JP2006070231A - Biodegradable liquid detergent composition - Google Patents

Biodegradable liquid detergent composition Download PDF

Info

Publication number
JP2006070231A
JP2006070231A JP2004258930A JP2004258930A JP2006070231A JP 2006070231 A JP2006070231 A JP 2006070231A JP 2004258930 A JP2004258930 A JP 2004258930A JP 2004258930 A JP2004258930 A JP 2004258930A JP 2006070231 A JP2006070231 A JP 2006070231A
Authority
JP
Japan
Prior art keywords
sophorolipid
acid
cleaning
acid type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004258930A
Other languages
Japanese (ja)
Other versions
JP4548827B2 (en
Inventor
Yoshihiko Hirata
善彦 平田
Keisuke Igarashi
敬祐 五十嵐
Tomoka Oda
友香 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saraya Co Ltd
Original Assignee
Saraya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saraya Co Ltd filed Critical Saraya Co Ltd
Priority to JP2004258930A priority Critical patent/JP4548827B2/en
Publication of JP2006070231A publication Critical patent/JP2006070231A/en
Application granted granted Critical
Publication of JP4548827B2 publication Critical patent/JP4548827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detergent composition containing an acid type sophorolipid chemically stable even in a liquid. <P>SOLUTION: The biodegradable liquid detergent composition comprises sophorolipid, wherein the sophorolipid contains at least 90% sophorolipid (acid type). The sophorolipid (acid type) is obtained by mixing sophorolipid with an alkali at room temperature. The sophorolipid is practically 100% acid type sophorolipid. The composition contains 0.01-20 wt.% acid type sophorolipid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は生分解性の液体洗浄剤組成物に関する。より詳細には、本発明は、界面活性剤として酸型ソホロリピッドを含み、低泡性が必要とされる洗浄工程に適した洗浄剤組成物に関する。   The present invention relates to a biodegradable liquid detergent composition. More specifically, the present invention relates to a cleaning composition suitable for a cleaning process that includes acid sophorolipid as a surfactant and requires low foaming properties.

現在、界面活性剤の種類は、非常に多様であり、最終商品の使用方法によって、様々な界面活性剤が選択されている。しかし、消費者の観点からは、合成界面活性剤配合商品あるいは、石けん配合商品の二者択一でしかない。生分解性や安全性の観点で商品を選択する消費者は、合成界面活性剤よりも石けんを選択しているが、石けんは、合成界面活性剤に比べると洗浄力が低いため、一度に使う量が多く、そのため生分解性は高いものの、環境への負荷が大きいことが指摘されている。つまり、石けんと同等の生分解性・安全性、合成界面活性剤と同等の性能(洗浄力、硬水安定性など)を併せ持つ第3の界面活性剤(次世代型界面活性剤)の実用化が望まれている。   Currently, the types of surfactants are very diverse, and various surfactants are selected depending on how the final product is used. However, from the consumer's point of view, there are only two alternatives: synthetic surfactant-containing products or soap-containing products. Consumers who select products from the viewpoint of biodegradability and safety choose soaps over synthetic surfactants, but soaps are less detersive than synthetic surfactants, so use them all at once It is pointed out that although the amount is large, the biodegradability is high, but the load on the environment is large. In other words, a third surfactant (next-generation surfactant) that has the same biodegradability and safety as soap and the same performance (detergency, hard water stability, etc.) as a synthetic surfactant has been put to practical use. It is desired.

また、洗浄剤分野において、水圧を洗浄に利用して被洗浄物の汚れを除去するジェット洗浄が新たな洗浄方式として注目され、一般家庭や業務用では自動食器用洗浄機、医療現場ではウォッシャーディスインフェクターなどに応用されている。このジェット洗浄に用いる洗浄剤として、起泡性の高い通常の界面活性剤を用いると大量に発生する泡のためにジェット水圧が低下し、満足な洗浄効果が得られないばかりか、泡が洗浄機や洗浄槽からあふれ出し洗浄工程のトラブルが発生する。そのため、ジェット洗浄には起泡力の低い、つまり低泡性の界面活性剤を用いることが必要である。   In the field of detergents, jet cleaning, which removes dirt from objects to be cleaned by using water pressure for cleaning, has attracted attention as a new cleaning method. It is applied to infectors. If a normal surfactant with high foaming properties is used as a cleaning agent for this jet cleaning, the jet water pressure decreases due to the large amount of foam generated, and a satisfactory cleaning effect cannot be obtained. Overflow from the machine and washing tank causes trouble in the washing process. Therefore, it is necessary to use a surfactant having a low foaming power, that is, a low foaming property, for jet cleaning.

ジェット洗浄を行うために、消泡剤(代表的にはシリコン系消泡剤)を添加する方法が検討されたが、洗浄力や消泡力の点で満足できる結果は得られなかった。   In order to perform jet cleaning, a method of adding an antifoaming agent (typically a silicon-based antifoaming agent) was studied, but satisfactory results were not obtained in terms of cleaning power and defoaming power.

現在では、主に、ブロックポリマー型非イオン界面活性剤を含む洗浄剤がジェット洗浄に用いられている。このブロックポリマー型非イオン界面活性剤は、その分子内に、エチレンオキサイド(EO)およびプロピレンオキサイド(PO)などを含み、起泡力が弱く、つまり低泡性である。しかし、環境中での生分解性が極めて悪いことが最大の問題である(Journal of The American Oil Chemists‘ Society,65,1669−1676(1988))。   At present, cleaning agents containing block polymer type nonionic surfactants are mainly used for jet cleaning. This block polymer type nonionic surfactant contains ethylene oxide (EO), propylene oxide (PO) and the like in the molecule, and has a low foaming power, that is, low foaming property. However, the greatest problem is that the biodegradability in the environment is extremely poor (Journal of The American Oil Chemist's Society, 65, 1669-1676 (1988)).

環境中での生分解性を向上させるために、POの重合度を変化させたブロックコポリマー、末端にアルキル修飾したブロックポリマーなどが合成されたが、問題の解決には至っていない。   In order to improve biodegradability in the environment, block copolymers in which the degree of polymerization of PO is changed, block polymers having terminal alkyl modification, and the like have been synthesized, but the problem has not been solved.

生物由来の界面活性物質であるバイオサーファクタントは、生分解性、安全性が共に高く次世代型界面活性物質として注目されている。しかし、合成界面活性剤に比べると高価であるため、付加価値の高い化粧品、医薬品などへの応用研究が散見されるにすぎない。さらに、商品自体が低価格な洗浄剤分野への研究開発は極めて少ない。   Biosurfactants, which are biologically derived surfactants, are attracting attention as next-generation surfactants because of their high biodegradability and safety. However, since it is more expensive than synthetic surfactants, only application research to cosmetics, pharmaceuticals, and the like with high added value can be seen. In addition, there is very little research and development in the field of detergents where the products themselves are inexpensive.

洗浄剤として、バイオサーファクタントを使用した例は、ソホロリピッドを低泡性界面活性剤として配合し、そのソホロリピッドの組成が35%以上のソホロリピッド(ラクトン型)であり、好ましくはソホロリピッド(ラクトン型)とソホロリピッド(酸型)とを35:65〜90:10の比で含み、洗浄補助成分として、酵素、酸素系漂白剤、漂白活性化剤、アルカリ剤、水軟化剤、流動性改質剤および中性無水芒硝からなる粉末の低泡性洗浄剤組成物は、すでに知られている(特開2003−13093号公報、特許文献1)。   An example of using a biosurfactant as a cleaning agent is sophorolipid (lactone type) in which sophorolipid is blended as a low-foam surfactant and the composition of the sophorolipid is 35% or more, preferably sophorolipid (lactone type) and sophorolipid. (Acid type) in a ratio of 35:65 to 90:10, and as washing auxiliary components, enzymes, oxygen bleaches, bleach activators, alkali agents, water softeners, fluidity modifiers and neutrals A powder low-foaming detergent composition comprising anhydrous sodium sulfate is already known (Japanese Patent Laid-Open No. 2003-13093, Patent Document 1).

しかし、ソホロリピッド(ラクトン型)を含むソホロリピッドは、生分解性、高洗浄性および低泡性を満足する非常に優れた界面活性物質であるが、ソホロリピッド以外の洗浄補助成分を配合する場合、ラクトン部分が化学的に不安定であることから、その用途が非常に限定され、石けんや合成界面活性剤に次ぐ、第3の界面活性物質として商品開発することが非常に困難であった。例えば、液体のアルカリ洗浄剤として、配合する場合、ラクトン部分は加水分解される。   However, sophorolipid (lactone type) containing sophorolipid is a very excellent surfactant that satisfies biodegradability, high detergency, and low foaming properties. Is chemically unstable, so its use is very limited, and it has been very difficult to develop a product as a third surfactant after soap and synthetic surfactant. For example, when blended as a liquid alkaline detergent, the lactone moiety is hydrolyzed.

つまり、化学的に安定なソホロリピッドが安価に製造され、それが洗浄剤として実使用に耐える性能(洗浄力、起泡性、各成分との相溶性、保存安定性など)を併せもっていれば、それを配合した洗浄剤の用途が現状よりも格段に広くなり、バイオサーファクタントを配合した商品開発の展開が進む。
特開2003−13093号公報
In other words, if a chemically stable sophorolipid is manufactured at a low cost and has performance (detergency, foamability, compatibility with each component, storage stability, etc.) that can withstand actual use as a cleaning agent, The use of detergents formulated with it will become much broader than it currently is, and development of products that incorporate biosurfactants will proceed.
JP 2003-13093 A

本発明は、液体中であっても化学的に安定な酸型ソホロリピッド含有の洗浄剤組成物を提供することを目的とする。   An object of the present invention is to provide an acid-type sophorolipid-containing cleaning composition that is chemically stable even in a liquid.

本発明者らは、発酵で得られたソホロリピッドをアルカリ条件下で静置することによって得られたソホロリピッドの性能について鋭意研究を重ねた結果、本発明を完成するに至った。本発明者らは、発酵で得られたソホロリピッドがアルカリ条件下で静置するだけで酸型ソホロリピッドになること、得られた酸型ソホロリピッドが化学的に安定で、低泡性を示し、かつ、高い洗浄力を有することを見出し、本発明を完成するに至った。   As a result of intensive studies on the performance of the sophorolipid obtained by allowing the sophorolipid obtained by fermentation to stand under alkaline conditions, the present inventors have completed the present invention. The inventors of the present invention are that the sophorolipid obtained by fermentation becomes an acid-type sophorolipid only by standing under alkaline conditions, the obtained acid-type sophorolipid is chemically stable, exhibits low foaming property, and The present inventors have found that it has a high detergency and have completed the present invention.

すなわち、本発明の生分解性の液体洗浄剤組成物は、ソホロリピッドを含む生分解性の液体洗浄剤組成物であって、該ソホロリピッドが、少なくとも90%以上のソホロリピッド(酸型)を含み、そのことにより上記目的が達成される。   That is, the biodegradable liquid detergent composition of the present invention is a biodegradable liquid detergent composition containing sophorolipid, and the sophorolipid contains at least 90% or more of sophorolipid (acid type). This achieves the above object.

一つの実施形態では、前記ソホロリピッド(酸型)が、ソホロリピッドを室温下でアルカリと混合して得られたものである。   In one embodiment, the sophorolipid (acid type) is obtained by mixing sophorolipid with alkali at room temperature.

一つの実施形態では、前記ソホロリピッドが、実質的に100%の酸型ソホロリピッドである。   In one embodiment, the sophorolipid is substantially 100% acid sophorolipid.

一つの実施形態では、酸型ソホロリピッドを0.01から20%含む。   In one embodiment, 0.01 to 20% acid sophorolipid is included.

一つの実施形態では、洗浄剤補助成分をさらに含む。   In one embodiment, it further comprises a detergent supplement.

一つの実施形態では、前記洗浄剤補助成分が、酵素、アルカリ剤、水軟化剤(Ca補足剤)、泡調整剤、防腐剤および溶剤からなる群から選択される少なくとも一種である。   In one embodiment, the detergent auxiliary component is at least one selected from the group consisting of enzymes, alkaline agents, water softeners (Ca supplements), foam regulators, preservatives, and solvents.

本発明によれば、液体中であっても化学的に安定な酸型ソホロリピッドを多量に含有するので、種々の用途のバイオサーファクタントを配合した洗浄剤組成物を提供することができる。また、ジェット洗浄など、低泡性が必要とされる洗浄工程に適している。   According to the present invention, since it contains a large amount of chemically stable acid sophorolipid even in a liquid, it is possible to provide a cleaning composition containing biosurfactants for various uses. Moreover, it is suitable for the washing | cleaning process in which low foaming property is required, such as jet washing.

以下に本発明の実施の形態を具体的に説明する。   Embodiments of the present invention will be specifically described below.

ソホロリピッドは、代表的には、微生物の培養によって得られる。例えば、Candida bombicola、C.apicola、C.petrophilum、C.bogoriensなどのCandida属酵母によって生産される。ソホロリピッドは、これらのCandida属酵母を、高濃度の糖と油性基質を同時に与えて培養すると培地中に多量(100〜150g/L)に蓄積する。   Sophorolipid is typically obtained by culturing microorganisms. For example, Candida bombicola, C.I. apicola, C.I. petrophilum, C.I. Produced by Candida yeasts such as bogoriens. Sophorolipid accumulates in a large amount (100 to 150 g / L) in the medium when these Candida yeasts are cultured with a high concentration of sugar and an oily substrate simultaneously.

代表的には、ソホロリピッドは、上記微生物の培養液から、遠心分離、デカンテーション、酢酸エチル抽出などの方法で分離され、さらにヘキサンで洗浄することにより、茶褐色、飴状物質として得られる。ソホロリピッドは水より比重が大きいため培養終了液を静置すれば容易に下層へ分離し、これを利用して得られるソホロリピッドは濃度約50%の含水物であるが、酸型SL(ソホロリピッド)を調製する際には、ヘキサンなど有機溶剤で分離・精製されるものと比較し、粘性が低いため取り扱いが容易となる。なお、本明細書で用いる「%」は、特に注記がなければ重量%を表わす。   Typically, the sophorolipid is separated from the above-mentioned microorganism culture solution by a method such as centrifugation, decantation, or ethyl acetate extraction, and further washed with hexane to obtain a brownish brown substance. Since sophorolipid has a higher specific gravity than water, it can be easily separated into the lower layer if the culture solution is allowed to stand, and the sophorolipid obtained using this is a hydrated substance with a concentration of about 50%. At the time of preparation, it is easy to handle because it has a lower viscosity than those separated and purified with an organic solvent such as hexane. Note that “%” used in this specification represents “% by weight” unless otherwise noted.

このようにして得られるSL(ソホロリピッド)は、ソホロースまたはヒドロキシル基が一部アセチル化されたソホロースとヒドロキシ脂肪酸とからなる基本構造を有し、ヒドロキシ脂肪酸のカルボキシル基が遊離した酸型ソホロリピッドと、このカルボキシル基が分子内ソホロースのヒドロキシル基とエステル結合したラクトン型ソホロリピッドとに大別される複数の分子種の混合物である。   The SL (sophorolipid) thus obtained has a basic structure composed of sophorose or sophorose partially hydroxylated with hydroxyl group and hydroxy fatty acid, and the acid type sophorolipid in which the carboxyl group of hydroxy fatty acid is liberated, It is a mixture of a plurality of molecular species roughly classified into a lactone type sophorolipid in which a carboxyl group is ester-bonded with a hydroxyl group of intramolecular sophorose.

本明細書記載の低泡性洗浄剤組成物に含まれる酸型ソホロリピッドは、例えば、微生物によって生産され、分離・精製されたソホロリピッドのラクトン部分とソホロースのアセチル部分を全て加水分解した構造を有し、やはり、複数の構造類似体の混合物である。   The acid-type sophorolipid contained in the low-foaming detergent composition described herein has, for example, a structure in which the lactone part of sophorolipid produced by microorganisms and separated and purified and the acetyl part of sophorose are all hydrolyzed. Again, it is a mixture of a plurality of structural analogs.

酸型ソホロリピッドの調製法は、特に限定されないが、アルカリ還流による調製法が一般的である。この場合、その後の精製法にもよるが、100%近い純度で酸型ソホロリピッドが得られる。その他、本明細書に記載のように室温下でのアルカリ加水分解によっても得られる。   The method for preparing the acid-type sophorolipid is not particularly limited, but a preparation method by alkali reflux is common. In this case, although depending on the subsequent purification method, acid-type sophorolipid can be obtained with a purity close to 100%. Alternatively, it can also be obtained by alkaline hydrolysis at room temperature as described herein.

本発明の組成物は、ソホロリピッドのうち少なくとも90%以上のソホロリピッド(酸型)を含む。好ましくは95%以上であり、さらに好ましくは98%以上であり、特に好ましくは、ソホロリピッドが実質的に100%の酸型ソホロリピッドである。
本発明の洗浄剤組成物は、上記酸型ソホロリピッドを0.01から20%含有するのが好ましい。酸型ソホロリピッドの含有量が0.01%未満の場合、有効な界面活性が得られないため洗浄力が低く、20%を超える場合、洗浄中の過剰な泡立ちのため洗浄力が低下する。さらに好ましい酸型ソホロリピッドの含有量は0.1から5%である。
The composition of the present invention contains at least 90% of sophorolipid (acid type) of sophorolipid. Preferably it is 95% or more, More preferably, it is 98% or more, Most preferably, it is acid form sophorolipid whose sophorolipid is substantially 100%.
The cleaning composition of the present invention preferably contains 0.01 to 20% of the acid type sophorolipid. When the content of the acid-type sophorolipid is less than 0.01%, effective surface activity cannot be obtained, so that the cleaning power is low. When the content exceeds 20%, the cleaning power decreases due to excessive foaming during cleaning. A more preferable content of acid sophorolipid is 0.1 to 5%.

本明細書で用いる用語「化学的な安定性」とは、pH10を越えるアルカリ洗浄剤として配合できる性質を示す。具体的には、pH13.7の水酸化ナトリウム溶液中で1ヶ月間、構造が変化しないことを言う。   As used herein, the term “chemical stability” refers to the property of being blended as an alkaline cleaner above pH 10. Specifically, it means that the structure does not change in a sodium hydroxide solution having a pH of 13.7 for one month.

本明細書で用いる用語「低泡性」とは、低泡性が必要とされる洗浄工程に適する起泡力を示す性質である。具体的には、現在一般に行われている起泡力の評価法であるロス・マイルス(Ross Miles)法にて、流下が終わった直後の泡高が57mm以内で、かつ、5分後の泡高が30mm以内であることをいう。この泡高がそれぞれ57mmあるいは30mmを越える場合、ジェット洗浄を用いた洗浄において、起泡によるジェット水圧低下による洗浄力の低下、および泡が洗浄機からあふれるといったトラブルが発生する。
本明細書で用いる用語「優れた洗浄力」とは、低泡性が必要とされる洗浄工程に適する従来の低泡性界面活性剤と同等以上の洗浄性能を示す性質である。具体的には、現在一般に行われている洗浄力の評価法である汚染布を用いた洗浄力試験を行うことによって決定される。
The term “low-foaming property” used in the present specification is a property exhibiting foaming power suitable for a washing process in which low-foaming property is required. Specifically, in the Ross Miles method, which is a commonly used method for evaluating foaming power, the foam height immediately after the flow is within 57 mm, and the foam after 5 minutes. The height is within 30mm. When the foam height exceeds 57 mm or 30 mm, problems such as a reduction in cleaning power due to a drop in jet water pressure due to foaming and foam overflow from the washing machine occur in cleaning using jet cleaning.
The term “excellent detergency” used in the present specification is a property exhibiting a cleaning performance equivalent to or higher than that of a conventional low-foaming surfactant suitable for a cleaning process requiring low-foaming property. Specifically, it is determined by performing a detergency test using a contaminated cloth, which is a method for evaluating detergency generally performed at present.

本明細書でいう用語「酵素安定性」とは、従来の酵素配合液体洗剤と同等以上の酵素安定性を示す性質である。具体的には、液体洗浄剤組成物中に配合した洗浄用酵素が、40℃、1ヶ月の保存安定性試験後、酵素活性が80%以上残存する性質である。   The term “enzyme stability” as used herein is a property that exhibits enzyme stability equivalent to or higher than that of a conventional enzyme-containing liquid detergent. Specifically, the cleaning enzyme blended in the liquid detergent composition has the property that 80% or more of the enzyme activity remains after a storage stability test at 40 ° C. for one month.

本発明の低泡性洗浄剤組成物は、界面活性剤の他に洗浄補助成分を含有し得る。
洗浄補助成分については、低泡性が必要とされるジェット洗浄方式に使用される公知の洗浄剤組成物と同じでよく特に限定されない。例えば、現在、医療現場で用いられているウォッシャーディスインフェクターの専用洗剤組成物として配合されている酵素、アルカリ剤、水軟化剤(Ca捕捉剤)、防錆剤、泡調整剤及び溶剤などがこれに該当する。
The low-foaming detergent composition of the present invention may contain a cleaning auxiliary component in addition to the surfactant.
The cleaning auxiliary component may be the same as a known cleaning composition used in a jet cleaning system that requires low foaming properties, and is not particularly limited. For example, enzymes, alkaline agents, water softeners (Ca scavengers), rust preventives, foam modifiers and solvents that are currently formulated as dedicated detergent compositions for washer-disinfectors used in medical settings This is the case.

上記酵素とは、アミラーゼ、プロテアーゼ、セルラーゼ、リパーゼ、プルラナーゼ、イソプルラナーゼ、イソアミラーゼ、カタラーゼ及びパーオキシダーゼからなる群より選ばれる1種類以上の成分である。   The enzyme is one or more components selected from the group consisting of amylase, protease, cellulase, lipase, pullulanase, isopullulanase, isoamylase, catalase and peroxidase.

アルカリ剤は、水酸化ナトリウム、水酸化カリウム、炭酸、炭酸水素、珪酸、メタ珪酸およびホウ酸のアルカリ金属塩、各種エタノールアミンなどからなる群から選ばれた少なくとも一つの成分であり、pHを上げることで洗浄力を強め、酵素を配合している場合、その効果も上昇させる。   The alkaline agent is at least one component selected from the group consisting of sodium hydroxide, potassium hydroxide, carbonic acid, hydrogen carbonate, silicic acid, metasilicic acid and alkali metal salts of boric acid, various ethanolamines, etc., and raises the pH. In this way, the cleaning power is strengthened, and when the enzyme is blended, the effect is also increased.

Ca捕捉剤は有機キレート剤あるいは高分子キレート剤どちらでもよい。
有機キレート剤としては、ニトリロ三酢酸塩、エチレンジアミン四酢酸塩、クエン酸塩、コハク酸塩、ポリリン酸塩等から選ばれた少なくとも一つの成分である。
The Ca scavenger may be either an organic chelating agent or a polymer chelating agent.
The organic chelating agent is at least one component selected from nitrilotriacetate, ethylenediaminetetraacetate, citrate, succinate, polyphosphate, and the like.

高分子キレート剤は、アクリル酸、メタクリル酸、無水マレイン酸、α―ヒドロキシアクリル酸、イタコン酸の重合体、または、それらの共重合体およびこれらの塩等から選ばれた少なくともひとつの成分である。ただし、酵素安定性の面からその選択には注意を要する。   The polymer chelating agent is at least one component selected from a polymer of acrylic acid, methacrylic acid, maleic anhydride, α-hydroxyacrylic acid, itaconic acid, a copolymer thereof, and a salt thereof. . However, care must be taken in selecting the enzyme from the standpoint of enzyme stability.

溶剤は、酵素の安定化等のために用いる。エタノール、グリセロール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール及びポリエチレングリコール等から選ばれる。   The solvent is used for enzyme stabilization and the like. It is selected from ethanol, glycerol, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, polyethylene glycol and the like.

防錆剤は、洗浄機や被洗浄物の腐食を防止する目的で配合される。リン酸塩、クロム酸塩、亜硝酸塩、ケイ酸塩、ホウ酸塩、炭酸塩、モリブデン酸塩、ベンゾトリアゾールおよびオクタデシルアミンなどから選ばれる。   The rust preventive is blended for the purpose of preventing corrosion of the washing machine and the object to be cleaned. It is selected from phosphate, chromate, nitrite, silicate, borate, carbonate, molybdate, benzotriazole, octadecylamine and the like.

洗浄補助成分の含有量および種類は、意図される洗浄剤組成物の形態および用途によって、当業者により適宜選択され得る。   The content and type of the cleaning auxiliary component can be appropriately selected by those skilled in the art depending on the intended form and use of the cleaning composition.

低泡性洗浄剤組成物を調製する場合、洗浄補助成分の含有量は、該成分の種類により異なるが、低泡性洗浄剤組成物の99.99%以下となるように選択される。好ましくは30〜50%である。   When preparing a low-foaming detergent composition, the content of the cleaning auxiliary component varies depending on the type of the component, but is selected to be 99.99% or less of the low-foaming detergent composition. Preferably it is 30 to 50%.

以下の実施例により、本発明をさらに詳細に説明する。なお、以下の実施例は本発明の例示であり、本発明を制限するものではない。   The following examples illustrate the invention in more detail. The following examples are illustrative of the present invention and do not limit the present invention.

以下の実施例で行った評価項目および試験方法は以下の通りである。
1.エステル分解率評価系の確立
SLのエステル結合がどの程度加水分解されたかを知るために、油脂類の分析に用いられるエステル価を指標にした。エステル価は試料1gに含まれるエステルを完全けん化(加水分解)するのに必要なKOHのmg数で表され、試料を中和してからKOHエタノール溶液中で加熱してけん化し、消費されたKOH量を中和当量の減少分から求める。したがって、このとき最初の中和当量を滴定により求めれば、試料の酸価(試料1gを中和するのに必要なKOHのmg数)およびけん化価を同時に知ることができる。
The evaluation items and test methods performed in the following examples are as follows.
1. Establish esterification rate evaluation system
In order to know how much the ester bond of SL was hydrolyzed, the ester value used for the analysis of fats and oils was used as an index. The ester value is expressed as the number of mg of KOH required to completely saponify (hydrolyze) the ester contained in 1 g of the sample. After neutralizing the sample, it was heated in a KOH ethanol solution to be saponified and consumed. The amount of KOH is determined from the decrease in neutralization equivalent. Therefore, if the initial neutralization equivalent is determined by titration at this time, the acid value (mg number of KOH required to neutralize 1 g of sample) and the saponification value can be known at the same time.

エステル分解率(%)=(アルカリ処理前のエステル価−アルカリ処理後のエステル価)/アルカリ処理前のエステル価×100 (式1)
エステル分解率を正確に求めるには、アルカリ処理する前のSLのエステル結合が完全に加水分解されたときのエステル価を知る必要があるため、反応が完全に進行するのに要する加熱時間を検討した。
Ester decomposition rate (%) = (ester value before alkali treatment−ester value after alkali treatment) / ester value before alkali treatment × 100 (Formula 1)
In order to accurately determine the ester decomposition rate, it is necessary to know the ester value when the ester bond of SL before alkali treatment is completely hydrolyzed, so consider the heating time required for the reaction to proceed completely did.

試料として含水SL試作品およびジャー培養液からの精製標品を使用した。各試料の製造および保存環境、規格値等は以下の表1および2の通りである。   As samples, hydrous SL prototypes and purified samples from jar cultures were used. The production and storage environment of each sample, standard values, etc. are as shown in Tables 1 and 2 below.

Figure 2006070231
Figure 2006070231

Figure 2006070231
エステル価の測定は、日本油化学会編 基準油脂分析法2.3.3-1996エステル価に従った。煮沸還流時間を0.5、1および2時間としてエステル価の変化を調べた。以下に操作手順を示す。
(1)含水SL〜2.5g(乾燥残分として〜1.5g)を中性エタノール50mlに溶解
(2)フェノールフタレインを指示薬とし、0.1 M KOHで中和滴定(→酸価)
(3)0.5 NKOH/EtOH 25 mlを正確に添加
(4)煮沸還流(0.5,1,2h)・冷却
(5)フェノールフタレインを指示薬とし、0.5N HClで中和滴定
2.アルカリ混合による室温下での酸型ソホロリピッド調製法
実施例1で求めたけん化価(表7)より、NaOH必要量はそれぞれ
SL−8M:239.3/1000×40.00/56.11=0.170g・g-1 (式4−a)
SL−2M:248.4/1000×40.00/56.11=0.177g・g-1 (式4−b)
となる。
Figure 2006070231
The ester value was measured according to the standard oil analysis method 2.3.3-1996 ester value edited by the Japan Oil Chemists' Society. Changes in the ester value were examined with boiling reflux times of 0.5, 1 and 2 hours. The operation procedure is shown below.
(1) Hydrous SL ~ 2.5g (~ 1.5g as dry residue) dissolved in 50ml of neutral ethanol (2) Neutralization titration with 0.1M KOH using phenolphthalein as indicator (→ acid value)
(3) Accurately add 25 ml of 0.5 NKOH / EtOH (4) Boiling reflux (0.5, 1, 2 h) and cooling (5) Neutralization titration with 0.5N HCl using phenolphthalein as an indicator Preparation method of acid type sophorolipid at room temperature by alkali mixing From the saponification value obtained in Example 1 (Table 7), the required amount of NaOH is SL-8M: 239.3 / 1000 × 40.00 / 56.11 = 0.170 g · g −1 ( Formula 4-a)
SL-2M: 248.4 / 1000 × 40.00 / 56.11 = 0.177 g · g −1 (Formula 4-b)
It becomes.

エステル分解反応を終点近くまで進めるには過剰量のアルカリが必要と考えられるので、混合するNaOH量は必要量の2倍以上とした。   Since it is considered that an excessive amount of alkali is necessary to proceed the ester decomposition reaction to near the end point, the amount of NaOH to be mixed was set to more than twice the necessary amount.

試料として2種類の含水SL(SL−8MおよびSL−2M)を用いた。それぞれの含水SLに対し分解必要量の2倍または4倍のNaOHを含むNaOH水溶液を等重量混合し、室温放置した。30分〜2日経過後、SLアルカリ溶液〜5g(SL乾燥残分として〜1.5g)を分取し、重量測定後フェノールフタレインを指示薬として約2NHClで中和した。以下、試験法1と同じ方法でエステル価を測定した。煮沸還流時間は2時間とした。
3.ソホロリピッドの安定性
上記、2のように調製(2日間反応)した酸型ソホロリピッドを50℃で1ヶ月間保存し、反応直後と保存後のHPLCチャートを比較することで安定性を調べた。
4.HPLC分析
それぞれの方法で得られたSLのラクトン含有率はHPLC分析により決定した。条件は、ナーゲル社(ドイツ)のヌクレオシル5SB充填カラム(4.6mm×250mm)を用い、0.2%(w/v)過塩素酸ナトリウム/メタノール溶液を移動相として、カラム温度35℃、流速1ml/minで205nmの吸光度あるいは示差屈折率計で検出を行った。
5.緩衝液の調製
5−1.Menzelの緩衝液
M/50の炭酸ナトリウムおよび炭酸水素ナトリウムを作製し、4.0:6.0の割合で混合することによりpH8.94(18℃)の緩衝液を得た。
5−2.硬水の調製(AOAC法Synthetic Hard Water (AOAC official method of analysis(1995).Chapter6, p9)
1液1mlを60ml以上の蒸留水で希釈し、2液4ml加え100mlにメスアップした(硬度は約1000ppm)。これを上記の緩衝液で希釈し目的とするpHおよび硬度の硬水を得た。
1液:67.71gの塩化マグネシウム六水和物、73.99gの塩化カルシウムを蒸留水で溶解し1Lにメスアップした。
2液:56.03gの炭酸水素ナトリウムを蒸留水で溶解し1Lにメスアップした。
6.起泡性試験
6−1.ロス・マイルス法
JIS K 3362に基づいて、ロス・マイルス(RossMiles)法を用い、起泡力と泡の安定度を測定した。この方法では、上記5.緩衝液の調製 で作製した硬水に被験物質である界面活性剤を目的となる濃度に溶解し試験溶液とした。
それぞれの試験溶液200mlを所定の温度条件で(本試験では40℃とした)900mmの高さから30秒間で液面上に落下させ、その直後の泡の高さを起泡力とし、また、5分後の高さを泡の安定度とした。
6−2.食洗機を用いた方法
様々な家庭用食器洗い乾燥機を用いた。各洗浄剤を所定の濃度(試作品WA, WA2, M-700L;0.5%, M-251L;1.0%)となるよう食洗機にいれ、洗浄開始から3、5および10分後の泡立ち(フタを開いた直後;0秒後)および生成した泡の消泡の速さ(フタを開いた5秒後)について目視観察を行い、表3の泡立ち評価に基づいて判定した。
Two types of hydrous SL (SL-8M and SL-2M) were used as samples. An equal amount of NaOH aqueous solution containing NaOH twice or four times the amount required for decomposition was mixed with each hydrous SL, and allowed to stand at room temperature. After 30 minutes to 2 days, SL alkaline solution ˜5 g (˜1.5 g as SL dry residue) was collected, and after weighing, neutralized with about 2N HCl using phenolphthalein as an indicator. Hereinafter, the ester value was measured by the same method as Test Method 1. The boiling reflux time was 2 hours.
3. Sophorolipid Stability The acid type sophorolipid prepared as described in 2 above (reaction for 2 days) was stored at 50 ° C. for 1 month, and the stability was examined by comparing the HPLC chart immediately after the reaction and after storage.
4). HPLC analysis The lactone content of SL obtained by each method was determined by HPLC analysis. The conditions were a Nagel (Germany) Nucleosyl 5SB packed column (4.6 mm x 250 mm), 0.2% (w / v) sodium perchlorate / methanol solution as the mobile phase, column temperature 35 ° C, flow rate Detection was performed at an absorbance of 205 nm at 1 ml / min or with a differential refractometer.
5. Preparation of buffer 5-1. Menzel buffer
M / 50 sodium carbonate and sodium hydrogen carbonate were prepared and mixed at a ratio of 4.0: 6.0 to obtain a pH 8.94 (18 ° C.) buffer solution.
5-2. Preparation of hard water (AOAC method Synthetic Hard Water (AOAC official method of analysis (1995). Chapter 6, p9)
1 ml of 1 liquid was diluted with 60 ml or more of distilled water and 4 ml of 2 liquids were added to make up to 100 ml (hardness is about 1000 ppm). This was diluted with the above buffer solution to obtain hard water having the intended pH and hardness.
1st solution: 67.71 g of magnesium chloride hexahydrate and 73.99 g of calcium chloride were dissolved in distilled water and made up to 1 L.
Second solution: 56.03 g of sodium bicarbonate was dissolved in distilled water and made up to 1 L.
6). Foam test 6-1. Los Miles Act
Based on JIS K 3362, the foaming power and foam stability were measured using the RossMiles method. In this method, the above 5. A surfactant as a test substance was dissolved in the target concentration in the hard water prepared in the preparation of the buffer solution to obtain a test solution.
200 ml of each test solution was dropped on the liquid surface in 30 seconds from a height of 900 mm at a predetermined temperature condition (40 ° C. in this test), and the foam height immediately after that was used as the foaming power. The height after 5 minutes was defined as the foam stability.
6-2. Method using a dishwasher Various household dishwashers were used. Each detergent is put into a dishwasher so as to have a predetermined concentration (prototype WA, WA2, M-700L; 0.5%, M-251L; 1.0%), and foaming after 3, 5 and 10 minutes from the start of washing ( Immediately after opening the lid; 0 seconds later) and the speed of defoaming of the generated foam (5 seconds after the lid was opened) was visually observed and judged based on the foaming evaluation in Table 3.

Figure 2006070231
7.洗浄力試験
7−1.ターゴトメーターを用いた洗浄力試験
ターゴトメーターは、栄科学精機製作所製、型式TM-4を使用した。試験カップに蒸留水または所定の硬度の人工硬水990 mLを入れ、30℃で保温した。各カップに表4の各試験液10 gをいれ、湿式人工汚染布(5cm×5 cm)(財団法人 洗濯科学協会)4枚を投入して120 rpmで20分間洗浄した。洗浄終了後、汚染布をピンセットで取り出し、1 Lの蒸留水で2回すすぎ、自然乾燥させた。洗浄率は、洗浄前後の反射率を色彩色差計(ミノルタ社製CR-300)により測定し、式4から洗浄率を算出した。
(式4) 洗浄率(%)=(洗浄後の反射率−洗浄前の反射率)/(未汚染布の反射率−洗浄前の反射率)×100
7−2.食洗機を用いた洗浄力試験
食洗機を用い、5分間洗浄を行った。被洗浄物として、ステンレステストピースにレバー汚染液(牛生レバーに半重量の蒸留水を加えホモジナイズを行ったもの)を筆にて塗布し一晩乾燥させたものを用いた。洗浄開始時の温度は40℃±1.5℃、洗浄終了時の温度は50℃±1.5℃と設定した。洗浄力の評価は表に従い行った。
Figure 2006070231
7). Detergency test 7-1. Detergency test using a targotometer A targotometer manufactured by Eikai Seiki Seisakusho, Model TM-4 was used. Distilled water or 990 mL of artificial hard water with a predetermined hardness was placed in a test cup and kept warm at 30 ° C. 10 g of each test solution shown in Table 4 was placed in each cup, and 4 wet artificially contaminated cloths (5 cm × 5 cm) (Laundry Science Association) were added and washed at 120 rpm for 20 minutes. After washing, the contaminated cloth was taken out with tweezers, rinsed twice with 1 L of distilled water, and allowed to air dry. For the cleaning rate, the reflectance before and after cleaning was measured with a color difference meter (CR-300 manufactured by Minolta), and the cleaning rate was calculated from Equation 4.
(Formula 4) Cleaning rate (%) = (Reflectance after cleaning−Reflectivity before cleaning) / (Reflectivity of uncontaminated cloth−Reflectivity before cleaning) × 100
7-2. Detergency test using a dishwasher A dishwasher was used for washing for 5 minutes. As an object to be cleaned, a stainless test piece was applied with a liver contamination solution (a homogenized product of half-distilled water added to cattle liver) and dried overnight. The temperature at the start of washing was set to 40 ° C. ± 1.5 ° C., and the temperature at the end of washing was set to 50 ° C. ± 1.5 ° C. Detergency was evaluated according to the table.

Figure 2006070231
8.酸型ソホロリピッド配合液体洗浄剤組成物の調製
8−1.酸型ソホロリピッド配合アルカリ洗浄剤
洗浄機用のアルカリ洗剤として、表1に示す試作品を作製し、食洗機を用いた泡立ち試験および振盪洗浄力試験に供した。比較として、他社製品(M-700LおよびM-251L(いずれもシャープ製))を用い、同様に試験した。
Figure 2006070231
8). 8. Preparation of acid type sophorolipid-containing liquid detergent composition 8-1. Acid Type Sophorolipid-Containing Alkali Detergent As an alkaline detergent for a washer, prototypes shown in Table 1 were prepared and subjected to a foaming test and a shaking detergency test using a dishwasher. As a comparison, other companies' products (M-700L and M-251L (both manufactured by Sharp)) were used and tested in the same manner.

試作品は全てスターラーで攪拌して作製した。任意の方法で調整した酸型SL溶液に苛性カリ液、1Kケイ酸カリの順に加えて混合し、純石鹸配合の場合はここに添加し、最後に蒸留水を加えた。混合は、目視で完全に混合したことを確認後、次の原料を加えた。   All prototypes were made by stirring with a stirrer. The caustic potash solution and 1K potassium silicate were added to the acid type SL solution prepared by an arbitrary method in this order and mixed. In the case of a pure soap formulation, it was added here, and finally distilled water was added. After confirming that the mixture was completely mixed visually, the following raw materials were added.

Figure 2006070231
8−2.酸型ソホロリピッド配合中性酵素洗剤
各洗浄剤は、酸型ソホロリピッドに残りの原料を添加し調製した。このとき、完全に溶解したことを確認してから次の原料を添加した。
Figure 2006070231
8-2. Acid type sophorolipid-containing neutral enzyme detergent Each detergent was prepared by adding the remaining raw materials to acid type sophorolipid. At this time, the next raw material was added after confirming complete dissolution.

Figure 2006070231
9.プロテアーゼ活性の測定
カゼインを基質に用いたFolin-Lowry反応による測定を行った。
〔基質の調製〕
2%カゼイン溶液:2gのカゼイン(Hammerstein法で調製したもの)に0.1 N NaOH 20mlを加え、加温しながら溶かす。室温まで冷却し、0.2MTris(hydroxymethyl) aminomethaneを10ml加え、 HClで所定のpHに合わせ、水を加えて全量を100mlとする。
〔発色試薬〕
・ストック溶液A:1%CuSO4・5HO,ストック溶液B:2%酒石酸カリウム, ストック溶液C:2%無水炭酸ナトリウム
・0.4M トリクロロ酢酸
0.4M NaCO
2 mg/ml チロシン溶液
〔活性測定〕
基質溶液0.5mlを30℃に加温し、あらかじめ30℃に保っておいた酵素液(洗浄剤組成物)0.5mlを加え、30℃で10分間インキュベーションした。氷冷した5% TCAを1ml加え、氷中で約10分間放置した後、遠心(15,000rpm、10 min、4℃)処理した。遠心上清に反応試薬(ストック溶液A,BおよびCを1:1:100で混合したもの)1.0mlを加え、よく攪拌した後、室温で10分間放置した。これにフェノール試薬を0.1mlを加え、よく攪拌し、40℃で10分間放置後、直ちに氷冷した。分光光度計を用い660nmの波長で試料の吸光度を測定した。プロテアーゼ活性は、以下のように求めた。
プロテアーゼ活性=(各試料の吸光度)―(各試料のブランクの吸光度)
(実施例1)エステル分解率評価系の確立
1.エステル分解率評価系の確立に従い、発酵で得られたソホロリピッドの加水分解を行った。図1に加熱還流時間と反応(けん化)(エステル分解)に必要としたKOH(mg/g試料乾燥残分)の関係を、表7に各試料の酸価、2時間の反応に必要としたKOH(mg/g試料乾燥残分)およびけん化価を示す。
Figure 2006070231
9. Measurement of protease activity Measurement was performed by Folin-Lowry reaction using casein as a substrate.
(Preparation of substrate)
2% casein solution: Add 20 ml of 0.1 N NaOH to 2 g of casein (prepared by Hammerstein method) and dissolve while warming. Cool to room temperature, add 10 ml of 0.2 M Tris (hydroxymethyl) aminomethane, adjust to a predetermined pH with HCl, and add water to make a total volume of 100 ml.
[Coloring reagent]
Stock solution A: 1% CuSO 4 .5H 2 O, stock solution B: 2% potassium tartrate, stock solution C: 2% anhydrous sodium carbonate, 0.4M trichloroacetic acid 0.4M Na 2 CO 3
2 mg / ml tyrosine solution [activity measurement]
0.5 ml of the substrate solution was heated to 30 ° C., 0.5 ml of an enzyme solution (cleaning composition) previously kept at 30 ° C. was added, and incubated at 30 ° C. for 10 minutes. 1 ml of ice-cooled 5% TCA was added, left in ice for about 10 minutes, and then centrifuged (15,000 rpm, 10 min, 4 ° C.). To the supernatant, 1.0 ml of a reaction reagent (stock solutions A, B and C mixed at 1: 1: 100) was added, stirred well, and allowed to stand at room temperature for 10 minutes. To this was added 0.1 ml of a phenol reagent, stirred well, allowed to stand at 40 ° C. for 10 minutes, and immediately cooled on ice. The absorbance of the sample was measured at a wavelength of 660 nm using a spectrophotometer. Protease activity was determined as follows.
Protease activity = (absorbance of each sample)-(absorbance of blank of each sample)
(Example 1) Establishment of ester decomposition rate evaluation system In accordance with the establishment of the ester degradation rate evaluation system, the sophorolipid obtained by fermentation was hydrolyzed. FIG. 1 shows the relationship between the heating reflux time and the KOH (mg / g sample dry residue) required for the reaction (saponification) (ester decomposition), and Table 7 shows the acid value of each sample required for the reaction for 2 hours. KOH (mg / g sample dry residue) and saponification value are shown.

Figure 2006070231
2時間の反応に必要としたKOH(mg/g試料乾燥残分)は試料により異なり、加熱時間に関わらず常にSL−2MよりSL−8Mで大きかったが、0.5時間の加熱で急激に上昇し、以降は緩やかな増加に留まるという傾向は同じであった。以後の実験では煮沸還流を2時間とし、このときの値をエステル価とした(エステル分解率100%)。
(実施例2)アルカリ混合による室温下での酸型ソホロリピッド調製法
2.アルカリ混合による室温下での酸型ソホロリピッド調製法に従い、発酵で得られたソホロリピッドを室温下で加水分解を行った。表7に実験に使用した試料の乾燥残分当たりのエステル価(アルカリ処理前後)およびエステル分解率を、図2にアルカリ処理中のエステル分解率の経時変化をそれぞれ示した。
Figure 2006070231
The KOH (mg / g sample dry residue) required for the reaction for 2 hours was different depending on the sample, and it was always larger at SL-8M than SL-2M regardless of the heating time, but it rapidly increased with heating for 0.5 hour. The trend was the same, rising and staying moderate thereafter. In subsequent experiments, boiling reflux was 2 hours, and the value at this time was defined as the ester value (ester decomposition rate 100%).
(Example 2) Preparation method of acid type sophorolipid at room temperature by alkali mixing According to the acid-type sophorolipid preparation method at room temperature by alkali mixing, the sophorolipid obtained by fermentation was hydrolyzed at room temperature. Table 7 shows the ester value (before and after alkali treatment) and the ester decomposition rate per dry residue of the sample used in the experiment, and FIG. 2 shows the change over time in the ester decomposition rate during the alkali treatment.

Figure 2006070231
各含水SLに計算より求めた分解必要量の2倍のNaOHを添加し、約2時間以上静置することで90%以上のエステル結合が分解された(図2)。また、放置時間を延ばしたり、NaOH添加量をさらに増やしてもエステル分解率は上昇しなかった(図2および表8)。これらの結果は含水SLの種類によらず同じであり、アルカリ処理後のエステル価も同程度であった(表8)。さらに、2時間の煮沸還流を行った試料と室温アルカリ処理した試料を、同条件でHPLCに供したところ、90%以上が酸型SLであることが示された。以上から、短時間に比較的簡単な方法で大部分が酸型SLからなるSL組成物を水溶液として得られることが分かった。
(実施例3)酸型ソホロリピッドの起泡力
上記6−1.ロスマイルス法に従って、CaCO 0から300ppm、pH8.94(18℃)の条件下で所定の濃度の酸型ソホロリピッドの起泡力を調べた(図3)。その結果、酸型ソホロリピッド1%濃度では、硬度40〜300ppmまで、0.1%濃度では8〜200ppmまで、0.01%では0ppmであっても低泡性を示すことが判った。
(実施例5)酸型ソホロリピッドの洗浄力
7−1.ターゴトメーターを用いた洗浄力試験に従い、CaCO 0から300ppm、pH8.94(18℃)の条件下で1%濃度の酸型ソホロリピッドの洗浄力を調べた。図4から酸型ソホロリピッドは、水の硬度に関わらず、高い洗浄力を示すことが分かった。
(実施例7)酸型ソホロリピッドの安定性
3.酸型ソホロリピッドの安定性に準じて試験を行った(図5)。その結果、保存前後でHPLCチャートに変化はなく、酸型ソホロリピッドは優れた安定性を有していることが確認された。
(実施例6)酸型ソホロリピッド配合アルカリ洗浄剤の起泡性および洗浄力
表2の試作品について、6−2.食洗機を用いた方法に従い起泡性試験を行った(表9)。試験濃度は1.0%である。その結果、泡調整剤を配合しない場合、酸型ソホロリピッドは20%配合で運転異常が生じたが、泡調整剤を配合することで、20%配合が可能であった。
Figure 2006070231
90% or more of the ester bond was decomposed by adding NaOH twice the amount required for decomposition to each hydrous SL and allowing to stand for about 2 hours or longer (FIG. 2). Further, the ester decomposition rate did not increase even when the standing time was extended or the amount of NaOH added was further increased (FIG. 2 and Table 8). These results were the same regardless of the type of hydrous SL, and the ester value after the alkali treatment was similar (Table 8). Furthermore, when a sample subjected to boiling reflux for 2 hours and a sample subjected to alkali treatment at room temperature were subjected to HPLC under the same conditions, 90% or more was shown to be acid type SL. From the above, it has been found that an SL composition consisting mostly of acid-type SL can be obtained as an aqueous solution in a relatively simple manner in a short time.
(Example 3) Foaming power of acid sophorolipid 6-1. According to the Ross Miles method, the foaming power of acid-type sophorolipid at a predetermined concentration was examined under the conditions of CaCO 30 to 300 ppm and pH 8.94 (18 ° C.) (FIG. 3). As a result, it was found that even when the acid type sophorolipid concentration was 1%, the hardness was 40 to 300 ppm, the 0.1% concentration was 8 to 200 ppm, and 0.01% was 0 ppm even at 0 ppm.
(Example 5) Detergency of acid type sophorolipid 7-1. According to the detergency test using a tartometer, the detergency of 1% acid type sophorolipid was investigated under the conditions of CaCO 30 to 300 ppm and pH 8.94 (18 ° C.). FIG. 4 shows that acid type sophorolipid exhibits a high detergency regardless of the hardness of water.
(Example 7) Stability of acid-type sophorolipid A test was conducted according to the stability of acid sophorolipid (FIG. 5). As a result, there was no change in the HPLC chart before and after storage, and it was confirmed that the acid-type sophorolipid has excellent stability.
Example 6 Foamability and Detergency of Acid Type Sophorolipid-Containing Alkali Detergent Regarding Prototypes in Table 2, 6-2. A foaming test was conducted according to a method using a dishwasher (Table 9). The test concentration is 1.0%. As a result, when no foam modifier was blended, 20% blending of acid type sophorolipid resulted in abnormal operation, but 20% blending was possible by blending the foam modifier.

Figure 2006070231
次に、試作品A1およびA2について、7−1.ターゴトメーターを用いた洗浄力試験を行った。結果を図6に示した。洗剤なしおよび他社商品M-251Lは比較対照である。この結果、酸型ソホロリピッド配合の2種の試作品は、いずれも洗浄率が80%前後で、対照として用いたM-251Lと同程度の優れた洗浄力を有していた。
(実施例7)酸型SL配合+洗浄補助成分+酵素配合洗浄剤の洗浄力
試作品N1〜N8について、7−2.食洗機を用いた洗浄力試験を行った(図7)。その結果、酸型SL未配合のN1および酸型SLを25%配合したN8の洗浄力は低く(ランクの平均が高い)、優れた洗浄力を示した配合はN2〜N7(0.01〜20%配合)であった。
(実施例8)酸型SL配合+洗浄補助成分+酵素配合洗浄剤の酵素保存安定性
試作品N2〜N6を40℃のインキュベーター内に静置することで酵素安定性試験を行った。1週間毎にサンプリングを行い、8.プロテアーゼ活性の測定に従い測定し、保存前の酵素活性を100%として酵素安定性を求めた(図8)。その結果、全ての試作品の酵素残存活性が80%以上であり、酸型ソホロリピッド配合の洗浄剤が優れた酵素安定性を有していることが判明した。
Figure 2006070231
Next, for prototypes A1 and A2, 7-1. A detergency test using a targotometer was performed. The results are shown in FIG. No detergent and other company product M-251L are comparative controls. As a result, the two types of prototypes containing the acid type sophorolipid each had a cleaning rate of around 80% and had excellent cleaning power comparable to that of M-251L used as a control.
Example 7 Detergency of Acid Type SL Formulation + Cleaning Auxiliary Component + Enzyme Formulation Detergent For Prototypes N1 to N8, 7-2. A detergency test using a dishwasher was performed (Fig. 7). As a result, N1 containing no acid type SL and N8 containing 25% acid type SL have low detergency (average rank is high), and N2 to N7 (0.01 to 0.01) 20% formulation).
(Example 8) Enzyme storage stability prototypes N2 to N6 of acid type SL formulation + cleaning auxiliary component + enzyme formulation detergent were subjected to enzyme stability test by standing in an incubator at 40 ° C. Sampling every week, 8. It was measured according to the measurement of protease activity, and enzyme stability before storage was determined as 100% to determine enzyme stability (FIG. 8). As a result, it was found that the residual enzyme activity of all prototypes was 80% or more, and the detergent containing the acid type sophorolipid had excellent enzyme stability.

加熱還流時間と反応(けん化)に必要としたKOH(mg/g試料乾燥残分)の関係を示す図。The figure which shows the relationship between heating reflux time and KOH (mg / g sample dry residue) required for reaction (saponification). アルカリ処理中のエステル分解率の経時変化をそれぞれ示す図。The figure which shows each time-dependent change of the ester decomposition rate during an alkali treatment. 水の硬度が酸型ソホロリピッドの起泡性に与える影響(上:起泡力、下:泡の安定性)を示す図。The figure which shows the influence (Upper: foaming power, Lower: Foam stability) which the hardness of water has on the foamability of acid-type sophorolipid. 水の硬度が酸型ソホロリピッドの洗浄力に与える影響を示す図。The figure which shows the influence which the hardness of water has on the detergency of acid-type sophorolipid. 酸型ソホロリピッドの保存安定性試験を示す図。The figure which shows the storage stability test of acid type sophorolipid. 試作品WA2,WAと他社製品の洗浄力の比較を示す図。A figure showing a comparison of the cleaning power of the prototypes WA2 and WA and the products of other companies. 食洗機を用いた洗浄力試験を行った図。The figure which performed the detergency test using the dishwasher. プロテアーゼ活性の測定に従い測定し、保存前の酵素活性を100%として酵素安定性を求めた図。The figure which measured according to the measurement of protease activity, and calculated | required enzyme stability by making the enzyme activity before storage into 100%.

Claims (6)

ソホロリピッドを含む生分解性の液体洗浄剤組成物であって、該ソホロリピッドが、少なくとも90%以上のソホロリピッド(酸型)を含む組成物。 A biodegradable liquid detergent composition comprising sophorolipid, wherein the sophorolipid comprises at least 90% or more of sophorolipid (acid type). 前記ソホロリピッド(酸型)が、ソホロリピッドを室温下でアルカリと混合して得られたものである請求項1に記載の組成物。 The composition according to claim 1, wherein the sophorolipid (acid type) is obtained by mixing sophorolipid with an alkali at room temperature. 前記ソホロリピッドが、実質的に100%の酸型ソホロリピッドである請求項1又は2に記載の組成物。 The composition according to claim 1, wherein the sophorolipid is substantially 100% acid-type sophorolipid. 酸型ソホロリピッドを0.01から20%含む請求項1から3のいずれかに記載の組成物。 The composition according to any one of claims 1 to 3, comprising 0.01 to 20% of an acid-type sophorolipid. 洗浄剤補助成分をさらに含む、請求項1から4のいずれかに記載の組成物。 The composition according to claim 1, further comprising a detergent auxiliary component. 前記洗浄剤補助成分が、酵素、アルカリ剤、水軟化剤(Ca補足剤)、泡調整剤、防腐剤および溶剤からなる群から選択される少なくとも一種である請求項5に記載の組成物。 The composition according to claim 5, wherein the detergent auxiliary component is at least one selected from the group consisting of an enzyme, an alkaline agent, a water softener (Ca supplement), a foam regulator, a preservative, and a solvent.
JP2004258930A 2004-09-06 2004-09-06 Biodegradable liquid detergent composition Active JP4548827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258930A JP4548827B2 (en) 2004-09-06 2004-09-06 Biodegradable liquid detergent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258930A JP4548827B2 (en) 2004-09-06 2004-09-06 Biodegradable liquid detergent composition

Publications (2)

Publication Number Publication Date
JP2006070231A true JP2006070231A (en) 2006-03-16
JP4548827B2 JP4548827B2 (en) 2010-09-22

Family

ID=36151182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258930A Active JP4548827B2 (en) 2004-09-06 2004-09-06 Biodegradable liquid detergent composition

Country Status (1)

Country Link
JP (1) JP4548827B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052006A (en) * 2007-08-24 2009-03-12 Saraya Kk Enzyme-containing detergent composition
JP2009275145A (en) * 2008-05-15 2009-11-26 Saraya Kk Adsorption suppressing composition containing sophorolipid
WO2011120776A1 (en) 2010-03-31 2011-10-06 Unilever Plc Mild to the skin, foaming detergent composition
WO2013098066A2 (en) 2011-12-28 2013-07-04 Evonik Industries Ag Aqueous hair and skin cleaning compositions comprising biotensides
JP2014185106A (en) * 2013-03-22 2014-10-02 Saraya Kk Sophorolipid powder in which degradation of lactone type sophorolipid is inhibited
DE102013206314A1 (en) 2013-04-10 2014-10-16 Evonik Industries Ag Cosmetic formulation containing copolymer as well as sulfosuccinate and / or biosurfactant
WO2015034007A1 (en) * 2013-09-04 2015-03-12 サラヤ株式会社 Low-toxicity sophorolipid-containing composition and use therefor
JP2016160264A (en) * 2016-01-04 2016-09-05 サラヤ株式会社 Low-toxicity sophorolipid-containing compositions and uses thereof
JP2016160244A (en) * 2015-03-04 2016-09-05 サラヤ株式会社 Low-toxicity sophorolipid-containing compositions and uses thereof
EP3070155A1 (en) 2015-03-18 2016-09-21 Evonik Degussa GmbH Composition comprising peptidase and biosurfactant
WO2016207203A1 (en) 2015-06-25 2016-12-29 Basf Se Additive for alkaline zinc plating
EP3290500A1 (en) 2016-08-29 2018-03-07 Richli, Remo Detergent composition and care composition containing polyoxyalkylene carboxylate
EP3290501A1 (en) 2016-08-29 2018-03-07 Richli, Remo Detergent compositions containing alkoxylated fatty acid amides
EP3290020A1 (en) 2016-08-29 2018-03-07 Richli, Remo Mild preparations containing alkoxylated fatty acid amides
WO2018145966A1 (en) 2017-02-10 2018-08-16 Evonik Degussa Gmbh Oral care composition containing at least one biosurfactant and fluoride
US10065982B2 (en) 2012-03-02 2018-09-04 Saraya Co., Ltd. High-purity acid-form sophorolipid (SL) containing composition and process for preparing same
WO2018164204A1 (en) 2017-03-07 2018-09-13 サラヤ株式会社 Detergent composition
WO2018197623A1 (en) 2017-04-27 2018-11-01 Evonik Degussa Gmbh Biodegradable cleaning composition
WO2019214968A1 (en) 2018-05-11 2019-11-14 Basf Se Detergent composition comprising rhamnolipids and/or mannosylerythritol lipids
EP3594318A4 (en) * 2017-03-07 2020-08-05 Saraya Co., Ltd. Detergent composition
US10752650B2 (en) 2013-08-09 2020-08-25 Saraya Co., Ltd. Sophorolipid compound and composition comprising same
CN113773919A (en) * 2021-09-23 2021-12-10 纳爱斯浙江科技有限公司 Full-ecological detergent composition
CN113966378A (en) * 2019-06-11 2022-01-21 莎罗雅株式会社 Composition containing acidic sophorolipid with browning suppressed
WO2022210011A1 (en) 2021-03-31 2022-10-06 アライドカーボンソリューションズ株式会社 Novel sophorolipid derivative
US11591547B2 (en) 2017-04-27 2023-02-28 Evonik Operations Gmbh Biodegradable cleaning composition
CN115838611A (en) * 2022-12-01 2023-03-24 华能兰州西固热电有限公司 Composite cleaning agent for cleaning phosphate fire-resistant oil system and preparation method thereof
EP4234671A1 (en) 2022-02-24 2023-08-30 Evonik Operations GmbH Compositions containing biosurfactants and a lipase from stachybotrys chlorohalonata
WO2023161182A1 (en) 2022-02-24 2023-08-31 Evonik Operations Gmbh Bio based composition
WO2023161179A1 (en) 2022-02-24 2023-08-31 Evonik Operations Gmbh New composition containing liposomes and biosurfactants
EP4269530A1 (en) 2022-04-28 2023-11-01 Evonik Operations GmbH Multifunctional wax dispersant for subterranean chemical applications
EP4269531A1 (en) 2022-04-28 2023-11-01 Evonik Operations GmbH Multifunctional wax dispersant for subterranean chemical applications
WO2024002738A1 (en) 2022-06-28 2024-01-04 Evonik Operations Gmbh Composition comprising biosurfactant and persicomycin
CN113773919B (en) * 2021-09-23 2024-04-26 纳爱斯浙江科技有限公司 Full-ecological detergent composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428895A (en) * 1977-08-01 1979-03-03 Kao Corp Dehydration purification of fermentation products
JPH0559394A (en) * 1991-02-12 1993-03-09 Unilever Nv Detergent composition
JPH10501260A (en) * 1994-06-13 1998-02-03 アンスティテュ フランセ デュ ペトロール Use of sophorolipids and cosmetic and dermatological compositions
JP2003013093A (en) * 2001-06-27 2003-01-15 Saraya Kk Low foaming detergent composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428895A (en) * 1977-08-01 1979-03-03 Kao Corp Dehydration purification of fermentation products
JPH0559394A (en) * 1991-02-12 1993-03-09 Unilever Nv Detergent composition
JPH10501260A (en) * 1994-06-13 1998-02-03 アンスティテュ フランセ デュ ペトロール Use of sophorolipids and cosmetic and dermatological compositions
JP2003013093A (en) * 2001-06-27 2003-01-15 Saraya Kk Low foaming detergent composition

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052006A (en) * 2007-08-24 2009-03-12 Saraya Kk Enzyme-containing detergent composition
JP2009275145A (en) * 2008-05-15 2009-11-26 Saraya Kk Adsorption suppressing composition containing sophorolipid
WO2011120776A1 (en) 2010-03-31 2011-10-06 Unilever Plc Mild to the skin, foaming detergent composition
US8563490B2 (en) 2010-03-31 2013-10-22 Conopco, Inc. Mild to the skin, foaming detergent composition
US9271908B2 (en) 2011-12-28 2016-03-01 Evonik Industries Ag Aqueous hair and skin cleaning compositions comprising biotensides
WO2013098066A2 (en) 2011-12-28 2013-07-04 Evonik Industries Ag Aqueous hair and skin cleaning compositions comprising biotensides
DE102011090030A1 (en) 2011-12-28 2013-07-04 Evonik Industries Ag Aqueous hair and skin cleansing compositions containing biosurfactants
US10065982B2 (en) 2012-03-02 2018-09-04 Saraya Co., Ltd. High-purity acid-form sophorolipid (SL) containing composition and process for preparing same
JP2014185106A (en) * 2013-03-22 2014-10-02 Saraya Kk Sophorolipid powder in which degradation of lactone type sophorolipid is inhibited
DE102013206314A1 (en) 2013-04-10 2014-10-16 Evonik Industries Ag Cosmetic formulation containing copolymer as well as sulfosuccinate and / or biosurfactant
US10752650B2 (en) 2013-08-09 2020-08-25 Saraya Co., Ltd. Sophorolipid compound and composition comprising same
CN105683329B (en) * 2013-09-04 2018-04-06 莎罗雅株式会社 Composition containing sophorolipid of hypotoxicity and application thereof
US10688031B2 (en) 2013-09-04 2020-06-23 Saraya Co., Ltd. Low-toxicity sophorolipid-containing composition and use therefor
CN105683329A (en) * 2013-09-04 2016-06-15 莎罗雅株式会社 Low-toxicity sophorolipid-containing composition and use therefor
WO2015034007A1 (en) * 2013-09-04 2015-03-12 サラヤ株式会社 Low-toxicity sophorolipid-containing composition and use therefor
JPWO2015034007A1 (en) * 2013-09-04 2017-03-02 サラヤ株式会社 Low toxicity sophorolipid-containing composition and use thereof
JP2016160244A (en) * 2015-03-04 2016-09-05 サラヤ株式会社 Low-toxicity sophorolipid-containing compositions and uses thereof
WO2016146497A1 (en) 2015-03-18 2016-09-22 Evonik Degussa Gmbh Composition containing peptidase and biosurfactant
EP3070155A1 (en) 2015-03-18 2016-09-21 Evonik Degussa GmbH Composition comprising peptidase and biosurfactant
EP3907272A1 (en) 2015-03-18 2021-11-10 Evonik Operations GmbH Composition comprising peptidase and biosurfactant
US10988713B2 (en) 2015-03-18 2021-04-27 Evonik Operations Gmbh Composition containing peptidase and biosurfactant
WO2016207203A1 (en) 2015-06-25 2016-12-29 Basf Se Additive for alkaline zinc plating
US10718060B2 (en) 2015-06-25 2020-07-21 Basf Se Additive for alkaline zinc plating
JP2016160264A (en) * 2016-01-04 2016-09-05 サラヤ株式会社 Low-toxicity sophorolipid-containing compositions and uses thereof
EP3290501A1 (en) 2016-08-29 2018-03-07 Richli, Remo Detergent compositions containing alkoxylated fatty acid amides
EP3290020A1 (en) 2016-08-29 2018-03-07 Richli, Remo Mild preparations containing alkoxylated fatty acid amides
EP3290500A1 (en) 2016-08-29 2018-03-07 Richli, Remo Detergent composition and care composition containing polyoxyalkylene carboxylate
EP3998059A1 (en) 2016-08-29 2022-05-18 Perfect Ideas GmbH Mild preparations as cleaning or care compositions for removing carbohydrates or stains
US11464717B2 (en) 2017-02-10 2022-10-11 Evonik Operations Gmbh Oral care composition containing at least one biosurfactant and fluoride
WO2018145966A1 (en) 2017-02-10 2018-08-16 Evonik Degussa Gmbh Oral care composition containing at least one biosurfactant and fluoride
US11312928B2 (en) 2017-03-07 2022-04-26 Saraya Co., Ltd. Detergent composition comprising an acidic sophorose lipid and fatty acid salt mixture
EP3594318A4 (en) * 2017-03-07 2020-08-05 Saraya Co., Ltd. Detergent composition
WO2018164204A1 (en) 2017-03-07 2018-09-13 サラヤ株式会社 Detergent composition
US11591547B2 (en) 2017-04-27 2023-02-28 Evonik Operations Gmbh Biodegradable cleaning composition
US11746307B2 (en) 2017-04-27 2023-09-05 Evonik Operations Gmbh Biodegradable cleaning composition
WO2018197623A1 (en) 2017-04-27 2018-11-01 Evonik Degussa Gmbh Biodegradable cleaning composition
WO2019214968A1 (en) 2018-05-11 2019-11-14 Basf Se Detergent composition comprising rhamnolipids and/or mannosylerythritol lipids
CN113966378B (en) * 2019-06-11 2024-03-26 莎罗雅株式会社 Browning inhibited acid-containing sophorolipid composition
CN113966378A (en) * 2019-06-11 2022-01-21 莎罗雅株式会社 Composition containing acidic sophorolipid with browning suppressed
WO2022210011A1 (en) 2021-03-31 2022-10-06 アライドカーボンソリューションズ株式会社 Novel sophorolipid derivative
KR20230022444A (en) 2021-03-31 2023-02-15 얼라이드 카본 솔루션즈 가부시키가이샤 Novel sophorolipid derivatives
CN113773919A (en) * 2021-09-23 2021-12-10 纳爱斯浙江科技有限公司 Full-ecological detergent composition
CN113773919B (en) * 2021-09-23 2024-04-26 纳爱斯浙江科技有限公司 Full-ecological detergent composition
WO2023161182A1 (en) 2022-02-24 2023-08-31 Evonik Operations Gmbh Bio based composition
WO2023161179A1 (en) 2022-02-24 2023-08-31 Evonik Operations Gmbh New composition containing liposomes and biosurfactants
EP4234671A1 (en) 2022-02-24 2023-08-30 Evonik Operations GmbH Compositions containing biosurfactants and a lipase from stachybotrys chlorohalonata
EP4269530A1 (en) 2022-04-28 2023-11-01 Evonik Operations GmbH Multifunctional wax dispersant for subterranean chemical applications
EP4269531A1 (en) 2022-04-28 2023-11-01 Evonik Operations GmbH Multifunctional wax dispersant for subterranean chemical applications
WO2024002738A1 (en) 2022-06-28 2024-01-04 Evonik Operations Gmbh Composition comprising biosurfactant and persicomycin
CN115838611A (en) * 2022-12-01 2023-03-24 华能兰州西固热电有限公司 Composite cleaning agent for cleaning phosphate fire-resistant oil system and preparation method thereof

Also Published As

Publication number Publication date
JP4548827B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4548827B2 (en) Biodegradable liquid detergent composition
JP2003013093A (en) Low foaming detergent composition
JP5341023B2 (en) Liquid detergent composition
CN104271268B (en) Alcohol alcoxylates and its purposes in hard-surface cleaning preparaton
MX2012009162A (en) Detergent composition.
JP6754569B2 (en) Dishwasher cleaner
EP1948768A1 (en) Environmentally friendly laundry method and kit
JP6386037B2 (en) Mixtures of compounds, their production and their use
JP6702949B2 (en) Mixtures, methods of making and using the same
Abd Maurad et al. Performance of palm-based C16/18 methyl ester sulphonate (MES) in liquid detergent formulation
CN103468445A (en) Washing powder composition and preparation method thereof
JPH03210399A (en) Chlorine-free liquid compound for automatic dish washer
Achaw et al. Soaps and Detergents
JP3927623B2 (en) Cleaning composition
JP2007332303A (en) Swellable clay mineral-containing liquid detergent composition
JP2672642B2 (en) Liquid detergent composition
US5223169A (en) Hydrolase surfactant systems and their use in laundering
CN101768527A (en) Degreasing phosphate-free laundry detergent powder
CN110373287B (en) Automatic dish-washing machine cleaning sheet with multiphase structure
Porter Anionic detergents
JP2013185073A (en) Liquid detergent
JPH02178397A (en) Detergent composition
CN110713866B (en) Liquid detergent composition for clothing
JP4417168B2 (en) Bleach cleaning composition
KR20040009986A (en) Detergent composition with good solubility and rinsing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

R150 Certificate of patent or registration of utility model

Ref document number: 4548827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04