JP2006071080A - Resin integral pipe - Google Patents

Resin integral pipe Download PDF

Info

Publication number
JP2006071080A
JP2006071080A JP2004258894A JP2004258894A JP2006071080A JP 2006071080 A JP2006071080 A JP 2006071080A JP 2004258894 A JP2004258894 A JP 2004258894A JP 2004258894 A JP2004258894 A JP 2004258894A JP 2006071080 A JP2006071080 A JP 2006071080A
Authority
JP
Japan
Prior art keywords
resin
flow path
plates
plate
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004258894A
Other languages
Japanese (ja)
Other versions
JP4539245B2 (en
Inventor
Tetsuo Takano
哲郎 高野
Susumu Hatanaka
畑中  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004258894A priority Critical patent/JP4539245B2/en
Publication of JP2006071080A publication Critical patent/JP2006071080A/en
Application granted granted Critical
Publication of JP4539245B2 publication Critical patent/JP4539245B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin integral pipe which can be saved in space and reduced in weight by simplifying a complicated pipe, and prevented from changing the temperature of the fluid circulating in passages, being not hardly affected by corrosion and degeneration of a material, etc., with the fluid circulating in the passages. <P>SOLUTION: Resin-made plates 2 are piled and bonded, the passages 5 are formed between the piled plates 2. The resin integral pipe is comprised of an external communication hole 6 to communicate from the plates 2 into the passages 5, and a groove 4 in which at least one of the plates 2 forms the passages 5. Since the part to be the passages 5 is made of resin, and a heat insulating hole 8 is provided between the passages 5, the heat transfer between adjoining passages 5 can be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂集積配管に関し、さらに詳しくは、流路を流通する流体によって腐食や材質の変質等の影響を受けにくく、複雑な配管を単純化して省スペース化、軽量化が可能であり、流路を流通する流体の温度変化を抑制できる樹脂集積配管に関するものである。   The present invention relates to a resin integrated pipe, and more specifically, is less susceptible to corrosion and material alteration by a fluid flowing through a flow path, and can simplify a complicated pipe to save space and reduce weight. The present invention relates to a resin integrated pipe that can suppress a temperature change of a fluid flowing through a flow path.

従来、流体を流通させる多くの配管を備えた機械装置、例えば空調装置や冷凍装置等には、太さや長さの異なる配管が縦横に複雑に入り組んで配置されていた。そのため、これらの配管にセンサーや制御装置など様々な機器、部品を取り付けるのは、スペース的な制約が多く、メンテナンス等の点においても問題があった。   Conventionally, pipes having different thicknesses and lengths are arranged in a complicated manner vertically and horizontally in a mechanical apparatus having many pipes for circulating a fluid, such as an air conditioner or a refrigeration apparatus. For this reason, attaching various devices and parts such as sensors and control devices to these pipes has many space restrictions, and there are problems in terms of maintenance.

そこで、複数の配管をユニットにして単純化し、小型化する金属製の集積配管が提案されている(例えば特許文献1参照)。特許文献1においては、一対の金属プレートにそれぞれ流路を形成する所定形状の凹部をプレス成形して、互いの金属プレートをろう付け接合して集積配管を製造するようにしている。   In view of this, there has been proposed a metal integrated pipe that simplifies and downsizes a plurality of pipes as a unit (see, for example, Patent Document 1). In Patent Document 1, a concave portion having a predetermined shape for forming a flow path is formed on a pair of metal plates, and the integrated pipes are manufactured by brazing and joining the metal plates.

また、別の提案では、流路となる溝をプレス加工や精密鋳造加工によって形成した金属製の第1プレートと、取り付けられる機器等に通じる連通孔を形成した金属製の第2プレートとを溶接等で接合して、集積配管を製造するようにしている(特許文献2参照)。   In another proposal, a metal first plate in which a groove serving as a flow path is formed by pressing or precision casting and a metal second plate in which a communication hole leading to a device to be attached is formed are welded. The integrated pipes are manufactured by joining them together (see Patent Document 2).

しかしながら、これら両提案では、集積配管の母材として金属プレートを使用していて、流路となる部分が金属となる。このような金属製の集積配管を例えば、燃料電池、化学プラント、食品製造ライン、半導体製造ラインなどに用いられる装置、機器に使用すると集積配管の流路を流れる流体によって腐食したり、化学的影響を受けて侵される(例えば、配管の流路部分の金属イオンが溶出するなど)ことがある。そのため、短期間で使用不能になり、頻繁に集積配管を交換しなければならないという問題や流路を流れる流体の成分が変化するなどの不具合が生じる。その他、重量が重くなるという問題もある。   However, in both of these proposals, a metal plate is used as the base material of the integrated piping, and the portion that becomes the flow path is made of metal. When such metal integrated pipes are used in, for example, devices and equipment used in fuel cells, chemical plants, food production lines, semiconductor production lines, etc., they are corroded by the fluid flowing through the flow paths of the integrated pipes, or have chemical effects. (For example, metal ions in the flow path portion of the piping are eluted). For this reason, it becomes unusable in a short period of time, resulting in problems such as frequent replacement of the integrated piping and changes in the fluid component flowing through the flow path. In addition, there is a problem that the weight increases.

また、金属製の集積配管では、熱伝導率が比較的高いので、流路を流れる流体が、流路の外部の温度によって、温度変化を生じやすく、特に、流路と流路とが近接して設けられている場合は、隣の流路を流れる流体の温度による影響を受けやすくなる。そのため、流体を所定の温度範囲にする必要がある場合は、流路と流路との間隔を小さくできずに設備が大型化してしまうなどの問題があった。そこで、外部からの影響を最小限にして温度変化を抑制して流体を流通させることのできる集積配管が求められていた。
特開平11−759号公報 特開2003−74519号公報
In addition, since the metal integrated piping has a relatively high thermal conductivity, the fluid flowing through the flow path is likely to change in temperature due to the temperature outside the flow path. In particular, the flow path and the flow path are close to each other. Are provided, it becomes easy to be influenced by the temperature of the fluid flowing in the adjacent flow path. Therefore, when the fluid needs to be in a predetermined temperature range, there is a problem that the distance between the flow paths cannot be reduced and the equipment is enlarged. Therefore, there has been a demand for an integrated pipe that can flow the fluid while minimizing the influence from the outside and suppressing the temperature change.
Japanese Patent Laid-Open No. 11-759 JP 2003-74519 A

本発明の目的は、流路を流通する流体によって腐食や材質の変質等の影響を受けにくく、複雑な配管を単純化して省スペース化、軽量化ができ、流路を流通する流体の温度変化を抑制できる樹脂集積配管を提供することにある。   The object of the present invention is that the fluid flowing through the flow path is not easily affected by corrosion, material deterioration, etc., and the complicated piping can be simplified to save space and weight, and the temperature change of the fluid flowing through the flow path It is providing the resin integrated piping which can suppress this.

上記目的を達成するため本発明の樹脂集積配管は、樹脂製のプレートを積層して接合し、該積層したプレート間に流路を形成した樹脂集積配管であって、前記プレートから前記流路に連通する外部連通孔を有し、前記プレートの少なくとも一方が、前記流路を形成する溝部を有し、前記流路の内部と外部とを断熱する断熱部を設けたことを特徴とするものである。   In order to achieve the above object, the resin integrated pipe of the present invention is a resin integrated pipe in which resin plates are laminated and joined, and a flow path is formed between the laminated plates, from the plate to the flow path. It has an external communication hole that communicates, and at least one of the plates has a groove part that forms the flow path, and a heat insulating part that insulates the inside and the outside of the flow path is provided. is there.

本発明の樹脂集積配管によれば、樹脂製のプレートを積層して接合し、この積層したプレート間に流路を形成した樹脂集積配管であって、プレートから流路に連通する外部連通孔を有し、プレートの少なくとも一方が、流路を形成する溝部を有する構造としたので、流路となる部分が樹脂となり、流路を流通する流体によって腐食や材質の変質等の影響を受けにくく、長期間使用ができる。樹脂製なので、軽量化を図ることも可能となる。   According to the resin integrated pipe of the present invention, resin plates are laminated and joined, and a flow path is formed between the stacked plates, and the external communication hole communicating from the plate to the flow path is formed. And at least one of the plates has a structure that has a groove part that forms a flow path, so that the part that becomes the flow path becomes resin, and is less susceptible to corrosion or material alteration by the fluid flowing through the flow path, Can be used for a long time. Since it is made of resin, it is possible to reduce the weight.

また、複雑な配管をユニットにして単純化、省スペース化が可能となり、プレートの少なくとも一方に溝部を設けるようにしたので、様々な方法でプレートを製造することができる。   In addition, it is possible to simplify and save space by making complicated piping into a unit, and since the groove is provided in at least one of the plates, the plate can be manufactured by various methods.

さらに、プレートから流路に連通する外部連通孔を介して、外付け装置と流路とを連通させる際に、一方または両方のプレートに外付け装置を装着でき、外付け装置のレイアウトの自由度も増すことになる。   Furthermore, when connecting the external device and the flow path through the external communication hole communicating from the plate to the flow path, the external device can be attached to one or both plates, and the degree of freedom of the layout of the external device Will also increase.

加えて、流路の内部と外部とを断熱する断熱部を設けたので、流路を流通する流体が、流路外部の温度に影響されにくくなり、流体の温度変化を抑制することができる。   In addition, since the heat insulating portion that insulates the inside and the outside of the flow path is provided, the fluid flowing through the flow path is hardly affected by the temperature outside the flow path, and the temperature change of the fluid can be suppressed.

以下、本発明の樹脂集積配管を図に示した実施形態に基づいて説明する。図1は第1の実施形態の平面図、図2は図1におけるA−A断面図、図3は図2におけるB部の拡大図である。   Hereinafter, the resin integrated piping of the present invention will be described based on the embodiments shown in the drawings. 1 is a plan view of the first embodiment, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is an enlarged view of a portion B in FIG.

この樹脂集積配管1は、樹脂製のプレート2を積層して接合し、積層したプレート2a、2b間に流路5を有する構造となっている。   The resin integrated pipe 1 has a structure in which resin plates 2 are stacked and joined, and a flow path 5 is provided between the stacked plates 2a and 2b.

図2において上側のプレート2aは、一方面から他方面に貫通する外部連通孔6と断熱部の一例として断熱孔8とを所定位置に有していて、ほぼ均一の厚みの平面状となっている。下側のプレート2bは、一方面に凹状をした流路5を形成する溝部4と断熱孔8とを所定位置に有し、ほぼ均一の厚みとなっている。   In FIG. 2, the upper plate 2a has an external communication hole 6 penetrating from one surface to the other surface and a heat insulating hole 8 as an example of a heat insulating portion in a predetermined position, and has a planar shape with a substantially uniform thickness. Yes. The lower plate 2b has a groove portion 4 and a heat insulating hole 8 forming a flow path 5 having a concave shape on one surface, and has a substantially uniform thickness.

下側のプレート2bの凹状の溝部4が設けられている面を上側のプレート2aに向けて、溝部4を塞ぐように、積層して接合することによって、溝部4と上側のプレート2aに囲まれて流路5が形成される。   The surface of the lower plate 2b on which the concave groove portion 4 is provided faces the upper plate 2a and is laminated and joined so as to close the groove portion 4, thereby being surrounded by the groove portion 4 and the upper plate 2a. Thus, the flow path 5 is formed.

この際に、上側のプレート2aの所定位置の外部連通孔6および下側のプレート2bの溝部4(即ち、流路5)とが連通する位置で接合される。また、両プレート2a、2bの断熱孔8が連通する位置で接合される。外部連通孔6および断熱孔8は、両プレート2a、2bを積層した後に設けるようにしてもよい。   At this time, the external communication hole 6 at a predetermined position of the upper plate 2a and the groove 4 (that is, the flow path 5) of the lower plate 2b are joined at a position where they communicate. Moreover, it joins in the position where the heat insulation hole 8 of both plates 2a and 2b connects. The external communication hole 6 and the heat insulating hole 8 may be provided after the two plates 2a and 2b are laminated.

このように構成された樹脂集積配管1の上側のプレート2aの表面には、図1に示すように、外部連通孔6の位置に外付け装置である延設チューブ12a、12bや、センサ12c、電磁弁12dが装着され、これらの外付け装置12a〜12dと流路5とが外部連通孔6を介して連通され、流路5と流路5との間には、断熱孔8が配置される。   On the surface of the upper plate 2a of the resin integrated pipe 1 configured in this way, as shown in FIG. 1, extended tubes 12a and 12b, which are external devices, and sensors 12c, An electromagnetic valve 12 d is mounted, these external devices 12 a to 12 d and the flow path 5 communicate with each other through the external communication hole 6, and a heat insulating hole 8 is disposed between the flow path 5 and the flow path 5. The

両プレート2a、2bはそれぞれ、単層の樹脂で成形することもできるが、図3に示すように二層構造として、接合面側を通常の樹脂(非発泡樹脂)S、外面側を発泡樹脂Pとすることもできる。これによって、流路5となる部分は、通常の樹脂Sとなり、流路5を覆う部分は、発泡樹脂Pとなる。発泡樹脂Pとしては、例えば、発泡ウレタン、発泡スチロール、発泡ポリエチレンなどを用いることができる。   Each of the plates 2a and 2b can be formed of a single layer resin, but has a two-layer structure as shown in FIG. 3, and the bonding surface side is a normal resin (non-foamed resin) S and the outer surface side is a foamed resin. P can also be used. Thereby, the part which becomes the flow path 5 becomes the normal resin S, and the part which covers the flow path 5 becomes the foamed resin P. As the foamed resin P, for example, foamed urethane, foamed polystyrene, foamed polyethylene, or the like can be used.

この樹脂集積配管1の構造では、流路5は樹脂となるので、金属配管で問題となるような、流路を流れる流体によって生じる腐食や金属イオンの溶出等の材質の変質を防ぐことができる。したがって、金属配管では流通が困難であった流体にも対応ができ、長期間使用することができ、樹脂による軽量化を図ることもできる。   In the structure of the resin integrated pipe 1, since the flow path 5 is made of resin, it is possible to prevent deterioration of the material such as corrosion and metal ion elution caused by the fluid flowing through the flow path, which is a problem in the metal pipe. . Therefore, it is possible to deal with fluids that are difficult to circulate with metal piping, can be used for a long time, and can be reduced in weight by resin.

プレート2に用いる樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、ナイロン6、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン46、芳香族ナイロン等のポリアミド、ポリテトラフルオロエチレン、トラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン等のフッ素樹脂、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリ塩化ビニル、ポリアセタール、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド等を用いることができる。   Examples of the resin used for the plate 2 include polyolefins such as polyethylene, polypropylene, polybutene, and polymethylpentene, and polyamides such as nylon 6, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, nylon 46, and aromatic nylon. , Polytetrafluoroethylene, trifluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, etc. Fluororesin, Polybutylene terephthalate, Polyester such as polyethylene terephthalate, Polyvinyl chloride, Polyacetal, Polyphenylene ether, Polysulfone, Polyether Sulfone, can be used polyphenylene sulfide and the like.

流路5を流通する流体が強酸や強アルカリ等の腐食性流体の場合は、耐腐食性に優れたポリオレフィン、フッ素樹脂を用いるのが好ましい。また、純水や食料・飲料用途の流体の場合は、流路5を形成する素材成分の低溶出性が求められるので、ポリオレフィン、フッ素樹脂を用いるのが好ましい。   When the fluid flowing through the flow path 5 is a corrosive fluid such as a strong acid or strong alkali, it is preferable to use a polyolefin or a fluororesin excellent in corrosion resistance. Moreover, in the case of fluids for pure water or food / beverage applications, it is preferable to use polyolefin or fluororesin because low elution of the material components forming the flow path 5 is required.

流路5の内圧等に対して機械的強度が不足する場合は、プレート2に用いる樹脂に樹脂補強材を混入して、強度を上げることもできる。この場合の樹脂補強材としては、ガラス繊維、カーボン繊維、アルミナ繊維、アラミド繊維、ボロン繊維、PBO(ポリ-p-フェニレンベンゾビスオキサゾール)繊維等の繊維状充填剤、カーボン、炭酸カルシウム、クレイ、シリカ等の粉末状充填剤、マイカ、タルク、黒鉛等の平板状充填剤、ガラスバルーン、シラスバルーン等の球状充填剤を例示することができる。耐熱性(高温時の剛性)が必要な場合は、上記の繊維状充填剤が好ましい。   When the mechanical strength is insufficient with respect to the internal pressure or the like of the flow path 5, the strength can be increased by mixing a resin reinforcing material into the resin used for the plate 2. Examples of the resin reinforcing material in this case include glass fibers, carbon fibers, alumina fibers, aramid fibers, boron fibers, fibrous fillers such as PBO (poly-p-phenylenebenzobisoxazole) fibers, carbon, calcium carbonate, clay, Examples thereof include powdery fillers such as silica, flat fillers such as mica, talc and graphite, and spherical fillers such as glass balloons and shirasu balloons. When heat resistance (rigidity at high temperature) is required, the above fibrous filler is preferable.

また、この構造により複雑な配管をユニット化して、より単純化して、省スペース化や低コスト化を図ることができ、配管の集積度を上げることもでき、流路5の短縮化により、流路5による流体圧力の低下を防ぐこともできる。プレート2の少なくとも一方に溝部4を設けることで、様々な方法でプレート2を製造することが可能となるとともに、一方または両方のプレート2に外付け装置12a〜12dを装着することができるので、外付け装置12a〜12dのレイアウトが自由になるなどの効果もある。   In addition, this structure makes it possible to unitize complicated piping, further simplifying it, saving space and reducing costs, increasing the degree of integration of piping, and shortening the flow path 5 to reduce flow. A drop in fluid pressure due to the passage 5 can also be prevented. By providing the groove 4 in at least one of the plates 2, the plate 2 can be manufactured by various methods, and the external devices 12a to 12d can be attached to one or both of the plates 2. There is also an effect that the layout of the external devices 12a to 12d becomes free.

さらに、流路5の間に設けられた断熱孔8によって、隣接する流路5間の熱伝導が妨げられて、それぞれの流路5を流通する流体は、互いに温度の影響を受けにくくなる。この実施形態では、両プレート2a、2bを貫通する断熱孔8を設けているが、貫通させずに断熱溝とすることもできる。また、流路5を覆う発泡樹脂Pによって、流路5の内部と外部とが断熱されて、外部環境による流路5を流れる流体の温度変化を抑制することができる。   Furthermore, heat conduction between the adjacent flow paths 5 is hindered by the heat insulating holes 8 provided between the flow paths 5, so that the fluids flowing through the respective flow paths 5 are not easily affected by the temperature. In this embodiment, although the heat insulation hole 8 which penetrates both plates 2a and 2b is provided, it can also be set as a heat insulation groove without penetrating. In addition, the foamed resin P covering the flow path 5 insulates the inside and the outside of the flow path 5, and the temperature change of the fluid flowing through the flow path 5 due to the external environment can be suppressed.

たとえば、燃料電池の配管においては、一部の配管に飽和に近い水蒸気を含む流体が流通するので、隣接する配管を流れる流体や外気によって、冷却されると結露が発生して、システムの効率低下や安定性に支障が生じることがある。このような断熱構造であると、流路5をより隣接して配置することができ、省スペース化、集積度の向上が可能となる。   For example, in fuel cell piping, fluid containing water vapor close to saturation circulates in some piping, so condensation occurs when cooled by fluid or outside air flowing in adjacent piping, reducing system efficiency. And stability may be affected. With such a heat insulating structure, the flow paths 5 can be arranged more adjacent to each other, so that space saving and integration can be improved.

さらに、燃料電池の集積配管では、流路5に金属イオンを溶出させる流体が流通し、軽量化、コンパクト化が強く求められるので、以上の効果を有している構造の樹脂集積配管1を好適に用いることができる。   Further, in the fuel cell integrated pipe, a fluid that elutes metal ions flows through the flow path 5, and weight reduction and downsizing are strongly demanded. Therefore, the resin integrated pipe 1 having the above-described structure is preferable. Can be used.

プレート2は、射出成形、プレス成形、真空成形、圧空成形等の一般的な樹脂成形方法で製造することができ、プレート2の外部連通孔6、断熱孔8は、樹脂成形時に一緒に形成することも樹脂成形後に形成することもできる。   The plate 2 can be manufactured by a general resin molding method such as injection molding, press molding, vacuum molding, pressure molding, etc., and the external communication hole 6 and the heat insulating hole 8 of the plate 2 are formed together during resin molding. It can also be formed after resin molding.

樹脂成形方法として、真空成形や圧空成形を用いると金型投資を大幅に削減することができ、大幅なコストダウンが可能となる。これによって、少量多品種生産や頻繁な設計変更に容易に対応できるようになる。   If vacuum molding or pressure molding is used as the resin molding method, the investment in the mold can be greatly reduced, and the cost can be greatly reduced. As a result, it is possible to easily cope with small-lot and multi-product production and frequent design changes.

この実施形態に示す構造だけでなく、溝部4は両プレート2a、2bに設けてもよい。また、図3に示したプレート2a、2bの外側となる層を発泡樹脂Pの他に、断熱効果のあるガラスバルーン、シラスバルーン等の球状充填剤含有樹脂、ガラス繊維、カーボン繊維、アルミナ繊維、アラミド繊維、ボロン繊維、PBO(ポリ-p-フェニレンベンゾビスオキサゾール)繊維等の繊維層、真空空気層とすることもできる。   In addition to the structure shown in this embodiment, the groove 4 may be provided in both plates 2a and 2b. In addition to the foamed resin P, the outer layer of the plates 2a and 2b shown in FIG. 3 is made of a spherical filler-containing resin such as a glass balloon or a shirasu balloon having a heat insulating effect, glass fiber, carbon fiber, alumina fiber, A fiber layer such as an aramid fiber, boron fiber, PBO (poly-p-phenylenebenzobisoxazole) fiber, or a vacuum air layer may be used.

プレート2a、2bの少なくとも一方を押出し成形によって成形された気密性のある表面薄層を有する発泡樹脂を用いて、この表面薄層を流路5表面となるようにすると流路抵抗が小さく、かつ、低コストで樹脂集積配管1を製造することができる。   Using a foamed resin having an airtight surface thin layer formed by extruding at least one of the plates 2a and 2b, if this surface thin layer is made to be the surface of the flow channel 5, the flow resistance is small, and The resin integrated piping 1 can be manufactured at low cost.

また、プレート2a、2bの少なくとも一方を樹脂複層体とすることもできる。樹脂複層体とするときは、押出し成形によって一度に複層に成形しても、単層体を後で複層体にしてもよい。   Further, at least one of the plates 2a and 2b can be a resin multilayer. When the resin multilayer body is formed, it may be formed into a multilayer layer at one time by extrusion molding, or the single layer body may be later formed into a multilayer body.

この樹脂複層体の構造としては、流路5となる接合する側を発泡していない通常の樹脂層とし、その外側に発泡樹脂層を設ける構造とする他に、樹脂の種類、発泡倍率を変えた発泡樹脂層によって複層にすることもできる。少なくとも、この複層体に発泡樹脂層を設けることで断熱性を高めることができる。   As the structure of this resin multilayer body, in addition to a structure in which the side to be joined that becomes the flow path 5 is a normal resin layer that is not foamed and a foamed resin layer is provided on the outer side, the type of resin and the expansion ratio are set. Multiple layers can also be formed by the changed foamed resin layer. At least heat insulation can be improved by providing a foamed resin layer in the multilayer body.

また、流路5の内圧に対して機械的強度が不足する場合は、流路5となる接合する側の樹脂層の外側に、この樹脂層よりも弾性率および降伏応力の高い樹脂層を設けるようにしてもよい。   Further, when the mechanical strength is insufficient with respect to the internal pressure of the flow path 5, a resin layer having a higher elastic modulus and yield stress than the resin layer is provided outside the resin layer on the side to be joined that becomes the flow path 5. You may do it.

発泡樹脂の製造方法としては、一般的な化学発泡、物理発泡、CO2等の超臨界流体を用いる方法を採用することができる。   As a method for producing the foamed resin, a general chemical foaming, physical foaming, or a method using a supercritical fluid such as CO 2 can be employed.

第2の実施形態について、図4〜6に基づいて説明する。図4は第2の実施形態の樹脂集積配管の平面図、図5は図4におけるC−C断面図、図6は図5におけるD部の拡大図である。この樹脂集積配管1は、樹脂製の仕切りプレート3の両面を樹脂製のプレート2で積層して接合し、仕切りプレート3の両面に流路5を有する構造となっている。   A second embodiment will be described with reference to FIGS. 4 is a plan view of the resin integrated pipe of the second embodiment, FIG. 5 is a cross-sectional view taken along the line CC in FIG. 4, and FIG. 6 is an enlarged view of a portion D in FIG. The resin integrated pipe 1 has a structure in which both sides of a resin partition plate 3 are laminated and bonded with a resin plate 2 and flow paths 5 are provided on both surfaces of the partition plate 3.

図5において上側のプレート2aは、一方面に凹状をした流路5を形成する溝部4と、一方面から他方面に貫通する外部連通孔6と、断熱孔8とを所定位置に有していて、ほぼ均一の厚みとなっている。そして、図6に拡大して示すように、接合する側を通常の樹脂(非発泡樹脂)Sとして、その外側を発泡樹脂Pとしている。仕切りプレート3は、ほぼ均一厚みの平板状をしていて、一方面から他方面に貫通する貫通孔7と、外部連通孔6と、断熱孔8とを所定の位置に有している。下側のプレート2bは、一方面に凹状をした流路5を形成する溝部4と、断熱孔8とを所定位置に有し、ほぼ均一の厚みとなっている。そして、図6に拡大して示すように、接合する側を通常の樹脂(非発泡樹脂)Sとして、その外側を発泡樹脂Pとしている。   In FIG. 5, the upper plate 2a has a groove portion 4 forming a channel 5 having a concave shape on one surface, an external communication hole 6 penetrating from one surface to the other surface, and a heat insulating hole 8 at predetermined positions. The thickness is almost uniform. Then, as shown in an enlarged view in FIG. 6, the joining side is a normal resin (non-foamed resin) S and the outside is a foamed resin P. The partition plate 3 has a flat plate shape with a substantially uniform thickness, and has a through-hole 7 penetrating from one surface to the other surface, an external communication hole 6 and a heat insulating hole 8 at predetermined positions. The lower plate 2b has a groove portion 4 that forms a channel 5 having a concave shape on one surface and a heat insulating hole 8 at predetermined positions, and has a substantially uniform thickness. Then, as shown in an enlarged view in FIG. 6, the joining side is a normal resin (non-foamed resin) S and the outside is a foamed resin P.

詳しい組立て状況を図7に示すと、それぞれのプレート2a、2bは、凹状の溝部4が設けられている面を仕切りプレート3に向けて、溝部4を塞ぐように仕切りプレート3の両面に接合されて、溝部4と仕切りプレート3によって、図5に示すように流路5が形成される。   When the detailed assembly state is shown in FIG. 7, each plate 2 a, 2 b is bonded to both surfaces of the partition plate 3 so as to close the groove portion 4 with the surface on which the concave groove portion 4 is provided facing the partition plate 3. Thus, the channel 5 is formed by the groove 4 and the partition plate 3 as shown in FIG.

上側のプレート2aと仕切りプレート3とは、仕切りプレート3の所定位置の貫通孔7と、上側のプレート2aの所定位置の溝部4(即ち、流路5)とが、そして外部連通孔6どうし、断熱孔8どうしが、連通する位置で接合される。下側のプレート2bと仕切りプレート3とは、仕切りプレート3の所定位置の貫通孔7と、下側のプレート2bの所定位置の溝部4(即ち、流路5)とが、そして、断熱孔8どうしが、連通する位置で接合される。   The upper plate 2a and the partition plate 3 include a through hole 7 at a predetermined position of the partition plate 3, a groove portion 4 (that is, a flow path 5) at a predetermined position of the upper plate 2a, and the external communication holes 6. The heat insulating holes 8 are joined at a communicating position. The lower plate 2b and the partition plate 3 include a through hole 7 at a predetermined position of the partition plate 3, a groove portion 4 (that is, a flow path 5) at a predetermined position of the lower plate 2b, and a heat insulating hole 8. The two are joined at a communicating position.

このように構成された樹脂集積配管1の上側のプレート2aの表面には、図4に示すように、外部連通孔6の位置に延設チューブ12a、12bや、センサ12c、電磁弁12dが装着され、これらの外付け装置12a〜12dと流路5とが外部連通孔6を介して連通される。   As shown in FIG. 4, the tubes 12a and 12b, the sensor 12c, and the solenoid valve 12d are mounted on the surface of the upper plate 2a of the resin integrated pipe 1 configured as described above at the position of the external communication hole 6. The external devices 12 a to 12 d and the flow path 5 are communicated with each other through the external communication hole 6.

この構造の樹脂集積配管1は、第1の実施形態で示した樹脂、樹脂成形方法、発泡樹脂の製造方法、樹脂積層体の構造を採用することができ、樹脂成形方法については、ブロー成形を用いて、効率的に断熱性に優れた樹脂集積配管1を製造することができ、その一例を図8に基づいて説明する。   The resin integrated pipe 1 having this structure can employ the resin, resin molding method, foamed resin manufacturing method, and resin laminate structure shown in the first embodiment. The resin molding method is blow molding. It is possible to efficiently manufacture the resin integrated pipe 1 having excellent heat insulation, and an example thereof will be described with reference to FIG.

ブロー成形の際に、仕切りプレート3を一対の金型10の間に設置しておき、内周側を通常の樹脂(非発泡樹脂)Sとし、その外側を発泡樹脂Pとした二重構造のパリソン11を上方から押出し、パリソン11の内部を半分に仕切るように長手方向に挿入させる。仕切りプレート3が内部に挿入された状態のパリソン11を、両側に配置された金型10で型締めして、パリソン11の上下を閉じてから、パリソン11内部の仕切りプレート3の両側に空気を吹き込む。これによってパリソン11が膨らみ、金型10の内面に押し付けられて、パリソン11と仕切りプレート3とによって、図5に示すような縦断面形状をした樹脂集積配管1が、外部貫通孔7および貫通孔6が未だ形成されてない状態で製造される。内周側の樹脂Sと仕切りプレート3の樹脂は同種の熱可塑性樹脂を用いると容易に強固な接合が可能となる。   At the time of blow molding, the partition plate 3 is placed between a pair of molds 10, a double structure in which the inner peripheral side is a normal resin (non-foamed resin) S and the outer side is a foamed resin P. The parison 11 is extruded from above and inserted in the longitudinal direction so as to divide the inside of the parison 11 in half. The parison 11 with the partition plate 3 inserted therein is clamped with the molds 10 arranged on both sides, the top and bottom of the parison 11 are closed, and then air is supplied to both sides of the partition plate 3 inside the parison 11. Infuse. As a result, the parison 11 swells and is pressed against the inner surface of the mold 10, and the parison 11 and the partition plate 3 form the resin integrated pipe 1 having a vertical cross-sectional shape as shown in FIG. 6 is manufactured in a state where it is not yet formed. When the same kind of thermoplastic resin is used as the resin S on the inner peripheral side and the resin of the partition plate 3, strong bonding can be easily performed.

この樹脂集積配管1が冷却した後、脱型して、外部連通孔6、断熱孔8を設ける。流路5どうしを連通する貫通孔7を設ける場合は、仕切りプレート3にあらかじめ貫通孔7を設けてから、ブロー成形する。   After the resin integrated pipe 1 is cooled, it is removed from the mold, and external communication holes 6 and heat insulating holes 8 are provided. When providing the through-hole 7 which connects the flow paths 5, the through-hole 7 is provided in the partition plate 3 in advance, and then blow molding is performed.

この方法によると、第1の実施形態と同様の効果に加えて、流路5の形成と仕切りプレート3とプレート2との接合が同時にでき、効率よく断熱に優れた樹脂発泡層を有した樹脂集積配管1を製造することができる。また、厚みがほぼ均一なプレート2を容易に製造することができ、さらに軽量化、コストダウンを図ることができる。   According to this method, in addition to the same effects as those of the first embodiment, the resin having a foamed resin layer that can form the flow path 5 and join the partition plate 3 and the plate 2 at the same time, and is excellent in heat insulation efficiently. The integrated piping 1 can be manufactured. Further, the plate 2 having a substantially uniform thickness can be easily manufactured, and further weight reduction and cost reduction can be achieved.

なお、本発明の樹脂集積配管1は、燃料電池に限らず、金属に対して腐食等、化学的影響を大きく与える流体を流通させる必要のある化学プラント、食品製造ライン、半導体製造ライン等に使用される各種装置、機器に用いることができる。   The resin integrated pipe 1 of the present invention is not limited to a fuel cell, but is used in a chemical plant, a food production line, a semiconductor production line, etc. that need to circulate a fluid having a large chemical influence such as corrosion on metal. It can be used for various devices and devices.

本発明の樹脂集積配管の第1の実施形態を示す平面図である(外付け装置が装着されている状態)。It is a top view which shows 1st Embodiment of the resin integrated piping of this invention (state with which the external device is mounted | worn). 図1のA−A断面図である。It is AA sectional drawing of FIG. 図2のB部周辺拡大図である。FIG. 3 is an enlarged view around a portion B in FIG. 2. 本発明の樹脂集積配管の第2の実施形態を示す平面図である(外付け装置が装着されている状態)。It is a top view which shows 2nd Embodiment of the resin integrated piping of this invention (state with which the external device is mounted | worn). 図4のC−C断面図である。It is CC sectional drawing of FIG. 図5のD部周辺拡大図である。FIG. 6 is an enlarged view around a portion D in FIG. 5. 図4における樹脂集積配管の部品構成とその組立ての一例を示す組立図である。FIG. 5 is an assembly diagram illustrating an example of a component configuration and assembly of the resin integrated pipe in FIG. 4. 本発明の樹脂集積配管の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of resin integrated piping of this invention.

符号の説明Explanation of symbols

1 樹脂集積配管
2、2a、2b プレート
3 仕切りプレート
4 溝部
5 流路
6 外部連通孔
7 貫通孔
8 断熱孔
10 金型
11 パリソン
12a、12b 延設チューブ
12c センサ、12d 電磁弁
P 発泡樹脂
S 通常の樹脂(非発泡樹脂)

















DESCRIPTION OF SYMBOLS 1 Resin integrated piping 2, 2a, 2b Plate 3 Partition plate 4 Groove part 5 Channel 6 External communication hole 7 Through hole 8 Heat insulation hole 10 Mold 11 Parison 12a, 12b Extension tube 12c Sensor, 12d Electromagnetic valve P Foaming resin S Normal Resin (non-foamed resin)

















Claims (6)

樹脂製のプレートを積層して接合し、該積層したプレート間に流路を形成した樹脂集積配管であって、前記プレートから前記流路に連通する外部連通孔を有し、前記プレートの少なくとも一方が、前記流路を形成する溝部を有し、前記流路の内部と外部とを断熱する断熱部を設けたことを特徴とする樹脂集積配管。   A resin integrated pipe in which resin plates are laminated and joined, and a flow path is formed between the laminated plates, the resin integrated pipe having an external communication hole communicating with the flow path from the plate, and at least one of the plates However, it has a groove part which forms the above-mentioned channel, and provided a heat insulation part which insulates the inside and outside of the above-mentioned channel. Resin integrated piping characterized by things. 前記断熱部が、前記プレートに設けられた断熱孔または断熱溝である請求項1に記載の樹脂集積配管。   The resin integrated piping according to claim 1, wherein the heat insulating portion is a heat insulating hole or a heat insulating groove provided in the plate. 前記断熱部が、前記流路の全部または一部を覆う発泡樹脂層、球状充填剤含有樹脂層、繊維層または真空空気層のいずれかである請求項1に記載の樹脂集積配管。   2. The resin integrated pipe according to claim 1, wherein the heat insulating portion is any one of a foamed resin layer, a spherical filler-containing resin layer, a fiber layer, or a vacuum air layer that covers all or part of the flow path. 前記発泡樹脂層が、発泡ウレタン、発泡スチロール、発泡ポリエチレンのいずれかである請求項3に記載の樹脂集積配管。   The resin integrated piping according to claim 3, wherein the foamed resin layer is any one of urethane foam, polystyrene foam, and polyethylene foam. 樹脂製のプレートを積層して接合し、該積層したプレート間に流路を形成した樹脂集積配管であって、前記プレートから前記流路に連通する外部連通孔を有し、前記プレートの少なくとも一方が、前記流路を形成する溝部を有し、かつ前記プレートの少なくとも一方が気密性のある表面薄層を有する発泡樹脂であり、該表面薄層を前記流路の表面としたことを特徴とする樹脂集積配管。   A resin integrated pipe in which resin plates are laminated and joined, and a flow path is formed between the laminated plates, the resin integrated pipe having an external communication hole communicating with the flow path from the plate, and at least one of the plates Is a foamed resin having a groove portion that forms the flow path and at least one of the plates having an airtight surface thin layer, and the surface thin layer is the surface of the flow path. Resin integrated piping. 樹脂製のプレートを積層して接合し、該積層したプレート間に流路を形成した樹脂集積配管であって、前記プレートから前記流路に連通する外部連通孔を有し、前記プレートの少なくとも一方が、前記流路を形成する溝部を有し、かつ前記プレートの少なくとも一方が樹脂複層体であり、該樹脂複層体は発泡樹脂層を含むことを特徴とする樹脂集積配管。

A resin integrated pipe in which resin plates are laminated and joined, and a flow path is formed between the laminated plates, the resin integrated pipe having an external communication hole communicating with the flow path from the plate, and at least one of the plates However, it has a groove part which forms the said flow path, and at least one of the said plates is a resin multilayer body, This resin multilayer body contains a foamed resin layer, The resin integrated piping characterized by the above-mentioned.

JP2004258894A 2004-09-06 2004-09-06 Integrated resin piping and manufacturing method thereof Expired - Fee Related JP4539245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258894A JP4539245B2 (en) 2004-09-06 2004-09-06 Integrated resin piping and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258894A JP4539245B2 (en) 2004-09-06 2004-09-06 Integrated resin piping and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006071080A true JP2006071080A (en) 2006-03-16
JP4539245B2 JP4539245B2 (en) 2010-09-08

Family

ID=36151919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258894A Expired - Fee Related JP4539245B2 (en) 2004-09-06 2004-09-06 Integrated resin piping and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4539245B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138929A (en) * 2007-10-23 2009-06-25 Wellstream Internatl Ltd Thermal insulation of flexible pipe
CN102299355A (en) * 2010-06-28 2011-12-28 韩国轮胎株式会社 Material for forming fuel cell separating plate and manufacturing method thereof, fuel cell separating plate and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534363U (en) * 1976-06-29 1978-01-14
WO1998051971A1 (en) * 1997-05-14 1998-11-19 Yuki Japan Co., Ltd. Air conditioning system
JP2003243380A (en) * 2003-02-19 2003-08-29 Hitachi Ltd Plasma treatment apparatus
JP2003346874A (en) * 2002-05-24 2003-12-05 Mitsubishi Heavy Ind Ltd Channel built-in pedestal and fuel cell power generating system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534363U (en) * 1976-06-29 1978-01-14
WO1998051971A1 (en) * 1997-05-14 1998-11-19 Yuki Japan Co., Ltd. Air conditioning system
JP2003346874A (en) * 2002-05-24 2003-12-05 Mitsubishi Heavy Ind Ltd Channel built-in pedestal and fuel cell power generating system using the same
JP2003243380A (en) * 2003-02-19 2003-08-29 Hitachi Ltd Plasma treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138929A (en) * 2007-10-23 2009-06-25 Wellstream Internatl Ltd Thermal insulation of flexible pipe
CN102299355A (en) * 2010-06-28 2011-12-28 韩国轮胎株式会社 Material for forming fuel cell separating plate and manufacturing method thereof, fuel cell separating plate and fuel cell

Also Published As

Publication number Publication date
JP4539245B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US20220412666A1 (en) Basic structural body for constructing heat dissipation device and heat dissipation device
CN102213314B (en) For the temperature-adjusting device of pressurized container
JP4337573B2 (en) Heat exchanger, method for producing the same, and heart-lung machine
US20140162107A1 (en) Heat-exchanger assembly
JP6389767B2 (en) Fuel cell stack
JP2008303956A (en) Hydrogen storage tank
JP2006010262A (en) Refrigerant evaporator
US20120247526A1 (en) Thermoelectric conversion unit and method of manufacturing
WO2008050221A2 (en) Thermal storage device
CN101362538A (en) Insulated container and method of manufacturing the same
JP4312624B2 (en) Temperature / humidity exchanger
JP4539245B2 (en) Integrated resin piping and manufacturing method thereof
JP4631363B2 (en) Plastic integrated piping
JP4887609B2 (en) Plastic integrated piping
US7968040B2 (en) Method for fabricating a connector for fuel cell system, connector and system obtained by such a method
JP4706173B2 (en) Fuel cell stack
JP7305705B2 (en) Method for manufacturing pipeline device for transporting temperature control medium
JP2005209526A (en) Polymer electrolyte fuel cell
JP2024045367A (en) Pipe equipment for temperature controlled medium transport
CN110984307A (en) Baffle for drain pipe
WO2007041208B1 (en) Fuel cell system
JP2024517512A (en) Heat exchange channels forming an internal cavity for storing cryogenic materials
TWI836210B (en) A heat exchanger comprising a plate package and a hollow manifold
CN210887874U (en) Waterproof heat-preservation polyurethane PIR low-temperature cold storage plate for cold storage
US20220333867A1 (en) Heat Exchanging Channel Forming An Internal Cavity That Stores Cryogenic Material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees