JP2006070090A - Toe cap for safety shoes and safety shoes using the same - Google Patents

Toe cap for safety shoes and safety shoes using the same Download PDF

Info

Publication number
JP2006070090A
JP2006070090A JP2004252399A JP2004252399A JP2006070090A JP 2006070090 A JP2006070090 A JP 2006070090A JP 2004252399 A JP2004252399 A JP 2004252399A JP 2004252399 A JP2004252399 A JP 2004252399A JP 2006070090 A JP2006070090 A JP 2006070090A
Authority
JP
Japan
Prior art keywords
tip
dividing line
thickness
region
line segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004252399A
Other languages
Japanese (ja)
Inventor
Hiroshi Inoue
浩 井上
Yoshiaki Sakamoto
義明 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kishimoto Sangyo Co Ltd
Original Assignee
Kishimoto Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kishimoto Sangyo Co Ltd filed Critical Kishimoto Sangyo Co Ltd
Priority to JP2004252399A priority Critical patent/JP2006070090A/en
Publication of JP2006070090A publication Critical patent/JP2006070090A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cheap, resin-made toe cap for safety shoes that satisfies the specifications of JIS T8101 Class S. <P>SOLUTION: In the toe cap for safety shoes consisting of a fiber-reinforced thermoplastic resin, the toe cap adopts a structure mentioned in the following: when the zenithal line of the outer surface extending from the tip to the end of the toe cap is divided into five equal parts and each dividing line is named in order from the tip side a dividing line A, ditto B, ditto C, ditto D and ditto E, and when the thickness of the toe cap is measured at the three points of both ends and the center of each dividing line and the value, obtained by totalizing the maximum thickness and the minimum thickness in each measured dividing line and dividing the sum by 2, is regarded as an average thickness, the average thickness of the dividing line C region is ≥6.5 mm, the average thicknesses of the dividing line B region and/or the dividing line D region are ≥6.5 mm, and the toe cap thickness in the region other than the dividing line A-E regions is almost equal to the maximum thickness of the dividing line C region or smaller than it. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、安全靴用先芯及びそれを用いた安全靴に関する。   The present invention relates to a safety shoe tip and a safety shoe using the same.

安全靴の先芯は、重量物の落下等による衝撃や圧迫から足の指先を保護するものであり、JIS T8101によって、作業用途別に耐衝撃性、耐圧迫性が規定されている。従来、安全靴用先芯の材料としては、強度に優れる鋼材が用いられていた。しかし、鋼製先芯は、重い、保温性が悪い、焼却廃棄できないという欠点を有しているため、近年では、先芯の材料として繊維強化樹脂材料が用いられるようになって来ている。   The tip of the safety shoe protects the toes of the toe from impacts and pressures caused by falling heavy objects, and JIS T8101 defines the impact resistance and pressure resistance for each work application. Conventionally, steel materials having excellent strength have been used as the material for the tip of safety shoes. However, since the steel tip has the disadvantages that it is heavy, has poor heat retention, and cannot be incinerated and discarded, in recent years, fiber reinforced resin materials have come to be used as the tip material.

上記繊維強化樹脂としては、一般にガラス繊維を配合した樹脂が用いられているが、先芯の強度を高めるためには、繊維長の長いガラス繊維を配合するのがよく、また先芯肉厚を厚くするのがよい。   As the fiber reinforced resin, a resin containing glass fiber is generally used. However, in order to increase the strength of the tip, glass fiber having a long fiber length is preferably added, and the thickness of the tip is increased. It should be thick.

ところで、繊維強化樹脂を用いた先芯の成型方法としては、コンプレッション成型法、ペレット押し出しした後に射出成形する方法等があり、この中で射出成形法が生産性の点で優れている。   By the way, as a method for molding a tip using a fiber reinforced resin, there are a compression molding method, a method of injection molding after extruding pellets, and the like. Among these, the injection molding method is excellent in terms of productivity.

しかし、押出法により一旦繊維強化樹脂ペレットを作製した後に、このペレットを用いて射出成形する方法は、ペレット押し出し、射出成形という2回の工程を必要とするので、生産効率が悪くなる。また、この方法では、ペレット押し出しと射出成形の2工程において繊維に剪断力が加わるため繊維長が短くなり易い。このため、この方法によると十分な先芯強度を得にくい。   However, once the fiber reinforced resin pellets are produced by the extrusion method, the injection molding method using the pellets requires two steps of pellet extrusion and injection molding, resulting in poor production efficiency. Further, in this method, since the shearing force is applied to the fiber in the two steps of pellet extrusion and injection molding, the fiber length tends to be shortened. For this reason, it is difficult to obtain sufficient tip-core strength by this method.

これに対して、ガラス繊維に樹脂を含浸させた繊維樹脂シートを作製し、このシートを成型金型内に入れて加熱加圧成型するコンプレッション成型法は、ガラス繊維に剪断力が加わらないので繊維が切断されないため、この方法によると高強度の先芯を作製し易い。   On the other hand, the compression molding method in which a fiber resin sheet in which a glass fiber is impregnated with a resin is prepared, and this sheet is placed in a molding die and heated and pressed is not applied with shearing force on the glass fiber. Since this is not cut, it is easy to produce a high-strength tip by this method.

しかし、この方法によると、加圧対象である繊維樹脂シートの組成分が加熱加圧成型時に成型金型内を移動・流動しないので、成型金型内に繊維樹脂シートを過剰気味に配置する必要があるが、繊維樹脂シート組成分が移動・流動しないので加圧ムラが生じ易い。このため、成型物の強度が不均一になり易いとともに、加圧成形後に余剰な樹脂シート部分を切断し成型物の形状を整える必要がある。また、加圧成型ごとに繊維樹脂シートを成型金型内に配置する必要があるため、生産効率が悪い。更にまた、繊維樹脂シートの作製にコストがかかるという問題がある。   However, according to this method, since the composition of the fiber resin sheet to be pressurized does not move or flow in the molding die at the time of heat and pressure molding, the fiber resin sheet needs to be placed excessively in the molding die. However, since the fiber resin sheet composition does not move or flow, uneven pressure is likely to occur. For this reason, the strength of the molded product tends to be non-uniform, and it is necessary to cut the surplus resin sheet portion after pressure molding to adjust the shape of the molded product. Moreover, since it is necessary to arrange | position a fiber resin sheet in a shaping die for every press molding, production efficiency is bad. Furthermore, there is a problem that the production of the fiber resin sheet is expensive.

ここで、強化樹脂材料を用いた安全靴用先芯に係る技術としては、下記特許文献1〜3が挙げられる。   Here, the following patent documents 1-3 are mentioned as a technique concerning the tip for safety shoes using the reinforced resin material.

特開2002−85109号公報(要約書)JP 2002-85109 A (Abstract)

特開2003−52409号公報(段落0006、0007、0022)JP 2003-52409 A (paragraphs 0006, 0007, 0022)

特開2003−102509号公報(段落0010〜0013)JP 2003-102509 A (paragraphs 0010 to 0013)

上記特許文献1に係る技術を、図4を用いて説明する。この技術は、長繊維強化熱可塑性樹脂を材料とし、先芯先端の立ち上がり部分aの肉厚を3.5mm以上とし、肩部bの平均曲率rを20以下とする技術である。この技術によると、圧迫及び衝撃荷重の大部分が集中する先端部(先芯先端の立ちあがり部分a)の肉厚を3.5mm以上とすることにより十分な強度が得られ、また、肩部の平均曲率rを20以下とすることにより、圧迫及び衝撃荷重の大部分が先芯の側面部分、特に先芯先端の肩部b及び立ち上がり部分aで吸収されることになるので、天井後部の変形量が極めて低減され、許容応力以内に抑制することができるとされる。   The technique according to Patent Document 1 will be described with reference to FIG. In this technique, a long fiber reinforced thermoplastic resin is used as a material, the thickness of the rising portion a at the tip of the tip is 3.5 mm or more, and the average curvature r of the shoulder b is 20 or less. According to this technology, sufficient strength can be obtained by setting the thickness of the tip portion where the most of the compression and impact load is concentrated (the rising portion a of the tip of the lead core) to be 3.5 mm or more. By setting the average curvature r to 20 or less, most of the compression and impact load is absorbed by the side portion of the tip, particularly the shoulder b and the rising portion a at the tip of the tip, so that the deformation of the rear portion of the ceiling The amount is extremely reduced and can be suppressed within the allowable stress.

しかしながら、この技術は、図4に示すように、衝撃を最も吸収する肩部bから天井部分cの肉厚が小さいために、圧迫・衝撃によって先芯が破損する危険性がある。また、予めガラス長繊維熱可塑性樹脂ペレットを作製した後、射出成形又は圧縮成型により作製する必要があるため、生産効率が悪い。   However, as shown in FIG. 4, in this technique, the thickness of the ceiling portion c from the shoulder portion b that absorbs the impact most is small, and there is a risk that the tip is damaged by the compression / impact. Moreover, since it is necessary to produce long glass fiber thermoplastic resin pellets in advance and then produce them by injection molding or compression molding, the production efficiency is poor.

上記特許文献2に係る技術は、長繊維強化熱可塑性樹脂を材料とし、本体部に対するスカート部の強化繊維含有率が70〜100%とし、先芯の肉厚を2〜6mmとする技術である。この技術によると、成形品の強度のバラツキや外観不良を生ずることがなく、軽量、均質でしかも高強度の安全靴先芯を得られるとされる。   The technology according to Patent Document 2 is a technology in which a long fiber reinforced thermoplastic resin is used as a material, the reinforcing fiber content of the skirt portion with respect to the main body is 70 to 100%, and the thickness of the tip is 2 to 6 mm. . According to this technique, it is said that a lightweight, homogeneous and high-strength safety shoe toe core can be obtained without causing variations in strength of the molded product and appearance defects.

しかしながら、この技術は、予め長繊維強化熱可塑性樹脂繊維ペレット材を作製する工程、このペレット材を擬似成形型内に入れ、これを加熱下に圧縮することにより擬似先芯を一次成形する工程、更に得られた擬似先芯を安全靴先芯成形型内に配し、加熱・加圧して安全靴先芯を圧縮成形する工程を必要とし、各々の工程が独立しているので生産効率が悪い。   However, this technique includes a step of preparing a long fiber reinforced thermoplastic resin fiber pellet material in advance, a step of primarily forming a pseudo tip by placing the pellet material in a pseudo mold and compressing the pellet under heating. Further, the obtained pseudo toe core is placed in a safety shoe toe core molding die, and a process for compressing and molding the safety shoe toe core by heating and pressurizing is required. Since each process is independent, production efficiency is poor. .

上記特許文献3は、質量平均繊維長が0.6mm以上で、かつ最大繊維長が50mmであるガラス繊維と、熱可塑性ポリウレタン以外の熱可塑性樹脂とを含有する技術である。この技術によると、射出成形によるガラス繊維の折損・破壊を少なくできるので、質量平均繊維長が0.6mm以上の長いガラス繊維を射出成形品中に残存させることができ、これによりJIS T8101のS級(普通作業用)規格を満たす安全靴用先芯が得られるとされる。   The said patent document 3 is a technique containing the glass fiber whose mass mean fiber length is 0.6 mm or more and whose maximum fiber length is 50 mm, and thermoplastic resins other than thermoplastic polyurethane. According to this technique, breakage / breakage of the glass fiber due to injection molding can be reduced, so that a long glass fiber having a mass average fiber length of 0.6 mm or more can be left in the injection-molded product, whereby S of JIS T8101 It is said that a safety shoe toe that satisfies the grade (for ordinary work) standards can be obtained.

しかしながら、この技術は、予め熱可塑性樹脂をガラス繊維に含浸させる工程、樹脂とガラス繊維とを混合、射出してペレットとなす工程、ペレットを射出成形機に入れて射出成形する工程等を必要とし、各々の工程が独立しているので生産効率が悪い。   However, this technique requires a step of impregnating a glass fiber with a thermoplastic resin in advance, a step of mixing and injecting resin and glass fiber to form a pellet, a step of placing the pellet in an injection molding machine and injection molding. Since each process is independent, production efficiency is poor.

発明者は、樹脂製の安全靴用先芯について鋭意研究を行った。その結果、樹脂と樹脂を含浸していないガラス繊維とを射出成形機に投入し、直接先芯金型内に射出成形する方法(直接射出成形法)によっても、軽量性を犠牲にすることなく、JIS T8101(S級)規格を満たす強度を有する安全靴用先芯が得られることを知った。   The inventor has intensively studied a tip for resin safety shoes. As a result, the resin and the glass fiber not impregnated with the resin are put into an injection molding machine and directly injected into the core metal mold (direct injection molding method) without sacrificing lightness. It was found that a safety shoe toe core having a strength satisfying the JIS T8101 (S class) standard was obtained.

本発明は、JIS T8101(S級)規格を満たす十分な耐衝撃性、耐圧迫性を有し、しかも生産性にも優れた樹脂製の安全靴用先芯構造を提供することを目的とする。また、この先芯を用いて安全性に優れかつ軽量な安全靴を提供することを目的とする。   It is an object of the present invention to provide a resin toe-leading structure for safety shoes that has sufficient impact resistance and pressure resistance satisfying JIS T8101 (S class) standards and is excellent in productivity. . Another object of the present invention is to provide a safety shoe that is excellent in safety and lightweight by using this tip.

上記課題を解決するための安全靴用先芯にかかる本発明は、繊維強化熱可塑性樹脂からなる安全靴用先芯において、前記先芯の先端から終端に至る外表面天頂線を5等分に分割した各分割線分を先端側から順に分割線分A,分割線分B,分割線分C,分割線分D、分割線分Eとし、それぞれの分割線分についてその両端と中央の3点で当該先芯の肉厚を測定し、測定したそれぞれの分割線分における最大肉厚と最小肉厚とを合計し2で割った値を当該分割線分領域における平均肉厚とするとき、前記分割線分C領域の平均肉厚が6.5mm以上であり、かつ前記分割線分B領域及び/又は前記分割線分D領域の平均肉厚が6.5mm以上であり、前記分割線分A〜E領域以外の領域における先芯肉厚が、前記分割線分C領域の最大肉厚と略同等かそれ以下であることを特徴とする。   The present invention according to the toe for safety shoes for solving the above-mentioned problem is a toe for safety shoes made of fiber reinforced thermoplastic resin, and the outer surface zenith line from the tip to the end of the tip is divided into five equal parts. Each divided line segment is divided into a divided line segment A, a divided line segment B, a divided line segment C, a divided line segment D, and a divided line segment E in order from the front end side. When measuring the thickness of the tip in the above, the maximum thickness and the minimum thickness in each of the measured dividing line segment is summed and divided by 2 as the average thickness in the dividing segment region, The dividing wall segment C region has an average thickness of 6.5 mm or more, and the dividing line segment B region and / or the dividing line segment D region has an average thickness of 6.5 mm or more, and the dividing line segment A The tip-core thickness in the region other than the E region is substantially the same as the maximum thickness of the dividing line segment C region. And wherein the or at less.

上記構成による効果を、図1を用いて説明する。図1は本発明に係る先芯を示す図であって、図1(a)は足首側(終端側)から見た斜視図、図1(b)は足の指先側(先端側)から見た斜視図、図1(c)は、図1(b)の外表面天頂線11を含む平面で切断した縦断面図である。なお、断面の各々の領域(A〜E)を分割線分A〜E領域と称する。   The effect of the above configuration will be described with reference to FIG. 1A and 1B are views showing a toe according to the present invention, FIG. 1A is a perspective view seen from the ankle side (terminal side), and FIG. 1B is a view seen from the toe side (tip side) of the foot. FIG. 1C is a longitudinal sectional view taken along a plane including the outer surface zenith line 11 of FIG. In addition, each area | region (AE) of a cross section is called dividing line segment AE area | region.

先芯1は、図1(a)に示すように、足指先を保護する天面部1aと、前記天面部に連なり、大きく湾曲した肩部1bと、前記肩部に連なり、略垂直に立ち上がった立ち上がり部1cと、前記立ち上がり部に連なり、先芯を接地する鍔部1dとから構成される。   As shown in FIG. 1 (a), the toe core 1 is connected to the top surface 1a that protects the toes, the shoulder portion 1b that is greatly curved, is connected to the top surface portion, is connected to the shoulder portion, and rises substantially vertically. It comprises a rising portion 1c and a collar portion 1d that is connected to the rising portion and grounds the tip.

このような構造において、外部より強い衝撃が加えられたときに最も衝撃を吸収するのは、天面部1bの外周線Oに平行で、天頂線11の中点Hから10mm足首側で、且つ天頂線を中心とする長さ20mmの線分Pと、天面部1bの外周線Oに平行で、天頂線11の中点Hから10mm指先側で、且つ天頂線を中心とする長さ20mmの線分Qと、前記線分Pと線分Qの両末端を接続する2つの線分で囲まれた領域X(図1(b)参照)であり、特に天頂線11に沿った領域の強度が特に求められる。この領域Xは、先芯に衝撃が加えられた場合に、最も大きく衝撃を吸収し、衝撃を受けた部分(領域Xの外部であってもよい)の破壊を防止する。よって、この領域Xの肉厚を大きくし、強度を増すことが好ましく、特にこの領域の天頂線近傍の強度を高めることが好ましい。   In such a structure, when a strong impact is applied from the outside, it is most parallel to the outer peripheral line O of the top surface portion 1b, 10mm from the midpoint H of the zenith line 11, and the zenith A line P having a length of 20 mm centered on the line and a line segment P parallel to the outer peripheral line O of the top surface portion 1b, 10 mm from the midpoint H of the zenith line 11, and a length of 20 mm centered on the zenith line A segment Q and a region X (see FIG. 1B) surrounded by two line segments connecting both ends of the line segment P and the line segment Q, and in particular, the intensity of the region along the zenith line 11 is Especially required. This region X absorbs the impact most when an impact is applied to the tip, and prevents the impacted portion (which may be outside the region X) from being destroyed. Therefore, it is preferable to increase the strength by increasing the thickness of the region X, and it is particularly preferable to increase the strength near the zenith line in this region.

図1(c)に外表面天頂線11で切断した縦断面図を示す。図1(c)において、外表面天頂線の全長を5等分に分割し、これらの分割線分を足の指先側から足首側方向の順に分割線分A〜Eとし、これらの分割線分A〜Eを含む先芯厚み方向の断面を分割線分A〜E領域と称することとする。なお、前記領域Xは、分割線分C領域を包含する領域である。以下、図1(c)を中心として本発明を説明する。   FIG. 1C shows a longitudinal sectional view taken along the outer surface zenith line 11. In FIG. 1C, the entire length of the outer surface zenith line is divided into five equal parts, and these dividing line segments are set as dividing line segments A to E in the order from the toe side to the ankle side. A cross section in the thickness direction of the tip including A to E is referred to as a dividing line segment A to E region. The region X is a region including the dividing line segment C region. Hereinafter, the present invention will be described with reference to FIG.

本発明では、分割線分C領域の平均肉厚を6.5mm以上としている。繊維強化熱可塑性樹脂からなる先芯においてこの肉厚とすると、JIS T8101のS級(普通作業用)規格を十分に充足する強度となる。   In the present invention, the average thickness of the dividing line segment C region is set to 6.5 mm or more. When the thickness of the tip of the fiber reinforced thermoplastic resin is set to this thickness, the strength sufficiently satisfies the JIS T8101 class S (for ordinary work) standard.

但し、分割線分C領域を足指先側(先端側)から支持する分割線分B領域と、足首側(終端側)から支持する分割線分D領域の強度が共に低いと、分割線分C領域のみ強度を高めても先芯の全体としての衝撃耐性が高まらない。これは、分割線分B領域や分割線分D領域もまた、先芯に加えられる衝撃の一部を吸収するように作用するためである。よって、先芯の耐衝撃性を高めるには中心となる分割線分C領域のみならず、これに続く領域の強度をも高める必要があるからである。このため、本発明では、分割線分B領域及び/又は分割線分D領域の平均肉厚をも6.5mm以上としている。   However, if both the dividing line segment B area that supports the dividing line segment C area from the toe side (tip side) and the dividing line segment D area that supports the dividing line segment C area from the ankle side (end side) are low, the dividing line segment C area Even if the strength of only the area is increased, the impact resistance as a whole of the tip does not increase. This is because the dividing line segment B region and the dividing line segment D region also act to absorb a part of the impact applied to the tip. Therefore, in order to increase the impact resistance of the lead core, it is necessary to increase not only the central parting line segment C region but also the strength of the subsequent region. For this reason, in the present invention, the average thickness of the dividing line segment B region and / or the dividing line segment D region is also set to 6.5 mm or more.

その一方、本発明では、分割線分A〜E領域以外の領域の肉厚が、分割線分C領域の最大肉厚の略同等かそれ以下としているので、先芯の軽量化を図ることができる。なお、略同等という用語を用いたのは、製造誤差を考慮したからであり、この誤差は通常、分割線分C領域の最大肉厚の+10%以内である。   On the other hand, in the present invention, the thickness of the region other than the dividing line segments A to E is approximately equal to or less than the maximum thickness of the dividing line segment C region. it can. The term “substantially equivalent” is used because a manufacturing error is taken into account, and this error is usually within + 10% of the maximum thickness of the dividing line segment C region.

ここで、図2を用いて外表面天頂線について説明する。図2(a)は先芯の底面図であり、図2(b)は先芯を足指先側から見た斜視図である。図2(a)に示すように、先芯足首側の両端部を結ぶ直線Xを引き、この直線Xに平行で且つ先芯の指先側外表面に接する直線Yを引く。このときの接点Pが先芯の先端である。次に直線Xに垂直で且つ接点Pを通る直線Zを定める。そして、先芯設置面(靴底面)に垂直で且つ前記直線Zを含む平面と、先芯の外表面(鍔部を除く)とが交わる線を定める。この交線を外表面天頂線11とする(図2(b)参照)。   Here, the outer surface zenith line will be described with reference to FIG. FIG. 2A is a bottom view of the tip, and FIG. 2B is a perspective view of the tip from the toe side. As shown in FIG. 2 (a), a straight line X connecting both ends of the front core ankle is drawn, and a straight line Y parallel to the straight line X and in contact with the fingertip side outer surface of the front core is drawn. The contact P at this time is the tip of the tip. Next, a straight line Z perpendicular to the straight line X and passing through the contact point P is determined. And the line | wire which is perpendicular | vertical to a front-end | tip installation surface (shoe bottom surface) and contains the said straight line Z and the outer surface (except for the heel part) of a front-end | tip center are defined. This intersection line is defined as the outer surface zenith line 11 (see FIG. 2B).

上記した本発明にかかる安全靴用先芯は、数式1で定義される前記先芯の平均肉厚が4.0mm以上であり、前記先芯の最小肉厚が2.5mm以上であり、前記先芯の最大肉厚が15mm以下である構成とすることができる。なお、ここでいう最小肉厚及び最大肉厚は、実際の厚み測定における最小肉厚及び最大肉厚を意味している。   The safety shoe toe according to the present invention described above has an average wall thickness of 4.0 mm or more as defined in Formula 1 and a minimum wall thickness of the tip is 2.5 mm or more, The maximum thickness of the tip can be 15 mm or less. In addition, the minimum thickness and the maximum thickness mentioned here mean the minimum thickness and the maximum thickness in actual thickness measurement.

(数式1)
先芯の全平均肉厚(mm)=鍔を除く先芯の質量(g)/〔先芯の外表面積(mm2)×先芯密度(g/mm3)〕
(Formula 1)
Total thickness of tip core (mm) = weight of tip core excluding wrinkles (g) / [tip outer surface area (mm 2 ) x tip core density (g / mm 3 )]

平均肉厚が4.0mm未満または最小肉厚が2.5mm未満であると、分割線分C領域における衝撃吸収能が優れていても、肉厚の薄い領域が破壊されるおそれがあるので好ましくない。また、最大肉厚が15mm以上であると、十分な強度が得られるが、肉厚が厚くなった分重量が増加するので軽量性が損なわれるとともに、嵩高になるため安全靴に実装し難くなる。また、より多くの樹脂が必要になるためその分コスト高となる。よって、上記範囲内とするのがよい。   An average wall thickness of less than 4.0 mm or a minimum wall thickness of less than 2.5 mm is preferable because a thin area may be destroyed even if the shock absorption capacity in the dividing line segment C area is excellent. Absent. In addition, if the maximum thickness is 15 mm or more, sufficient strength can be obtained, but the weight increases as the thickness increases, and the lightness is impaired. . Further, since more resin is required, the cost is increased accordingly. Therefore, it is preferable to be within the above range.

また、上記本発明においては、前記繊維強化熱可塑性樹脂中の繊維がガラス繊維であり、前記安全靴用先芯が、ガラス繊維と樹脂とを混練り機構を備えた射出成形機により直接射出成形されてなるものである構成とすることができる。   Further, in the present invention, the fiber in the fiber reinforced thermoplastic resin is a glass fiber, and the safety shoe tip is directly injection molded by an injection molding machine equipped with a kneading mechanism for glass fiber and resin. It can be set as the structure which is made.

熱可塑性樹脂中に含まれる強化繊維としては、強度、コストの面からガラス繊維が好ましく、また繊維に1回しか剪断力が加わらない点で直接射出成形法を用いてなる先芯が好ましい。直接射出成形法であると、ガラス繊維の折れが少ないので、長いガラス繊維を有する高強度の樹脂製先芯が実現するとともに、直接射出成形法は生産性に優れる。よって、上記構成によると、低コストでもって軽量性、耐衝撃性に優れた先芯を提供することができる。   As the reinforcing fiber contained in the thermoplastic resin, a glass fiber is preferable from the viewpoint of strength and cost, and a lead core using a direct injection molding method is preferable in that a shearing force is applied only once to the fiber. When the direct injection molding method is used, the glass fiber is less bent, so that a high-strength resin tip having long glass fibers is realized, and the direct injection molding method is excellent in productivity. Therefore, according to the above configuration, it is possible to provide a tip having excellent lightness and impact resistance at low cost.

上記目的を達成するための安全靴にかかる本発明は、上記本発明にかかる安全靴用先芯を靴先に組み込んだ安全靴である。   The present invention relating to a safety shoe for achieving the above object is a safety shoe in which the tip for safety shoe according to the present invention is incorporated in a shoe tip.

本発明によると、軽量で安全性に優れ、しかも低コストな安全靴用先芯及び安全靴を提供できる。   According to the present invention, it is possible to provide a safety shoe toe and safety shoes that are lightweight, excellent in safety, and low in cost.

本発明を実施するための最良の形態を、実施例を用いて以下に詳細に説明する。   The best mode for carrying out the present invention will be described in detail below using embodiments.

(実施例1、2、比較例1、2)
ナイロン(宇部興産製2020)45質量部と、ガラス繊維(繊維径13μm、繊維長3mm)55質量部とを用意し、図3に示す構造の混練り機構を備えた射出成形機を用いて、下記表1に示す肉厚分布を有する先芯を作製した。尚、分割線分A〜Eの各領域の肉厚分布は、各分割線分領域の両端及び中央における肉厚を測定し、その最大値と最小値の和を2で除した値を平均肉厚とした。
(Examples 1 and 2, Comparative Examples 1 and 2)
45 parts by mass of nylon (2020 made by Ube Industries) and 55 parts by mass of glass fiber (fiber diameter 13 μm, fiber length 3 mm) were prepared, using an injection molding machine equipped with a kneading mechanism having the structure shown in FIG. A tip having a wall thickness distribution shown in Table 1 below was prepared. The thickness distribution in each area of the dividing line segments A to E is measured by measuring the thickness at both ends and the center of each dividing line area, and the average thickness is obtained by dividing the sum of the maximum and minimum values by 2. Thickness.

また、全平均肉厚は、下記式により算出した。なお、表面積は、先芯の外表面全体に紙を隙間なく貼り付け、その紙の重さを量り、その重さを紙の比重と厚みとの積で割ることにより表面積を算出した。   The total average wall thickness was calculated by the following formula. The surface area was calculated by pasting paper on the entire outer surface of the lead core without gaps, measuring the weight of the paper, and dividing the weight by the product of the specific gravity and thickness of the paper.

先芯の全平均肉厚(mm)=鍔を除く先芯の質量(g)/〔先芯の外表面積(mm2)×先芯密度(g/mm3)〕 Total thickness of tip core (mm) = weight of tip core excluding wrinkles (g) / [tip outer surface area (mm 2 ) x tip core density (g / mm 3 )]

上記で用いた射出成形機は、加熱筒20と回転スクリュー30により、熱可塑性樹脂とガラス繊維等の強化材、充填材等を溶融混練し、射出成形品を製造する射出成形機であって、上記スクリュー30の軸径を段階的に変えることにより、軸径の小さい原料供給ゾーン301と、徐々に軸径が大きくなる圧縮ゾーン302と、他のゾーンよりも軸径を大きくして原料の通過を抑制した計量ゾーン303とで構成されている点に特徴を有する装置である。この装置を用いると、繊維と樹脂との混練が十分になされる。   The injection molding machine used above is an injection molding machine for producing an injection-molded product by melt-kneading a reinforcing material such as a thermoplastic resin and glass fiber, a filler, etc. with a heating cylinder 20 and a rotating screw 30. By changing the shaft diameter of the screw 30 stepwise, the material supply zone 301 with a small shaft diameter, the compression zone 302 with a gradually increasing shaft diameter, and the passage of the material with a larger shaft diameter than other zones. This is a device characterized in that it is configured with a measurement zone 303 that suppresses the above. When this apparatus is used, the fiber and the resin are sufficiently kneaded.

なお、図3における符号12は、原料を投入するためのホッパーであり、32はフライト、35は逆流防止弁、40は先端ノズルである。更に符号31は、ブリスターリングであり、この外周は平坦であり、近傍のフライトのある部分の軸よりも直径が大きくなるようにしてある。ブリスターリング31が設けられていることにより、溶融した樹脂とガラス繊維等の混合物がブリスターリングと加熱筒内周との間に形成された狭い隙間を通過するとき、急圧縮されるので、各成分の混合、分散が更に促進されるという効果が得られる。   Note that reference numeral 12 in FIG. 3 denotes a hopper for charging the raw material, 32 is a flight, 35 is a backflow prevention valve, and 40 is a tip nozzle. Further, reference numeral 31 denotes a blister ring whose outer periphery is flat and has a diameter larger than the axis of a portion where there is a nearby flight. Since the blister ring 31 is provided, a mixture of molten resin and glass fiber is rapidly compressed when passing through a narrow gap formed between the blister ring and the inner periphery of the heating cylinder. The effect of further promoting the mixing and dispersion of is obtained.

Figure 2006070090
Figure 2006070090

〔物性試験〕
ナイロン(宇部興産製2020)45質量部と、ガラス繊維(繊維径13μm、繊維長3mm)55質量部とを用意し、図3に示すような射出成形機を用いて、引張試験(ASTM D368)、曲げ試験(ASTM D790)、アイゾット衝撃値試験(ASTM D256、ノッチ付き)用の試験片を作製した。
[Physical property test]
45 parts by mass of nylon (2020, manufactured by Ube Industries) and 55 parts by mass of glass fiber (fiber diameter 13 μm, fiber length 3 mm) are prepared, and tensile test (ASTM D368) using an injection molding machine as shown in FIG. Test pieces for bending test (ASTM D790) and Izod impact value test (ASTM D256, with notch) were prepared.

これらの試験片を、ISO 1110 に基づいて23℃、50%RHで平衡状態に吸湿させた後に、試験を行った。なお、引張強度はASTM D368、曲げ試験はASTM D790、アイゾット衝撃値はASTM D256(ノッチ付き)に基づいて試験を行った。   These test pieces were subjected to a test after absorbing moisture in an equilibrium state at 23 ° C. and 50% RH based on ISO 1110. The tensile strength was tested based on ASTM D368, the bending test was performed based on ASTM D790, and the Izod impact value was tested based on ASTM D256 (notched).

その結果、引張強度は23kgf/mm2、曲げ強さは38kgf/mm2、アイゾット衝撃値は23kgf・cm/cm2であった。 As a result, the tensile strength was 23 kgf / mm 2 , the bending strength was 38 kgf / mm 2 , and the Izod impact value was 23 kgf · cm / cm 2 .

〔性能試験〕
以上で作製した先芯を、JIS T8101規格に基づいて、耐衝撃性を測定した。この結果、実施例1及び2に係る先芯は、S級(普通作業用)を満たしていた。これに対して比較例1及び2に係る先芯は、S級条件の衝撃で破壊した。
〔performance test〕
The tip resistance produced above was measured for impact resistance based on JIS T8101 standard. As a result, the lead cores according to Examples 1 and 2 satisfied the S class (for ordinary work). On the other hand, the lead cores according to Comparative Examples 1 and 2 were broken by the impact under the S class condition.

このことは、以下の理由によると考えられる。実施例1では、最も衝撃を吸収する分割線分C領域(領域X)の平均肉厚が6.5mm以上(8.0mm)と、十分な強度に設定されている。また、分割線分C領域を足指先側から支持する分割線分B領域の平均肉厚が6.5mm以上(7.9mm)に形成されている。よって、分割線分C領域が先芯に加えられる衝撃の大部分を吸収し、分割線分B領域が先芯に加えられる衝撃の一部を吸収するので、衝撃が加えられた際に先芯が破壊されない。   This is considered to be due to the following reason. In Example 1, the average thickness of the dividing line segment C region (region X) that absorbs the most impact is set to a sufficient strength of 6.5 mm or more (8.0 mm). Moreover, the average thickness of the dividing line segment B area which supports the dividing line segment C area from the toe side is formed to be 6.5 mm or more (7.9 mm). Therefore, the dividing line segment C region absorbs most of the impact applied to the tip, and the dividing line segment B region absorbs part of the impact applied to the tip, so that when the impact is applied, the tip core Is not destroyed.

また、実施例2では、最も衝撃を吸収する分割線分C領域の平均肉厚が8.1mmと、十分な強度に設定されている。また、分割線分C領域を足首側から支持する分割線分D領域の平均肉厚が7.0mmに形成されている。分割線分C領域が先芯に加えられる衝撃の大部分を吸収し、分割線分D領域が先芯に加えられる衝撃の一部を吸収するので、衝撃が加えられた際に先芯が破壊されない。   Moreover, in Example 2, the average thickness of the dividing line segment C region that absorbs the most impact is set to a sufficient strength of 8.1 mm. Moreover, the average thickness of the dividing line segment D area | region which supports the dividing line segment C area | region from the ankle side is formed in 7.0 mm. The dividing line segment C region absorbs most of the impact applied to the tip, and the dividing line segment D region absorbs part of the impact applied to the tip, so that the tip breaks when an impact is applied. Not.

他方、比較例1では、A〜E各分割領域の肉厚が全て6.0mmに設定されている。このため、分割線分C領域の強度が低く衝撃吸収能が十分ではないので、全平均肉厚が5.1mmと、実施例1、2の4.1mm、4.3mmよりも厚く形成されていても、衝撃試験で先芯が破壊してしまう。   On the other hand, in Comparative Example 1, the thicknesses of the divided areas A to E are all set to 6.0 mm. For this reason, since the strength of the dividing line segment C region is low and the shock absorption capacity is not sufficient, the total average wall thickness is 5.1 mm, which is thicker than 4.1 mm and 4.3 mm in Examples 1 and 2. Even then, the tip will break in the impact test.

また、比較例2では、最も衝撃を吸収する分割線分C領域の平均肉厚が7.5mmと十分な強度に設定されているが、分割線分C領域を支持する分割線分B領域、分割線分D領域の平均肉厚が6.1mm、5.8mmであり、強度が不十分(衝撃吸収能が不十分)である。よって、分割線分C領域は先芯に加えられる衝撃の大部分を吸収できるものの、分割線分B領域、分割線分D領域ともに先芯に加えられる衝撃をほとんど吸収できないため、これもまた破壊に至る。   In Comparative Example 2, the average thickness of the dividing line segment C region that absorbs the most impact is set to a sufficient strength of 7.5 mm, but the dividing line segment B region that supports the dividing line segment C region, The average thickness of the dividing line segment D region is 6.1 mm and 5.8 mm, and the strength is insufficient (impact absorbing ability is insufficient). Therefore, although the dividing line segment C region can absorb most of the impact applied to the tip, both the dividing line segment B region and the dividing line segment D region can hardly absorb the impact applied to the tip, and this is also broken. To.

なお、比較例1では全ての領域の肉厚を6.0mmとしたが、平均肉厚は5.1mmとなっている。これは、全平均肉厚を上記数式1により求めたことによる誤差である。   In Comparative Example 1, the thickness of all the regions was 6.0 mm, but the average thickness was 5.1 mm. This is an error due to the total average wall thickness obtained from Equation 1 above.

(その他の事項)
なお、上記実施例では、分割線分B領域と分割線分C領域、又は分割線分C領域と分割線分D領域の2つの分割領域を平均肉厚6.5mm以上としたが、分割線分B領域、分割線分C領域、分割線分D領域の3つの分割領域全てを平均肉厚6.5mm以上であってもよいことは勿論のことである。また、分割線分B領域と分割線分C領域、又は分割線分C領域と分割線分D領域の2つの分割領域のみを6.5mm以上とする場合、残りの1分割領域の平均肉厚は5.0mm以上であることが好ましく、5.5mm以上であることがさらに好ましい。
(Other matters)
In the above embodiment, the two divided regions of the dividing line segment B region and the dividing line segment C region or the dividing line segment C region and the dividing line segment D region have an average thickness of 6.5 mm or more. Of course, all three divided regions of the segment B region, the segment line segment C region, and the segment line segment D region may have an average thickness of 6.5 mm or more. In addition, when only two divided areas of the divided line segment B area and the divided line segment C area or the divided line segment C area and the divided line segment D area are set to 6.5 mm or more, the average thickness of the remaining one divided area Is preferably 5.0 mm or more, and more preferably 5.5 mm or more.

本発明にかかる先芯に用いる樹脂としては、強度に優れ、安価なナイロン6、ナイロン66等のポリアミド系樹脂が例示されるが、本発明はこれに限定するものではない。例えば、ポリエチレン、ポリプロピレン、AS樹脂、ABS樹脂のような汎用樹脂や、ポリカーボネート、PBT、PET、PPSのようなエンジニアリング樹脂も使用することができる。また、上述した樹脂材料を混合したポリマーアロイであってもよい。   Examples of the resin used for the lead core according to the present invention include polyamide resins such as nylon 6 and nylon 66 which are excellent in strength and inexpensive, but the present invention is not limited to this. For example, general-purpose resins such as polyethylene, polypropylene, AS resin, and ABS resin, and engineering resins such as polycarbonate, PBT, PET, and PPS can be used. Moreover, the polymer alloy which mixed the resin material mentioned above may be sufficient.

但し、繊維強化樹脂の強度は、使用する樹脂自体の強度(引張強度、曲げ強さ、アイゾット衝撃値等)、ガラス繊維の配合量、ガラス繊維の長さ等により大きく影響を受ける。従って、強度の低い樹脂を用いる場合には、ガラス繊維の配合量を多くする、直接射出成形法における混練りにおいて、成型品である先芯内に含まれるガラス繊維長が長くなるように混練り条件を設定する等の手段を講じることが好ましい。   However, the strength of the fiber reinforced resin is greatly affected by the strength of the resin itself (tensile strength, bending strength, Izod impact value, etc.), the blending amount of the glass fiber, the length of the glass fiber, and the like. Therefore, in the case of using a resin with low strength, in the kneading in the direct injection molding method in which the blending amount of the glass fiber is increased, the kneading is performed so that the length of the glass fiber contained in the tip of the molded product becomes long. It is preferable to take measures such as setting conditions.

ここで、繊維強化樹脂の強度を示す指標としては、上記実施例での試験法に基づいた繊維強化樹脂の引張強度(kgf/mm2)と、曲げ強さ(kgf/mm2)と、アイゾット衝撃値(kgf・cm/cm2、ノッチ付き)との和が、65以上であることが好ましく、75以上であることがさらに好ましく、78以上であることがさらに好ましい。 Here, as an index indicating the strength of the fiber reinforced resin, the tensile strength (kgf / mm 2 ), the bending strength (kgf / mm 2 ), and the Izod of the fiber reinforced resin based on the test methods in the above examples. The sum of the impact value (kgf · cm / cm 2 , with notch) is preferably 65 or more, more preferably 75 or more, and further preferably 78 or more.

また、ガラス繊維の配合量としては、35〜70質量%であることが好ましく、40〜
68質量%であることがより好ましく、45〜65質量%であることがさらに好ましい。ガラス繊維配合量が35質量%未満であると、十分な強度を得にくく、70質量%より多いと、ガラス繊維量が過剰であるため、繊維強化熱可塑性樹脂の流動性が悪くなり、射出成形が困難となるためである。
Moreover, as a compounding quantity of glass fiber, it is preferable that it is 35-70 mass%, and 40-
More preferably, it is 68 mass%, and it is still more preferable that it is 45-65 mass%. When the glass fiber content is less than 35% by mass, it is difficult to obtain sufficient strength. When the glass fiber content is more than 70% by mass, the amount of glass fiber is excessive, so that the fluidity of the fiber-reinforced thermoplastic resin is deteriorated and injection molding is performed. This is because it becomes difficult.

また、上記実施例では繊維径13μm、繊維長3mmのガラス繊維を用いたが、この太さ、長さに限定されないことは勿論である。   Moreover, in the said Example, although the fiber diameter of 13 micrometers and the fiber length of 3 mm were used, it is needless to say that it is not limited to this thickness and length.

また、成型品である先芯に、酸化防止剤、可塑剤、熱安定剤、光安定剤、滑剤、消臭剤、着色剤、顔料、帯電防止剤等の添加剤が含まれていてもよい。また、混練り時にガラス繊維と樹脂との親和性を高めるために、カップリング剤を用いてもよい。   Further, an additive such as an antioxidant, a plasticizer, a heat stabilizer, a light stabilizer, a lubricant, a deodorant, a colorant, a pigment, and an antistatic agent may be contained in the tip of the molded product. . A coupling agent may be used to increase the affinity between the glass fiber and the resin during kneading.

また、上記実施例では、表面積の測定に紙を用いたが、紙に限られるものではない。表面積を測定し易いものであればよく、例えば貼り付け取り剥がしが容易なテープを用いるのもよい。   Moreover, in the said Example, although paper was used for the measurement of a surface area, it is not restricted to paper. Any tape that can easily measure the surface area may be used. For example, a tape that can be easily attached and removed may be used.

また、上記実施例では、先芯の作製を低コストな直接射出成形法を用いて行ったが、本発明は直接射出成形法に限定されるものではない。   Moreover, in the said Example, preparation of the tip was performed using the low-cost direct injection molding method, However, This invention is not limited to the direct injection molding method.

以上で説明したように、本発明によると、JIS T8101規格のS級を満たし、かつ軽量な安全靴用先芯を生産性よく提供することができるので、その産業上利用性は大きい。   As described above, according to the present invention, a lightweight safety shoe tip can be provided with high productivity that satisfies the S class of JIS T8101, and its industrial applicability is great.

図1は本発明に係る先芯を示す図であって、図1(a)は足首側から見た斜視図、図1(b)は足指先側から見た斜視図、図1(c)は、図1(b)の外表面天頂線11を含む平面で切断した縦断面図である。1A and 1B are views showing a toe according to the present invention, in which FIG. 1A is a perspective view seen from the ankle side, FIG. 1B is a perspective view seen from the toe side, and FIG. These are the longitudinal cross-sectional views cut | disconnected by the plane containing the outer surface zenith line | wire 11 of FIG.1 (b). 図2は、外表面天頂線の説明に用いるための図面であって、図2(a)先芯の底面図、図2(b)は足指先側から見た先芯の斜視図である。FIG. 2 is a drawing for use in explaining the outer surface zenith line, FIG. 2 (a) is a bottom view of the tip, and FIG. 2 (b) is a perspective view of the tip as viewed from the toe side. 実施例および比較例で用いた射出成形機の構造を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structure of the injection molding machine used by the Example and the comparative example. 特許文献1に係る技術の先芯を示す断面図である。It is sectional drawing which shows the tip of the technique which concerns on patent document 1. FIG.

符号の説明Explanation of symbols

1 先芯
1a 天面部
1b 肩部
1c 立ち上がり部
1d 鍔部
11 外表面天頂線

DESCRIPTION OF SYMBOLS 1 Lead core 1a Top surface part 1b Shoulder part 1c Stand-up part 1d ridge part 11 Outer surface zenith line

Claims (4)

繊維強化熱可塑性樹脂からなる安全靴用先芯において、
前記先芯の先端から終端に至る外表面天頂線を5等分に分割した各分割線分を先端側から順に分割線分A,分割線分B,分割線分C,分割線分D、分割線分Eとし、それぞれの分割線分についてその両端と中央の3点で当該先芯の肉厚を測定し、測定したそれぞれの分割線分における最大肉厚と最小肉厚とを合計し2で割った値を当該分割線分領域における平均肉厚とするとき、
前記分割線分C領域の平均肉厚が6.5mm以上であり、
かつ前記分割線分B領域及び/又は前記分割線分D領域の平均肉厚が6.5mm以上であり、
前記分割線分A〜E領域以外の領域における先芯肉厚が、前記分割線分C領域の最大肉厚と略同等かそれ以下である、
ことを特徴とする安全靴用先芯。
In the tip for safety shoes made of fiber reinforced thermoplastic resin,
Each dividing line segment obtained by dividing the outer surface zenith line from the tip end to the terminal end into five equal parts is divided into a dividing line segment A, a dividing line segment B, a dividing segment segment C, a dividing segment segment D, and a dividing segment. As the line segment E, the thickness of the tip core is measured at each of the dividing line segments at the three points of both ends and the center, and the maximum thickness and the minimum thickness of each measured dividing line segment are summed up by 2. When the divided value is the average thickness in the dividing line segment area,
An average thickness of the dividing line segment C region is 6.5 mm or more,
And the average thickness of the said dividing line segment B area | region and / or the said dividing line segment D area | region is 6.5 mm or more,
The tip-core thickness in the region other than the dividing line segments A to E is approximately equal to or less than the maximum thickness of the dividing line segment C region,
A toe for safety shoes.
請求項1記載の安全靴用先芯において、
前記先芯の数式1で定義される全平均肉厚が4.0mm以上であり、
前記先芯の最小肉厚が2.5mm以上であり、
前記先芯の最大肉厚が15mm以下である、
ことを特徴とする安全靴用先芯。
(数式1)
先芯の全平均肉厚(mm)=鍔を除く先芯の質量(g)/〔先芯の外表面積(mm2)×先芯密度(g/mm3)〕
In the tip for safety shoes according to claim 1,
The total average wall thickness defined by Formula 1 of the tip is 4.0 mm or more,
The minimum thickness of the tip is 2.5 mm or more,
The maximum thickness of the tip is 15 mm or less,
A toe for safety shoes.
(Formula 1)
Total thickness of tip core (mm) = weight of tip core excluding wrinkles (g) / [tip outer surface area (mm 2 ) x tip core density (g / mm 3 )]
請求項1記載の安全靴用先芯において、
前記繊維強化熱可塑性樹脂中の繊維がガラス繊維であり、
前記安全靴用先芯が、ガラス繊維と樹脂とを混練り機構を備えた射出成形機により直接射出成形されてなるものである、
ことを特徴とする安全靴用先芯。
In the tip for safety shoes according to claim 1,
The fiber in the fiber reinforced thermoplastic resin is a glass fiber,
The safety shoe tip is formed by direct injection molding using an injection molding machine equipped with a kneading mechanism for glass fiber and resin.
A toe for safety shoes.
請求項1、2または3に記載の安全靴用先芯を、靴先に組み込んだ安全靴。

A safety shoe comprising the tip of the safety shoe according to claim 1, 2 or 3 incorporated in the shoe tip.

JP2004252399A 2004-08-31 2004-08-31 Toe cap for safety shoes and safety shoes using the same Pending JP2006070090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252399A JP2006070090A (en) 2004-08-31 2004-08-31 Toe cap for safety shoes and safety shoes using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252399A JP2006070090A (en) 2004-08-31 2004-08-31 Toe cap for safety shoes and safety shoes using the same

Publications (1)

Publication Number Publication Date
JP2006070090A true JP2006070090A (en) 2006-03-16

Family

ID=36151057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252399A Pending JP2006070090A (en) 2004-08-31 2004-08-31 Toe cap for safety shoes and safety shoes using the same

Country Status (1)

Country Link
JP (1) JP2006070090A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716603U (en) * 1993-09-01 1995-03-20 野口ゴム工業株式会社 Synthetic resin safety shoes, work shoe toecap
JPH0736711U (en) * 1993-12-24 1995-07-11 日本発条株式会社 Toecaps for safety shoes
JPH1156410A (en) * 1997-06-11 1999-03-02 Toyobo Co Ltd Lightweight point batt for safety shoes
JP2002085109A (en) * 2000-07-14 2002-03-26 Daicel Chem Ind Ltd Toe core for safety shoes
JP2003102509A (en) * 2001-09-28 2003-04-08 Kawasaki Steel Corp Toe cap for safety shoes and method for manufacturing the same
JP2004041406A (en) * 2002-07-11 2004-02-12 Ykk Corp Resin toe core of safety shoe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716603U (en) * 1993-09-01 1995-03-20 野口ゴム工業株式会社 Synthetic resin safety shoes, work shoe toecap
JPH0736711U (en) * 1993-12-24 1995-07-11 日本発条株式会社 Toecaps for safety shoes
JPH1156410A (en) * 1997-06-11 1999-03-02 Toyobo Co Ltd Lightweight point batt for safety shoes
JP2002085109A (en) * 2000-07-14 2002-03-26 Daicel Chem Ind Ltd Toe core for safety shoes
JP2003102509A (en) * 2001-09-28 2003-04-08 Kawasaki Steel Corp Toe cap for safety shoes and method for manufacturing the same
JP2004041406A (en) * 2002-07-11 2004-02-12 Ykk Corp Resin toe core of safety shoe

Similar Documents

Publication Publication Date Title
TWI248792B (en) Resin safety shoe toe cap
CN102292394B (en) Glass fiber reinforced polyamide resin composition
JP2000238142A (en) Reinforcing fiber-contained molding material, manufacture of molding using it and safe shoe toe core
WO1998052736A1 (en) Screw and apparatus for plasticizing fiber-reinforced thermoplastic resins, and method and product of molding the resins
US6159589A (en) Injection molding of long fiber reinforced thermoplastics
JP2006070090A (en) Toe cap for safety shoes and safety shoes using the same
JPWO2017203943A1 (en) Fiber-containing granular resin structure, method for producing fiber-containing granular resin structure, cured fiber-reinforced resin, and fiber-reinforced resin molded product
JP3862978B2 (en) Method for producing safety shoe toe core made of long fiber reinforced thermoplastic resin
JP2006192188A (en) Toe box for safety shoe and safety shoe using the same
JP2017210616A (en) Fiber-containing resin structure, manufacturing method of fiber-containing resin structure, fiber-reinforced resin cured product and fiber-reinforced resin mold
TW201802188A (en) Resin-impregnated fiber bundle, compression molded article and method for producing same
EP3533834B1 (en) Peek resin composition molded article
JP2005103116A (en) Toe cap for safety shoe and safety shoe using the same
JPH01286824A (en) Manufacture of fiber-reinforced thermoplastic resin and its raw material resin composition
KR102360985B1 (en) Long Fiber Reinforced Thermoplastics Resin Composition And Article Manufactured By Using The Same
JP2020049240A (en) Injection molding
TWI724039B (en) Manufacturing method of molded product
JP6102769B2 (en) Water assist molded product
JP3776158B2 (en) Safety shoe tip and method for manufacturing the same
JP3431050B2 (en) Phenolic resin molding materials
JP2003039460A (en) Mold for molding toe box of safety shoes and method for manufacturing the toe box of the safety shoes
JPH07293534A (en) Resin bolt and its forming method
CN105291343A (en) Method for producing a plastic part reinforced with natural fibres
CN104619782A (en) Thermoplastic resin composite composition, thermoplastic resin composite material, and method for manufacturing same
JP2005255733A (en) Molded article of automobile underhood structure part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511