treatment method according to the present invention includes a waste charging step of charging a radioactive metal waste into a waste container, and drying the inside of the waste container after the waste charging step. After the waste drying step, the powder drying step for drying the inorganic powder, and the waste drying step and the powder drying step, the powder is put into the waste container, And a filling step of filling the gaps between the metal wastes in the waste container with the powder particles.

また、本発明に係る放射性金属廃棄物処理システムは、放射性金属廃棄物を受容する廃棄容器と、前記放射性金属廃棄物を受容した廃棄容器内を乾燥させる廃棄物乾燥手段と、無機物からなる粉粒体を一時的に収容するホッパと、前記粉粒体を受容したホッパ内を乾燥させる粉粒体乾燥手段と、前記廃棄物乾燥手段によって乾燥させた後の廃棄容器内に前記粉粒体乾燥手段によって乾燥させた後の粉粒体を投入し、前記廃棄容器内の前記金属廃棄物の間隙に前記粉粒体を充填する充填手段と、を有することを特徴とする。   Further, the radioactive metal waste treatment system according to the present invention includes a waste container that receives the radioactive metal waste, a waste drying means that dries the inside of the waste container that receives the radioactive metal waste, and an inorganic powder. A hopper for temporarily storing the body; a powder drying means for drying the inside of the hopper receiving the powder; and the powder drying means in a waste container after being dried by the waste drying means And filling means for charging the powder particles into the gap between the metal wastes in the waste container.

本発明によれば、ガス発生がない、またはガス発生が少ない放射性金属廃棄体を簡便に作成することができる。   According to the present invention, it is possible to easily produce a radioactive metal waste body that generates no gas or generates little gas.

以下に、図面を参照しながら、本発明に係る放射性金属廃棄物処理方法およびそのためのシステムの実施の形態を説明する。ここで、同一または類似の部分には共通の符号を付して重複説明は省略する。   Embodiments of a radioactive metal waste processing method and a system therefor according to the present invention will be described below with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

図1は、本発明に係る放射性金属廃棄物処理方法の一実施の形態のフロー図である。廃棄容器1内に放射性金属廃棄物2を投入し(廃棄物投入工程3)、廃棄容器1内の水分を除去するため乾燥処理を行なう(廃棄物乾燥工程4)。一方、無機材料からなる粉粒体(粒体もしくは粉体、またはこれらの混合体)5に対して、廃棄容器1外で乾燥処理を行なう(粉粒体乾燥工程6)。   FIG. 1 is a flowchart of an embodiment of a radioactive metal waste treatment method according to the present invention. The radioactive metal waste 2 is introduced into the waste container 1 (waste input process 3), and a drying process is performed to remove the moisture in the waste container 1 (waste drying process 4). On the other hand, a drying process is performed outside the waste container 1 with respect to the granular material (particles or powder, or a mixture thereof) 5 made of an inorganic material (powder drying step 6).

次に、この乾燥した粉粒体5を廃棄容器1に投入して、放射性金属廃棄物2の隙間に粉粒体5を充填する(充填工程7)。次に、廃棄容器1を密封して(密封工程8)、廃棄体9とする。   Next, this dried granular material 5 is put into the waste container 1 to fill the gap between the radioactive metal wastes 2 with the granular material 5 (filling step 7). Next, the waste container 1 is sealed (sealing step 8) to form a waste body 9.

この実施の形態によれば、廃棄体9内には水が存在しないことから、放射線分解によるガスの発生が起こらず、廃棄容器内圧力を一定に保つことができる。   According to this embodiment, since there is no water in the waste body 9, generation of gas due to radiolysis does not occur, and the pressure in the waste container can be kept constant.

次に、廃棄物乾燥工程4(図1)を具体的に模擬して行なった実験の例を、図2を用いて説明する。廃棄容器1を模擬した50Lドラム缶12内に、金属廃棄物2を模擬する模擬廃棄物13を配置した。この実験の例では、模擬廃棄物13として、ステンレス系配管(直径24.5mm、肉圧2mm、長さ400mm)を合計22.1kgとし、これらを水切り後に配置した。このドラム缶12に仮蓋14を被せ、湿度計30で湿度を測定した。このとき、常温(24.3℃)で、湿度は82%であった。   Next, an example of an experiment conducted by specifically simulating the waste drying step 4 (FIG. 1) will be described with reference to FIG. A simulated waste 13 that simulates the metal waste 2 is placed in a 50 L drum 12 that simulates the waste container 1. In the example of this experiment, as simulated waste 13, stainless steel piping (diameter 24.5 mm, meat pressure 2 mm, length 400 mm) was set to 22.1 kg in total, and these were disposed after draining. The drum can 12 was covered with a temporary lid 14, and the humidity was measured with a hygrometer 30. At this time, the humidity was 82% at room temperature (24.3 ° C.).

次に、連続的に減圧ポンプ15で減圧して100Torr以下になるようにした。8時間後、ドラム缶12内を常圧に戻した後、常温(24.5℃)で再度湿度を測定した。このとき、湿度が7%まで減少しており、減圧により容器内の水分が減少することを確認した。   Next, the pressure was continuously reduced by the pressure reducing pump 15 so that the pressure became 100 Torr or less. After 8 hours, the inside of the drum 12 was returned to normal pressure, and then the humidity was measured again at room temperature (24.5 ° C.). At this time, the humidity was reduced to 7%, and it was confirmed that the moisture in the container was reduced by the reduced pressure.

なお、減圧を1000Torrまでとした実験では、常温に戻した際の湿度が18%であって十分な乾燥とはいえなかった。このため、100Torr以下にまで減圧するのが好ましい。   In an experiment in which the pressure was reduced to 1000 Torr, the humidity when the temperature was returned to room temperature was 18%, which was not sufficient drying. For this reason, it is preferable to reduce the pressure to 100 Torr or less.

次に、粉粒体乾燥工程6(図1)を具体的に模擬して行なった実験の例を、図3を用いて説明する。スクリュー20を有する円錐スクリュー型混合機(ホッパ)21の胴部に加熱ヒータ22を配置し、外部を保温材(ジャケット)23で覆った。また、下部から、加熱した乾燥空気24を注入できる構造とした。本装置の円錐胴部に全体高さの約半分(下部より160cm)の位置まで、粉粒体5として、含水率0.2wt%の硝酸ナトリウム粉体(約150kg)を投入した。図に示すように、湿度計32を、その先端が粉粒体5内に挿入される位置に配置した。   Next, an example of an experiment conducted by specifically simulating the granular material drying step 6 (FIG. 1) will be described with reference to FIG. A heater 22 was placed on the body of a conical screw type mixer (hopper) 21 having a screw 20, and the outside was covered with a heat insulating material (jacket) 23. Moreover, it was set as the structure which can inject the heated dry air 24 from the lower part. Sodium nitrate powder (about 150 kg) having a moisture content of 0.2 wt% was charged as the powdery granule 5 to a position of about half of the total height (160 cm from the bottom) in the conical barrel portion of this apparatus. As shown in the figure, the hygrometer 32 was disposed at a position where the tip was inserted into the granular material 5.

ホッパ21内部の温度を100℃になるよう制御しながら、スクリュー20を回転させ、さらに下部より100℃に加熱した乾燥空気24を1m/Hrの速度で注入した。 While controlling the temperature inside the hopper 21 to be 100 ° C., the screw 20 was rotated, and dry air 24 heated to 100 ° C. from the lower part was injected at a rate of 1 m 3 / Hr.

4時間経過後、内部の硝酸ナトリウムを分取し、含水率を測定した。測定の結果、含水率が0.02wt%であることを確認し、この装置構成で粉粒体5を乾燥できることを確認した。   After 4 hours, the internal sodium nitrate was collected and the water content was measured. As a result of the measurement, it was confirmed that the moisture content was 0.02 wt%, and it was confirmed that the granular material 5 could be dried with this apparatus configuration.

上記説明ではホッパ21内部の温度が100℃になるように制御するとしたが、水の飽和蒸気圧は60℃程度で常温(20℃)の飽和蒸気圧の約10倍となり、粉粒体5の乾燥が期待できるので、ホッパ21内部の温度を60℃以上に制御するのが好ましい。   In the above description, the temperature inside the hopper 21 is controlled to be 100 ° C., but the saturated vapor pressure of water is about 60 ° C. and about 10 times the saturated vapor pressure at room temperature (20 ° C.). Since drying can be expected, the temperature inside the hopper 21 is preferably controlled to 60 ° C. or higher.

次に、充填工程7(図1)を具体的に模擬して行なった実験の例を、図4および図5を用いて説明する。図4(a)に示すように廃棄容器1内に粉粒体5を均一に投入し、その後、図4(b)に示すように廃棄容器1を上下方向に加振する。その結果、図4(c)に示すように粉粒体5が稠密に充填される。   Next, an example of an experiment conducted by specifically simulating the filling step 7 (FIG. 1) will be described with reference to FIGS. As shown in FIG. 4 (a), the granular material 5 is uniformly introduced into the waste container 1, and then the waste container 1 is vibrated in the vertical direction as shown in FIG. 4 (b). As a result, as shown in FIG.4 (c), the granular material 5 is filled densely.

このときの実験条件および結果を図5に示す。すなわち、廃棄容器を模擬する容器として高さ2m、内径10mm、肉厚1mmのアクリル製容器を用い、これを加振しながら6種類の粒径分布を持つジルコニア粉末(粒径1〜1000μm)を連続的に投入した。なお、ジルコニア粉末の平均粒径と投入比率は、925μm:725μm:550μm:260μm:70μm=4:2:1:1:3の条件で、あらかじめ容器内で攪拌混合し投入した。   The experimental conditions and results at this time are shown in FIG. That is, an acrylic container having a height of 2 m, an inner diameter of 10 mm, and a thickness of 1 mm was used as a container for simulating a waste container, and zirconia powder having a particle size distribution of 6 types (particle diameter of 1 to 1000 μm) was vibrated. Continuously charged. The zirconia powder was stirred and mixed in advance in a container under the conditions of 925 μm: 725 μm: 550 μm: 260 μm: 70 μm = 4: 2: 1: 1: 3.

この実験で、充填の結果、ジルコニア粉末の投入量が130gで、この時の充填率が82.5%となった。   In this experiment, as a result of filling, the input amount of zirconia powder was 130 g, and the filling rate at this time was 82.5%.

次に、充填工程7(図1)を具体的に模擬した他の実験の例を、図6〜図8を用いて説明する。この例では、粉粒体5を廃棄容器1内に投入する際に、廃棄容器1を上下動可能な台(加振台)(図示せず)の上に配置して廃棄容器1を加振することにより、空隙率を下げて充填率を高める。その点は、図4、図5の実験と同様である。   Next, another example of an experiment that specifically simulates the filling step 7 (FIG. 1) will be described with reference to FIGS. In this example, when the granular material 5 is put into the waste container 1, the waste container 1 is placed on a table (vibration table) (not shown) that can be moved up and down to vibrate the waste container 1. By doing so, the porosity is lowered and the filling rate is increased. This is the same as in the experiments of FIGS.

廃棄容器1は、厚さ30cm,幅1m,高さ1.5mとした。放射性金属廃棄物2を模擬する模擬廃棄物13として、ステンレス板と配管を空隙80%とするようにしたものを、廃棄容器1内に入れた。粉粒体5としては、JIS(G5901)で規定されるケイ砂5,6,7号を1:1:1の比で予備混合したものを用いた。このように粉粒体5は、互いの空隙を少なくし充填率を高めるために、粒径分布を少なくとも3種類有するものが好ましい。この粉粒体5を、注入配管(チューブ)40を通して上方から廃棄容器1内に注入した。ここで、粉粒体5が注入配管40内で詰まるのを避けるために、注入配管40の内径は粉粒体5の最大粒径の10倍以上とするのが好ましい。   The waste container 1 was 30 cm thick, 1 m wide, and 1.5 m high. As the simulated waste 13 simulating the radioactive metal waste 2, a stainless steel plate and piping with a gap of 80% was placed in the waste container 1. As the granular material 5, what preliminarily mixed silica sand Nos. 5, 6, and 7 defined by JIS (G5901) at a ratio of 1: 1: 1 was used. As described above, the powder body 5 preferably has at least three types of particle size distributions in order to reduce mutual voids and increase the filling rate. The granular material 5 was injected into the waste container 1 from above through an injection pipe (tube) 40. Here, in order to avoid clogging of the granular material 5 in the injection pipe 40, the inner diameter of the injection pipe 40 is preferably set to 10 times or more the maximum particle diameter of the granular material 5.

図6の実験例(単純充填)では、注入配管40の出口が廃棄容器1の上部に位置するように注入配管40を固定した状態で、粉粒体5の注入(充填)を行なった。この場合に充填後の空隙率は51%であった。   In the experimental example (simple filling) of FIG. 6, the granular material 5 was injected (filled) in a state where the injection pipe 40 was fixed so that the outlet of the injection pipe 40 was positioned above the waste container 1. In this case, the porosity after filling was 51%.

図7の実験例(引き抜き充填)では、初めは注入配管40の出口が廃棄容器1の底部近くの模擬廃棄物13の隙間に位置するように挿入した(図7(a)参照)。   In the experimental example of FIG. 7 (drawing and filling), the injection pipe 40 was first inserted so that the outlet of the injection pipe 40 was positioned in the gap of the simulated waste 13 near the bottom of the waste container 1 (see FIG. 7A).

その後、粉粒体5の注入(充填)を行ないながら注入配管40を徐々に上昇させていった(図7(b)参照)。注入配管40の上昇速度(引き抜き速度)は5cm/秒とした。この実験例の結果、空隙率は30%に改善された。   Thereafter, the injection pipe 40 was gradually raised while injecting (filling) the granular material 5 (see FIG. 7B). The rising speed (drawing speed) of the injection pipe 40 was 5 cm / second. As a result of this experimental example, the porosity was improved to 30%.

上記図6、図7の実験条件および実験結果を図8にまとめて示す。   The experimental conditions and experimental results of FIGS. 6 and 7 are collectively shown in FIG.

次に、充填工程7(図1)で、廃棄容器1内に粉粒体5を充填するときに、廃棄容器1内に充填された粉粒体5の量を確認し、適当量が充填されたときに粉粒体5の供給を停止するための構成を、図9を参照して説明する。   Next, in the filling step 7 (FIG. 1), when the powder body 5 is filled in the waste container 1, the amount of the powder body 5 filled in the waste container 1 is confirmed, and an appropriate amount is filled. A configuration for stopping the supply of the granular material 5 will be described with reference to FIG.

廃棄容器1上部の蓋42の下側に、たとえば2台の超音波トランスジューサ44を設置する。超音波トランスジューサ44は、所要周波数の超音波を送受信させる超音波探触子(図示せず)とこの超音波探触子用超音波送受信器(図示せず)を有する。   For example, two ultrasonic transducers 44 are installed below the lid 42 at the top of the waste container 1. The ultrasonic transducer 44 includes an ultrasonic probe (not shown) that transmits and receives an ultrasonic wave having a required frequency and an ultrasonic transmitter / receiver (not shown) for the ultrasonic probe.

超音波送受信器は、パルス状電気信号を超音波探触子に印加させることにより、超音波探触子から所要周波数の発信超音波46を発生させる。発信超音波46が廃棄容器1内の放射性金属廃棄物2もしくは粉粒体5で反射され、その反射波48が超音波探触子で検知される。検知された反射波48は超音波送受信器で電気信号に変換され、エコー電気信号となって、処理演算・流量制御装置50に送られる。この処理演算・流量制御装置50で、エコー電気信号がデータ処理あるいは演算処理され、廃棄容器1内の粉粒体5または放射性金属廃棄物2の最高位置を非接触で検出することができる。この位置がある一定以上の高さとなった場合に、粉粒体5の供給を自動的にまたは手動により止めることができる。   The ultrasonic transceiver generates a transmission ultrasonic wave 46 having a required frequency from the ultrasonic probe by applying a pulsed electric signal to the ultrasonic probe. The transmitted ultrasonic wave 46 is reflected by the radioactive metal waste 2 or the granular material 5 in the waste container 1, and the reflected wave 48 is detected by the ultrasonic probe. The detected reflected wave 48 is converted into an electric signal by an ultrasonic transmitter / receiver, and is converted into an echo electric signal, which is sent to the processing calculation / flow rate control device 50. In this processing calculation / flow rate control device 50, the echo electric signal is subjected to data processing or calculation processing, and the highest position of the granular material 5 or the radioactive metal waste 2 in the waste container 1 can be detected without contact. When this position reaches a certain height or higher, the supply of the granular material 5 can be stopped automatically or manually.

本発明に係る放射性金属廃棄物処理方法の一実施の形態を示す手順フロー図。The procedure flow figure showing one embodiment of the radioactive metal waste disposal method concerning the present invention. 図1の廃棄物乾燥工程を模擬した実験の例を示す図であって、実験装置の模式的縦断面図。It is a figure which shows the example of the experiment which simulated the waste drying process of FIG. 1, Comprising: The typical longitudinal cross-sectional view of an experiment apparatus. 図1の粉粒体乾燥工程を模擬した実験の例を示す図であって、実験装置の模式的縦断面図。It is a figure which shows the example of the experiment which simulated the granular material drying process of FIG. 1, Comprising: The typical longitudinal cross-sectional view of an experimental apparatus. 図1の粉粒体充填工程を模擬した実験の例を示す図であって、(a)は投入時、(b)は充填加振時、(c)は充填加振後を各々示す実験装置の模式的縦断面図。It is a figure which shows the example of the experiment which simulated the granular material filling process of FIG. 1, Comprising: (a) at the time of injection | pouring, (b) at the time of filling vibration, (c) is an experimental apparatus which shows after filling vibration, respectively FIG. 図4の実験条件および結果の概要を示す表。The table | surface which shows the experimental condition of FIG. 4, and the outline | summary of a result. 図1の粉粒体充填工程を模擬した他の実験の例を示す図であって、実験装置の模式的縦断面図。It is a figure which shows the example of the other experiment which simulated the powder body filling process of FIG. 1, Comprising: The typical longitudinal cross-sectional view of an experiment apparatus. 図6の実験の例の変形例を示す図であって、実験装置の模式的縦断面図。It is a figure which shows the modification of the example of an experiment of FIG. 6, Comprising: The typical longitudinal cross-sectional view of an experiment apparatus. 図6および図7の実験の例の実験条件および結果の概要を示す表。The table | surface which shows the experimental condition of the example of an experiment of FIG. 6 and FIG. 7, and the summary of a result. 図1の粉粒体充填工程における廃棄容器内粉粒体量を確認して適時に粉粒体供給を停止するための構造を示す図であって、装置の模式的縦断面図。It is a figure which shows the structure for confirming the amount of granular material in a waste container in the granular material filling process of FIG. 1, and stopping granular material supply at a time, Comprising: The typical longitudinal cross-sectional view of an apparatus.

符号の説明Explanation of symbols

1…廃棄容器
2…放射性金属廃棄物
5…粉粒体
9…廃棄体
DESCRIPTION OF SYMBOLS 1 ... Waste container 2 ... Radioactive metal waste 5 ... Granule 9 ... Waste

Claims (15)

放射性金属廃棄物を廃棄容器に投入する廃棄物投入工程と、
前記廃棄物投入工程の後に前記廃棄容器内を乾燥させる廃棄物乾燥工程と、
無機物からなる粉粒体を乾燥させる粉粒体乾燥工程と、
前記廃棄物乾燥工程および粉粒体乾燥工程の後に、前記廃棄容器内に前記粉粒体を投入し、前記廃棄容器内の前記金属廃棄物の間隙に前記粉粒体を充填する充填工程と、
を有することを特徴とする放射性金属廃棄物処理方法。
A waste input process for putting radioactive metal waste into a waste container;
A waste drying step of drying the inside of the waste container after the waste charging step;
A granular material drying step for drying inorganic particles;
After the waste drying step and the powder drying step, filling the powder into the waste container, and filling the powder into the gap between the metal waste in the waste container,
The radioactive metal waste processing method characterized by having.
前記充填工程の後に、前記廃棄容器を密封する密封工程をさらに有することを特徴とする請求項1記載の放射性金属廃棄物処理方法。   The radioactive metal waste treatment method according to claim 1, further comprising a sealing step of sealing the waste container after the filling step. 前記粉粒体は、砂、砂利、砕石、掘削ズリ、ガラス、シリカ、アルミナ、ジルコニア、スラグ、窒化ケイ素、窒化ホウ素、炭化ホウ素、あるいはこれらの複数種類の組み合わせであることを特徴とする請求項1または2記載の放射性金属廃棄物処理方法。   The powder particles are sand, gravel, crushed stone, excavation sludge, glass, silica, alumina, zirconia, slag, silicon nitride, boron nitride, boron carbide, or a combination of a plurality of these. The radioactive metal waste processing method of 1 or 2. 前記粉粒体は、少なくとも3種類の粒径の粉粒体からなることを特徴とする請求項1ないし3のいずれか記載の放射性金属廃棄物処理方法。   The radioactive metal waste treatment method according to any one of claims 1 to 3, wherein the granular material is composed of granular material having at least three kinds of particle diameters. 前記廃棄物乾燥工程は、
前記廃棄容器に仮蓋締めを行なう仮蓋締め工程と、
前記仮蓋締め工程の後に前記廃棄容器内の圧力を減圧する減圧工程と、
を含むことを特徴とする請求項1ないし4いずれか記載の放射性金属廃棄物処理方法。
The waste drying step
A temporary lid fastening step for fastening the temporary lid to the waste container;
A depressurization step of depressurizing the pressure in the waste container after the temporary lid tightening step;
The radioactive metal waste processing method of any one of Claims 1 thru | or 4 characterized by the above-mentioned.
前記廃棄物乾燥工程は、前記廃棄容器内部を加熱する加熱工程を含むことを特徴とする請求項1ないし5いずれか記載の放射性金属廃棄物処理方法。   6. The radioactive metal waste processing method according to claim 1, wherein the waste drying step includes a heating step of heating the inside of the waste container. 前記粉粒体乾燥工程は、前記粉粒体をホッパに投入するホッパ投入工程と、
前記ホッパ投入工程の後に前記ホッパを加熱するホッパ加熱工程と、
を含むことを特徴とする請求項1ないし6いずれか記載の放射性金属廃棄物処理方法。
The powder granule drying step includes a hopper charging step of charging the powder granular material into a hopper,
A hopper heating step of heating the hopper after the hopper charging step;
The radioactive metal waste processing method according to claim 1, comprising:
前記粉粒体乾燥工程は、前記ホッパ内の湿度を監視する工程を含むことを特徴とする請求項7記載の放射性金属廃棄物処理方法。   8. The radioactive metal waste processing method according to claim 7, wherein the powder particle drying step includes a step of monitoring humidity in the hopper. 前記廃棄物乾燥工程は、前記廃棄容器内の湿度を監視する工程を含むことを特徴とする請求項1ないし8いずれか記載の放射性金属廃棄物処理方法。   The radioactive metal waste treatment method according to claim 1, wherein the waste drying step includes a step of monitoring humidity in the waste container. 前記充填工程は、
前記廃棄容器内に前記粉粒体を投入する前に、前記粉粒体の粒径のうちの最大のものよりもはるかに大きな内径を持ち、下端に出口端を有する注入配管を、その出口端が前記廃棄容器内の底部付近に配置する工程と、
前記注入配管を引き上げながら前記廃棄容器内に前記粉粒体を投入する工程と、
を含むことを特徴とする請求項1ないし9いずれか記載の放射性金属廃棄物処理方法。
The filling step includes
Before introducing the granular material into the waste container, an injection pipe having an inner diameter much larger than the largest one of the particle sizes of the granular material and having an outlet end at the lower end is provided at the outlet end. Arranged near the bottom in the waste container,
Throwing the powder into the waste container while pulling up the injection pipe;
The radioactive metal waste processing method according to claim 1, comprising:
前記充填工程は、前記廃棄容器を振動させる工程を含むことを特徴とする請求項1ないし10いずれか記載の放射性金属廃棄物処理方法。   The radioactive metal waste treatment method according to claim 1, wherein the filling step includes a step of vibrating the waste container. 前記廃棄容器を振動させる工程は、前記廃棄容器に超音波を照射する工程を含むことを特徴とする請求項11記載の放射性金属廃棄物処理方法。   The radioactive metal waste processing method according to claim 11, wherein the step of vibrating the waste container includes a step of irradiating the waste container with ultrasonic waves. 前記廃棄容器を振動させる工程は、前記廃棄容器を載せた加振台を振動させる工程を含むことを特徴とする請求項11記載の放射性金属廃棄物処理方法。   12. The radioactive metal waste processing method according to claim 11, wherein the step of vibrating the waste container includes a step of vibrating a vibration table on which the waste container is placed. 前記充填工程は、前記廃棄容器内の前記粉粒体の高さを、超音波トランスジューサを用いて測定する工程を含むことを特徴とする請求項1ないし13いずれか記載の放射性金属廃棄物処理方法。   The radioactive metal waste processing method according to any one of claims 1 to 13, wherein the filling step includes a step of measuring the height of the granular material in the waste container using an ultrasonic transducer. . 放射性金属廃棄物を受容する廃棄容器と、
前記放射性金属廃棄物を受容した廃棄容器内を乾燥させる廃棄物乾燥手段と、
無機物からなる粉粒体を一時的に収容するホッパと、
前記粉粒体を受容したホッパ内を乾燥させる粉粒体乾燥手段と、
前記廃棄物乾燥手段によって乾燥させた後の廃棄容器内に前記粉粒体乾燥手段によって乾燥させた後の粉粒体を投入し、前記廃棄容器内の前記金属廃棄物の間隙に前記粉粒体を充填する充填手段と、
を有することを特徴とする放射性金属廃棄物処理システム。
A waste container for receiving radioactive metal waste;
Waste drying means for drying the inside of the waste container that has received the radioactive metal waste;
A hopper that temporarily accommodates inorganic particles;
A granular material drying means for drying the inside of the hopper receiving the granular material;
The granular material dried by the granular material drying means is put into the waste container after being dried by the waste drying means, and the granular material is inserted into the gap of the metal waste in the waste container. Filling means for filling,
A radioactive metal waste treatment system comprising:
JP2004252049A 2004-08-31 2004-08-31 Method and system for disposing of radioactive metal waste Withdrawn JP2006071322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252049A JP2006071322A (en) 2004-08-31 2004-08-31 Method and system for disposing of radioactive metal waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252049A JP2006071322A (en) 2004-08-31 2004-08-31 Method and system for disposing of radioactive metal waste

Publications (1)

Publication Number Publication Date
JP2006071322A true JP2006071322A (en) 2006-03-16

Family

ID=36152130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252049A Withdrawn JP2006071322A (en) 2004-08-31 2004-08-31 Method and system for disposing of radioactive metal waste

Country Status (1)

Country Link
JP (1) JP2006071322A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002379A (en) * 2008-06-23 2010-01-07 Toshiba Corp Manufacturing method for radioactive waste processing material, radioactive waste processing method, and radioactive waste backfilling method
JP2011257264A (en) * 2010-06-09 2011-12-22 Toshiba Corp Method and device for treating radioactive solid waste
WO2017140870A1 (en) * 2016-02-18 2017-08-24 Innoveox Method for conditioning radioactive waste, associated robot and facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002379A (en) * 2008-06-23 2010-01-07 Toshiba Corp Manufacturing method for radioactive waste processing material, radioactive waste processing method, and radioactive waste backfilling method
JP2011257264A (en) * 2010-06-09 2011-12-22 Toshiba Corp Method and device for treating radioactive solid waste
WO2017140870A1 (en) * 2016-02-18 2017-08-24 Innoveox Method for conditioning radioactive waste, associated robot and facility
FR3048117A1 (en) * 2016-02-18 2017-08-25 Innoveox METHOD OF CONDITIONING RADIOACTIVE WASTE, ROBOT AND INSTALLATION THEREFOR

Similar Documents

Publication Publication Date Title
JPS58218699A (en) Method of solidifying ion-exchange bead in-plate
EP2977991A1 (en) Radioactive waste solidification method
JP2006071322A (en) Method and system for disposing of radioactive metal waste
WO1989000753A1 (en) Method and apparatus for solidifying radioactive waste
US5008045A (en) Method and apparatus for centrifugally casting hazardous waste
JP5885324B2 (en) Method for producing waste solidified body and method for treating radioactive waste
JP4364102B2 (en) Method and apparatus for solidifying radioactive waste with high radioactivity concentration
JP2008256660A (en) Radioactive waste burned ash solidification processing method
JPS63195598A (en) Solidifying processor for radioactive waste
JP7159147B2 (en) Solidified geopolymer manufacturing method and solidified geopolymer manufacturing system
JP2010002379A (en) Manufacturing method for radioactive waste processing material, radioactive waste processing method, and radioactive waste backfilling method
KR930004695B1 (en) Solidifying method of organic liquid waste
JP2006258716A (en) Radioactive waste solidification method and solidification device
KR102375932B1 (en) Polymer solidification apparatus and solidification method of radioactive pellets
US5043103A (en) Method and apparatus for centrifugally casting hazardous waste
EP2919237A1 (en) Radioactive waste solidification method
JPS62215898A (en) Method and device for processing radioactive waste
JP2012103145A (en) Method and device for processing waste ion exchange resin
JP2003200144A (en) Method for fixing harmful substance
JPS61178698A (en) Method of hardening water glass
JP2000284095A (en) Solidified waste and manufacture thereof
JPS6332399A (en) Processing vessel for radioactive waste, etc. and manufacture thereof
JPH03150499A (en) Solidification of radioactive waste
JPS58132699A (en) Method of melting and solidifying radioactive waste
Braet et al. Radioactive Spent Ion-Exchange Resins Conditioning by the Hot Supercompaction Process at Tihange NPP–Early Experience-12200

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106