JP2006070126A - Heat-resistant resin and resin composition and molding each using the same - Google Patents

Heat-resistant resin and resin composition and molding each using the same Download PDF

Info

Publication number
JP2006070126A
JP2006070126A JP2004253914A JP2004253914A JP2006070126A JP 2006070126 A JP2006070126 A JP 2006070126A JP 2004253914 A JP2004253914 A JP 2004253914A JP 2004253914 A JP2004253914 A JP 2004253914A JP 2006070126 A JP2006070126 A JP 2006070126A
Authority
JP
Japan
Prior art keywords
polymer
heat
resistant resin
general formula
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004253914A
Other languages
Japanese (ja)
Other versions
JP4742541B2 (en
Inventor
Daisuke Izuhara
大輔 出原
Masataka Nakamura
正孝 中村
Masaya Adachi
眞哉 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004253914A priority Critical patent/JP4742541B2/en
Publication of JP2006070126A publication Critical patent/JP2006070126A/en
Application granted granted Critical
Publication of JP4742541B2 publication Critical patent/JP4742541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant resin excellent in a balance between mechanical strength and water resistance and to provide a resin composition and a molding each using the same. <P>SOLUTION: The heat-resistant resin is a polymer containing metal sulfonate groups, and the polymer is at least one selected from among an aromatic polyether ketone polymer, an aromatic polyether phosphine oxide polymer, and a polyarylene polymer. The resin composition and the molding each comprises such heat-resistant resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、機械強度と耐水性のバランスに優れた耐熱性樹脂、ならびにそれを用いた樹脂組成物および成型体に関するものである。   The present invention relates to a heat-resistant resin having an excellent balance between mechanical strength and water resistance, and a resin composition and a molded body using the same.

芳香族ポリスルホンポリマーは、化学的および熱的に耐久性に優れたエンジニアリング樹脂として、数多くの種類が知られ、そのうちのいく種類かは、フィルム、各種成型体、コーティング剤、分離膜等の形成素材として広く使用されている。しかし、芳香族ポリスルホンポリマーは優れた耐久性を示す反面、疎水的な性質を持ち、その吸水率は親水性ポリマーとして知られている酢酸セルロースの1/10以下である。従って、この疎水的な性質のため、芳香族ポリスルホン樹脂は、「表面が水で濡れにくく、乾燥しやすい」、「汚れやすい」、「帯電しやすい」、「接着しにくい」などの数多くの問題点があった。   Aromatic polysulfone polymers are known to have many types of chemically and thermally durable engineering resins, some of which are materials for forming films, various molded products, coating agents, separation membranes, etc. As widely used. However, the aromatic polysulfone polymer exhibits excellent durability, but has a hydrophobic property, and its water absorption is 1/10 or less that of cellulose acetate known as a hydrophilic polymer. Therefore, due to this hydrophobic nature, aromatic polysulfone resins have many problems such as “the surface is difficult to wet with water and easy to dry”, “easy to get dirty”, “easy to charge”, and “hard to adhere”. There was a point.

このような問題点を解決するため、芳香族ポリスルホンポリマーを親水化する方法が、種々提案されている。例えば、芳香族ポリエーテルスルホンであるPSF(UDELP−1700)やPESのスルホン化物について記載されていて、スルホン化PSFは完全に水溶性となり、電解質としての評価ができないことが、また、スルホン化PESは水溶性とはならないけれども、高吸水率の問題から架橋構造を導入することが、それぞれ提案されている(非特許文献1参照)。   In order to solve such problems, various methods for hydrophilizing aromatic polysulfone polymers have been proposed. For example, PSF (UDELP-1700) which is an aromatic polyether sulfone and a sulfonated product of PES are described. The sulfonated PSF is completely water-soluble and cannot be evaluated as an electrolyte. Although it does not become water-soluble, it has been proposed to introduce a crosslinked structure from the problem of high water absorption (see Non-Patent Document 1).

また、フルオレン成分およびスルホン酸基のナトリウム塩の両方を含む芳香族ポリエーテルスルホンの優れた耐熱性についても提案されている(非特許文献2参照)が、スルホン化率が30モル%までのポリマーしか記載されておらず、我々の追試ではスルホン酸基の導入量をそれ以上増加させた場合には吸水時に強度低下などを引き起こすなど耐水性に問題があることがわかった。   Further, an excellent heat resistance of an aromatic polyethersulfone containing both a fluorene component and a sodium salt of a sulfonic acid group has been proposed (see Non-Patent Document 2), but a polymer having a sulfonation rate of up to 30 mol%. However, in our follow-up test, it was found that if the amount of sulfonic acid group introduced was increased further, there was a problem in water resistance such as a decrease in strength during water absorption.

一方、芳香族ポリエーテルケトンポリマーは、耐熱性、耐溶剤性、低溶出性、低加水分解性に極めて優れた樹脂として注目されており、分離膜等への応用が試みられている。例えば、有機溶媒に難溶性の芳香族ポリエーテルエーテルケトン(以降、PEEKと略称することがある。)が、高度にスルホン化することにより有機溶媒に可溶となり成膜が容易になることが知られている(非特許文献3参照。)。しかしながら、これらのスルホン化PEEKも同時に親水性も向上し、水溶性となったり、あるいは吸水時の強度低下などを引き起こすものであった。   On the other hand, aromatic polyether ketone polymers are attracting attention as resins that are extremely excellent in heat resistance, solvent resistance, low elution, and low hydrolyzability, and application to separation membranes and the like has been attempted. For example, it is known that aromatic polyetheretherketone (hereinafter sometimes abbreviated as PEEK), which is sparingly soluble in organic solvents, becomes soluble in organic solvents and becomes easy to form when highly sulfonated. (See Non-Patent Document 3). However, these sulfonated PEEKs also have improved hydrophilicity and become water-soluble, or cause a decrease in strength upon water absorption.

このように、これまで知られているスルホン酸基を含有する樹脂は、非特許文献2を除き、プロトン型スルホン酸基を含有するため、耐熱性に問題があった。また、非特許文献2においても耐水性、耐熱性の両方を同時に満たすものではなく、更に高度な要求を満たし、フィルム、各種成型体、コーティング剤、分離膜等の形成に適した、高性能な耐熱性樹脂の開発が待ち望まれていた。
「ジャーナル オブ メンブレン サイエンス」 (Journal of Membrane Science), 83 (1993) 211-220. 「ジャーナル オブ ポリマー サイエンス パートA ポリマーセ ミストリー」(Journal of Polymer Science: Part A: Polymer Chemistry), 31 (1993) 859-863. 「ポリマー」(Polymer), 1987, vol. 28, 1009.
Thus, since the resin containing the sulfonic acid group known until now contains a proton type sulfonic acid group except the nonpatent literature 2, it had a problem in heat resistance. In Non-Patent Document 2, both water resistance and heat resistance are not satisfied at the same time, satisfying higher requirements, and suitable for the formation of films, various molded products, coating agents, separation membranes, etc. The development of heat resistant resins has been awaited.
"Journal of Membrane Science", 83 (1993) 211-220. "Journal of Polymer Science: Part A: Polymer Chemistry", 31 (1993) 859-863. "Polymer", 1987, vol. 28, 1009.

本発明は、かかる従来技術の背景に鑑み、機械強度と耐水性のバランスに優れた耐熱性樹脂、ならびにそれを用いた樹脂組成物および成型体を提供せんとするものである。   In view of the background of such prior art, the present invention provides a heat-resistant resin excellent in balance between mechanical strength and water resistance, and a resin composition and a molded body using the same.

本発明は、上記課題を解決するために、次のような手段を採用するものである。すなわち、本発明の耐熱性樹脂は、スルホン酸基の金属塩を含有する高分子であって、該高分子が芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルホスフィンオキシド系重合体およびポリアリーレン系重合体から選ばれた少なくとも1種であることを特徴とするものである。また、本発明の樹脂組成物および成型体は、かかる耐熱性樹脂を含有してなることを特徴とするものである。   In order to solve the above problems, the present invention employs the following means. That is, the heat-resistant resin of the present invention is a polymer containing a metal salt of a sulfonic acid group, and the polymer is an aromatic polyether ketone polymer, an aromatic polyether phosphine oxide polymer, and a polyarylene. It is at least one selected from a series polymer. The resin composition and molded article of the present invention are characterized by containing such a heat-resistant resin.

本発明によれば、機械強度、耐水性、溶解性のバランスに優れたフィルム、各種成型体、コーティング剤、分離膜等の形成に適した高性能な耐熱性樹脂を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the high performance heat resistant resin suitable for formation of the film excellent in the balance of mechanical strength, water resistance, and solubility, various moldings, a coating agent, a separation membrane, etc. can be provided.

本発明は、前記課題、つまり機械強度と耐水性のバランスに優れた耐熱性樹脂について、鋭意検討し、芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルホスフィンオキシド系重合体、ポリアリーレン系重合体という特定な高分子を選択し、これらにスルホン酸基の金属塩を導入してみたところ、かかる課題を一挙に解決する高分子を提供することができることを究明したものである。   The present invention has intensively studied the above-mentioned problem, that is, a heat-resistant resin having an excellent balance between mechanical strength and water resistance, and has obtained an aromatic polyether ketone polymer, an aromatic polyether phosphine oxide polymer, and a polyarylene polymer. As a result of selecting specific polymers called unions and introducing metal salts of sulfonic acid groups into them, they have found that a polymer that can solve these problems at once can be provided.

すなわち、本発明の耐熱性樹脂は、スルホン酸基の金属塩を含有する高分子おいて、該高分子が、芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルホスフィンオキシド系重合体およびポリアリーレン系重合体から選ばれた少なくとも1種で構成されていることを特徴とするものである。   That is, the heat resistant resin of the present invention is a polymer containing a metal salt of a sulfonic acid group, the polymer comprising an aromatic polyether ketone polymer, an aromatic polyether phosphine oxide polymer, and a polyarylene. It is composed of at least one selected from a series polymer.

本発明において、スルホン酸基の金属塩は、スルホン酸基と金属カチオンが塩を形成しているものであれば特に限定されるものではない。前記塩を形成するカチオンとしては、その価数等特に限定されるものではなく、用途に応じて便宜選択し、使用することができる。かかる金属カチオンの具体例を金属原子として挙げるとすれば、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Cr、Mo、W、Al、Ga、In、Fe、Co、Pt、Rh、Ru、Ir、Pd、Ni、Cu、Ag、Au、Zn等が好ましく使用される。かかる金属カチオンの中でも、ポリマーの溶解性の点からは、Na、K等1価の金属カチオンがより好ましく用いられる。また、ポリマー間の相互作用によってガスバリア性等を付与したい場合等には、Ca、Ti、Al等の2価以上の金属カチオンがより好ましく使用される。触媒機能を付与したい場合には、Pt、Rh、Ru等の後周期遷移金属がより好ましく使用される。   In the present invention, the metal salt of the sulfonic acid group is not particularly limited as long as the sulfonic acid group and the metal cation form a salt. The cation forming the salt is not particularly limited in terms of its valence, and can be conveniently selected and used according to the application. Specific examples of such metal cations are Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Cr, Mo, W, Al, Ga. In, Fe, Co, Pt, Rh, Ru, Ir, Pd, Ni, Cu, Ag, Au, Zn and the like are preferably used. Among such metal cations, monovalent metal cations such as Na and K are more preferably used from the viewpoint of polymer solubility. In addition, when a gas barrier property or the like is desired to be imparted by an interaction between polymers, a bivalent or higher metal cation such as Ca, Ti, or Al is more preferably used. When it is desired to impart a catalytic function, late transition metals such as Pt, Rh, and Ru are more preferably used.

これらの金属カチオンは、前記耐熱性樹脂中に2種類以上含むことができ、ポリマーの構造、使用目的などにより適宜選択して組み合わせることにより好ましくなる場合がある。これらの金属カチオンの組み合わせにおいて、ポリマーの溶解性の点から、少なくともNa、K等1価の金属カチオン、中でも少なくともNaを組み込んだ組み合わせのものが最も好ましく採用される。   Two or more kinds of these metal cations can be contained in the heat-resistant resin, and may be preferably selected and combined depending on the structure of the polymer, the purpose of use, and the like. In the combination of these metal cations, the combination of at least monovalent metal cations such as Na and K, among which at least Na is incorporated is most preferably employed from the viewpoint of the solubility of the polymer.

本発明の耐熱性樹脂は、その5%熱重量減少温度が好ましくは400℃以上、より好ましは450℃以上であるものがよい。5%熱重量減少温度が400℃未満である場合は、耐熱性が不足して、用途によってはフィルム、各種成型体、コーティング剤、分離膜として利用できない場合がある。   The heat resistant resin of the present invention preferably has a 5% thermal weight loss temperature of 400 ° C. or higher, more preferably 450 ° C. or higher. When the 5% thermal weight loss temperature is less than 400 ° C., the heat resistance is insufficient, and depending on the application, it may not be used as a film, various molded articles, a coating agent, or a separation membrane.

かかる5%熱重量減少温度は、熱重量測定(TG)により次のようにして測定した値とする。セイコー電子工業(TG-DTA2000)を用い、試料約5mgについて窒素雰囲気下で測定する。サンプルは100℃で24時間真空乾燥したものを使用する。昇温速度は10℃/ minとし、室温〜600℃まで測定する。本発明においては、200℃昇温時点の試料重量を基準に5%が減量した時点の温度を5%重量減少温度と定義する。   The 5% thermogravimetric decrease temperature is a value measured by thermogravimetry (TG) as follows. Using Seiko Denshi Kogyo (TG-DTA2000), about 5 mg of a sample is measured under a nitrogen atmosphere. The sample is vacuum-dried at 100 ° C. for 24 hours. The heating rate is 10 ° C./min, and the temperature is measured from room temperature to 600 ° C. In the present invention, the temperature at which 5% is reduced based on the sample weight when the temperature is raised to 200 ° C. is defined as the 5% weight reduction temperature.

かかる耐熱性樹脂中のスルホン酸基の量は、スルホン酸基密度(mmol/g)の値として示すことができる。なお、本発明においては、金属によって原子量が大きく異なることから、スルホン酸基密度はH(プロトン)型ポリマーについて算出するものとする。本発明における耐熱性樹脂のスルホン酸基密度は、耐水性、溶解性、スルホン酸基導入の効果の点から、好ましくは0.1〜3.0mmol/g、より好ましくは0.5〜2.5mmol/g、さらに耐水性の点から、最も好ましくは0.8〜1.5mmol/gである。スルホン酸基密度が、0.1mol/gより低いと、スルホン酸基を導入した効果が得られない場合があり、逆に3.0mmol/gより高いと耐水性が不足してしまう場合がある。   The amount of the sulfonic acid group in the heat resistant resin can be shown as a value of sulfonic acid group density (mmol / g). In the present invention, since the atomic weight differs greatly depending on the metal, the sulfonic acid group density is calculated for the H (proton) type polymer. The sulfonic acid group density of the heat-resistant resin in the present invention is preferably 0.1 to 3.0 mmol / g, more preferably 0.5 to 2.1, from the viewpoint of water resistance, solubility, and sulfonic acid group introduction effect. 5 mmol / g, and more preferably 0.8 to 1.5 mmol / g from the viewpoint of water resistance. If the sulfonic acid group density is lower than 0.1 mol / g, the effect of introducing the sulfonic acid group may not be obtained. Conversely, if it is higher than 3.0 mmol / g, the water resistance may be insufficient. .

ここで、スルホン酸基密度とは、乾燥状態の耐熱性樹脂1グラムあたりに導入されたスルホン酸基のモル数であり、値が大きいほどスルホン酸基の量が多いことを示す。スルホン酸基密度は、元素分析、中和滴定により求めることが可能である。これらの中でも測定の容易さから、元素分析法を用いることが好ましいが、スルホン酸基以外の硫黄源を含む場合などは、中和滴定法によりスルホン酸基密度を求めることもできる。さらに、これらの方法でもスルホン酸基密度の決定が困難な場合においては、核磁気共鳴スペクトル法を用いることが可能である。   Here, the sulfonic acid group density is the number of moles of sulfonic acid groups introduced per gram of the heat-resistant resin in a dry state, and the larger the value, the greater the amount of sulfonic acid groups. The sulfonic acid group density can be determined by elemental analysis or neutralization titration. Among these, the elemental analysis method is preferably used from the viewpoint of easiness of measurement, but when a sulfur source other than the sulfonic acid group is included, the sulfonic acid group density can also be obtained by a neutralization titration method. Furthermore, when it is difficult to determine the sulfonic acid group density by these methods, it is possible to use a nuclear magnetic resonance spectrum method.

本発明の耐熱性樹脂としては、機械強度、耐水性、溶解性の点から芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルホスフィンオキシド系重合体、芳香族ポリアリーレン系重合体のうちのいずれかである必要がある。これらのいずれかでない場合、例えば芳香族ポリエーテルスルホン系重合体である場合は、耐水性が不足してしまい、不適である。

次に、芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルホスフィンオキシド系重合体、芳香族ポリアリーレン系重合体について具体的に説明する。
As the heat resistant resin of the present invention, any of aromatic polyether ketone polymers, aromatic polyether phosphine oxide polymers, aromatic polyarylene polymers from the viewpoint of mechanical strength, water resistance, and solubility. It needs to be. If it is not any of these, for example, if it is an aromatic polyethersulfone polymer, the water resistance is insufficient, which is not suitable.

Next, an aromatic polyether ketone polymer, an aromatic polyether phosphine oxide polymer, and an aromatic polyarylene polymer will be specifically described.

芳香族ポリエーテルケトン系重合体とは、下記一般式(P1)で表される繰返し単位を有するポリマーのことである。   The aromatic polyether ketone polymer is a polymer having a repeating unit represented by the following general formula (P1).

Figure 2006070126
Figure 2006070126

(ここで、Z1、Z2は芳香環を含む有機基を表し、それぞれが2種類以上の基を表しても良い。aおよびbはそれぞれ1以上の独立な整数を表す。)
また、芳香族ポリエーテルホスフィンオキシド系重合体とは、下記一般式(P2)で表される繰返し単位を有するポリマーのことである。
(Here, Z1 and Z2 each represents an organic group containing an aromatic ring, and each may represent two or more groups. A and b each represent an independent integer of 1 or more.)
In addition, the aromatic polyether phosphine oxide-based polymer is a polymer having a repeating unit represented by the following general formula (P2).

Figure 2006070126
Figure 2006070126

(ここで、Z3、Z4は芳香環を含む有機基、Rpは任意の有機基を表し、それぞれが2種類以上の基を表しても良い。cおよびdはそれぞれ1以上の独立な整数を表す。)
芳香族ポリアリーレン系重合体とは、下記一般式(P3)で表される繰返し単位を有するポリマーのことである。
(Here, Z3 and Z4 represent an organic group containing an aromatic ring, Rp represents an arbitrary organic group, and each may represent two or more groups. C and d each represent an independent integer of 1 or more. .)
The aromatic polyarylene polymer is a polymer having a repeating unit represented by the following general formula (P3).

Figure 2006070126
Figure 2006070126

(ここで、Z5は芳香環を含む有機基を表す。)
Z5としては、例えば下記式(a1)〜(a13)に示したような繰り返し単位が挙げられ、工業的入手の容易さから、好ましくは下記式(a1)〜(a4)に示したような繰り返し単位であり、さらに好ましくは下記式(a1)に示したような繰り返し単位、すなわちパラフェニレン単位である。
(Here, Z5 represents an organic group containing an aromatic ring.)
Examples of Z5 include repeating units such as those shown in the following formulas (a1) to (a13). From the viewpoint of industrial availability, the repeating units shown in the following formulas (a1) to (a4) are preferable. More preferably a repeating unit as shown in the following formula (a1), that is, a paraphenylene unit.

Figure 2006070126
Figure 2006070126

これら芳香環は単一種である必要はなく、複数種のものが用いられても構わない。また、前記の例では芳香環として炭化水素系の芳香環を例示したが、複素環であっても構わない。
また、これら芳香環には、それぞれ1または2以上の置換基を有しても良い。また、本発明の目的を損なわない範囲で、前記の芳香環以外に、その他の繰り返し単位を有していてもよい。
These aromatic rings do not need to be a single type, and a plurality of types may be used. In the above example, a hydrocarbon aromatic ring is exemplified as the aromatic ring, but a heterocyclic ring may be used.
In addition, each of these aromatic rings may have one or more substituents. Moreover, in the range which does not impair the objective of this invention, you may have another repeating unit other than the said aromatic ring.

Z5として、最も好適な芳香環としては、得られる耐熱性樹脂の機械強度と耐水性のバランスに優れることから、下記式(a1−1)〜(a1−3)で表される繰り返し単位である。溶解性の点から最も好ましくは下記式(a1−3)で表される繰り返し単位である。   As Z5, the most preferred aromatic ring is a repeating unit represented by the following formulas (a1-1) to (a1-3) because of excellent balance between mechanical strength and water resistance of the resulting heat resistant resin. . Most preferred is a repeating unit represented by the following formula (a1-3) from the viewpoint of solubility.

Figure 2006070126
Figure 2006070126

(ここで、pは1〜5の整数を表す。)
これら、芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルホスフィンオキシド系重合体、芳香族ポリアリーレン系重合体のなかでも、製造コストおよび機械強度の点から、芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルホスフィンオキシド系重合体であることがより好ましい。
(Here, p represents an integer of 1 to 5.)
Among these, aromatic polyether ketone polymers, aromatic polyether phosphine oxide polymers, aromatic polyarylene polymers, aromatic polyether ketone polymers from the viewpoint of production cost and mechanical strength, An aromatic polyether phosphine oxide-based polymer is more preferable.

かかる一般式(P1)および(P2)で示される繰返し単位を有する芳香族ポリエーテルケトン系重合体および芳香族ポリエーテルホスフィンオキシド系重合体のなかでも、耐水性および製造の容易さの点で下記式(P1−1)、(P1−2)、(P2−1)、(P2−2)で示される繰返し単位を有するポリマーがより好ましく、さらに好ましくは下記式(P1−2)、(P2−2)で示される繰返し単位を有するポリマー、耐水性、熔解性、ならびに原料の工業的入手の容易さの点から最も好ましくは下記式(P1−2)である。   Among the aromatic polyether ketone polymers and aromatic polyether phosphine oxide polymers having the repeating units represented by the general formulas (P1) and (P2), the following are mentioned in terms of water resistance and ease of production. A polymer having a repeating unit represented by the formulas (P1-1), (P1-2), (P2-1), and (P2-2) is more preferable, and the following formulas (P1-2) and (P2- The following formula (P1-2) is most preferable from the viewpoint of the polymer having a repeating unit represented by 2), water resistance, solubility, and industrial availability of raw materials.

Figure 2006070126
Figure 2006070126

Z1およびZ3として好ましい有機基は、フェニレン基およびナフチレン基である。これらは置換されていてもよい。   Preferred organic groups as Z1 and Z3 are a phenylene group and a naphthylene group. These may be substituted.

Z2およびZ4として好ましい有機基はフェニレン基、ナフチレン基ならびに下記一般式(Z2−1)〜一般式(Z2−16)で示される有機基である。これらは置換されていてもよい。これらの中でも一般式(Z2−7)〜一般式(Z2−14)で示される有機基は、耐水性を向上する効果があるため特に好ましく、本発明の耐熱性樹脂はZ2およびZ4として一般式(Z2−7)〜一般式(Z2−14)で示される有機基のうち少なくとも1種類を含有することが好ましい。一般式(Z2−7)〜一般式(Z2−14)で示される有機基の中でも特に好ましいのは一般式(Z2−7)および一般式(Z2−8)で示される有機基であり、最も好ましいのは一般式(Z2−8)で示される有機基である。   Preferred organic groups as Z2 and Z4 are a phenylene group, a naphthylene group, and organic groups represented by the following general formulas (Z2-1) to (Z2-16). These may be substituted. Among these, the organic groups represented by the general formulas (Z2-7) to (Z2-14) are particularly preferable because they have an effect of improving water resistance, and the heat resistant resin of the present invention is represented by the general formulas as Z2 and Z4. It is preferable to contain at least one of the organic groups represented by (Z2-7) to general formula (Z2-14). Of the organic groups represented by the general formula (Z2-7) to general formula (Z2-14), the organic groups represented by the general formula (Z2-7) and the general formula (Z2-8) are particularly preferable. The organic group represented by formula (Z2-8) is preferable.

Figure 2006070126
Figure 2006070126

一般式(P2−1)および一般式(P2−2)におけるRpで示される有機基の好ましい例としては、メチル基、エチル基、プロピル基、イソプロピル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、ビニル基、アリル基、ベンジル基、フェニル基、ナフチル基、フェニルフェニル基などである。工業的な入手の容易さの点ではRpとして最も好ましいのはフェニル基である。   Preferable examples of the organic group represented by Rp in general formula (P2-1) and general formula (P2-2) include methyl group, ethyl group, propyl group, isopropyl group, cyclopentyl group, cyclohexyl group, norbornyl group, vinyl Group, allyl group, benzyl group, phenyl group, naphthyl group, phenylphenyl group and the like. From the viewpoint of industrial availability, the most preferable Rp is a phenyl group.

これら芳香族炭化水素系ポリマーに対してスルホン酸基を導入する方法は、スルホン酸基を有するモノマーを用いて重合する方法と、高分子反応でスルホン酸基を導入する方法を採用することができる。   As a method for introducing a sulfonic acid group into these aromatic hydrocarbon polymers, a method of polymerizing using a monomer having a sulfonic acid group and a method of introducing a sulfonic acid group by a polymer reaction can be employed. .

まず、スルホン酸基を有するモノマーを用いて重合する方法としては、繰り返し単位中にスルホン酸基を有したモノマーを用いればよく、必要により適当な保護基を導入して重合後脱保護基を行えばよい。かかる方法は、例えば Journal of Membrane Science, 197(2002) 231-242 に記載された方法で導入することができる。   First, as a method of polymerizing using a monomer having a sulfonic acid group, a monomer having a sulfonic acid group in a repeating unit may be used. If necessary, an appropriate protective group is introduced to perform a deprotection group after polymerization. Just do it. Such a method can be introduced by, for example, the method described in Journal of Membrane Science, 197 (2002) 231-242.

次に、芳香族系高分子をスルホン化する方法、すなわちスルホン酸基を導入する方法としては、たとえば特開平2−16126号公報あるいは特開平2−208322号公報等に記載された方法を採用することができる。具体的には、例えば、芳香族系高分子をクロロホルム等の溶媒中でクロロスルホン酸のようなスルホン化剤と反応させたり、濃硫酸や発煙硫酸中で反応することによりスルホン化することができる。スルホン化剤には芳香族系高分子をスルホン化するものであれば特に制限はなく、上記以外にも三酸化硫黄等を使用することができる。この方法により芳香族系高分子をスルホン化する場合には、スルホン化の度合いはスルホン化剤の使用量、反応温度および反応時間により、容易に制御することができる。   Next, as a method for sulfonating an aromatic polymer, that is, a method for introducing a sulfonic acid group, for example, the method described in JP-A-2-16126 or JP-A-2-208322 is employed. be able to. Specifically, for example, an aromatic polymer can be sulfonated by reacting with a sulfonating agent such as chlorosulfonic acid in a solvent such as chloroform, or by reacting in concentrated sulfuric acid or fuming sulfuric acid. . The sulfonating agent is not particularly limited as long as it sulfonates an aromatic polymer, and sulfur trioxide or the like can be used in addition to the above. When the aromatic polymer is sulfonated by this method, the degree of sulfonation can be easily controlled by the amount of the sulfonating agent used, the reaction temperature and the reaction time.

かかるスルホン酸基導入方法の中でも、スルホン酸基の導入量を容易に制御できることから、スルホン酸基を有するモノマーを用いて重合する方法がより好ましく採用される。   Among these sulfonic acid group introduction methods, the method of polymerizing using a monomer having a sulfonic acid group is more preferably employed because the amount of sulfonic acid group introduced can be easily controlled.

かかるスルホン酸基を有するモノマーを用いることにより導入される好ましい基としては、製造コストおよび工業的入手の容易さの点から、下記一般式(1)で示される基が採用される。   As a preferable group introduced by using a monomer having such a sulfonic acid group, a group represented by the following general formula (1) is adopted from the viewpoint of production cost and industrial availability.

Figure 2006070126
Figure 2006070126

(式中、Xは−CO−または−P(Rp)O−(Rpは任意の有機基)、M1およびM2は金属カチオン、a1およびa2は1〜4の整数を表す。)
なお、M1およびM2としては、表記上1価の金属カチオンのように表しているが、1価に限定されるものではなく、2価以上の金属カチオンを用いることができる。
(In the formula, X is —CO— or —P (Rp) O— (Rp is an arbitrary organic group), M1 and M2 are metal cations, and a1 and a2 each represent an integer of 1 to 4.)
M1 and M2 are represented as monovalent metal cations in the notation, but are not limited to monovalents, and bivalent or higher metal cations can be used.

一般式(1)中のXとしては、なかでも原料コストおよび溶解性の点から−CO−であることがさらに好ましい。   X in the general formula (1) is more preferably —CO— from the viewpoint of raw material cost and solubility.

次に、本発明の耐熱性樹脂について、好適な例を具体的に挙げる。しかし、本発明の耐熱性樹脂はこれらに限定されるものではない。   Next, a suitable example is given concretely about the heat resistant resin of this invention. However, the heat resistant resin of the present invention is not limited to these.

本発明の耐熱性樹脂の特に好適な例としては、製造コスト、製造の容易さ、耐水性、機械強度の点から、少なくとも下記一般式(2)で示されるスルホン酸基の金属塩を含有する繰り返し構造単位と、下記一般式(3)で示される繰り返し構造単位を含むポリマーが挙げられる。   Particularly preferred examples of the heat-resistant resin of the present invention include at least a metal salt of a sulfonic acid group represented by the following general formula (2) from the viewpoint of production cost, ease of production, water resistance, and mechanical strength. Examples thereof include a polymer containing a repeating structural unit and a repeating structural unit represented by the following general formula (3).

Figure 2006070126
Figure 2006070126

Figure 2006070126
Figure 2006070126

(式中、Ar1およびAr2は芳香環を含む有機基、M1およびM2は金属カチオン、a1およびa2は1〜4の整数を表す。)
Ar1およびAr2として好ましい有機基は、フェニレン基、ナフチレン基ならびに上記一般式(Z2−1)〜一般式(Z2−16)で示される有機基である。これらは置換されていてもよい。これらの中でも一般式(Z2−7)〜一般式(Z2−14)で示される有機基は、耐水性を向上する効果があるため特に好ましく、本発明の耐熱性樹脂はAr1およびAr2として一般式(Z2−7)〜一般式(Z2−14)で示される有機基のうち少なくとも1種類を含有することが好ましい。一般式(Z2−7)〜一般式(Z2−14)で示される有機基の中でも特に好ましいのは下記一般式(4)、すわわち(Z2−7)および一般式(Z2−8)で示される有機基であり、最も好ましいのは一般式(Z2−8)で示される有機基である。
(In the formula, Ar1 and Ar2 are organic groups containing an aromatic ring, M1 and M2 are metal cations, and a1 and a2 each represent an integer of 1 to 4.)
Preferred organic groups as Ar1 and Ar2 are a phenylene group, a naphthylene group, and organic groups represented by the above general formulas (Z2-1) to (Z2-16). These may be substituted. Among these, the organic groups represented by the general formula (Z2-7) to the general formula (Z2-14) are particularly preferable because they have an effect of improving water resistance. It is preferable to contain at least one of the organic groups represented by (Z2-7) to general formula (Z2-14). Among the organic groups represented by the general formula (Z2-7) to general formula (Z2-14), the following general formula (4), that is, (Z2-7) and general formula (Z2-8) are particularly preferable. The most preferred is an organic group represented by formula (Z2-8).

Figure 2006070126
Figure 2006070126

(4)
(式中、点線は結合していても結合していなくてもよく、R1〜R4は水素原子、ハロゲン原子、1価の有機基を表し、b1〜b4は5以下の整数を表し、該高分子中にR1〜R4およびb1〜b4の異なるものを2種以上含んでいてもよい。)
本発明の耐熱性樹脂において、それらのGPC法による重量平均分子量は1万〜500万が好ましく、より好ましくは3万〜100万である。重量平均分子量を1万以上とすることで、耐熱性樹脂として実用に供しうる機械的強度を得ることができる。一方、500万以下とすることで、十分な溶解性を得ることができ、溶液粘度が高くなりすぎるのを防ぎ良好な加工性を維持することができる。
(4)
(In the formula, the dotted line may or may not be bonded; R1 to R4 each represents a hydrogen atom, a halogen atom or a monovalent organic group; b1 to b4 each represents an integer of 5 or less; The molecule may contain two or more different types of R1 to R4 and b1 to b4.)
In the heat resistant resin of the present invention, the weight average molecular weight by GPC method is preferably 10,000 to 5,000,000, more preferably 30,000 to 1,000,000. By setting the weight average molecular weight to 10,000 or more, mechanical strength that can be practically used as a heat resistant resin can be obtained. On the other hand, by setting it to 5 million or less, sufficient solubility can be obtained, and it is possible to prevent the solution viscosity from becoming too high and maintain good processability.

本発明は、本発明の耐熱性樹脂を含有する樹脂組成物を含む。ここで、本発明の樹脂組成物は、本発明の耐熱性樹脂一種のみからなる樹脂組成物であってもよいが、本発明の耐熱性樹脂を一種または二種以上含有していてもよい。また、本発明の樹脂組成物は、本発明の耐熱性樹脂のみからなる樹脂組成物であってもよいが、その特性を著しく低下しない範囲で、構造の異なる他の種類の樹脂を含有していてもよい。   The present invention includes a resin composition containing the heat resistant resin of the present invention. Here, the resin composition of the present invention may be a resin composition comprising only one kind of the heat resistant resin of the present invention, but may contain one or more kinds of the heat resistant resin of the present invention. In addition, the resin composition of the present invention may be a resin composition consisting only of the heat-resistant resin of the present invention, but contains other types of resins having different structures as long as the characteristics are not significantly deteriorated. May be.

この際、本発明の樹脂組成物に配合され得る他の樹脂としては、特に限定されるものではないが、具体例としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ABS樹脂およびAS樹脂などの汎用樹脂や、ポリアセテート(POM)、ポリカーボネート(PC)、ポリアミド(PA:ナイロン)、ポリエチレンテレフタレート(PET)およびポリブチレンテレフタレート(PBT)などのエンジニアリングプラスチックや、ポリフェニレンスルフィド(PPS)、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリイミド(PI)、ポリシクロヘキサンジメタノールテレフタレート(PCT)、ポリアリレート(PAR)および各種液晶ポリマー(LCP)などの熱可塑性樹脂や、エポキシ樹脂、フェノール樹脂、ノボラック樹脂などの熱硬化性樹脂などが挙げられる。   At this time, other resins that can be blended in the resin composition of the present invention are not particularly limited, but specific examples include polyethylene (PE), polypropylene (PP), polystyrene (PS), and polymethyl. General-purpose resins such as methacrylate (PMMA), ABS resin and AS resin, and engineering plastics such as polyacetate (POM), polycarbonate (PC), polyamide (PA: nylon), polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) And polyphenylene sulfide (PPS), polyethersulfone (PES), polyketone (PK), polyimide (PI), polycyclohexanedimethanol terephthalate (PCT), polyarylate (PAR), and various liquid crystal polymers (LC) ) Or thermoplastic resins such as epoxy resins, phenolic resins, such as thermosetting resins, such as novolak resins.

本発明の樹脂組成物に、本発明の耐熱性樹脂以外の樹脂成分を配合する場合であっても、本発明の耐熱性樹脂の配合量は、全配合成分に対して50〜100質量%であることが好ましく、70〜100質量%であればさらに好ましい。本発明の耐熱性樹脂の配合量が50質量%未満の場合には、耐熱性、機械特性、耐水性のいずれかが不良となる場合があるからである。   Even when a resin component other than the heat resistant resin of the present invention is blended in the resin composition of the present invention, the blending amount of the heat resistant resin of the present invention is 50 to 100% by mass with respect to all the blended components. It is preferable that it is 70 to 100% by mass, and more preferable. This is because when the blending amount of the heat resistant resin of the present invention is less than 50% by mass, any of heat resistance, mechanical properties, and water resistance may be poor.

なお、本発明の樹脂組成物には、必要に応じて、たとえば、酸化防止剤、熱安定剤、滑剤、粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、抗菌剤、消泡剤、分散剤、重合禁止剤、などの各種添加剤を、本発明の効果を損なわない範囲内で添加することができる。   Note that the resin composition of the present invention includes, for example, an antioxidant, a heat stabilizer, a lubricant, a tackifier, a plasticizer, a cross-linking agent, a viscosity modifier, an antistatic agent, an antibacterial agent, an antibacterial agent, and the like. Various additives such as a foaming agent, a dispersing agent, and a polymerization inhibitor can be added within a range not impairing the effects of the present invention.

本発明の耐熱性樹脂、およびそれを主成分とする樹脂組成物は、その具体的な成型体の形状としては、膜類(フィルムおよびフィルム状のものを含む)の他、板状、繊維状、中空糸状、粒子状、塊状など、使用用途によって様々な形態をとりうる。ポリマ−の設計自由度の向上および各種特性の向上が図れることから、広い用途に適応可能である。例えば、本発明の耐熱性樹脂、およびそれを主成分とする樹脂組成物は、酸処理した際に高いプロトン伝導性、優れた機械強度と機械強度を有し、本発明の耐熱性樹脂自身は中性で金属類を腐食しないことから、各種燃料電池用の高分子電解質材の前駆体としても好適である。   The heat-resistant resin of the present invention and the resin composition containing the same as the main component include, in addition to membranes (including films and films), plate-like, and fiber-like shapes. Various forms such as a hollow fiber shape, a particle shape, and a lump shape can be used depending on the intended use. Since the polymer can be improved in the degree of design freedom and various characteristics, it can be applied to a wide range of applications. For example, the heat-resistant resin of the present invention and the resin composition containing the same as a main component have high proton conductivity, excellent mechanical strength and mechanical strength when acid-treated. Since it is neutral and does not corrode metals, it is also suitable as a precursor for polymer electrolyte materials for various fuel cells.

本発明の樹脂組成物は、耐熱性だけでなく、溶解性、透明性および機械特性に優れているため、時計、テレビ、ICカード、ワードプロセッサ、パソコン、計器盤および各種表示盤中の液晶表示部およびエレクトロルミネッセンス表示部の基板、透明導電性フィルム、光ディスクや光カードの表面保護フィルム等へ応用することができる。また、成型性、耐熱性、高透明性を利用して、現行のガラス基板や金属基板の代替材料として用いることができる。   Since the resin composition of the present invention is excellent not only in heat resistance but also in solubility, transparency and mechanical properties, liquid crystal display parts in watches, televisions, IC cards, word processors, personal computers, instrument panels and various display panels Further, it can be applied to a substrate of an electroluminescence display unit, a transparent conductive film, a surface protection film of an optical disk or an optical card, and the like. Moreover, it can be used as an alternative material for current glass substrates and metal substrates by utilizing moldability, heat resistance, and high transparency.

また、本発明の耐熱性樹脂は、例えば水、メタノール等を溶媒とするソックスレー抽出などの抽出操作を40時間行っても、抽出液中への溶出は見られず、長期にわたり安定した親水性を有する。従って、本発明の耐熱性樹脂は、通常の成形加工法および条件にて成形加工し、加工後、特に親水化処理を施すことなく、親水性の改善されたフィルム、シート、精密微細構造を有する部品など望ましい製品とすることができる。親水性の改善により、得られた製品の帯電防止性、接着性、メッキ性、塗工性や、加工時の流動性の向上が予想される。さらに、樹脂のブレンド性が向上することから、ポリマーアロイとしての使用も考えられる。また、通常の樹脂加工に際して添加されている充填剤や安定剤、着色剤。離燃剤などの添加剤ともなじみ良く混合して使用することができる。   In addition, the heat-resistant resin of the present invention does not show elution into the extract even after 40 hours of extraction operation such as Soxhlet extraction using water, methanol or the like as a solvent, and has a stable hydrophilic property over a long period of time. Have. Therefore, the heat-resistant resin of the present invention is molded by a normal molding process and conditions, and has a film, sheet, and precision fine structure with improved hydrophilicity, without performing a hydrophilic treatment after processing. It can be a desirable product such as a part. The improvement in hydrophilicity is expected to improve the antistatic property, adhesiveness, plating property, coating property and fluidity during processing of the obtained product. Furthermore, since the blendability of resin improves, the use as a polymer alloy is also considered. In addition, fillers, stabilizers, and colorants added during normal resin processing. It can be used by mixing well with additives such as flame retardants.

本発明の耐熱性樹脂は、電気・電子分野の各種部品、液晶表示体用等の透明導電性フィルム、ハウジング類、自動車部品、航空機用内装材、ギヤ、歯科用材料、蒸気殺菌容器など広範な分野に用いることができる。本発明の耐熱性樹脂は、ランダムにスルホン酸基を有する芳香族ポリマーを作ることも可能であるが、意図的にスルホン酸基をブロック的に導入することも可能である。生成物のブロック状の構造を利用して、親水部と疎水部が海鳥状にミクロ相分離させたり、樹脂の構造体のごく表面のみに親水部を集めた極めてミクロ的な不均一構造を発現させたり、成形物のミクロ的な親水化を行なえる材料も提供可能である。こういったミクロ構造は、抗血栓性の医療品や耐汚染性にすぐれた分離膜などに、非常に有用な構造であると考えられる。特に逆浸透膜、限外ろ過膜、メンブレンフィルターなどの分離膜を形成する薄膜の材料として十分な耐熱性と親水性を合わせ持った、本発明の耐熱性樹脂は好適な材料であると言える。   The heat-resistant resin of the present invention is widely used for various parts in the electric and electronic fields, transparent conductive films for liquid crystal displays, housings, automobile parts, aircraft interior materials, gears, dental materials, steam sterilization containers, etc. Can be used in the field. Although the heat-resistant resin of the present invention can make an aromatic polymer having sulfonic acid groups at random, it is also possible to intentionally introduce sulfonic acid groups in blocks. Utilizing the block-like structure of the product, the hydrophilic part and the hydrophobic part are microphase-separated in a seabird form, or an extremely micro-inhomogeneous structure in which the hydrophilic part is collected only on the very surface of the resin structure is expressed. It is also possible to provide a material that can be made to have a micro-hydrophilic property. Such a microstructure is considered to be a very useful structure for antithrombotic medical products and separation membranes with excellent contamination resistance. In particular, it can be said that the heat resistant resin of the present invention having both sufficient heat resistance and hydrophilicity as a thin film material for forming a separation membrane such as a reverse osmosis membrane, an ultrafiltration membrane, and a membrane filter is a suitable material.

また、本発明の耐熱性樹脂からなる膜およびフィルム、あるいはコーティング剤は、スルホン酸基の金属塩の導入によって、透明性だけでなく、ガスバリア性、水蒸気バリア性および帯電防止性にも優れるため各種の用途に供することができる。本発明の耐熱性樹脂フィルムは、透明性に優れ、ガスバリア性において、汎用樹脂を大きく越えることから、粉体食品包装用途のほか、アルミ箔やガラスなどの金属や無機材料を必須としている用途にも使用可能である。本発明の包装材料としての用途は、例えば、食品用途フィルム、半導体包装、酸化性薬品包装、精密材料包装、医療、電子、化学、機械などの産業材料包装など、様々な形状で広範な用途にも使用可能である。   Further, the film and film comprising the heat-resistant resin of the present invention, or the coating agent is not only transparent but also has excellent gas barrier property, water vapor barrier property and antistatic property by introducing a metal salt of sulfonic acid group. Can be used for The heat-resistant resin film of the present invention is excellent in transparency and has a gas barrier property that greatly exceeds general-purpose resins. Therefore, in addition to powdered food packaging applications, it is essential for metals and inorganic materials such as aluminum foil and glass. Can also be used. Applications of the present invention as packaging materials include, for example, food-use films, semiconductor packaging, oxidizing chemical packaging, precision material packaging, medical materials, electronics, chemistry, machinery and other industrial material packaging, and a wide range of applications. Can also be used.

本発明の耐熱性樹脂および樹脂組成物から各種成型体を得る方法については、公知の方法を採用でき、特に限定されないが、例えば、射出成型法、プレス成型法、圧縮成型法、トランスファ成型法、積層成型法、押し出し成型法などが挙げられる。また、フィルム状に成型する場合には、溶液製膜法、溶融押し出し製膜法などが挙げられ、特に溶液製膜法が好適に採用される。溶液製膜法としては例えば、粉砕した−SO3M型のポリマーを非プロトン性極性溶媒等に溶解して溶液を調製し、該溶液よりガラス板あるいはフィルム上に適当なコーティング法で塗布し、溶媒を除去する方法を例示することができる。   As a method for obtaining various molded products from the heat-resistant resin and resin composition of the present invention, a known method can be adopted, and is not particularly limited. For example, an injection molding method, a press molding method, a compression molding method, a transfer molding method, Examples include a lamination molding method and an extrusion molding method. Moreover, when shape | molding in a film form, a solution casting method, a melt-extrusion film forming method, etc. are mentioned, Especially a solution casting method is employ | adopted suitably. As a solution casting method, for example, a pulverized -SO3M type polymer is dissolved in an aprotic polar solvent or the like to prepare a solution, which is applied onto a glass plate or film by an appropriate coating method, and the solvent is added. An example of the removal method is illustrated.

コーティング法としては、スプレーコート、刷毛塗り、ディップコート、ダイコート、カーテンコート、フローコート、スピンコート、スクリーン印刷などの手法が適用できる。   As the coating method, methods such as spray coating, brush coating, dip coating, die coating, curtain coating, flow coating, spin coating, and screen printing can be applied.

製膜に用いる溶媒としては、高分子化合物を溶解し、その後に除去し得るものであればよく、例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ−ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロパノールなどのアルコール系溶媒が好適に用いられる。   The solvent used for film formation may be any solvent that dissolves the polymer compound and can be removed thereafter. For example, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, Aprotic polar solvents such as dimethyl sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphontriamide, ester solvents such as γ-butyrolactone, butyl acetate, carbonates such as ethylene carbonate and propylene carbonate Solvents, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, alkylene glycol monoalkyl ethers such as propylene glycol monoethyl ether, or alcohols such as isopropanol Lumpur solvent is preferably used.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。
[測定方法]
(1)スルホン酸基密度
スルホン酸基密度はH(プロトン)型のポリマーを用いて算出するものとする。検体となる膜状の試料を25℃で1N塩酸に24時間浸漬することによりプロトン置換した。次に、純水で充分に洗浄し、100℃で24時間真空乾燥した後、元素分析により測定した。炭素、水素、窒素の分析は全自動元素分析装置varioEL、硫黄の分析はフラスコ燃焼法・酢酸バリウム滴定で実施した。ポリマーの組成比から単位グラムあたりのスルホン酸基密度(mmol/g)を算出した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. In addition, the measurement conditions of each physical property are as follows.
[Measuring method]
(1) Sulfonic acid group density The sulfonic acid group density is calculated using an H (proton) type polymer. A membrane-like sample serving as a specimen was subjected to proton substitution by immersing in 1N hydrochloric acid at 25 ° C. for 24 hours. Next, the sample was thoroughly washed with pure water, vacuum-dried at 100 ° C. for 24 hours, and then measured by elemental analysis. Carbon, hydrogen, and nitrogen were analyzed by a fully automatic elemental analyzer varioEL, and sulfur was analyzed by a flask combustion method and barium acetate titration. The sulfonic acid group density per unit gram (mmol / g) was calculated from the composition ratio of the polymer.

(2)重量平均分子量
ポリマーの重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC−8022GPCを、またGPCカラムとして東ソー製TSK gel SuperHM−H(内径6.0mm、長さ15cm)2本を用い、N−メチル−2−ピロリドン溶媒(臭化リチウムを10mmol/L含有するN−メチル−2−ピロリドン溶媒)にて、流量0.2mL/minで測定し、標準ポリスチレン換算により重量平均分子量を求めた。
(2) Weight average molecular weight The weight average molecular weight of the polymer was measured by GPC. Tosoh's HLC-8022GPC is used as an integrated device of an ultraviolet detector and a differential refractometer, and Tosoh's TSK gel SuperHM-H (inner diameter 6.0 mm, length 15 cm) is used as the GPC column. N-methyl-2 -Measured with a pyrrolidone solvent (N-methyl-2-pyrrolidone solvent containing 10 mmol / L of lithium bromide) at a flow rate of 0.2 mL / min, and the weight average molecular weight was determined in terms of standard polystyrene.

(3)5%熱重量減少温度
5%熱重量減少温度は熱重量測定(TG)により測定した。セイコー電子工業(TG-DTA2000)を用い、試料約5mgについて窒素雰囲気下(窒素流量:200 ml / min)で測定した。サンプルは100℃で24時間真空乾燥したものを使用した。昇温速度は10℃/ minとし、室温〜600℃まで測定した。200℃昇温時点の試料重量を基準に5%が減量した時点の温度を5%重量減少温度と定義する。
(3) 5% thermogravimetric decrease temperature The 5% thermogravimetric decrease temperature was measured by thermogravimetry (TG). Using Seiko Denshi Kogyo (TG-DTA2000), about 5 mg of a sample was measured under a nitrogen atmosphere (nitrogen flow rate: 200 ml / min). The sample used was vacuum-dried at 100 ° C. for 24 hours. The heating rate was 10 ° C./min, and the temperature was measured from room temperature to 600 ° C. The temperature at which 5% is reduced based on the sample weight when the temperature is raised by 200 ° C. is defined as the 5% weight reduction temperature.

(4)耐水性試験
耐水性試験として、熱水に対する寸法安定性を評価した。検体となる膜状の試料を長さ約5cm、幅約1cmの短冊状に切り取り、100℃で24時間真空乾燥後、ノギスで長さ(L1)を正確に測長した。該膜を100℃の純水中に24時間浸漬後、再度ノギスで長さ(L2)を正確に測長し、下記算式(S1)にて寸法変化率を計算した。
(4) Water resistance test As a water resistance test, dimensional stability against hot water was evaluated. A film-like sample serving as a specimen was cut into a strip having a length of about 5 cm and a width of about 1 cm, vacuum-dried at 100 ° C. for 24 hours, and the length (L1) was accurately measured with a caliper. The membrane was immersed in pure water at 100 ° C. for 24 hours, and then the length (L2) was measured with a caliper again, and the dimensional change rate was calculated by the following formula (S1).

(寸法変化率)=L2/L1……(S1)
L1 :乾燥時の膜の長さ(cm)
L2 :100℃の純水中に24時間浸漬後の膜の長さ(cm)
[合成例1]
下記式(G1)で表されるジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン(モノマーA)の合成
(Dimensional change rate) = L2 / L1 (S1)
L1: length of the film at the time of drying (cm)
L2: length of the film (cm) after being immersed in pure water at 100 ° C. for 24 hours
[Synthesis Example 1]
Synthesis of disodium 3,3′-disulfonate-4,4′-difluorobenzophenone (monomer A) represented by the following formula (G1)

Figure 2006070126
Figure 2006070126

4,4’−ジフルオロベンゾフェノン109.1gを発煙硫酸(50%SO3)150mL中、100℃で10h反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、上記式(G1)で示されるジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン(モノマーA)を得た。   109.1 g of 4,4′-difluorobenzophenone was reacted at 150 ° C. for 10 hours in 150 mL of fuming sulfuric acid (50% SO 3). Thereafter, the mixture was poured little by little into a large amount of water, neutralized with NaOH, and 200 g of sodium chloride was added to precipitate the composite. The resulting precipitate was filtered off and recrystallized with an aqueous ethanol solution to obtain disodium 3,3'-disulfonate-4,4'-difluorobenzophenone (monomer A) represented by the above formula (G1).

[実施例1]
下記式(G2)で表されるポリマーAの合成
[Example 1]
Synthesis of polymer A represented by the following formula (G2)

Figure 2006070126
Figure 2006070126

(式中、*はその位置で上式の右端と下式の左端とが結合していることを表す。)
炭酸カリウム6.9g、4,4'−(9H−フルオレン−9−イリデン)ビスフェノール14.1g、および4,4'−ジフルオロベンゾフェノン3.5g、および上記合成例1で得たジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン10.1gを用いて、N−メチルピロリドン(NMP)中、190℃で重合を行った。多量の水で再沈することで精製を行い、上記式(G2)で表されるポリマーAを得た。
(In the formula, * represents that the right end of the upper formula and the left end of the lower formula are connected at that position.)
6.9 g of potassium carbonate, 14.1 g of 4,4 ′-(9H-fluorene-9-ylidene) bisphenol, 3.5 g of 4,4′-difluorobenzophenone, and disodium 3,3 ′ obtained in Synthesis Example 1 above Polymerization was carried out at 190 ° C. in N-methylpyrrolidone (NMP) using 10.1 g of disulfonate-4,4′-difluorobenzophenone. Purification was performed by reprecipitation with a large amount of water to obtain a polymer A represented by the above formula (G2).

得られたポリマーAのH型ポリマーのスルホン酸基密度は、元素分析より1.9mmol/g、重量平均分子量17万であった。   The density of the sulfonic acid group of the H-type polymer of the obtained polymer A was 1.9 mmol / g and the weight average molecular weight was 170,000 from elemental analysis.

ポリマーAをN−メチルピロリドンに溶解し25%の塗液とした。当該塗液をガラス基板上に流延塗布し、100℃にて3時間乾燥して溶媒を除去した。次に、窒素ガス雰囲気下、100〜300℃まで30分間かけて昇温し、300℃で10分間加熱する条件で熱処理した後、放冷し、大過剰量の純水に24時間浸漬して充分洗浄し、膜を得た。   Polymer A was dissolved in N-methylpyrrolidone to give a 25% coating solution. The coating liquid was cast on a glass substrate and dried at 100 ° C. for 3 hours to remove the solvent. Next, in a nitrogen gas atmosphere, the temperature was raised to 100 to 300 ° C. over 30 minutes, heat-treated at 300 ° C. for 10 minutes, allowed to cool, and immersed in a large excess of pure water for 24 hours. Thorough washing was performed to obtain a film.

この膜の膜厚は30μm、淡黄色透明で指で折り曲げても割れることはなかった。この膜の5%重量減少温度は498℃であり、耐熱性に優れていた。また、この膜の寸法変化率は1.08であり、耐水性にも優れていた。
[合成例2]
下記式(G3)で表されるモノマーBの合成
This film had a thickness of 30 μm and was pale yellow and transparent, and it was not cracked even when bent with a finger. This film had a 5% weight loss temperature of 498 ° C. and was excellent in heat resistance. Further, the dimensional change rate of this film was 1.08, and it was excellent in water resistance.
[Synthesis Example 2]
Synthesis of monomer B represented by the following formula (G3)

Figure 2006070126
Figure 2006070126

4,4'−ジフルオロベンゾフェノン109.1gをビス(4−フルオロフェニル)フェニルホスフィンオキシド157.1gに変更した以外は合成例2と同様に行い、上記式(G3)で表されるモノマーBを得た。   Monomer B represented by the above formula (G3) is obtained in the same manner as in Synthesis Example 2 except that 109.1 g of 4,4′-difluorobenzophenone is changed to 157.1 g of bis (4-fluorophenyl) phenylphosphine oxide. It was.

[実施例2]
下記式(G4)で表されるポリマーBの合成
[Example 2]
Synthesis of polymer B represented by the following formula (G4)

Figure 2006070126
Figure 2006070126

(式中、*はその位置で上式の右端と下式の左端とが結合していることを表す。)
4,4'−ジフルオロベンゾフェノン3.5gをビス(4−フルオロフェニル)フェニルホスフィンオキシド5.0g、および上記合成例1で得たジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン10.1gをモノマーB、10.0gに変更した以外は実施例1と同様に行い、上記式(G4)で表されるポリマーBを得た。
(In the formula, * represents that the right end of the upper formula and the left end of the lower formula are connected at that position.)
3.5 g of 4,4′-difluorobenzophenone, 5.0 g of bis (4-fluorophenyl) phenylphosphine oxide, and disodium 3,3′-disulfonate-4,4′-difluorobenzophenone 10 obtained in Synthesis Example 1 10 Except that 0.1 g was changed to Monomer B and 10.0 g, the same procedure as in Example 1 was performed to obtain Polymer B represented by the above formula (G4).

得られたポリマーBのH型ポリマーのスルホン酸基密度は、元素分析より0.9mmol/g、重量平均分子量15万であった。   The density of the sulfonic acid group in the H-type polymer of the obtained polymer B was 0.9 mmol / g and the weight average molecular weight was 150,000 from elemental analysis.

ポリマーAをポリマーBに変えた以外は実施例1に記載の方法で膜の作製を行った。この膜の膜厚は31μm、淡黄色透明で指で折り曲げても割れることはなかった。この膜の5%重量減少温度は512℃であり、耐熱性に優れていた。また、この膜の寸法変化率は1.03であり、耐水性にも優れていた。   A film was prepared by the method described in Example 1 except that the polymer A was changed to the polymer B. This film had a thickness of 31 μm and was pale yellow and transparent, and it was not broken even when bent with a finger. The 5% weight reduction temperature of this film was 512 ° C. and was excellent in heat resistance. Further, the dimensional change rate of this film was 1.03, and it was excellent in water resistance.

[比較例1]
下記式(G5)で表されるポリマーの合成
[Comparative Example 1]
Synthesis of a polymer represented by the following formula (G5)

Figure 2006070126
Figure 2006070126

(式中、*はその位置で上式の右端と下式の左端とが結合していることを表す。)
「ジャーナル オブ ポリマー サイエンス パートA ポリマーケミストリー」(Journal of Polymer Science: Part A: Polymer Chemistry), 31 (1993) 859-863.記載の方法と同様にして上記式(G5)のポリエーテルスルホンを合成した。H型ポリマーのスルホン酸基密度は1.8mmol/gであり、重量平均分子量は16万であった。
(In the formula, * represents that the right end of the upper formula and the left end of the lower formula are connected at that position.)
The polyethersulfone of the above formula (G5) was synthesized in the same manner as described in “Journal of Polymer Science: Part A: Polymer Chemistry”, 31 (1993) 859-863. . The sulfonic acid group density of the H-type polymer was 1.8 mmol / g, and the weight average molecular weight was 160,000.

ポリマーAを上記式(G5)のポリエーテルスルホンに変えた以外は実施例1に記載の方法で膜の作製を行った。この膜の膜厚は32μm、淡黄色透明で指で折り曲げても割れることはなかった。この膜の5%重量減少温度は488℃であり、耐熱性に優れていた。しかしながら、この膜は100℃の純水に浸漬するとクラゲにように激しく膨潤してしまうため寸法変化率は測定することすらできなかった。このように耐水性に劣っていた。   A membrane was prepared by the method described in Example 1 except that the polymer A was changed to the polyethersulfone of the above formula (G5). This film had a thickness of 32 μm and was pale yellow and transparent and was not cracked even when it was bent with a finger. The 5% weight loss temperature of this film was 488 ° C. and was excellent in heat resistance. However, since this membrane swells vigorously like a jellyfish when immersed in pure water at 100 ° C., the dimensional change rate could not even be measured. Thus, it was inferior to water resistance.

[合成例3]
2,5−ジクロロー4’−フェノキシベンゾフェノン3.0g、ヨウ化ナトリウム0.18g、ビストリフェニルホスフィンニッケルジクロライド0.19g、トリフェニルホスフィン0.91g、亜鉛0.77gを窒素雰囲気下、85℃、N−メチルピロリドン中で24時間反応させた。多量の塩酸/メタノールで再沈することで精製を行い、ポリアリーレン系重合体Cを得た。
[Synthesis Example 3]
2,5-dichloro-4′-phenoxybenzophenone 3.0 g, sodium iodide 0.18 g, bistriphenylphosphine nickel dichloride 0.19 g, triphenylphosphine 0.91 g and zinc 0.77 g in a nitrogen atmosphere at 85 ° C., N -Reacted in methylpyrrolidone for 24 hours. Purification was performed by reprecipitation with a large amount of hydrochloric acid / methanol to obtain a polyarylene polymer C.

[実施例3]
合成例3で得られたポリマーC15gを濃硫酸150mL中で攪拌し、多量の水で再沈することにより精製を行い、ポリアリーレン系重合体Cのスルホン化物を得た。H型ポリマーのスルホン酸基密度は1.9mmol/gであり、重量平均分子量は3万であった。
[Example 3]
The polymer C15 g obtained in Synthesis Example 3 was stirred in 150 mL of concentrated sulfuric acid and purified by reprecipitation with a large amount of water to obtain a sulfonated product of the polyarylene polymer C. The sulfonic acid group density of the H-type polymer was 1.9 mmol / g, and the weight average molecular weight was 30,000.

ポリマーCを家庭用ミキサーで充分粉砕し、25℃の飽和食塩水中に24時間浸漬させ、Na型に置換した。このNa型ポリマーCをポリマーAの代わりに使用した以外は実施例1に記載の方法で膜の作製を行った。この膜の膜厚は31μm、淡黄色透明で指で折り曲げても割れることはなかった。この膜の5%重量減少温度は444℃であり、比較的耐熱性に優れていた。また、この膜の寸法変化率は1.3であり、比較的耐水性に優れていた。   Polymer C was sufficiently pulverized with a home-use mixer and immersed in a saturated saline solution at 25 ° C. for 24 hours to replace the Na type. A film was prepared by the method described in Example 1 except that this Na-type polymer C was used instead of polymer A. This film had a thickness of 31 μm and was pale yellow and transparent, and it was not broken even when bent with a finger. This film had a 5% weight loss temperature of 444 ° C. and was relatively excellent in heat resistance. Further, the dimensional change rate of this film was 1.3, and it was relatively excellent in water resistance.

[実施例4]
実施例1のポリマーA30gとNMP100gを150℃で撹拌混合し均一な溶液とした。
該溶液をナイフコーターでガラス板にコーティングし、熱風乾燥機内で200℃30分間の条件で乾燥後、ガラス板から剥離し、厚み200μmのフィルムを得た。
[Example 4]
30 g of polymer A of Example 1 and 100 g of NMP were stirred and mixed at 150 ° C. to obtain a uniform solution.
The solution was coated on a glass plate with a knife coater, dried in a hot air dryer at 200 ° C. for 30 minutes, and then peeled off from the glass plate to obtain a film having a thickness of 200 μm.

次に、該フィルムを5mmφのガラス棒に端部が1mm重なるように巻き付け、重なった部分にポリアミック酸ワニス“トレニース#3000”(R)(東レ株式会社製)を塗って、フィルムを貼り付けた。窒素雰囲気下で、200℃で10分間予備乾燥後、400℃で10分間処理した後、ガラス管を抜いて、チューブ状に加工した。   Next, the film was wound around a 5 mmφ glass rod so that the end overlaps 1 mm, and the overlapped portion was coated with polyamic acid varnish “Trenice # 3000” (R) (manufactured by Toray Industries, Inc.), and the film was attached . Under a nitrogen atmosphere, after preliminary drying at 200 ° C. for 10 minutes and after treatment at 400 ° C. for 10 minutes, the glass tube was pulled out and processed into a tube shape.

このチューブを水に浸漬することで自在に曲げることができ、乾燥することで任意な形状に加工できる。また、200℃のオイルを流しても変化なく、高い耐熱性を示した。   This tube can be bent freely by immersing it in water, and can be processed into an arbitrary shape by drying. Further, even when oil at 200 ° C. was flowed, it showed no change and showed high heat resistance.

[実施例5]
実施例1で得られたポリマー1000gと1000gのNMPを150℃で均一になるまで混練し、冷却後粉砕して樹脂組成物1のチップを得た。
[Example 5]
1000 g of the polymer obtained in Example 1 and 1000 g of NMP were kneaded until uniform at 150 ° C., cooled and pulverized to obtain a chip of resin composition 1.

この樹脂組成物1を紡糸装置に仕込み、200℃に溶融させた後、直径300μmの紡糸ノズルから吐出すると共に、前記紡糸ノズルの周囲から200℃に加熱した窒素ガスを50m/sの速度で噴出させて紡糸し、紡糸ノズルの下部に配置した受器に、受器の下側から約5m/sの吸引速度で吸引しながら紡糸繊維を捕集することにより不織布を形成させた。   This resin composition 1 is charged into a spinning device, melted at 200 ° C., discharged from a spinning nozzle having a diameter of 300 μm, and nitrogen gas heated to 200 ° C. is ejected from the periphery of the spinning nozzle at a speed of 50 m / s. The non-woven fabric was formed by collecting the spun fibers while sucking at a suction speed of about 5 m / s from the lower side of the receiver in a receiver disposed below the spinning nozzle.

得られた不織布を、空気中100℃で1時間加熱処理して溶媒を除去後、さらに、窒素中350℃で10分間加熱して予備加熱し、実施例1のポリマーからなる不織布を得た。   The obtained nonwoven fabric was heat-treated in air at 100 ° C. for 1 hour to remove the solvent, and further heated in nitrogen at 350 ° C. for 10 minutes and preheated to obtain a nonwoven fabric made of the polymer of Example 1.

得られた不織布の目付けは100g/m2 、厚さ1mmであった。この不織布を30cm角に切り取り、300℃高温のオイルを透過させても、特に問題なく高い耐熱性を示した。   The basis weight of the obtained nonwoven fabric was 100 g / m 2 and thickness 1 mm. Even when this nonwoven fabric was cut into 30 cm square and allowed to permeate oil at a high temperature of 300 ° C., it showed high heat resistance without any particular problem.

[実施例6]
実施例2で得られたポリマー1000gと1500gのNMP、および500gのポリエチレングリコール(分子量400)を150℃で均一になるまで混練し、冷却後粉砕して樹脂組成物2のチップを得た。
[Example 6]
1000 g of the polymer obtained in Example 2, 1500 g of NMP, and 500 g of polyethylene glycol (molecular weight 400) were kneaded until uniform at 150 ° C., cooled and pulverized to obtain a chip of resin composition 2.

この樹脂組成物2を紡糸装置に仕込み、200℃に溶融させた後、直径300μmの紡糸ノズルから吐出すると共に、前記紡糸ノズルの周囲から200℃に加熱した窒素ガスを50m/sの速度で噴出させて紡糸し、紡糸ノズルの下部に配置した受器に、受器の下側から約5m/sの吸引速度で吸引しながら紡糸繊維を捕集することにより不織布を形成させた。   This resin composition 2 is charged into a spinning device, melted at 200 ° C., discharged from a spinning nozzle having a diameter of 300 μm, and nitrogen gas heated to 200 ° C. is blown from the periphery of the spinning nozzle at a speed of 50 m / s. The non-woven fabric was formed by collecting the spun fibers while sucking at a suction speed of about 5 m / s from the lower side of the receiver in a receiver disposed below the spinning nozzle.

得られた不織布を、90℃の熱水で1時間加熱処理して溶媒を除去後、100℃で乾燥した。さらに、窒素中200℃で10分間加熱して予備加熱し、実施例2のポリマーからなる不織布を得た。   The obtained nonwoven fabric was heat-treated with hot water at 90 ° C. for 1 hour to remove the solvent, and then dried at 100 ° C. Furthermore, it heated at 200 degreeC in nitrogen for 10 minutes, and pre-heated, and the nonwoven fabric which consists of a polymer of Example 2 was obtained.

得られた不織布の目付けは80g/m2 、厚さ2mmであった。この不織布を30cm角に切り取り、300℃高温のオイルを透過させても、特に問題なく高い耐熱性を示した。   The obtained nonwoven fabric had a basis weight of 80 g / m 2 and a thickness of 2 mm. Even when this nonwoven fabric was cut into 30 cm square and allowed to permeate oil at a high temperature of 300 ° C., it showed high heat resistance without any particular problem.

本発明の樹脂組成物は、耐熱性だけでなく、透明性および機械特性に優れているため、時計、テレビ、ICカード、ワードプロセッサ、パソコン、計器盤および各種表示盤中の液晶表示部およびエレクトロルミネッセンス表示部の基板、透明導電性フィルム、光ディスクや光カードの表面保護フィルム等へ応用することができる。また、成型性、耐熱性、高透明性を利用して現行のガラス基板や金属基板の代替材料として用いることができる。   Since the resin composition of the present invention is excellent not only in heat resistance but also in transparency and mechanical properties, liquid crystal display parts and electroluminescence in clocks, televisions, IC cards, word processors, personal computers, instrument panels and various display panels It can be applied to a substrate of a display unit, a transparent conductive film, a surface protection film of an optical disk or an optical card, and the like. Moreover, it can be used as an alternative material for current glass substrates and metal substrates by utilizing moldability, heat resistance, and high transparency.

本発明の耐熱性樹脂は、電気。電子分野の各種部品、液晶表示体用等の透明導電性フィルム、ハウジング類、自動車部品、航空機用内装材、ギヤ、歯科用材料、蒸気殺菌容器など広範な分野に用いることができる。本発明の耐熱性樹脂は、抗血栓性の医療品や耐汚染性にすぐれた分離膜などに、非常に有用である。特に逆浸透膜、限外ろ過膜、メンブレンフィルターなどの分離膜を形成する薄膜の材料として十分な耐熱性と親水性を合わせ持った、本発明の耐熱性樹脂は好適な材料であると言える。   The heat resistant resin of the present invention is electricity. It can be used in various fields such as various parts in the electronic field, transparent conductive films for liquid crystal displays, housings, automobile parts, aircraft interior materials, gears, dental materials, steam sterilization containers, and the like. The heat resistant resin of the present invention is very useful for antithrombotic medical products and separation membranes with excellent contamination resistance. In particular, it can be said that the heat resistant resin of the present invention having both sufficient heat resistance and hydrophilicity as a thin film material for forming a separation membrane such as a reverse osmosis membrane, an ultrafiltration membrane, and a membrane filter is a suitable material.

また、本発明の耐熱性樹脂からなる膜類(フィルム)、あるいはコーティング剤は、スルホン酸基の金属塩の導入によって、透明性だけでなく、ガスバリア性、水蒸気バリア性および帯電防止性にも優れるため、食品用途フィルム、半導体包装、酸化性薬品包装、精密材料包装、医療、電子、化学、機械などの産業材料包装など、様々な形状で広範な用途にも使用可能である。   Further, the film (film) or coating agent comprising the heat resistant resin of the present invention is excellent not only in transparency but also in gas barrier property, water vapor barrier property and antistatic property by introducing a metal salt of a sulfonic acid group. Therefore, it can be used in a wide variety of applications in various forms such as food film, semiconductor packaging, oxidizing chemical packaging, precision material packaging, medical materials, electronics, chemistry, machinery and other industrial material packaging.

Claims (11)

スルホン酸基の金属塩を含有する高分子であって、該高分子が芳香族ポリエーテルケトン系重合体、芳香族ポリエーテルホスフィンオキシド系重合体およびポリアリーレン系重合体から選ばれた少なくとも1種であることを特徴とする耐熱性樹脂。 A polymer containing a metal salt of a sulfonic acid group, wherein the polymer is at least one selected from an aromatic polyether ketone polymer, an aromatic polyether phosphine oxide polymer, and a polyarylene polymer. A heat-resistant resin characterized by 該高分子の5%熱重量減少温度が400℃以上であることを特徴とする請求項1に記載の耐熱性樹脂。 The heat-resistant resin according to claim 1, wherein the polymer has a 5% thermal weight loss temperature of 400 ° C. or higher. 該高分子のスルホン酸基密度が0.1〜3.0mmol/gであることを特徴とする請求項1または2に記載の耐熱性樹脂。 The heat-resistant resin according to claim 1 or 2, wherein the polymer has a sulfonic acid group density of 0.1 to 3.0 mmol / g. 該高分子が、少なくとも下記一般式(1)で示される基を含むことを特徴とする請求項1〜3のいずれかに記載の耐熱性樹脂。
Figure 2006070126
(式中、Xは−CO−または−P(Rp)O−(Rpは任意の有機基)、M1およびM2は金属カチオン、a1およびa2は1〜4の整数を表す。)
The heat-resistant resin according to any one of claims 1 to 3, wherein the polymer contains at least a group represented by the following general formula (1).
Figure 2006070126
(In the formula, X is —CO— or —P (Rp) O— (Rp is an arbitrary organic group), M1 and M2 are metal cations, and a1 and a2 each represent an integer of 1 to 4.)
請求項4に記載の一般式(1)中のXが−CO−であることを特徴とする請求項4に記載の耐熱性樹脂。 The heat-resistant resin according to claim 4, wherein X in the general formula (1) according to claim 4 is —CO—. 該高分子が、少なくとも下記一般式(2)で示されるスルホン酸基の金属塩を含有する繰り返し構造単位と、下記一般式(3)で示される繰り返し構造単位を含むことを特徴とする1〜5のいずれかに記載の耐熱性樹脂。
Figure 2006070126
Figure 2006070126
(式中、Ar1およびAr2は芳香環を含む有機基、M1およびM2は金属カチオン、a1およびa2は1〜4の整数を表す。)
The polymer comprises at least a repeating structural unit containing a metal salt of a sulfonic acid group represented by the following general formula (2) and a repeating structural unit represented by the following general formula (3): The heat resistant resin according to any one of 5.
Figure 2006070126
Figure 2006070126
(In the formula, Ar1 and Ar2 are organic groups containing an aromatic ring, M1 and M2 are metal cations, and a1 and a2 each represent an integer of 1 to 4.)
請求項6に記載の、一般式(2)中のAr1および/または一般式(3)中のAr2が下記一般式(4)で示される基を含むことを特徴とする請求項6に記載の耐熱性樹脂。
Figure 2006070126
(式中、点線は結合していても結合していなくてもよく、R1〜R4は水素原子、ハロゲン原子、1価の有機基を表し、b1〜b4は5以下の整数を表し、該高分子中にR1〜R4およびb1〜b4の異なるものを2種以上含んでいてもよい。)
The Ar1 in the general formula (2) and / or Ar2 in the general formula (3) according to claim 6 includes a group represented by the following general formula (4). Heat resistant resin.
Figure 2006070126
(In the formula, the dotted line may or may not be bonded; R1 to R4 each represents a hydrogen atom, a halogen atom or a monovalent organic group; b1 to b4 each represents an integer of 5 or less; The molecule may contain two or more different types of R1 to R4 and b1 to b4.)
請求項1〜7のいずれかに記載の耐熱性樹脂を主成分とすることを特徴とする樹脂組成物。 A resin composition comprising the heat-resistant resin according to claim 1 as a main component. 請求項1〜8のいずれかに記載の耐熱性樹脂または樹脂組成物を含有してなることを特徴とする成型体。 A molded body comprising the heat-resistant resin or resin composition according to claim 1. 該成型体が、膜類である請求項9に記載の成型体。 The molded body according to claim 9, wherein the molded body is a film. 請求項1〜8のいずれかに記載の耐熱性樹脂または樹脂組成物を含有してなることを特徴とするコーティング剤。

A coating agent comprising the heat resistant resin or resin composition according to claim 1.

JP2004253914A 2004-09-01 2004-09-01 Heat resistant resin, and resin composition and molded body using the same Expired - Fee Related JP4742541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253914A JP4742541B2 (en) 2004-09-01 2004-09-01 Heat resistant resin, and resin composition and molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253914A JP4742541B2 (en) 2004-09-01 2004-09-01 Heat resistant resin, and resin composition and molded body using the same

Publications (2)

Publication Number Publication Date
JP2006070126A true JP2006070126A (en) 2006-03-16
JP4742541B2 JP4742541B2 (en) 2011-08-10

Family

ID=36151090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253914A Expired - Fee Related JP4742541B2 (en) 2004-09-01 2004-09-01 Heat resistant resin, and resin composition and molded body using the same

Country Status (1)

Country Link
JP (1) JP4742541B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342242A (en) * 2005-06-08 2006-12-21 Jsr Corp Aromatic compound having fluorene unit and sulfonated polyarylene
JP2007262112A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Polymer electrolyte material, polymer electrolyte component using the same, membrane electrode assembly and polymer electrolyte type fuel cell
JP2008088420A (en) * 2006-09-05 2008-04-17 Sumitomo Chemical Co Ltd Polymer, polymer electrolyte and fuel cell using it
JP2013064080A (en) * 2011-09-20 2013-04-11 Toray Ind Inc Sulfonate group-containing polymer, sulfonate group-containing aromatic compound, and polyelectrolyte material, polyelectrolyte molding and polymer electrolyte fuel cell using the same
US9701789B2 (en) 2011-09-20 2017-07-11 Toray Industries, Inc. Sulfonic acid group-containing polymer, sulfonic acid group-containing aromatic compound and method of making the same, as well as polymer electrolyte material, polymer electrolyte molded product and solid polymer fuel cell using the same
CN110305313A (en) * 2019-07-25 2019-10-08 福州大学 A kind of purpurine functional poly aryl oxide electrode active material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095509A1 (en) * 2002-05-13 2003-11-20 Polyfuel, Inc. Sulfonated copolymer
JP2004269599A (en) * 2003-03-06 2004-09-30 Toray Ind Inc Polymer solid electrolyte, manufacturing method therefor, and solid polymer type fuel cell using the electrolyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095509A1 (en) * 2002-05-13 2003-11-20 Polyfuel, Inc. Sulfonated copolymer
JP2004269599A (en) * 2003-03-06 2004-09-30 Toray Ind Inc Polymer solid electrolyte, manufacturing method therefor, and solid polymer type fuel cell using the electrolyte

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342242A (en) * 2005-06-08 2006-12-21 Jsr Corp Aromatic compound having fluorene unit and sulfonated polyarylene
JP2007262112A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Polymer electrolyte material, polymer electrolyte component using the same, membrane electrode assembly and polymer electrolyte type fuel cell
JP2008088420A (en) * 2006-09-05 2008-04-17 Sumitomo Chemical Co Ltd Polymer, polymer electrolyte and fuel cell using it
JP2013064080A (en) * 2011-09-20 2013-04-11 Toray Ind Inc Sulfonate group-containing polymer, sulfonate group-containing aromatic compound, and polyelectrolyte material, polyelectrolyte molding and polymer electrolyte fuel cell using the same
US9701789B2 (en) 2011-09-20 2017-07-11 Toray Industries, Inc. Sulfonic acid group-containing polymer, sulfonic acid group-containing aromatic compound and method of making the same, as well as polymer electrolyte material, polymer electrolyte molded product and solid polymer fuel cell using the same
CN110305313A (en) * 2019-07-25 2019-10-08 福州大学 A kind of purpurine functional poly aryl oxide electrode active material and preparation method thereof
CN110305313B (en) * 2019-07-25 2021-04-27 福州大学 Purple refined functionalized polyarylether electrode active material and preparation method thereof

Also Published As

Publication number Publication date
JP4742541B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
KR101383938B1 (en) Polymer electrolyte material, polymer electrolyte molded product using the polymer electrolyte material and method for manufacturing the polymer electrolyte molded product, membrane electrode composite, and solid polymer fuel cell
CA2600213C (en) Sulfonated poly(arylenes) as hydrolytically and thermo-oxidatively stable polymers
TWI338702B (en) Aromatic polymer, film, electrolyte film and separator
JP2008521999A5 (en)
JP2011026592A (en) Step-by-step alkylation of polymeric amine
JP2003031232A (en) Polymer electrolyte for solid polymer fuel cell and fuel cell
JP5998790B2 (en) POLYMER ELECTROLYTE COMPOSITION MOLDED BODY AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
EP2752928B1 (en) Polymer electrolyte membrane, membrane electrode assembly using same, and solid polymer fuel cell
WO2011040229A1 (en) Aromatic polysulfone resin and membranes thereof
JP5845762B2 (en) Sulfonic acid group-containing polymer, sulfonic acid group-containing aromatic compound, and polymer electrolyte material, polymer electrolyte molded body and solid polymer fuel cell using the same
WO2012166340A1 (en) Films and membranes of poly(aryl ketones) and methods of casting the same from solution
KR20180126024A (en) Desalination of polyaryl ethers by melt extraction
JP4742541B2 (en) Heat resistant resin, and resin composition and molded body using the same
KR101704490B1 (en) Polysulfone copolymer having excellent tensile property and method for preparing the same
JP4032749B2 (en) Process for producing aromatic polyethersulfone block copolymer
JP5957954B2 (en) POLYMER ELECTROLYTE MOLDED BODY, POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITION AND SOLID POLYMER TYPE FUEL CELL USING THE SAME
JP4940549B2 (en) Novel sulfonic acid group-containing segmented block copolymer and its use
JP2004244517A (en) Polyarylene copolymer, its preparation method and proton conducting membrane
JP2006176665A (en) New sulfonate group-containing segmented block copolymer and application of the same
JP5398008B2 (en) POLYMER ELECTROLYTE AND USE THEREOF
JP2002201269A (en) Novel polybenzazole having ionic group and membrane containing it as main component
JP2007119511A (en) Method for preparing sulfonated aromatic block copolymer and sulfonated aromatic block copolymer obtained thereby
JP4093408B2 (en) Novel membranes for use in fuel cells with improved mechanical properties
WO2021246432A1 (en) Water-dispersible resin composition
JPH0611789B2 (en) Method for hydrophilizing aromatic polysulfone polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4742541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees