JP2006068900A - Manufacturing method of industrial component having through hole with high aspect ratio - Google Patents

Manufacturing method of industrial component having through hole with high aspect ratio Download PDF

Info

Publication number
JP2006068900A
JP2006068900A JP2005300918A JP2005300918A JP2006068900A JP 2006068900 A JP2006068900 A JP 2006068900A JP 2005300918 A JP2005300918 A JP 2005300918A JP 2005300918 A JP2005300918 A JP 2005300918A JP 2006068900 A JP2006068900 A JP 2006068900A
Authority
JP
Japan
Prior art keywords
plate
hole
punch
die
industrial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005300918A
Other languages
Japanese (ja)
Inventor
Yukihisa Takeuchi
幸久 武内
Hiroyuki Tsuji
裕之 辻
Kazumasa Kitamura
和正 北村
Yoshinori Yamaguchi
良則 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005300918A priority Critical patent/JP2006068900A/en
Publication of JP2006068900A publication Critical patent/JP2006068900A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and straightly bore a narrow and fine through hole with a diameter of 100 μm or less and a high aspect ratio in a soft material. <P>SOLUTION: A method of punching a metal mold for boring a hole on a platelike material 3 by means of a punch 10 and a die 12 includes steps of: boring the hole on the material 3 by the punch 10; then raising the material 3 in tight contact with a stripper 11 without drawing the punch 10 from the hole; returning the punch 10 drawn up from the die 12 from the bottom of the hole so that it is slightly retreated; similarly boring a hole on a next platelike material 3 by the punch 10; thereafter raising the material 3 without drawing the punch 10 from the hole in tight contact with a lower part of the former material 3; and returning the punch 10 drawn up from the die 12 from the bottom of the hole of the raised material 3 so that it is slightly retreated. The above steps are repeated to laminate a plurality of punched platelike materials 3 in a machine having the punch 10 and the die 12. A component is manufactured by this method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高アスペクト比な貫孔部を高密度に有する工業用部品の製造方法に関し、更に詳細には、打抜後の取扱により変形する軟性の材料を使用した場合において、所定の厚さの工業用部品に、薄い板状材料に孔部を開ける場合の精度と同等な高い精度で、高アスペクト比な貫孔部を数多く形成する、工業用部品の製造方法に関するものである。   The present invention relates to a method for manufacturing industrial parts having high-aspect-ratio through-hole portions at high density, and more specifically, when a soft material that is deformed by handling after punching is used. The present invention relates to a method for manufacturing an industrial part, in which a large number of high-aspect-ratio through-hole parts are formed with a high accuracy equivalent to that when a hole is made in a thin plate material.

工業生産される全ての製品に共通した要求は、より安く、より軽く、より小さくであり、特に電子回路を数多く搭載した工業製品では、小さいことが付加価値となるために、それを支える実装化技術の発展には目覚ましいものがある。その発展の中で電子部品が載る配線基板においては、冷却効果を考慮し高い信頼性を確保しながら、より高密度な回路形成が可能なように、小さな貫孔部が正確に精度よく製作されている必要がある。又、その他にもインクジェットプリンターのインク吐出部では、配線基板以上に小さな貫孔部が高精度に開いていることが要求される等、工業用部品において小さな貫孔部を高精度に開ける技術は、必要不可欠なものである。   The common requirements for all industrially produced products are cheaper, lighter, and smaller, especially in industrial products with many electronic circuits. There is a remarkable development in technology. In the development of wiring boards, electronic components are mounted on the circuit board. Small through-holes are precisely and accurately manufactured so that higher-density circuits can be formed while ensuring high reliability in consideration of the cooling effect. Need to be. In addition, in the ink discharge part of an ink jet printer, it is required that a small through-hole part is opened with high precision more than the wiring board. Is indispensable.

最近は、より高密度化が進み、材料基板の一定面積の中により多くの小さな貫孔部を開けることが必要で、必然的にその貫孔部は、小さく深い、言い換えれば貫孔部の直径が小さく軸長が長い、即ち、高アスペクト比なものとなり、高い精度でそれら貫孔部を形成することが要求されている。一般にアスペクト比とは、貫孔部が円筒形の場合に、その直径と軸長の比をいい、貫孔部が円筒形でない場合には、貫孔部の開口面において縁から対向する縁への最短距離と軸長との比をいう。ここで縁から対向する縁への最短距離とは、図5(a)、図5(b)に示す最短距離Sのことである。即ち、高アスペクト比な貫孔部とは、直径又は孔の最短距離に比べて軸長の長い、細長い孔のことをいう。   Recently, the density has increased, and it is necessary to open more small through holes in a certain area of the material substrate, and the through holes are inevitably small and deep, in other words, the diameter of the through holes. Is small and has a long axial length, that is, a high aspect ratio, and it is required to form these through holes with high accuracy. In general, the aspect ratio is the ratio of the diameter to the axial length when the through-hole is cylindrical. When the through-hole is not cylindrical, the aspect ratio is from the edge to the opposite edge. The ratio of the shortest distance to the axial length. Here, the shortest distance from the edge to the opposite edge is the shortest distance S shown in FIGS. 5 (a) and 5 (b). That is, the high aspect ratio through-hole portion refers to an elongated hole having a long axial length compared to the diameter or the shortest distance of the holes.

このような板状材料に小さな貫孔部を多く開ける従来の方法の1つとして、打抜金型による孔加工が挙げられる。パンチとダイを用いて、工業用部品としての所定の厚さの板状材料を一度に打ち抜く方法である。この方法では、最初から厚い板状材料を打抜対象としていて、パンチとダイの隙間であるクリアランスが多く必要となり、精度が悪いという問題を抱えている。又、打抜時に、薄い板状材料の場合よりも大きな剪断力がかかり、貫孔部の密度が大きい場合には特にダイにも孔が数多く必要であるため、その大きな剪断力にダイの強度が耐えられず、剛性不足により変形し、更には破損するという問題も生じる。   One conventional method for opening many small through-holes in such a plate-shaped material is hole processing using a punching die. This is a method of punching a plate-like material having a predetermined thickness as an industrial part at once using a punch and a die. This method has a problem that a thick plate-like material is to be punched from the beginning, and a large clearance, which is a gap between the punch and the die, is required, and accuracy is poor. Also, when punching, a greater shearing force is applied than with thin plate-like materials, and when the density of through-holes is large, a large number of holes are required in the die. Cannot be tolerated, deforms due to insufficient rigidity, and further breaks.

図3(a)、図3(b)は、打抜金型による貫孔部開口を示す図である。図3(a)に示すように、パンチ10がダイ12上に置かれた板状材料13を、パンチ10とダイ12との隙間であるクリアランス16を設けて打ち抜くと、一般に、パンチ10とダイ12のそれぞれのエッジ14からクラック15が発生する。このクラック15はクリアランス16の範囲で発生し、貫孔部の精度はそのクリアランス16の範囲の中でばらつく。その結果、一般に打抜金型による貫孔部開口方法では、打抜後の板状材料の貫孔部の断面形状は、図3(b)に示すような打抜方向に対して拡がったテーパ状になる。   3 (a) and 3 (b) are diagrams showing through-hole opening by a punching die. As shown in FIG. 3A, when the plate-like material 13 in which the punch 10 is placed on the die 12 is punched out with a clearance 16 that is a gap between the punch 10 and the die 12, generally, the punch 10 and the die 10 are punched. Cracks 15 occur from each of the 12 edges 14. The crack 15 occurs in the range of the clearance 16, and the accuracy of the through hole portion varies in the range of the clearance 16. As a result, in general, in the through hole opening method using a punching die, the cross-sectional shape of the through hole of the plate-like material after punching is a taper that expands in the punching direction as shown in FIG. It becomes a shape.

打抜金型に必要なクリアランス16は、日刊工業新聞社発行の基本機械工作(I)によれば、薄板の場合で板厚の4〜12%、厚板の場合で板厚の18〜26%であり、板厚が厚くなるほど大きくなる。即ち、上記したように、厚い板状材料では貫孔部の精度は低下する。従って、打抜方向出口側の直径の寸法がばらついてしまい、高アスペクト比な小さい貫孔部を高密度に開ける方法には適さない。   According to the basic machining (I) issued by the Nikkan Kogyo Shimbun, the clearance 16 required for the punching die is 4 to 12% of the plate thickness in the case of a thin plate, and 18 to 26 of the plate thickness in the case of a thick plate. %, Which increases as the plate thickness increases. That is, as described above, the accuracy of the through-hole portion decreases with a thick plate-like material. Accordingly, the diameter dimension on the outlet side in the punching direction varies, and it is not suitable for a method of opening a small through-hole portion having a high aspect ratio at a high density.

この打抜金型による孔加工を改善した方法として、薄い板状材料を打抜対象とし、打ち抜いた後に板状材料を移動して積み重ね、所定の厚さの工業用部品を得る方法がある。この方法では、一度に打ち抜く材料の板厚は薄いため、打抜毎の一枚の板状材料における孔部の精度は良好で、又、パンチとダイによる剪断力も小さくて済むため、高密度に孔部を開けられる。しかしながら、板状材料を移動するための治具や、積み重ねるスペースが必要で、且つ工程が増えて生産効率が下がり、高コストとなる問題がある。又、正確に積み重ねるためにガイドピンが必要となり、工業用部品の中に必要な孔部以外の孔を開けるという無駄も生じる。更には、打ち抜いた後に変形するような軟性の材料では、移動して積み重ねる間に孔部にズレが生じ、積み重ねて所定の厚さの工業用部品になると、貫孔部の精度が低下するといった問題が生じ、やはり、高アスペクト比な小さい貫孔部を高密度に開ける方法には適さない。   As a method for improving the hole processing by this punching die, there is a method in which a thin plate-like material is to be punched, and after punching, the plate-like material is moved and stacked to obtain an industrial part having a predetermined thickness. In this method, since the thickness of the material to be punched at one time is thin, the accuracy of the hole in one plate-shaped material for each punching is good, and the shearing force by the punch and die is small, so the density is high. A hole can be opened. However, there is a problem that a jig for moving the plate-like material and a space for stacking are necessary, and the number of processes increases, so that the production efficiency is lowered and the cost is increased. Further, guide pins are required for accurate stacking, and there is a waste of drilling holes other than necessary holes in industrial parts. Furthermore, in the case of a soft material that is deformed after being punched out, the holes are displaced during the movement and stacking, and the accuracy of the through-holes is reduced when stacking into industrial parts having a predetermined thickness. A problem arises, and it is also not suitable for a method of opening small through holes having a high aspect ratio at high density.

従来の方法として、打抜金型によらないレーザーによる孔加工がある。レーザー光線による加工であり、ビーム光をレンズで集光して対象材料にあてて加工する方法である。このレーザー加工では、基本原理である集光方法そのものによって、貫孔部がビーム光の進行方向に向かって絞られるテーパ状となってしまい、高アスペクト比では精度が悪いという根本的な問題がある。   As a conventional method, there is a laser drilling process that does not use a punching die. This is processing using a laser beam, in which the beam light is condensed by a lens and applied to a target material. In this laser processing, there is a fundamental problem that the through hole is tapered toward the traveling direction of the beam light due to the condensing method itself, which is the basic principle, and the accuracy is poor at a high aspect ratio. .

図4(a)、図4(b)は、レーザー加工による貫孔部開口を示す図である。図4(a)に示すように、レーザー加工機において、平行ビーム光17が集光レンズ18を通って、焦点距離20の場所に集光し加工される。焦点からずれるほどレーザー光幅19は広くなり、加工される貫孔部の直径は大きくなる。従って、板状材料の板厚が厚いほどに、ビーム光の進行方向出口側の孔加工を施しているときの、ビーム光の進行方向入口側に開く貫孔部の直径は大きくなる。その結果、図4(b)に示すような絞りテーパ状の貫孔部が形成されてしまう。   4 (a) and 4 (b) are diagrams showing through-hole opening by laser processing. As shown in FIG. 4A, in the laser processing machine, the parallel beam light 17 passes through the condensing lens 18 and is condensed and processed at a position of the focal length 20. The laser beam width 19 becomes wider as the focus is shifted, and the diameter of the through-hole portion to be processed becomes larger. Therefore, the larger the plate thickness of the plate-like material, the larger the diameter of the through-hole portion that opens to the beam light traveling direction entrance side when the hole processing on the beam light traveling direction exit side is performed. As a result, a narrowed tapered through hole as shown in FIG. 4B is formed.

又、レーザー加工では熱エネルギーを用いているので、この熱の影響により加工対象となる板状材料が変形し、変質層が形成され、これらにより貫孔部の直径がばらつくといった別の問題も生じる。この問題でも厚い板状材料ほど多くのレーザー光線量、即ち熱エネルギーが必要となるため、板状材料の板厚が厚いほどに貫孔部の精度が低下する。従って、レーザー加工も、高アスペクト比な小さい貫孔部を高密度に開ける方法としては適しているといえない。   In addition, since thermal energy is used in laser processing, the plate-like material to be processed is deformed by the influence of this heat, and a deteriorated layer is formed, which causes another problem that the diameter of the through hole portion varies. . Even in this problem, a thicker plate-like material requires a larger amount of laser beam, that is, heat energy. Therefore, the thicker the plate-like material, the lower the accuracy of the through hole portion. Therefore, it cannot be said that laser processing is also suitable as a method for opening small through-hole portions having a high aspect ratio at high density.

上記したように、電子部品を中心として工業分野での実装化技術はより高密度化してきていて、微細化した貫孔部を、高密度に開けることが要求される工業用部品においては、孔加工後の取扱によって、変形を生じるような寸法若しくは形状の軟質材料を用いた場合でも、より高アスペクト比な貫孔部を、破損の生じないように安全に、より高精度に形成する方法が求められているが、適切な方法が提案されていなかった。   As described above, the mounting technology in the industrial field, centering on electronic parts, has become higher in density, and in industrial parts that require fine through holes to be opened at high density, There is a method to safely and more accurately form through-holes with a higher aspect ratio so that they do not break even when soft materials with dimensions or shapes that cause deformation are used after processing. Although required, no appropriate method has been proposed.

本発明は、以上の課題に鑑みてなされたものであり、その目的とするところは従来技術の問題を解決するところにあり、変形の可能性がある柔らかな材料を使用した場合においても、直径が例えば100μm以下と細く、直径に比べ軸長が一定比率以上の長さを有する微細な貫孔部を、一枚の薄い板状材料に孔部を開ける精度と同等な高い精度で、ほぼ真っ直ぐに開口することが出来、それによって数多くの高アスペクト比な小さい貫孔部を有した所定の厚さの工業用部品を提供し、電子機器を主とする工業用部品の実装化技術において、より一層の高密度化に寄与することにある。   The present invention has been made in view of the above problems, and its object is to solve the problems of the prior art, and even when a soft material with a possibility of deformation is used, the diameter is For example, a fine through-hole part that is as thin as 100 μm or less and whose axial length is equal to or greater than a certain ratio compared to the diameter is almost straight with high accuracy equivalent to the precision of opening a hole in a thin sheet of material. In order to provide an industrial component of a predetermined thickness having a large number of high-aspect-ratio small through-holes, and in the mounting technology for industrial components mainly electronic equipment, This is to contribute to higher density.

本発明者らは、打抜金型による板状材料への孔加工手段、及び製造工程につき種々検討した結果、パンチとダイを用いた金型打抜方法において、パンチにより板状材料に孔部を開けた後に、パンチを孔部から抜き取らない状態で板状材料をストリッパーに密着させて持ち上げ、ダイより引き上げたパンチを、孔部の最下部より僅かに引き込むように戻し、次の板状材料も同様にして、パンチにより孔部を開けた後に、パンチを孔部から抜き取らない状態で前の板状材料の下部に重ねるように密着させて持ち上げ、ダイより引き上げたパンチを、持ち上げた板状材料の孔部の最下部より僅かに引き込むように戻す。これを繰り返して、パンチとダイの装置内において、孔の開いた板状材料を複数積層するといった製造方法により、上記の目的を達成出来ることを見出した。   As a result of various investigations regarding the hole processing means for the plate-shaped material by the punching die and the manufacturing process, the present inventors have found that the hole is formed in the plate-shaped material by the punch in the die punching method using the punch and the die. After the punch is opened, the plate-shaped material is brought into close contact with the stripper without lifting the punch from the hole, and the punch lifted up from the die is returned so that it is slightly pulled from the bottom of the hole, and the next plate-shaped material In the same way, after opening the hole with a punch, the punch is lifted by sticking it so as to overlap the lower part of the previous plate material without removing the punch from the hole, The material is pulled back slightly from the bottom of the hole. By repeating this, it has been found that the above object can be achieved by a manufacturing method in which a plurality of plate-like materials having holes are laminated in a punch and die apparatus.

即ち、本発明によれば、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法であって、パンチにより、第一の板状材料に第一の孔部を開ける第一の工程と、第一の孔部からパンチを抜き取らない状態で、第一の板状材料をストリッパーに密着させて引き上げる第二の工程と、パンチの先端部が引き上げた第一の板状材料の最下部より僅かに引き込む程度にパンチを引き上げる第三の工程と、パンチにより、第二の板状材料に第二の孔部を開ける第四の工程と、第二の孔部からパンチを抜き取らない状態で、第二の板状材料を第一の板状材料に密着させて引き上げる第五の工程と、パンチの先端部が引き上げた第二の板状材料の最下部より僅かに引き込む程度にパンチを引き上げる第六の工程を含み、以降、複数枚の板状材料を、第四の工程から第六の工程を繰り返して接着させて積層することを特徴とする高アスペクト比な貫孔部を有する工業用部品の製造方法が提供される。   That is, according to the present invention, there is provided a manufacturing method of an industrial part having a high aspect ratio through-hole portion using a punch and a die, wherein the first hole portion is formed in the first plate-like material by the punch. A first step of opening, a second step of pulling the first plate-like material in close contact with the stripper without pulling out the punch from the first hole, and a first plate lifted by the tip of the punch A third step in which the punch is pulled up to the extent that it is slightly pulled from the bottom of the sheet-like material, a fourth step in which a second hole is formed in the second plate-like material by the punch, and a punch from the second hole. The fifth step of bringing the second plate-like material into close contact with the first plate-like material and pulling it up without removing it, and the tip of the punch slightly pulls in from the bottom of the second plate-like material pulled up Including the sixth step of lifting the punch to the extent, and then multiple sheets The sheet material, method of manufacturing an industrial component having through holes with a high aspect ratio, which comprises laminating by adhering the fourth step repeated the sixth step is provided.

第一の工程及び第四の工程において、パンチにより板状材料に孔部を開ける際に、ダイとストリッパーとの間にスペーサを介することが好ましい。そのスペーサの厚さは、ダイとストリッパーとの間に存在する板状材料の厚さの合計、換言すれば、既にパンチに積層された板状材料の厚さと孔部を開けようとするダイ上に置かれた板状材料の厚さの合計より、概ね5〜15μm厚いことが好ましい。   In the first step and the fourth step, it is preferable that a spacer is interposed between the die and the stripper when the hole is formed in the plate-like material by punching. The thickness of the spacer is the sum of the thickness of the plate-like material existing between the die and the stripper, in other words, the thickness of the plate-like material already laminated on the punch and the die on which the hole is to be opened. It is preferable that the thickness is approximately 5 to 15 μm thicker than the total thickness of the plate-like materials placed on the plate.

第四の工程から第六の工程を繰り返し、所望枚数の板状材料を積層した後には、即ち、打ち抜き完了し板状材料を打抜金型内から取り外す際には、積層された板状材料が引き上げられている状態において、ワーク受け治具をダイ上に挿入し、積層された板状材料をワーク受け治具上に移載することが好ましい。   After repeating the fourth to sixth steps and laminating the desired number of plate-like materials, that is, when the plate-like material is punched and removed from the punching die, the laminated plate-like materials It is preferable that the workpiece receiving jig is inserted on the die and the laminated plate-like material is transferred onto the workpiece receiving jig in a state where the workpiece is pulled up.

本発明の高アスペクト比な貫孔部を有する工業用部品の製造方法においては、第二の工程と第三の工程の間において、パンチの先端部が、引き上げた第一の板状材料の最下部より僅かに飛び出た状態において、第一の板状材料の第一の孔部のカス取りを行う工程と、及び、第五の工程と第六の工程の間において、パンチの先端部が、引き上げた第二の板状材料の最下部より僅かに飛び出た状態において、第二の板状材料の第二の孔部のカス取りを行う工程とを含むことが好ましい。カス取りは、例えば、圧縮空気の流れでカスを除去する空気ブロー手段によるか、若しくは、粘着媒体に付着させてカスを除去する粘着手段により、行うことが出来る。   In the method for manufacturing an industrial part having a through-hole portion having a high aspect ratio according to the present invention, the tip of the punch is the top of the first plate-like material pulled up between the second step and the third step. In the state of slightly protruding from the lower part, between the step of removing the first hole of the first plate-like material, and between the fifth step and the sixth step, the tip of the punch, It is preferable that the method includes a step of removing waste from the second hole of the second plate-shaped material in a state where the second plate-shaped material is slightly protruded from the lowermost portion. The scrap removal can be performed by, for example, an air blowing unit that removes residue with a flow of compressed air, or an adhesion unit that adheres to an adhesive medium to remove residue.

本発明においては、工業用部品に開けた貫孔部の直径の精度を、一枚の板状材料に開けた孔部の直径の精度と同等にすることが可能である。
又、本発明においては、貫孔部の直径若しくは縁と対向する縁との最短距離と軸長との比が、概ね1:1〜1:15であるような高アスペクト比な貫孔部を形成することが出来、貫孔部と隣接する貫孔部との間隔と、貫孔部の軸長との比が、概ね1:1〜1:15であるような高アスペクト比な貫孔部も形成出来る。更には、直径が100μm以下である高アスペクト比な貫孔部を形成することが可能であり、貫孔部と隣接する貫孔部との間隔が100μm以下である高アスペクト比な貫孔部も形成することが可能である。
In the present invention, it is possible to make the accuracy of the diameter of the through hole formed in the industrial part equal to the accuracy of the diameter of the hole formed in one plate-shaped material.
In the present invention, the through-hole portion having a high aspect ratio in which the diameter of the through-hole portion or the ratio of the shortest distance between the edge and the opposite edge to the axial length is approximately 1: 1 to 1:15. A high-aspect-ratio through-hole portion that can be formed and has a ratio of the interval between the through-hole portion and the adjacent through-hole portion and the axial length of the through-hole portion is approximately 1: 1 to 1:15 Can also be formed. Furthermore, it is possible to form a high aspect ratio through hole portion having a diameter of 100 μm or less, and a high aspect ratio through hole portion in which the distance between the through hole portion and the adjacent through hole portion is 100 μm or less. It is possible to form.

本発明においては、積層する板状材料どうしを、予め接着剤が塗布されている板状材料を用いて接着させてもよく、又、板状材料と板状材料との間に、接着シートを挟んで接着させてもよい。更には、真空吸引出来る穴を板状材料に予め開けておき、真空吸引によって各板状材料を密着させて積層してもよい。   In the present invention, the laminated plate materials may be bonded using a plate material to which an adhesive has been applied in advance, and an adhesive sheet is provided between the plate material and the plate material. It may be sandwiched and bonded. Furthermore, holes that can be vacuum-sucked are previously formed in the plate-like material, and the plate-like materials may be brought into close contact with each other by vacuum suction and stacked.

本発明によれば、変形の可能性がある柔らかな材料を使用した場合においても、直径が100μm以下と極小さく、又、直径に比べ軸長が一定比率以上の長さを有する微細な貫孔部、即ち、小さく且つ高アスペクト比な貫孔部を、一枚の薄い板状材料に孔部を開ける精度と同等の精度で、高密度に設けた工業用部品を製造することが出来るという効果が発揮される。なお、この製造方法によって、所望の配線基板や液体吐出用ノズル等を製作することが可能となり、工業製品の実装化技術の向上に貢献し、よりコンパクトで便利な製品の提供される。   According to the present invention, even when a soft material that can be deformed is used, the diameter is as small as 100 μm or less, and the fine through-hole has a shaft length that is equal to or greater than a certain ratio compared to the diameter. The effect is that it is possible to manufacture industrial parts with a high density of through-holes with a small and high aspect ratio, with the same accuracy as that for opening holes in a thin plate-like material. Is demonstrated. This manufacturing method makes it possible to manufacture a desired wiring board, a liquid discharge nozzle, and the like, contributing to an improvement in mounting technology for industrial products, and providing a more compact and convenient product.

以下に、本発明の高アスペクト比な貫孔部を有する工業用部品の製造方法について、実施の形態を具体的に説明するが、本発明は、これらに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。
尚、本明細書中において、貫孔部と孔部とは、例えば、厚さを有する板状材料の一の面から反対側の面につながり開けられた同じ孔を指すが、単に孔部という場合には、積層された一枚の板状材料に開けられる孔を示す。
Hereinafter, embodiments of the method for producing an industrial part having a through-hole portion having a high aspect ratio according to the present invention will be described in detail, but the present invention is not construed as being limited thereto. Various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art without departing from the scope of the present invention.
In addition, in this specification, although a through-hole part and a hole part point out the same hole open | released from one surface of the plate-shaped material which has thickness to the opposite surface, for example, it is only called a hole part. In the case, a hole to be opened in a laminated sheet material is shown.

本発明においては、従来の方法におけるガイドピンのような重ね合わせる軸としてパンチそのものを利用していて、パンチ&ダイの製造装置内で、薄い板状材料を積層することに大きな特徴がある。又、個々に開けた薄い板状材料一枚毎の孔部が変形しないように、パンチを引き上げる際に、パンチの先端が、引き上げた板状材料の最下部より僅かに引き込むところで引き上げを止めることにも特徴がある。   In the present invention, the punch itself is used as an axis to be overlapped like a guide pin in the conventional method, and a great feature is that thin plate-like materials are laminated in a punch and die manufacturing apparatus. Also, when pulling up the punch so that the hole in each thin plate material that is individually opened does not deform, stop the pulling when the tip of the punch is slightly pulled from the bottom of the pulled plate material. There are also features.

図10に、従来方法に係るパンチとダイを用いた打ち抜き方法の一例を示す。パンチ10がストリッパー11の穴を移動する以上は、パンチ10とストリッパー11の穴との間に一定のクリアランスは必要であり、従って、パンチ10の中心軸とストリッパー11の穴の中心軸との間にはどうしてもズレが生じる。
従来は、図10に示すように、パンチ10の中心軸とストリッパー11の穴の中心軸とのズレa1、a2、a3の方向及び大きさが、打ち抜く度に変わってしまい、一枚毎に板状材料の孔部の位置が異なっていた。従って、これらを積層して貫孔部を形成しても精度の高い孔部とはならなかった。
FIG. 10 shows an example of a punching method using a punch and a die according to a conventional method. As long as the punch 10 moves through the hole of the stripper 11, a certain clearance is required between the punch 10 and the hole of the stripper 11, and therefore, between the central axis of the punch 10 and the central axis of the hole of the stripper 11. There is always a gap.
Conventionally, as shown in FIG. 10, the directions and sizes of the deviations a1, a2, and a3 between the center axis of the punch 10 and the center axis of the hole of the stripper 11 change every time they are punched, and each plate The positions of the holes of the material were different. Therefore, even if these are laminated to form a through hole portion, the hole portion has not been highly accurate.

本発明の特徴によれば、パンチを軸として板状材料を積層することによって、板状材料がパンチを保持し固定する役目を果たすので、打ち抜く度にパンチの中心軸とストリッパーの穴の中心軸とのズレの方向及び大きさが変わらない。即ち、引き上げられた板状材料の打ち抜きされた孔においては、パンチを外周から締め付ける方向(半径方向)に、弾性変形の範囲で力が働くため、パンチを保持することが出来る。従って、より高精度な孔部を板状材料に開けることが可能となる。
図11は、本発明に係る高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す説明図であり、3シートの板状材料3を打ち抜いた後にストリッパー11を引き上げた状態を表している。この例のように、3シートの板状材料3に貫孔部を開ける場合においても、それぞれのパンチ10の中心軸とストリッパー11の穴の中心軸とは、それぞれ方向及び大きさが異なるズレa4、a5、a6を有しているが、パンチ10を軸として板状材料3を積層しているので、3シートの板状材料3それぞれの孔部において、各々のズレa4、a5、a6が変わることはない。従って、3シートの板状材料3が重なって形成される貫孔部は、より高精度なものとなる。又、図11のように板状材料3がパンチ10の先端部周囲について、パンチ10を支えるため、パンチ10先端部の座屈を防止する働きも持つ。
According to the feature of the present invention, by laminating the plate-like material around the punch, the plate-like material plays a role of holding and fixing the punch, so that each time the punch is punched, the center axis of the punch and the center axis of the stripper hole The direction and size of the deviation is not changed. That is, in the punched hole of the plate-like material that has been pulled up, a force is applied in the range of elastic deformation in the direction in which the punch is tightened from the outer periphery (radial direction), so that the punch can be held. Therefore, it is possible to open a hole with higher accuracy in the plate-like material.
FIG. 11 is an explanatory view showing an example of a method for manufacturing an industrial part having a through-hole portion having a high aspect ratio according to the present invention, and shows a state in which the stripper 11 is pulled up after punching out the three sheets of plate-like material 3. Represents. Even in the case where the through-hole portion is opened in the three sheets of plate-like material 3 as in this example, the center axis of each punch 10 and the center axis of the hole of the stripper 11 are different from each other in direction and size. , A5, a6, but since the plate-like material 3 is laminated with the punch 10 as an axis, the deviations a4, a5, a6 change in the holes of the three-sheet plate-like material 3 respectively. There is nothing. Accordingly, the through-hole portion formed by overlapping the three sheets of the plate-like material 3 becomes more accurate. Further, as shown in FIG. 11, since the plate-like material 3 supports the punch 10 around the front end portion of the punch 10, it also has a function of preventing buckling of the front end portion of the punch 10.

このように、所定の厚さの工業用部品としたときに、従来の方法ではその厚さが厚いほど貫孔部の精度は低下したが、本発明では、打抜後の取扱により変形する軟性の材料を使用した場合においても、薄い板状材料に孔部を開ける場合の精度と同等の高い精度で、高アスペクト比な貫孔部を高密度に形成することが可能となる。
電子回路用配線基板やプリンター用インク吐出部等で求められる高密度で高アスペクト比な貫孔部とは、図2(a)、図2(b)に示す次のような貫孔部である。
本発明に係る高アスペクト比な貫孔部を有する工業用部品を図2に示す。図2(a)は高アスペクト比な貫孔部2を有する工業用部品1の一例を示しており、その一部を拡大した図が、図2(b)である。工業用部品1においては、図2(b)における貫孔部直径Dと貫孔部軸長Lとの比が、概ね1:1〜1:15程度の細長い貫孔部が形成されていることが好ましい。又、工業用部品1においては、貫孔部間隔Nと貫孔部軸長Lとの比が、同様に概ね1:1〜1:15程度になるような高い密度で貫孔部が形成されることが要求される。貫孔部直径D、貫孔部間隔Nともに数十μm程度である。工業用部品1には、そのような100μm以下の小さな貫孔部が100μm以下の間隔で精度よく数多く形成されることが求められ、本発明の高アスペクト比な貫孔部を有する工業用部品の製造方法により実現することが可能である。
As described above, when an industrial part having a predetermined thickness is used, in the conventional method, the accuracy of the through-hole portion decreases as the thickness increases, but in the present invention, the softness deforms due to handling after punching. Even when this material is used, it is possible to form high-aspect-ratio through-hole portions at high density with high accuracy equivalent to the accuracy in forming holes in a thin plate-like material.
The high-density, high-aspect-ratio through-holes required for electronic circuit wiring boards, printer ink ejection parts, etc. are the following through-holes shown in FIGS. 2 (a) and 2 (b). .
FIG. 2 shows an industrial part having a high aspect ratio through hole according to the present invention. FIG. 2A shows an example of the industrial component 1 having the through-hole portion 2 having a high aspect ratio, and FIG. 2B is an enlarged view of a part thereof. In the industrial component 1, an elongated through-hole portion having a ratio of the through-hole diameter D and the through-hole axial length L in FIG. 2B of approximately 1: 1 to 1:15 is formed. Is preferred. Further, in the industrial part 1, through-hole portions are formed at a high density so that the ratio of the through-hole interval N and the through-hole axial length L is about 1: 1 to 1:15. Is required. Both the through-hole diameter D and the through-hole interval N are about several tens of μm. The industrial component 1 is required to have a large number of such small through holes of 100 μm or less accurately formed at intervals of 100 μm or less. It can be realized by a manufacturing method.

精度の高い貫孔部とは、貫孔部軸長Lの全ての区間において、貫孔部直径Dがほぼ一定であるものをいう。言い換えれば板状材料の厚さを真っ直ぐに貫通した孔であり、貫孔部2断面を円とすれば貫孔部2がほぼ円柱となるような孔である。貫孔部2断面形状は必ずしも円である必要はなく、例えば、図6に示すような断面が細長い楕円であってもよく、その形状は問わない。貫孔部の精度が低い場合に高密度に貫孔部2を形成すれば、貫孔部間隔Nがなくなって2つ以上の貫孔部2が合体したり、貫孔部間隔Nが少なくて強度不足となり、貫孔部2と貫孔部2の間の壁部Wが曲がる等の変形が起きたり破損する等が生じ、工業用部品1としての信頼性が著しく損なわれるが、本発明の高アスペクト比な貫孔部を有する工業用部品の製造方法によれば、上記の壁部Wが薄くても高い形状精度で部品を作製出来るため、このような問題は起こらない。   The through-hole portion with high accuracy means that the through-hole diameter D is substantially constant in all sections of the through-hole axial length L. In other words, it is a hole that passes straight through the thickness of the plate-like material, and if the cross section of the through-hole portion 2 is a circle, the through-hole portion 2 is a substantially cylindrical hole. The cross-sectional shape of the through-hole portion 2 is not necessarily a circle. For example, the cross-section shown in FIG. If the through-hole portions 2 are formed at a high density when the accuracy of the through-hole portions is low, the through-hole interval N is eliminated and two or more through-hole portions 2 are combined, or the through-hole interval N is small. Although the strength is insufficient and deformation such as bending or breakage of the wall portion W between the through-hole portion 2 and the through-hole portion 2 occurs, the reliability as the industrial component 1 is significantly impaired. According to the method for manufacturing an industrial component having a through-hole portion having a high aspect ratio, such a problem does not occur because the component can be manufactured with high shape accuracy even if the wall portion W is thin.

本発明の高アスペクト比な貫孔部を有する工業用部品の製造方法において対象とする、打抜後の取扱により変形を生じるような寸法、若しくは形状の軟質材料とは、例えばヤング率が3000kgf/mm2未満の軟質材料であり、ポリエチレン(ヤング率310kgf/mm2)、ポリイミド(ヤング率430kgf/mm2)、強化プラスチック(ヤング率2500kgf/mm2)、グリーンシート(ヤング率4kgf/mm2)等が該当する。又、ヤング率が3000kgf/mm2以上の材料であっても、例えば極薄い板状の金属等、打抜後の取扱により変形を生じるような寸法、若しくは形状の材料は、全て本発明の対象となり得る。 The soft material having a dimension or shape that causes deformation due to handling after punching, which is a target in the method for manufacturing an industrial part having a through-hole portion having a high aspect ratio according to the present invention, has a Young's modulus of, for example, 3000 kgf / A soft material of less than mm 2 , polyethylene (Young's modulus 310 kgf / mm 2 ), polyimide (Young's modulus 430 kgf / mm 2 ), reinforced plastic (Young's modulus 2500 kgf / mm 2 ), green sheet (Young's modulus 4 kgf / mm 2 ) Etc. Moreover, even if the material has a Young's modulus of 3000 kgf / mm 2 or more, all materials having dimensions or shapes that cause deformation due to handling after punching, such as an extremely thin plate-like metal, are all subject of the present invention. Can be.

以下に、本発明に係る、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を説明する。
先ず、図1(a)〜図1(e)により、製造方法の概略工程を説明する。
打抜加工機は、パンチ10とダイ12、及びストリッパー11を主な機器として構成され、ダイ12の上に一枚ずつ薄い板状材料3を載せ、パンチ10で打ち抜くものである。薄い板状材料3の材質や大きさ、及び厚さは、特に限定されるものではないが、例えば厚さ40μmのグリーンシートを使用することが出来る。
Below, an example of the manufacturing method of the industrial component which has a through-hole part with a high aspect ratio based on this invention is demonstrated.
First, schematic steps of the manufacturing method will be described with reference to FIGS. 1 (a) to 1 (e).
The punching machine includes a punch 10, a die 12, and a stripper 11 as main devices. The thin plate material 3 is placed on the die 12 one by one and punched with the punch 10. The material, size, and thickness of the thin plate material 3 are not particularly limited, but for example, a green sheet having a thickness of 40 μm can be used.

図1(a)は、打抜準備のためにダイ12に1シート目の薄い板状材料3を載せた状態を示している。次に、図1(b)に示すように、1シート目をパンチ10で板状材料3を打ち抜く。その後、図1(c)に示す2シート目の打抜準備に入るが、従来の方法のように打抜済の1シート目の板状材料3を他の場所へ移動して積層することはせず、パンチ10に差し込んだままストリッパー11に密着させ上方に移動する。ストリッパー11に板状材料3を密着させる方法は、図1(c)に示すようなストリッパー11に貫通した吸気口から真空吸引8を行ってもよく、1シート目の板状材料3の表面に接着剤を塗布する等でストリッパー11に接着させてもよい。   FIG. 1A shows a state in which the first thin plate-like material 3 is placed on the die 12 in preparation for punching. Next, as shown in FIG. 1B, the plate-like material 3 is punched out with a punch 10 for the first sheet. After that, the punching preparation for the second sheet shown in FIG. 1 (c) is started. However, as in the conventional method, the punched sheet material 3 of the first sheet is moved to another place and laminated. Instead, it is brought into close contact with the stripper 11 while being inserted into the punch 10 and moved upward. As a method of bringing the plate-like material 3 into close contact with the stripper 11, vacuum suction 8 may be performed from an intake port penetrating the stripper 11 as shown in FIG. It may be adhered to the stripper 11 by applying an adhesive or the like.

又、2シート目の打抜準備に入るために、図1(c)に示すように、ダイ12からパンチ10、及びストリッパー11を引き上げるが、このときにパンチ10を、一緒に引き上げた1シート目の板状材料3の孔部の中央部まで戻さないことが好ましい。板状材料3の最下部より僅かに引き込むところで止めることが肝要である。ここで、僅かに引き込むとは、常に、少なくとも飛び出てはいない状態にすることを指す。パンチ10を板状材料3の孔部の中央部まで戻したり、完全にストリッパー11の中へ格納してしまうと、軟質材料を用いた板状材料3では孔部が変形してしまい、板状材料3を積層して工業用部品1としたときの孔の精度が低下する。   In order to prepare for punching the second sheet, as shown in FIG. 1C, the punch 10 and the stripper 11 are pulled up from the die 12, and at this time, the punch 10 is pulled up together with one sheet. It is preferable not to return to the center of the hole of the plate material 3 of the eye. It is important to stop the plate-like material 3 when it is slightly pulled in from the lowermost part. Here, slightly pulling in means that the state is always at least not protruding. When the punch 10 is returned to the center of the hole of the plate-like material 3 or completely stored in the stripper 11, the hole is deformed in the plate-like material 3 using a soft material, and the plate-like material 3 The accuracy of the holes when the material 3 is laminated to make the industrial part 1 is lowered.

このようにパンチ10自体を、従来の方法のガイドピンのように薄い板状材料3の積層軸として用い、又、パンチ10自体で開けた孔部の変形を防止することにより、薄い板状材料を積層する手段をとりながら、板状材料3を移動するための治具や、積み重ねるスペースが不用となり、製造工程数の増加もより少なくて済む。従って、一枚の薄い板状材料3に開ける孔と同じ高い精度でつくられた高アスペクト比な貫孔部を高密度に有した工業用部品1を、より低コストで製造出来る。   As described above, the punch 10 itself is used as a stacking axis of the thin plate-like material 3 like a guide pin of the conventional method, and the thin plate-like material is prevented by preventing the deformation of the hole formed by the punch 10 itself. Thus, a jig for moving the plate-like material 3 and a stacking space are not required while taking the means for laminating the layers, and the number of manufacturing steps can be further reduced. Therefore, it is possible to manufacture the industrial component 1 having high-aspect-ratio through-hole portions made with the same high accuracy as the holes to be opened in one thin plate-like material 3 at a lower cost.

図1(d)は、2シート目の板状材料3の打抜工程を示す。次いで、図1(c)のような打抜準備を行い、これを繰り返して複数枚の板状材料3を、打抜加工機内で順次積層する。
図1(e)に示すように、板状材料3を全シート分について打ち抜いて、積層を終えたら、ストリッパー11より積層した板状材料3を離して打抜完了となる。
FIG.1 (d) shows the punching process of the plate-shaped material 3 of the 2nd sheet | seat. Next, the punching preparation as shown in FIG. 1C is performed, and this is repeated to sequentially laminate a plurality of plate-like materials 3 in the punching machine.
As shown in FIG. 1 (e), when the plate-like material 3 is punched for all sheets and the lamination is completed, the laminated plate-like material 3 is released from the stripper 11 to complete the punching.

次に、図15(a)〜図15(f)を用いて、上記した1シート目の板状材料3の打抜準備工程(図1(a))から、2シート目の板状材料3の打抜準備工程(図1(c))までの詳細を、即ち、1シート目の打抜の詳細を説明する。
図15(a)は、図1(a)と同じくダイ12に1シート目の薄い板状材料3を載せた状態を示している。次に、図15(b)に示すように、ストリッパー11を下ろしてダイ12上の板状材料3にあてる。このとき、未だ、パンチ10はストリッパー11内に納まったままである。ストリッパー11を下ろしたときに、ストリッパー11がダイ12上の板状材料3に当たる前に、パンチ10で板状材料3を打ち抜くことは好ましくない。ストリッパー11を下ろしたときに、ストリッパー11は、パンチ10を把持するとともに、板状材料3を押さえる働きを担うが、板状材料3を押さえないと、板状材料3の平面度が悪くうねっている場合に、不安定な打抜になり、高精度に打ち抜き出来ないからである。又、打抜時に生じる板状材料3の剪断以外の変形、具体的には反りなどをストリッパー11で押さえることで防止出来る。防止しないと高精度に打抜出来ない。
Next, from FIG. 15 (a) to FIG. 15 (f), from the punching preparation step (FIG. 1 (a)) of the first sheet material 3 described above, the second sheet material 3 is obtained. The details up to the punching preparation step (FIG. 1C), that is, the details of punching the first sheet will be described.
FIG. 15A shows a state in which the thin sheet material 3 of the first sheet is placed on the die 12 as in FIG. Next, as shown in FIG. 15 (b), the stripper 11 is lowered and applied to the plate-like material 3 on the die 12. At this time, the punch 10 still remains in the stripper 11. When the stripper 11 is lowered, it is not preferable to punch the plate-like material 3 with the punch 10 before the stripper 11 hits the plate-like material 3 on the die 12. When the stripper 11 is lowered, the stripper 11 has a function of holding the punch 10 and pressing the plate material 3, but if the plate material 3 is not pressed, the flatness of the plate material 3 is deteriorated. This is because the punching is unstable and the punching cannot be performed with high accuracy. Further, deformation other than shearing of the plate-like material 3 generated at the time of punching, specifically, warping can be prevented by pressing with the stripper 11. If it is not prevented, it cannot be punched with high accuracy.

その後に、図15(c)に示す通り、ストリッパー11がダイ12上の板状材料3に当たった状態において、パンチ10で板状材料3を打ち抜き、パンチ10をダイ12中へ入れる。そして、図15(d)に示すように、今度はストリッパー11をダイ12上の板状材料3にあてたまま、先ず、パンチ10のみを引き上げ板状材料3の最下部より僅かに引き込む。パンチ10が引き込むと同時に、あるいは、パンチ10が引き込むより先に、ストリッパー11を引き上げないほうが好ましい。ストリッパー11とダイ12、及び、パンチ10で囲まれた状態は、板状材料3の打抜形状が高精度に確保されている状態なので、この配置を維持したまま、パンチ10を引き上げたほうが精度を落とさずに済むからである。   Thereafter, as shown in FIG. 15 (c), in a state where the stripper 11 hits the plate-like material 3 on the die 12, the plate-like material 3 is punched with the punch 10, and the punch 10 is put into the die 12. Then, as shown in FIG. 15 (d), with the stripper 11 applied to the plate-like material 3 on the die 12, only the punch 10 is first pulled slightly from the lowermost part of the plate-like material 3. It is preferable not to raise the stripper 11 at the same time as the punch 10 is drawn or before the punch 10 is drawn. The state surrounded by the stripper 11, the die 12 and the punch 10 is a state in which the punched shape of the plate-like material 3 is ensured with high accuracy. Therefore, it is more accurate to lift the punch 10 while maintaining this arrangement. It is because it is not necessary to drop.

そして、図15(e)に示す通り、板状材料3をパンチ10に差し込んだまま、ストリッパー11を引き上げて、1シート目の打抜を終える。図15(f)は、図1(c)と同じく2シート目準備工程を示している。   And as shown in FIG.15 (e), the stripper 11 is pulled up with the plate-shaped material 3 inserted in the punch 10, and punching of the 1st sheet | seat is completed. FIG. 15 (f) shows the second sheet preparation step as in FIG. 1 (c).

次に、図16(a)〜図16(f)、図17(a)〜図17(f)、図18(a)〜図18(f)、図20を用いて、変形し易い材料を使用した場合にも、高精度に打ち抜きを行える方法を説明する。図16(a)〜図16(f)、図17(a)〜図17(f)、図18(a)〜図18(f)は、本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す工程説明図であり、ダイとストリッパーとの間にスペーサを介して打ち抜きを行う方法を表している。   Next, using FIG. 16 (a) to FIG. 16 (f), FIG. 17 (a) to FIG. 17 (f), FIG. 18 (a) to FIG. 18 (f), and FIG. A method for performing punching with high accuracy even when used will be described. 16 (a) to 16 (f), FIG. 17 (a) to FIG. 17 (f), and FIG. 18 (a) to FIG. It is process explanatory drawing which shows an example of the manufacturing method of the industrial component which has a through-hole part with an aspect ratio, and represents the method of punching through a spacer between die | dye and strippers.

上記したように、孔部を開けた板状材料をパンチに積層しながら打抜工程を繰り返すことで、孔部を、より高精度に開けることが出来るが、板状材料として、軟らかく、変形し易い材料を使用した場合には、孔部の精度低下を招くことがある。
打ち抜き時において、パンチが孔部を開ける前にストリッパーがダイ上の板状材料に当たり、板状材料はストリッパーとダイとの間に挟まれ、既に孔部が開けられストリッパーに積層された板状材料、及び、これから孔部が開けられるダイ上に置かれた板状材料に圧縮力が加わる。このとき、この圧縮力で変形し易い材料を使用した場合には、ストリッパーに積層された板状材料が、押し潰され変形するが、積層軸となっているパンチは固定されているので、相対的に変位が生じ、既に開けられた孔部の形状精度が低下することがある。一方、ダイ上に置かれた板状材料は、ストリッパーが当たり押し潰された状態でパンチにより孔部が開けられるので、打抜後に生じる弾性変形の形状戻りの分だけ、孔部の位置精度及び形状精度が低下することがある。
As described above, the hole can be opened with higher accuracy by repeating the punching process while laminating the plate-like material with the hole on the punch, but the plate-like material is soft and deformed. If an easy material is used, the accuracy of the hole may be reduced.
At the time of punching, the stripper hits the plate-like material on the die before the punch opens the hole, the plate-like material is sandwiched between the stripper and the die, the plate-like material that has already been drilled and laminated on the stripper And a compressive force is applied to the plate-like material placed on the die from which the hole is to be opened. At this time, when a material that is easily deformed by this compressive force is used, the plate-like material laminated on the stripper is crushed and deformed, but the punch serving as the lamination axis is fixed. Displacement may occur, and the shape accuracy of the already opened hole may be reduced. On the other hand, since the plate-like material placed on the die is punched with a punch in a state where the stripper hits and is crushed, the positional accuracy of the hole and the amount of elastic deformation that occurs after punching are reduced. Shape accuracy may be reduced.

軟らかい板状材料に、より高精度な孔部を開けるためには、図16(a)〜図16(f)、図17(a)〜図17(f)、図18(a)〜図18(f)に示されるように、ダイとストリッパーとの間にスペーサを介して打ち抜きを行うことが好ましい。スペーサを介することでストリッパーが直接板状材料に当たり、板状材料に圧縮力が加わることを防止出来る。   16A to 16F, FIGS. 17A to 17F, and FIGS. 18A to 18 in order to make a more accurate hole in a soft plate material. As shown in (f), it is preferable to perform punching through a spacer between the die and the stripper. By using the spacer, it is possible to prevent the stripper from directly hitting the plate material and applying a compressive force to the plate material.

図16(a)〜図16(f)は、例えば、スペーサとして外挿シム6を用いた製造工程を示す図である。
図16(a)は、打抜準備のためにダイ12に1シート目の薄い板状材料3を載せた状態を示している。又、ダイ12上には、例えば、図20に示すような形状の外挿シム6も載置される。外挿シム6の厚さは、ダイ12上の板状材料3の厚さより、概ね5〜15μm厚いものとすることが好ましい。次に、図16(b)に示すように、1シート目の板状材料3をパンチ10で打ち抜く。このとき、ストリッパー11は、板状材料3に直接当たらずに、板状材料3の厚さより僅かに厚い外挿シム6に当たる。従って、板状材料3が極軟らかい材料であっても打ち抜き時に変形することがなく、打ち抜いて板状材料3に形成される孔部は高精度なものとなる。その後、図16(c)に示す2シート目の打抜準備に入り、打抜済の1シート目の板状材料3をパンチ10に差し込んだままストリッパー11に密着させ上方に移動する。ダイ12上には、外挿シム6が載置される。外挿シム6の厚さは、既に打ち抜いてパンチ10に差し込んだまま引き上げられた板状材料3と、これから打ち抜くダイ12上に置かれた板状材料3の厚さの合計より、概ね5〜15μm厚くすることが好ましい。
FIG. 16A to FIG. 16F are diagrams illustrating a manufacturing process using the extrapolation shim 6 as a spacer, for example.
FIG. 16A shows a state in which the first thin plate-like material 3 is placed on the die 12 in preparation for punching. On the die 12, an extrapolation shim 6 having a shape as shown in FIG. 20, for example, is also placed. The thickness of the extrapolation shim 6 is preferably about 5 to 15 μm thicker than the thickness of the plate-like material 3 on the die 12. Next, as shown in FIG. 16 (b), the first sheet of plate-like material 3 is punched out with a punch 10. At this time, the stripper 11 does not directly hit the plate-like material 3 but hits the extrapolation shim 6 slightly thicker than the thickness of the plate-like material 3. Therefore, even if the plate-like material 3 is an extremely soft material, it is not deformed at the time of punching, and the hole formed in the plate-like material 3 by punching becomes highly accurate. Thereafter, the punching preparation for the second sheet shown in FIG. 16C is started, and the punched sheet material 3 of the first sheet is in close contact with the stripper 11 and moved upward. An extrapolation shim 6 is placed on the die 12. The thickness of the extrapolated shim 6 is approximately 5 to 5 based on the total thickness of the plate-like material 3 that has already been punched and pulled up while being inserted into the punch 10 and the plate-like material 3 placed on the die 12 to be punched from now on. It is preferable to increase the thickness by 15 μm.

図16(d)は、2シート目の板状材料3の打抜工程を示す。1シート目の図16(b)と同様に、ストリッパー11は、板状材料3には直接当たらず、外挿シム6に当たり、板状材料3が変形することを防止する。同じく板状材料3に形成される孔部は高精度なものとなる。次いで、図16(e)で3シート目の打抜準備に入る。ダイ12上には、同様に、既に打ち抜いてパンチ10に差し込んだまま引き上げられた板状材料3と、これから打ち抜くダイ12上に置かれた板状材料3の厚さの合計より、好ましくは概ね5〜15μm厚い外挿シム6が置かれ、打ち抜き時に、ストリッパー11が板状材料3に直接当たることを防止する。これを繰り返して複数枚の板状材料3を、打抜加工機内で順次積層する。図16(f)に示すように、板状材料3を全シート分について打ち抜いて、積層を終えたら、ストリッパー11より積層した板状材料3を離して打抜完了となる。   FIG. 16D shows a punching process of the second sheet material 3. Similarly to FIG. 16B of the first sheet, the stripper 11 does not directly hit the plate-like material 3 but hits the extrapolation shim 6 to prevent the plate-like material 3 from being deformed. Similarly, the holes formed in the plate-like material 3 are highly accurate. Next, in FIG. 16E, preparation for punching the third sheet is started. Similarly, on the die 12, the total of the thickness of the plate-like material 3 that has already been punched and pulled up while being inserted into the punch 10, and the thickness of the plate-like material 3 placed on the die 12 to be punched from now, is preferably approximately An extrapolated shim 6 having a thickness of 5 to 15 μm is placed to prevent the stripper 11 from directly hitting the plate-like material 3 at the time of punching. By repeating this, a plurality of plate-like materials 3 are sequentially laminated in a punching machine. As shown in FIG. 16 (f), when the plate-like material 3 is punched for all sheets and lamination is completed, the laminated plate-like material 3 is separated from the stripper 11 to complete the punching.

上記したように、パンチ10で板状材料3を打ち抜く際にダイ12上に載置する外挿シム6の厚さを、ダイ12とストリッパー11との間に存在する板状材料3の厚さの合計、言い換えれば、既に打ち抜いてパンチ10に差し込んだまま引き上げられた板状材料3と、これから打ち抜くダイ12上に置かれた板状材料3の厚さの合計より、常に、概ね5〜15μm厚くする理由は、板状材料3の厚さのバラツキによっても、打ち抜き時に生じるストリッパー11及びダイ12の変形によっても、ストリッパー11が板状材料3を押し潰すことがないようにするためである。外挿シム6の厚さが、パンチ10に差し込んだまま引き上げられた板状材料3とダイ12上に置かれた板状材料3の厚さの合計より薄いか、若しくは、厚くても、その差が概ね5μm未満である場合には、ストリッパー11が板状材料3を押し潰すことがあり得て好ましくない。反対に、その差が概ね15μmより厚い場合には、板状材料3の撓みを十分に抑えられず好ましくない。   As described above, the thickness of the extrapolation shim 6 placed on the die 12 when the plate-like material 3 is punched with the punch 10 is the thickness of the plate-like material 3 existing between the die 12 and the stripper 11. In other words, the sum of the thickness of the plate-like material 3 already punched and pulled up while being inserted into the punch 10 and the thickness of the plate-like material 3 placed on the die 12 to be punched from now on is always about 5 to 15 μm. The reason for increasing the thickness is to prevent the stripper 11 from crushing the plate-like material 3 due to variations in the thickness of the plate-like material 3 and deformation of the stripper 11 and the die 12 that occur during punching. Even if the thickness of the extrapolation shim 6 is thinner than the total thickness of the plate-like material 3 pulled up while being inserted into the punch 10 and the plate-like material 3 placed on the die 12, If the difference is generally less than 5 μm, the stripper 11 may crush the plate-like material 3, which is not preferable. On the other hand, when the difference is thicker than about 15 μm, the bending of the plate-like material 3 cannot be sufficiently suppressed, which is not preferable.

上記した条件に適う限り、板状材料3の積層数が増えて、必要な外挿シム6の厚さが厚くなる毎に、それぞれに用意した厚さの異なる外挿シムに入れ替えてもよく、又、外挿シムを積層していっても構わない。   As long as the above-mentioned conditions are met, the number of stacked layers of the plate-like material 3 increases, and each time the necessary extrapolation shim 6 becomes thicker, it may be replaced with extrapolation shims with different thicknesses prepared for each, Also, extrapolation shims may be stacked.

上記した外挿シム6を一例とするスペーサは、打ち抜き時にダイとストリッパーとの間に存在し、ストリッパーが直接板状材料に当たり、板状材料に圧縮力が加わることを防止出来るものであって、その厚さは、打ち抜いてパンチに差し込んだまま引き上げられた板状材料と、打ち抜くダイ上に置かれた板状材料の厚さの合計より、概ね5〜15μm厚いものであればよく、スペーサの形状は限定されない。   The spacer having the extrapolation shim 6 as an example is present between the die and the stripper at the time of punching, and can prevent the stripper from directly hitting the plate-like material and applying a compressive force to the plate-like material, The thickness may be approximately 5 to 15 μm thicker than the total thickness of the plate-like material that has been punched and pulled up while being inserted into the punch, and the plate-like material placed on the die to be punched. The shape is not limited.

例えば、上記した外挿シム6の場合に、板状材料3を挟む複数の角棒や平板であってもよく、板状材料3の四隅に置かれる薄い円柱や角柱であってもよい。しかしながら、同じ厚さ(高さ)に加工し易く、よりダイ12とストリッパー11の傾きを抑えることが容易であることから、図20に示すような枠形状であることが好ましい。   For example, in the case of the extrapolation shim 6 described above, a plurality of square bars or flat plates sandwiching the plate-like material 3 may be used, or thin cylinders or prisms placed at the four corners of the plate-like material 3 may be used. However, since it is easy to process into the same thickness (height) and it is easier to suppress the inclination of the die 12 and the stripper 11, a frame shape as shown in FIG. 20 is preferable.

スペーサの他の例として、昇降シムを用いた製造工程を、図17(a)〜図17(f)に示す。
図17(a)〜図17(f)に示す昇降シム5は、ダイ12中を上下に移動してダイ12の上面から突出する高さを調節し、パンチ10を打ち抜くときにダイ12とストリッパー11との間に空間を形成し、ストリッパー11が直接板状材料3に当たり、板状材料3に圧縮力が加わることを防止する。
As another example of the spacer, a manufacturing process using a lifting shim is shown in FIGS. 17 (a) to 17 (f).
The lift shim 5 shown in FIGS. 17A to 17F moves up and down in the die 12 to adjust the height protruding from the upper surface of the die 12, and when the punch 10 is punched, the die 12 and the stripper A space is formed between the stripper 11 and the stripper 11 directly hits the plate-like material 3 to prevent a compression force from being applied to the plate-like material 3.

図17(a)は、打抜準備のためにダイ12に1シート目の薄い板状材料3を載せた状態を示している。このとき、昇降シム5を、ダイ12の上面から、ダイ12上の板状材料3の厚さより、概ね5〜15μm高く突出するよう上に移動させる。次に、図17(b)に示すように、1シート目の板状材料3をパンチ10で打ち抜く。このとき、ストリッパー11は、板状材料3に直接当たらずに、板状材料3の厚さより僅かに突出した昇降シム5に当たる。従って、板状材料3が極軟らかい材料であっても打ち抜き時に変形することがなく、打ち抜いて板状材料3に形成される孔部は高精度なものとなる。その後、図17(c)に示す2シート目の打抜準備に入り、打抜済の1シート目の板状材料3をパンチ10に差し込んだままストリッパー11に密着させ上方に移動する。ダイ12の上面から突出する昇降シム5の高さは、既に打ち抜いてパンチ10に差し込んだまま引き上げられた板状材料3と、これから打ち抜くダイ12上に置かれた板状材料3の厚さの合計より、概ね5〜15μm高く突出するよう調節される。   FIG. 17A shows a state in which the first thin plate material 3 is placed on the die 12 in preparation for punching. At this time, the elevating shim 5 is moved upward from the upper surface of the die 12 so as to protrude approximately 5 to 15 μm higher than the thickness of the plate-like material 3 on the die 12. Next, as shown in FIG. 17B, the first sheet of plate-like material 3 is punched out with a punch 10. At this time, the stripper 11 does not directly contact the plate-like material 3 but hits the lifting shim 5 slightly protruding from the thickness of the plate-like material 3. Therefore, even if the plate-like material 3 is an extremely soft material, it is not deformed at the time of punching, and the hole formed in the plate-like material 3 by punching becomes highly accurate. After that, the punching preparation for the second sheet shown in FIG. 17C is started, and the punched sheet material 3 of the first sheet is in close contact with the stripper 11 and moved upward. The height of the elevating shim 5 protruding from the upper surface of the die 12 is the thickness of the plate-like material 3 that has already been punched and pulled up while being inserted into the punch 10 and the thickness of the plate-like material 3 placed on the die 12 to be punched from now on. It is adjusted to protrude approximately 5 to 15 μm higher than the total.

図17(d)は、2シート目の板状材料3の打抜工程を示す。1シート目の図17(b)と同様に、ストリッパー11は、板状材料3には直接当たらず、昇降シム5に当たり、板状材料3が変形することを防止する。同じく板状材料3に形成される孔部は高精度なものとなる。次いで、図17(e)で3シート目の打抜準備に入る。同様に、既に打ち抜いてパンチ10に差し込んだまま引き上げられた板状材料3と、これから打ち抜くダイ12上に置かれた板状材料3の厚さの合計より、概ね5〜15μm高く突出するように、ダイ12の上面から突出する昇降シム5の高さを調節し、打ち抜き時に、ストリッパー11が板状材料3に直接当たることを防止する。これを繰り返して複数枚の板状材料3を、打抜加工機内で順次積層する。図17(f)に示すように、板状材料3を全シート分について打ち抜いて、積層を終えたら、ストリッパー11より積層した板状材料3を離して打抜完了となる。   FIG. 17D shows a punching process of the second sheet-shaped material 3. Similarly to FIG. 17B of the first sheet, the stripper 11 does not directly hit the plate-like material 3 but hits the lifting shim 5 to prevent the plate-like material 3 from being deformed. Similarly, the holes formed in the plate-like material 3 are highly accurate. Next, in FIG. 17E, preparation for punching the third sheet is started. Similarly, the plate-like material 3 that has already been punched and pulled up while being inserted into the punch 10 and the thickness of the plate-like material 3 placed on the die 12 to be punched will protrude approximately 5 to 15 μm. The height of the lifting shim 5 protruding from the upper surface of the die 12 is adjusted to prevent the stripper 11 from directly hitting the plate-like material 3 at the time of punching. By repeating this, a plurality of plate-like materials 3 are sequentially laminated in a punching machine. As shown in FIG. 17 (f), when the plate-like material 3 is punched out for all sheets and the lamination is completed, the laminated plate-like material 3 is separated from the stripper 11 to complete the punching.

上記したように、スペーサの形状は限定されない。従って、スペーサとして、この昇降シム5を用いる場合に、図示しないが、昇降シム5の水平方向断面形状として、例えば、板状材料3を挟んだ細長形状であってもよく、板状材料3の四隅の外側に置かれる円形状や方形状であってもよく、あるいは、板状材料3を囲んだ枠形状であってもよい。   As described above, the shape of the spacer is not limited. Accordingly, when this lifting shim 5 is used as a spacer, although not shown, the horizontal cross-sectional shape of the lifting shim 5 may be, for example, an elongated shape sandwiching the plate-like material 3. A circular shape or a rectangular shape placed outside the four corners may be used, or a frame shape surrounding the plate-like material 3 may be used.

スペーサとして用いる昇降シムは、図17(a)〜図17(f)に示すようにダイ12中を上下に移動する昇降シム5に限定されず、図18(a)〜図18(f)に示すように、ストリッパー11中を上下に移動する昇降シム4であってもよい。昇降シム4を用いた製造工程を、図18(a)〜図18(f)に示す。
図18(a)〜図18(f)に示す昇降シム4は、ストリッパー11中を上下に移動してストリッパー11の下面から突出する長さを調節し、パンチ10を打ち抜くときにダイ12とストリッパー11との間に空間を形成し、ストリッパー11が直接板状材料3に当たり、板状材料3に圧縮力が加わることを防止する。
尚、昇降シム4のスペーサとしての役割、及び、製造工程の詳細は、先に説明した図17(a)〜図17(f)に示す昇降シム5を用いた製造工程に準じるので、製造工程の説明は省略する。
The lifting shims used as the spacers are not limited to the lifting shims 5 that move up and down in the die 12 as shown in FIGS. 17 (a) to 17 (f), but are shown in FIGS. 18 (a) to 18 (f). As shown, it may be a lifting shim 4 that moves up and down in the stripper 11. The manufacturing process using the raising / lowering shim 4 is shown to Fig.18 (a)-FIG.18 (f).
The lift shim 4 shown in FIGS. 18 (a) to 18 (f) moves up and down in the stripper 11, adjusts the length protruding from the lower surface of the stripper 11, and dies 12 and strippers when punching the punch 10. A space is formed between the stripper 11 and the stripper 11 directly hits the plate-like material 3 to prevent a compression force from being applied to the plate-like material 3.
The role of the lifting shim 4 as a spacer and the details of the manufacturing process are the same as the manufacturing process using the lifting shim 5 shown in FIGS. 17A to 17F described above. Description of is omitted.

一般に、打抜加工機においては、ダイの存在する下型は部品点数が上型に比べて少なく、昇降シム、及び、シムを上下に移動させる昇降機構を設置するスペースが確保し易く、この点において、昇降シム5のほうが昇降シム4より採用し易い。又、昇降シム4,5と、図16(a)〜図16(f)に示す外挿シム6とを比較すると、初期コスト、及び、板状材料の厚さが変更になったときに要する改造コストにおいて外挿シム6が有利であるが、自動化可能な昇降シム4,5は、より処理速度が速く、スループットの向上、ひいては製造される工業用部品のコスト低減に寄与する点において優位である。   In general, in a punching machine, the lower die with a die has a smaller number of parts than the upper die, and it is easy to secure a space for installing a lifting shim and a lifting mechanism for moving the shim up and down. Therefore, the lifting shim 5 is easier to adopt than the lifting shim 4. Further, when comparing the raising and lowering shims 4 and 5 with the extrapolation shim 6 shown in FIGS. 16A to 16F, it is required when the initial cost and the thickness of the plate material are changed. The extrapolation shim 6 is advantageous in remodeling costs, but the up-and-down shims 4 and 5 that can be automated are superior in that the processing speed is faster, the throughput is improved, and the cost of industrial parts to be manufactured is reduced. is there.

シムを上下に移動させる昇降機構の一例を図19に示す。図19は、ダイ12中を上下に移動する昇降シム5にとり付けた昇降機構32を示す説明図であり、高精度のサーボモータ33で発生させた回転運動を、例えば、サーボモータ33により回転する雄ねじ34と、それにかみ合う雌ねじ35からなる機構によって、直線運動に変換し、昇降シム5を上下に精度よく移動することが可能である。   An example of an elevating mechanism that moves the shim up and down is shown in FIG. FIG. 19 is an explanatory view showing an elevating mechanism 32 attached to an elevating shim 5 that moves up and down in the die 12. The rotary motion generated by the high-precision servomotor 33 is rotated by, for example, the servomotor 33. By a mechanism comprising a male screw 34 and a female screw 35 meshing with the male screw 34, it is possible to convert it into a linear motion and to move the elevating shim 5 up and down with high accuracy.

次に、図9(a)〜図9(c)により、板状材料に開けた孔部にカスが詰まることを防ぐカス取り工程を説明する。
図9(a)は、ダイ12に板状材料3を載せた打抜前の準備状態である。そして、図9(b)に示すように、パンチ10で板状材料3を打ち抜く。このとき、打抜によって形成される板状材料の孔部を源とするカスが生じる。カスの大部分は、ダイのザグリ部21に抜け落ちるが、一部分はパンチ10に付着して上方に引き上げられる。この上方に引き上げられたカスが、板状材料3に付着すると打抜製品不良につながる。そこで、図9(c)に示すように、板状材料3とともにストリッパー11を引き上げて、パンチ10の先端部が引き上げた板状材料3の下面より僅かにa7だけ飛び出た状態においてカスを除去する。ここで、僅かに飛び出た状態とは、常に、少なくとも引き込んではいない状態にすることを指す。
Next, with reference to FIG. 9A to FIG. 9C, a scrap removal process for preventing clogging of the hole formed in the plate-like material will be described.
FIG. 9A shows a preparatory state before punching in which the plate-like material 3 is placed on the die 12. Then, as shown in FIG. 9 (b), the plate-like material 3 is punched with a punch 10. At this time, a residue is generated from the hole of the plate-like material formed by punching. Most of the residue falls off into the counterbore portion 21 of the die, but a part of the residue adheres to the punch 10 and is pulled upward. If the residue pulled up above adheres to the plate-like material 3, it leads to a punched product defect. Therefore, as shown in FIG. 9C, the stripper 11 is pulled up together with the plate-shaped material 3, and the residue is removed in a state where the tip portion of the punch 10 slightly protrudes a7 from the lower surface of the pulled-up plate-shaped material 3. . Here, the state of slightly protruding means that the state is always at least not drawn.

打抜で形成された板状材料3の孔部にはパンチ10が抜き取られていないので、カスが板状材料3の孔部に入って残ることはなく、図9(c)の状態で、ダイ12上や、パンチ10あるいは板状材料3の下面に付着したカスを除去すれば事足りる。カス取りが容易な上に、カスが板状材料3の孔部に入って残ることはなく、歩留まりが、より向上する。   Since the punch 10 is not extracted in the hole of the plate-shaped material 3 formed by punching, the residue does not enter the hole of the plate-shaped material 3 and remains in the state of FIG. It is sufficient to remove the residue adhering to the die 12 or the punch 10 or the lower surface of the plate-like material 3. In addition to easy removal of residue, the residue does not remain in the hole of the plate-like material 3 and the yield is further improved.

従来の製造方法においては、板状材料を打ち抜いた後にストリッパーに密着させて板状材料を引き上げることは行われていないため、ダイ上に残った板状材料の下側、即ち、ダイのザグリ部側から、真空で吸引したり、反対に空圧でブローしたり、あるいは、粘着媒体に付着させる等で、カスが板状材料の孔部に残らないように除去していた。   In the conventional manufacturing method, after the plate material is punched, it is not brought into close contact with the stripper and the plate material is not pulled up. Therefore, the lower side of the plate material remaining on the die, that is, the counterbore portion of the die. From the side, the residue is removed so as not to remain in the hole of the plate-like material by sucking in vacuum, blown by air pressure, or adhering to the adhesive medium.

ところが、図7に打抜工程が示されるような、パンチ10の打抜先端部分の径が太く、パンチとパンチとの間が広くとれる、大きなパンチピッチの打抜加工機の場合には、ダイのザグリ部21に十分な空間があるので、上記のようなカス取りが行えるが、パンチ10の打抜先端部分の径がより細く、パンチとパンチとの間が狭い、小さなパンチピッチの打抜加工機では、上記のようなカス取りは困難であった。   However, in the case of a punching machine with a large punch pitch in which the diameter of the punching tip portion of the punch 10 is large and the space between the punches can be widened as shown in FIG. Since there is sufficient space in the counterbore part 21, the above-mentioned scrap removal can be performed, but the punch 10 has a narrower punch tip diameter and a narrow punch-to-punch punching with a small punch pitch. With a processing machine, it has been difficult to remove the residue as described above.

図8に打抜工程が示されるような打抜加工機は、近年において、貫孔部の高密度化が進む中で用いられることが多い。このような打抜加工機では、特にパンチ10の先端部分a8において径が細く、先端部分a8の座屈を防止するために先端部分a8の長さは極力短くする。打抜カスを除去するために、パンチ10は、ダイのザグリ部21の中に突き出す必要があるので、ダイのザグリ部21の上面の厚さbは薄くなり、ダイ12の強度はより低下する。又、パンチピッチが小さいため、パンチ10の剪断力はより大きくなるため、ダイ12への負荷はより大きくなる。そのため、ダイ12の強度を向上させることを目的としてダイのザグリ部21にリブを設ける等のダイ12の補強が行われているが、そのような補強はダイ12の構造を複雑にし、カス取り作業の実施に困難をきたす。結果的にカス取りが不十分となり、板状材料3の孔部にカスが残り、歩留まり低下を招くことになる。   In recent years, a punching machine whose punching process is shown in FIG. 8 is often used while the density of through-holes is increasing. In such a punching machine, the diameter is particularly small at the tip portion a8 of the punch 10, and the length of the tip portion a8 is made as short as possible to prevent buckling of the tip portion a8. In order to remove the punching residue, the punch 10 needs to protrude into the counterbore part 21 of the die, so that the thickness b of the upper surface of the counterbore part 21 of the die is reduced and the strength of the die 12 is further reduced. . In addition, since the punch pitch is small, the shearing force of the punch 10 becomes larger, so the load on the die 12 becomes larger. Therefore, reinforcement of the die 12 such as providing ribs on the counterbore portion 21 of the die is performed for the purpose of improving the strength of the die 12, but such reinforcement complicates the structure of the die 12 and removes residue. Difficult to carry out work. As a result, residue removal becomes insufficient, residue is left in the hole of the plate-like material 3, and the yield is reduced.

本発明においては、ダイ12上からカス取りが行えるので、ダイ12の構造に影響されず容易にカス取りを実施出来る。又、板状材料3は打抜、積層を完了するまでパンチから抜き取られないので、板状材料3の孔部にカスが入ることは起こり難い。
尚、本発明におけるカス取り手段は、従来と同じ方法で構わない。より設備が簡素になる圧縮空気によるブロー、若しくは、粘着媒体による付着等、適宜選択すればよい。
In the present invention, since scrap removal can be performed from above the die 12, scrap removal can be easily performed without being affected by the structure of the die 12. Further, since the plate-like material 3 is not extracted from the punch until punching and lamination are completed, it is unlikely that debris enters the hole of the plate-like material 3.
The waste removing means in the present invention may be the same as the conventional method. What is necessary is just to select suitably, such as blow by the compressed air from which an installation becomes simpler, or adhesion by an adhesive medium.

次に、積層した板状材料をストリッパーより外す方法について説明する。
先に、図1(e)に示したように、積層した板状材料3をストリッパー11より外す方法は、例えば、板状材料3を引き上げていた真空吸引を止め真空破壊9を行い、剥離治具7で機械的にとり外せばよい。このとき、パンチ10及びストリッパー11から取り外した板状材料3をダイ12上に置いてから取り出すのではなく、例えば、ワーク受け治具をダイ上に差し入れて、積層した板状材料3をワーク受け治具上に移載し次工程へ移送すれば、より生産効率が向上するので好ましい。板状材料が軟質の場合には、変形も起こし難くなるので好適である。
Next, a method of removing the laminated plate material from the stripper will be described.
First, as shown in FIG. 1 (e), the method of removing the laminated plate-like material 3 from the stripper 11 is, for example, by stopping the vacuum suction that was pulling up the plate-like material 3 and performing the vacuum break 9 to remove the peeling material. The tool 7 may be mechanically removed. At this time, the plate-like material 3 removed from the punch 10 and the stripper 11 is not placed on the die 12 and then taken out. For example, a workpiece receiving jig is inserted on the die and the laminated plate-like material 3 is received by the workpiece. If it is transferred onto a jig and transferred to the next process, production efficiency is further improved, which is preferable. When the plate-like material is soft, deformation is less likely to occur, which is preferable.

図12(a)〜図12(c)は、積層した板状材料をワーク受け治具上に移載する工程の説明図であり、3シートの板状材料を打抜、積層した後に、パンチ及びストリッパーから取り外す一例を示している。図12(a)に示すような、打抜、積層を完了した板状材料3を密着させたままストリッパー11を引き上げたときに、図12(b)に示すように、ワーク受け治具23をダイ12上に挿入し、図12(c)に示す通り、ストリッパー11に対してパンチ10を引き上げる動作をさせることで、板状材料3とパンチ10を引き離し、且つ、板状材料3を引き上げていた真空吸引8を止め真空破壊9を行い、剥離治具7で機械的にストリッパー11から積層した板状材料3を取り外し、ワーク受け治具23上に移載すればよい。   12 (a) to 12 (c) are explanatory diagrams of a process of transferring the laminated plate-like material onto the workpiece receiving jig, and punching and laminating the three-sheet plate-like material, and then punching And an example of removal from the stripper. When the stripper 11 is pulled up while the plate-like material 3 that has been punched and laminated as shown in FIG. 12A is in close contact, the workpiece receiving jig 23 is moved as shown in FIG. As shown in FIG. 12 (c), the plate material 3 and the punch 10 are pulled apart and the plate material 3 is pulled up by inserting it onto the die 12 and causing the stripper 11 to pull up the punch 10. The vacuum suction 8 is stopped, the vacuum break 9 is performed, the plate-like material 3 laminated mechanically from the stripper 11 with the peeling jig 7 is removed and transferred onto the workpiece receiving jig 23.

板状材料3を積層して工業用部品1とする際に、板状材料3どうしを接着する必要があるが、その方法は、各々の板状材料3の表面に予め接着剤を塗布することで接着してもよく、板状材料3と板状材料3との間に接着シートを挟んでも構わない。接着シートを用いると打抜の工程が増えるため、予め表面に接着性を持たせた板状材料3を用いることが好ましい。   When the plate-like material 3 is laminated to make the industrial part 1, it is necessary to bond the plate-like materials 3 to each other. The method is to apply an adhesive to the surface of each plate-like material 3 in advance. The adhesive sheet may be sandwiched between the plate-like material 3 and the plate-like material 3. When an adhesive sheet is used, the number of punching steps increases, and therefore it is preferable to use a plate-like material 3 whose surface has adhesiveness in advance.

又、真空吸引出来る穴を板状材料に予め開けておき、真空吸引によって各板状材料を密着させて積層してもよい。図13(a)〜図13(f)に、真空吸引により板状材料を積層させる場合に、板状材料に開ける真空吸引用穴の設置例を示す。
図13(a)は、ストリッパー11に配置する真空吸引用穴24の例を示し、図13(b)は、1シート目の板状材料3に配置する真空吸引用穴24の例を示す。先ず、重ねたときに図13(a)にはあって図13(b)にはない真空吸引用穴24を通して、1シート目の板状材料3を真空吸引しストリッパー11に密着させる。次に、例えば、図13(c)のような真空吸引用穴24を、2シート目の板状材料3に配置する。図13(b)にはあって図13(c)にはない真空吸引用穴24を通して、2シート目の板状材料3を真空吸引し1シート目の板状材料3に密着させる。同じように、図13(d)は、3シート目の板状材料3に配置する真空吸引用穴24を示し、図13(e)は、4シート目の板状材料3に配置する真空吸引用穴24を示す。図13(f)に示す通り、次に積層する板状材料がない最後の5シート目の板状材料3には真空吸引用穴24は不用である。
Alternatively, holes that can be vacuum-sucked may be previously formed in the plate-shaped material, and the plate-shaped materials may be brought into close contact with each other by vacuum suction and stacked. FIG. 13A to FIG. 13F show installation examples of vacuum suction holes opened in the plate material when the plate material is laminated by vacuum suction.
FIG. 13A shows an example of a vacuum suction hole 24 arranged in the stripper 11, and FIG. 13B shows an example of a vacuum suction hole 24 arranged in the first sheet material 3. First, when stacked, the first sheet-like material 3 is vacuum-sucked and brought into close contact with the stripper 11 through a vacuum suction hole 24 that is shown in FIG. 13A and not shown in FIG. 13B. Next, for example, a vacuum suction hole 24 as shown in FIG. 13C is arranged in the second sheet-shaped material 3. Through the vacuum suction hole 24 which is shown in FIG. 13B and not shown in FIG. 13C, the second plate-like material 3 is vacuum-sucked and brought into close contact with the first sheet-like material 3. Similarly, FIG. 13D shows a vacuum suction hole 24 arranged in the third sheet of plate-like material 3, and FIG. 13E shows a vacuum suction arranged in the fourth sheet of plate-like material 3. The service hole 24 is shown. As shown in FIG. 13 (f), the vacuum suction hole 24 is not necessary for the last plate-like material 3 of the fifth sheet without the plate-like material to be laminated next.

真空吸引用穴を配置する場所は限定されないが、吸引力で板状材料を引き上げるので、真空吸引用穴が不用な最後の板状材料を除いて、真空吸引用穴は各板状材料の四辺に均等に配置することが好ましい。
又、通常、全ての真空吸引を1基の真空装置で行うが、この場合に、最後の板状材料を真空吸引するときを除いて、開放された真空吸引用穴が存在するため、そのままでは真空圧がたたない。この対策として、各シート毎に真空吸引する場所を決めておき、配管ラインを分別し経路に制御弁を設けること等で真空圧を確保することも可能であるが、真空吸引用穴に絞り部を形成しておくことでも、板状材料を引き上げる程度の吸引力は発揮し得る。
The location for placing the vacuum suction holes is not limited, but the plate-like material is pulled up by suction force, so the vacuum suction holes are on the four sides of each plate-like material except for the last plate-like material that does not require a vacuum suction hole. It is preferable to arrange them evenly.
Normally, all vacuum suction is performed with a single vacuum device. In this case, except when vacuuming the last plate-like material, an open vacuum suction hole exists, so that Vacuum pressure does not hit. As a countermeasure against this, it is possible to secure the vacuum pressure by determining the place where vacuum suction is performed for each sheet and separating the piping lines and providing a control valve in the path. Even if it is formed, a suction force enough to pull up the plate-like material can be exhibited.

板状材料を積層する更に別の方法として、パンチの表面仕上げを粗くして、パンチと板状材料と間に生じる摩擦力を上げて、この摩擦力によって板状材料をパンチに保持する方法を用いることも好ましい。板状材料がパンチに保持される結果、順に打ち抜かれる板状材料はストリッパーに密着して積層される。一般に、打抜された孔は打抜過程で生じた内部応力のために、パンチを締め付ける方向、即ち、孔の径が小さくなるように弾性変形する。特に弾性の大きな材料ほど変形量は大きい。従って、パンチの表面仕上げを粗くするだけで板状材料をパンチに保持することが出来る。   As another method of laminating the plate-like material, a method is adopted in which the surface finish of the punch is roughened, the frictional force generated between the punch and the plate-like material is increased, and the plate-like material is held on the punch by this frictional force. It is also preferable to use it. As a result of the plate-like material being held by the punch, the plate-like materials that are sequentially punched are stacked in close contact with the stripper. Generally, the punched hole is elastically deformed so that the punch tightening direction, that is, the diameter of the hole becomes small due to internal stress generated in the punching process. In particular, the amount of deformation increases as the elasticity increases. Therefore, the plate-like material can be held on the punch only by roughening the surface finish of the punch.

弾性が大きな材料を板状材料に用いる場合には、より確実に、板状材料をパンチに保持するために、図14に示すような表面にタケノコ状の段差部31を有するパンチ30を用いることも好ましい。板状材料はパンチ30で打ち抜かれた瞬間に塑性変形せずに段差部31を乗り越え、順に積層される。パンチ30の段差高さHを板状材料の厚さに等しくすれば、密着して積層することが出来、又、弾性変形によって段差部31に引っ掛かるため板状材料がパンチ30から抜け落ちることがない。   When a highly elastic material is used for the plate-like material, in order to hold the plate-like material on the punch more reliably, use a punch 30 having a bamboo-like step 31 on the surface as shown in FIG. Is also preferable. The plate-like material goes over the step portion 31 without being plastically deformed at the moment of being punched by the punch 30 and is laminated in order. If the step height H of the punch 30 is made equal to the thickness of the plate-like material, they can be stacked in close contact, and the plate-like material will not fall out of the punch 30 because it is caught by the step portion 31 by elastic deformation. .

以上、高アスペクト比な貫孔部を有する工業用部品の製造方法について詳細を説明したが、本発明によれば、次に示す高精度な打抜加工が実現される。
工業用部品としての貫孔部直径Dが98μm、貫孔部間隔Nが50μmとなるように、板状材料である厚さ50μmのグリーンシートに孔部を開ける場合を例にとれば、一枚の板状材料におけるパンチとダイのクリアランスは、板厚の4%として2μm程度あればよい。このとき、一枚の板状材料における孔部直径と孔部軸長の比、即ち、アスペクト比はほぼ2:1であり、孔部間隔と孔部軸長の比は1:1である。この板状材料を12枚積層して工業用部品を得れば、その厚さは0.6mmとなり、工業用部品としての貫孔部直径Dと貫孔部軸長Lの比、即ち、アスペクト比は概ね1:6になり、貫孔部間隔Nと貫孔部軸長Lの比は1:12となる。このような高アスペクト比な貫孔部を、一枚の板状材料におけるクリアランスで、言い換えれば貫孔部直径Dとして4μm内のバラツキの精度で設けることが可能となる。
As mentioned above, although the detail was demonstrated about the manufacturing method of the industrial component which has a through-hole part with a high aspect ratio, according to this invention, the following highly accurate punching process is implement | achieved.
For example, when a hole is opened in a green sheet having a thickness of 50 μm, which is a plate-like material, so that the diameter D of the through hole as an industrial part is 98 μm and the interval N between the through holes is 50 μm. The clearance between the punch and the die in the plate-like material may be about 2 μm as 4% of the plate thickness. At this time, the ratio of the hole diameter to the hole axial length, that is, the aspect ratio of one plate-like material is approximately 2: 1, and the ratio of the hole interval to the hole axial length is 1: 1. If an industrial part is obtained by laminating 12 sheets of this plate-like material, the thickness becomes 0.6 mm, and the ratio of the through hole diameter D and the through hole axial length L as an industrial part, that is, the aspect The ratio is approximately 1: 6, and the ratio between the through-hole interval N and the through-hole axial length L is 1:12. Such a through-hole portion having a high aspect ratio can be provided with a clearance in one plate-like material, in other words, with a precision within 4 μm as the through-hole portion diameter D.

次に、本発明を実施例により説明し、その効果を確認する。
(実施例)
パンチ&ダイによる打抜加工機を使用して、ヤング率4kgf/mm2のグリーンシートを材料に用い、直径80μm、軸長0.8mmの貫孔部を、隣接する貫孔部の間隔を70μmとした密度になるように形成された配線基板を作製した。
このとき、一枚のグリーンシートの厚さを40μmとし、パンチを積層軸として20枚重ね合わせて作製した。得られた配線基板の貫孔部の直径を測定したところ、基板の表面側で80μm、基板の裏面側で80〜83μmであった。又、光学顕微鏡で基板の表面裏面を観察したところ、全く亀裂等はみられなかった。
Next, the present invention will be described with reference to examples to confirm the effects.
(Example)
Using a punch and die punching machine, a green sheet with a Young's modulus of 4 kgf / mm 2 is used as a material, a through hole with a diameter of 80 μm and an axial length of 0.8 mm, and a distance between adjacent through holes of 70 μm. A wiring board formed to have the density as described above was produced.
At this time, the thickness of one green sheet was 40 μm, and 20 sheets were stacked with a punch as a stacking axis. When the diameter of the through-hole part of the obtained wiring board was measured, it was 80 micrometers on the surface side of the board | substrate, and was 80-83 micrometers on the back surface side of the board | substrate. Further, when the front and back surfaces of the substrate were observed with an optical microscope, no cracks or the like were observed.

(比較例1)
一枚のグリーンシートの厚さを0.8mmとして、積層しない一枚のグリーンシートだけを用いた以外は、実施例と同様に配線基板を作製した。得られた配線基板の貫孔部の直径を測定したところ、基板の表面側で80μm、基板の裏面側で115〜130μmであった。光学顕微鏡で基板の表面裏面を観察したところ、孔の歪みが確認され、孔の縁に亀裂がある貫孔部が所々みられた。
(Comparative Example 1)
A wiring board was produced in the same manner as in the example except that the thickness of one green sheet was 0.8 mm and only one green sheet that was not laminated was used. When the diameter of the through-hole part of the obtained wiring board was measured, it was 80 micrometers on the surface side of the board | substrate, and was 115-130 micrometers on the back surface side of the board | substrate. When the front and back surfaces of the substrate were observed with an optical microscope, the distortion of the holes was confirmed, and through holes with cracks at the edges of the holes were observed.

(比較例2)
レーザー加工機を使用して、ヤング率4kgf/mm2のグリーンシートを材料に用い、実施例と同じ貫孔部が形成された配線基板を作製した。比較例1と同様に用いたグリーンシートは一枚だけで、その厚さは0.8mmとした。得られた配線基板の貫孔部の直径を測定したところ、基板の表面側で80μm、基板の裏面側で40〜69μmであった。光学顕微鏡による基板の表面裏面を観察したところ、孔の歪みが確認され、真円度の低下や孔の縁にバリや欠けが生じていた。
(Comparative Example 2)
Using a laser processing machine, a green sheet having a Young's modulus of 4 kgf / mm 2 was used as a material, and a wiring board having the same through-hole portion as in the example was produced. Only one green sheet was used as in Comparative Example 1, and the thickness was 0.8 mm. When the diameter of the through-hole part of the obtained wiring board was measured, it was 80 micrometers on the surface side of the board | substrate, and was 40-69 micrometers on the back surface side of the board | substrate. When the front and back surfaces of the substrate were observed with an optical microscope, hole distortion was confirmed, and the roundness decreased and burrs and chips were generated at the edge of the hole.

このように、本発明によれば、高アスペクト比な小さい貫孔部を、高密度に、従来の方法では得られない高い精度で、変形や亀裂を生じることなく形成した工業用部品を製造出来る。   As described above, according to the present invention, it is possible to manufacture an industrial part in which a small through-hole portion having a high aspect ratio is formed at a high density and with high accuracy that cannot be obtained by a conventional method without causing deformation or cracking. .

以上説明したように、本発明よれば、変形の可能性がある柔らかな材料を使用した場合においても、直径が100μm以下と極めて小さく、又、直径に比べ軸長が一定比率以上の長さを有する微細な貫孔部、即ち、小さく且つ高アスペクト比な貫孔部を、一枚の薄い板状材料に孔部を開ける精度と同等の精度で、高密度に設けた工業用部品の製造方法を提供することが出来る。この高アスペクト比な貫孔部を有する工業用部品の製造できる製造方法は、工業製品の実装化技術の向上が期待でき、よりコンパクトで便利な製品の製造が可能となるという、産業上の貢献度が高い方法である。   As described above, according to the present invention, even when a soft material with a possibility of deformation is used, the diameter is extremely small as 100 μm or less, and the axial length is more than a certain ratio compared to the diameter. A method for manufacturing industrial parts in which fine through holes, that is, through holes having a small and high aspect ratio, are provided at high density with the same accuracy as that for opening a hole in a thin plate material. Can be provided. The manufacturing method that can manufacture industrial parts with through-holes with a high aspect ratio can be expected to improve the mounting technology of industrial products, making it possible to manufacture more compact and convenient products. It is a high degree method.

本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す工程説明図であり、図1(a)は、ダイに1シート目の薄い板状材料を載せた1シート目準備工程を示し、図1(b)は、1シート目をパンチで打ち抜く1シート目打抜工程を示し、図1(c)は、2シート目準備工程を示し、図1(d)は、2シート目打抜工程を示し、図1(e)は、全シートの打抜、積層を終えて、ストリッパーより積層した板状材料を離すシート打抜完了工程を示す。It is process explanatory drawing which shows an example of the manufacturing method of the industrial component which has a through-hole part with a high aspect ratio using a punch and die | dye based on this invention, Fig.1 (a) is a 1st sheet | seat on die | dye. FIG. 1B shows a first sheet punching process in which the first sheet is punched by punching, and FIG. 1C shows a second sheet preparing process. FIG. 1 (d) shows the second sheet punching process, and FIG. 1 (e) shows the completion of sheet punching after all the sheets have been punched and laminated, and the laminated plate material is released from the stripper. A process is shown. 本発明に係る高アスペクト比な貫孔部を有する工業用部品を示す図で、図2(a)は、高アスペクト比な貫孔部を有する工業用部品の一例を示す斜視図で、図2(b)は、図2(a)における高アスペクト比な貫孔部の拡大図である。FIG. 2A is a perspective view showing an example of an industrial part having a high aspect ratio through-hole portion according to the present invention. FIG. FIG. 2B is an enlarged view of the through-hole portion having a high aspect ratio in FIG. 従来方法に係る打抜金型による貫孔部開口を示す図で、図3(a)は、クラックの発生状況を示す模式図で、図3(b)は、打抜後の板状材料の貫孔部の断面形状を示す説明図である。It is a figure which shows the through-hole part opening by the punching die which concerns on the conventional method, FIG. 3 (a) is a schematic diagram which shows the generation | occurrence | production state of a crack, FIG.3 (b) is the plate-shaped material after punching. It is explanatory drawing which shows the cross-sectional shape of a through-hole part. 従来方法に係るレーザー加工による貫孔部開口を示す図で、図4(a)は、レーザー光線による加工状況を示す模式図で、図4(b)は、レーザー加工後の貫孔部の断面形状を示す説明図である。FIG. 4 (a) is a schematic view showing a state of processing by a laser beam, and FIG. 4 (b) is a cross-sectional shape of the through-hole portion after laser processing. It is explanatory drawing which shows. 本発明に係る高アスペクト比な貫孔部を有する工業用部品を示す図で、図5(a)は、貫孔部の最短距離の一例を示す説明図で、図5(b)は、貫孔部の最短距離の他の一例を示す説明図である。FIG. 5 (a) is an illustration showing an example of the shortest distance of a through-hole part, and FIG. 5 (b) is an illustration showing an industrial part having a high-aspect ratio through-hole part according to the present invention. It is explanatory drawing which shows another example of the shortest distance of a hole. 本発明に係る、高アスペクト比な貫孔部の断面形状の一例を示す説明図である。It is explanatory drawing which shows an example of the cross-sectional shape of the through-hole part with a high aspect ratio based on this invention. 従来方法に係るパンチとダイを用いた打ち抜き方法の一例を示す工程説明図である。It is process explanatory drawing which shows an example of the punching method using the punch and die | dye concerning a conventional method. 従来方法に係るパンチとダイを用いた打ち抜き方法の他の一例を示す工程説明図である。It is process explanatory drawing which shows another example of the punching method using the punch and die | dye concerning a conventional method. 本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す工程説明図であり、図9(a)は、ダイに薄い板状材料を載せた準備工程を示し、図9(b)は、パンチで板状材料を打ち抜く打抜工程を示し、図9(c)は、板状材料とともにストリッパーを引き上げてカスを除去するカス取り工程を示す。FIG. 9A is a process explanatory view showing an example of a method for manufacturing an industrial part having a high aspect ratio through-hole portion using a punch and a die according to the present invention, and FIG. 9 (b) shows a punching process for punching a plate-shaped material with a punch, and FIG. 9 (c) shows a scraping process for removing the scrap by pulling up the stripper together with the plate-shaped material. Indicates. 従来方法に係るパンチとダイを用いた打ち抜き方法の一例を示す説明図である。It is explanatory drawing which shows an example of the punching method using the punch and die | dye concerning a conventional method. 本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the industrial component which has a high aspect ratio through-hole part using a punch and die | dye based on this invention. 本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す工程説明図であり、図12(a)は、所望の全n(n=3)シートの板状材料を打抜、積層して、ストリッパーを引き上げたシート打抜完了工程Aを示し、図12(b)は、ワーク受け治具をダイ上に挿入するシート打抜完了工程Bを示し、図12(c)は、ストリッパーより積層した板状材料を離し、ワーク受け治具上に移載するシート打抜完了工程Cを示す。It is process explanatory drawing which shows an example of the manufacturing method of the industrial component which has a through-hole part with a high aspect ratio using a punch and die | dye based on this invention, Fig.12 (a) is desired all n (n = 3) A sheet punching completion step A in which the sheet-like material of the sheet is punched and stacked and the stripper is pulled up is shown. FIG. 12B shows the sheet punching completion in which the workpiece receiving jig is inserted on the die. Step B is shown, and FIG. 12C shows a sheet punching completion step C in which the laminated plate material is separated from the stripper and transferred onto the work receiving jig. 本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す説明図であり、図13(a)は、ストリッパーに配置する真空吸引用穴を示し、図13(b)は、1シート目の板状材料に配置する真空吸引用穴を示し、図13(c)は、2シート目の板状材料に配置する真空吸引用穴を示し、図13(d)は、3シート目の板状材料に配置する真空吸引用穴を示し、図13(e)は、4シート目の板状材料に配置する真空吸引用穴を示し、図13(f)は、5シート目(最後)の板状材料に配置する真空吸引用穴(穴なし)を示す。It is explanatory drawing which shows an example of the manufacturing method of the industrial component which has a high aspect ratio through-hole part using a punch and die | dye based on this invention, Fig.13 (a) is for vacuum suction arrange | positioned at a stripper 13 (b) shows a vacuum suction hole arranged in the first sheet of plate material, and FIG. 13 (c) shows a vacuum suction hole arranged in the second sheet of plate material. FIG. 13 (d) shows a vacuum suction hole arranged in the third sheet of plate material, FIG. 13 (e) shows a vacuum suction hole arranged in the fourth sheet of plate material, FIG. 13 (f) shows a vacuum suction hole (no hole) arranged in the plate material of the fifth sheet (last). 本発明に係る高アスペクト比な貫孔部を有する工業用部品の製造方法に用いられるパンチの一実施例を示す側面図である。It is a side view which shows one Example of the punch used for the manufacturing method of the industrial component which has a through-hole part with a high aspect ratio which concerns on this invention. 本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す詳細の工程説明図であり、図15(a)は、ダイに1シート目の薄い板状材料を載せた1シート目準備工程を示し、図15(b)は、1シート目打抜工程において、ストリッパーを下ろしてダイ上の板状材料にあてた状態を示し、図15(c)は、1シート目打抜工程において、パンチをダイ中へ打ち抜いた状態を示し、図15(d)は、1シート目打抜工程において、ストリッパーをダイ上の板状材料にあてたまま、パンチを引き上げ板状材料の最下部より僅かに引き込んだ状態を示し、図15(e)は、1シート目打抜工程において、ストリッパーを引き上げた状態を示し、図15(f)は、2シート目準備工程を示す。FIG. 15A is a detailed process explanatory view showing an example of a method for producing an industrial part having a high aspect ratio through-hole portion using a punch and a die according to the present invention, and FIG. FIG. 15 (b) shows the first sheet preparation process on which a thin plate-like material is placed, and FIG. 15 (b) shows the state where the stripper is lowered and applied to the plate-like material on the die in the first sheet punching process. 15 (c) shows a state in which the punch is punched into the die in the first sheet punching step, and FIG. 15 (d) shows the stripper applied to the plate-like material on the die in the first sheet punching step. Fig. 15 (e) shows a state in which the punch is pulled up slightly from the lowermost portion of the plate material, and Fig. 15 (e) shows a state in which the stripper is pulled up in the first sheet punching process. The 2nd sheet preparatory process is shown. 本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す工程説明図であり、図16(a)は、ダイに1シート目の薄い板状材料を載せた1シート目準備工程を示し、図16(b)は、1シート目をパンチで打ち抜く1シート目打抜工程を示し、図16(c)は、2シート目準備工程を示し、図16(d)は、2シート目打抜工程を示し、図16(e)は、3シート目準備工程を示し、図16(f)は、全シートの打抜、積層を終えて、ストリッパーより積層した板状材料を離すシート打抜完了工程を示す。It is process explanatory drawing which shows an example of the manufacturing method of the industrial component which has a through-hole part with a high aspect ratio using a punch and die | dye based on this invention, Fig.16 (a) is a 1st sheet | seat on die | dye. FIG. 16B shows a first sheet punching process in which the first sheet is punched by punching, and FIG. 16C shows a second sheet preparing process. 16 (d) shows the second sheet punching step, FIG. 16 (e) shows the third sheet preparation step, and FIG. 16 (f) shows the punching and lamination of all the sheets. The sheet punching completion process for releasing the laminated plate material from the stripper will be described. 本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す工程説明図であり、図17(a)は、ダイに1シート目の薄い板状材料を載せた1シート目準備工程を示し、図17(b)は、1シート目をパンチで打ち抜く1シート目打抜工程を示し、図17(c)は、2シート目準備工程を示し、図17(d)は、2シート目打抜工程を示し、図17(e)は、3シート目準備工程を示し、図17(f)は、全シートの打抜、積層を終えて、ストリッパーより積層した板状材料を離すシート打抜完了工程を示す。It is process explanatory drawing which shows an example of the manufacturing method of the industrial component which has a through-hole part with a high aspect ratio using a punch and die | dye based on this invention, Fig.17 (a) is a 1st sheet | seat on die | dye. FIG. 17B shows a first sheet punching process in which the first sheet is punched by punching, and FIG. 17C shows a second sheet preparing process. 17 (d) shows the second sheet punching process, FIG. 17 (e) shows the third sheet preparation process, and FIG. 17 (f) finishes punching and stacking of all sheets. The sheet punching completion process for releasing the laminated plate material from the stripper will be described. 本発明に係る、パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法の一例を示す工程説明図であり、図18(a)は、ダイに1シート目の薄い板状材料を載せた1シート目準備工程を示し、図18(b)は、1シート目をパンチで打ち抜く1シート目打抜工程を示し、図18(c)は、2シート目準備工程を示し、図18(d)は、2シート目打抜工程を示し、図18(e)は、3シート目準備工程を示し、図18(f)は、全シートの打抜、積層を終えて、ストリッパーより積層した板状材料を離すシート打抜完了工程を示す。It is process explanatory drawing which shows an example of the manufacturing method of the industrial component which has a through-hole part with a high aspect ratio using a punch and die | dye based on this invention, Fig.18 (a) is a 1st sheet | seat on die | dye. FIG. 18B shows a first sheet punching process in which the first sheet is punched and FIG. 18C shows a second sheet preparing process. 18 (d) shows the second sheet punching step, FIG. 18 (e) shows the third sheet preparation step, and FIG. 18 (f) shows the punching and lamination of all the sheets. The sheet punching completion process for releasing the laminated plate material from the stripper will be described. 本発明に係るスペーサとして用いられるシムの昇降機構の一例を示す断面図である。It is sectional drawing which shows an example of the raising / lowering mechanism of the shim used as a spacer which concerns on this invention. 図16(a)〜図16(f)に工程が示される工業用部品の製造方法で使用される外挿シムを示す斜視図である。It is a perspective view which shows the extrapolation shim used with the manufacturing method of the industrial components for which a process is shown by Fig.16 (a)-FIG.16 (f).

符号の説明Explanation of symbols

1…工業用部品、2…貫孔部、3…板状材料、4,5…昇降シム、6…外挿シム、7…剥離治具、8…真空吸引、9…真空破壊、10,30…パンチ、11…ストリッパー、12…ダイ、13…板状材料、14…エッジ、15…クラック、16…クリアランス、17…平行ビーム光、18…集光レンズ、19…レーザー光幅、20…焦点距離、21…ダイのザグリ部、23…ワーク受け治具、24…真空吸引用穴、31…段差部、32…昇降機構、33…サーボモータ、34…雄ねじ、35…雌ねじ、D…貫孔部直径、H…段差高さ、L…貫孔部軸長、N…貫孔部間隔、W…壁部、S…最短距離。 DESCRIPTION OF SYMBOLS 1 ... Industrial part, 2 ... Through-hole part, 3 ... Plate-like material, 4 ... 5 Lifting shim, 6 ... Extrapolation shim, 7 ... Stripping jig | tool, 8 ... Vacuum suction, 9 ... Vacuum breakage, 10, 30 DESCRIPTION OF SYMBOLS ... Punch, 11 ... Stripper, 12 ... Die, 13 ... Plate-like material, 14 ... Edge, 15 ... Crack, 16 ... Clearance, 17 ... Parallel beam, 18 ... Condensing lens, 19 ... Laser beam width, 20 ... Focus Distance, 21 ... Counterbore part of die, 23 ... Work receiving jig, 24 ... Hole for vacuum suction, 31 ... Stepped part, 32 ... Lifting mechanism, 33 ... Servo motor, 34 ... Male screw, 35 ... Female screw, D ... Through hole Part diameter, H: Step height, L: Through hole axial length, N: Through hole interval, W: Wall part, S: Shortest distance.

Claims (13)

パンチとダイを用いた、高アスペクト比な貫孔部を有する工業用部品の製造方法であって、
前記パンチにより、第一の板状材料に第一の孔部を開ける第一の工程と、
前記第一の孔部から前記パンチを抜き取らない状態で、前記第一の板状材料をストリッパーに密着させて引き上げる第二の工程と、
前記パンチの先端部が引き上げた前記第一の板状材料の最下部より僅かに引き込む程度に、前記パンチを引き上げる第三の工程と、
前記パンチにより、第二の板状材料に第二の孔部を開ける第四の工程と、
前記第二の孔部から前記パンチを抜き取らない状態で、前記第二の板状材料を前記第一の板状材料とともに引き上げる第五の工程と、
前記パンチの先端部が引き上げた前記第二の板状材料の最下部より僅かに引き込む程度に、前記パンチを引き上げる第六の工程を含み、
以降、複数枚の板状材料を、第四の工程から第六の工程を繰り返して積層することを特徴とする高アスペクト比な貫孔部を有する工業用部品の製造方法。
A method of manufacturing an industrial part having a high aspect ratio through-hole using a punch and a die,
A first step of opening a first hole in the first plate-like material by the punch;
A second step in which the first plate-shaped material is brought into close contact with a stripper and pulled out without removing the punch from the first hole;
A third step of pulling up the punch to such an extent that the tip of the punch is pulled slightly from the bottom of the first plate-like material pulled up;
A fourth step of opening a second hole in the second plate-like material by the punch;
A fifth step of pulling up the second plate-like material together with the first plate-like material in a state where the punch is not removed from the second hole portion;
A sixth step of pulling up the punch to the extent that the tip of the punch is pulled slightly from the bottom of the second plate-like material pulled up;
Thereafter, a method for producing an industrial part having a through hole with a high aspect ratio, wherein a plurality of plate-like materials are laminated by repeating the fourth to sixth steps.
前記第一の工程及び前記第四の工程において、パンチで板状材料に孔部を開ける際に、ダイとストリッパーとの間にスペーサを介する請求項1に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   In the first step and the fourth step, the high aspect ratio through-hole portion according to claim 1, wherein a spacer is interposed between the die and the stripper when the hole portion is opened in the plate-shaped material with a punch. A method for manufacturing industrial parts. 前記スペーサの厚さが、ダイとストリッパーとの間に存在する板状材料の厚さの合計より、略5乃至15μm厚い請求項2に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The industrial part having a high aspect ratio through-hole according to claim 2, wherein the thickness of the spacer is approximately 5 to 15 µm thicker than the total thickness of the plate-like materials existing between the die and the stripper. Production method. 前記第四の工程から第六の工程を繰り返し、所望枚数の板状材料を積層した後に、
積層された板状材料が引き上げられている状態において、ワーク受け治具をダイ上に挿入し、前記積層された板状材料を前記ワーク受け治具上に移載する工程を有する請求項1に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。
After repeating the fourth step to the sixth step and laminating a desired number of plate-like materials,
2. The method according to claim 1, further comprising a step of inserting a workpiece receiving jig onto a die and transferring the laminated plate-like material onto the workpiece receiving jig in a state where the laminated plate-like material is pulled up. The manufacturing method of the industrial component which has a through-hole part with the high aspect ratio of description.
前記第二の工程と第三の工程の間において、前記パンチの先端部が、引き上げた前記第一の板状材料の最下部より僅かに飛び出た状態において、前記第一の板状材料の第一の孔部のカス取りを行う工程と、
及び、前記第五の工程と第六の工程の間において、前記パンチの先端部が、引き上げた前記第二の板状材料の最下部より僅かに飛び出た状態において、前記第二の板状材料の第二の孔部のカス取りを行う工程と、を含む請求項1に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。
Between the second step and the third step, in the state where the tip of the punch slightly protrudes from the lowermost part of the pulled up first plate-like material, A step of removing waste from one hole,
And, between the fifth step and the sixth step, the second plate-like material is in a state where the tip of the punch slightly protrudes from the lowermost part of the raised second plate-like material. The method of manufacturing the industrial component which has a through-hole part with a high aspect ratio of Claim 1 including the process of removing the residue of said 2nd hole part.
前記カス取りが、圧縮空気の流れでカスを除去する空気ブロー手段によるか、若しくは、粘着媒体に付着させてカスを除去する粘着手段により行われる請求項5に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The high-aspect-ratio through-hole portion according to claim 5, wherein the debris removal is performed by an air blowing unit that removes debris by a flow of compressed air, or by an adhesive unit that adheres to an adhesive medium and removes debris. A method for producing an industrial part having 前記工業用部品に開けた前記貫孔部の寸法の精度が、一枚の前記板状材料に開けた前記孔部の寸法の精度と同等である請求項1に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The high-aspect-ratio through-hole according to claim 1, wherein the accuracy of the size of the through-hole portion opened in the industrial part is equivalent to the accuracy of the size of the hole portion opened in the sheet material. Of manufacturing industrial parts having parts. 前記貫孔部の直径若しくは縁と対向する縁との最短距離と、軸長との比が、略1:1〜1:15である請求項1〜7の何れか一項に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The high aspect ratio according to any one of claims 1 to 7, wherein a ratio of the shortest distance between the diameter of the through-hole portion or the edge facing the edge and the axial length is approximately 1: 1 to 1:15. The manufacturing method of the industrial component which has a specific through-hole part. 前記貫孔部と隣接する貫孔部との間隔と、前記貫孔部の軸長との比が、略1:1〜1:15である請求項1〜8の何れか一項に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The ratio between the interval between the through-hole portion and the adjacent through-hole portion and the axial length of the through-hole portion is approximately 1: 1 to 1:15, according to any one of claims 1 to 8. A method for producing industrial parts having through-holes with a high aspect ratio. 前記貫孔部の直径が100μm以下である請求項1〜9の何れか一項に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The diameter of the said through-hole part is 100 micrometers or less, The manufacturing method of the industrial components which have a high aspect-ratio through-hole part as described in any one of Claims 1-9. 前記貫孔部と隣接する貫孔部との間隔が100μm以下である請求項1〜10の何れか一項に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The method for producing an industrial part having a high aspect ratio through-hole part according to any one of claims 1 to 10, wherein an interval between the through-hole part and an adjacent through-hole part is 100 µm or less. 予め接着剤が塗布されている前記板状材料を用いる請求項1〜11の何れか一項に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The manufacturing method of the industrial component which has a high aspect-ratio through-hole part as described in any one of Claims 1-11 using the said plate-shaped material to which the adhesive agent is apply | coated previously. 前記第一の板状材料と前記第二の板状材料との間に、接着シートを挟む工程を有する請求項1〜11の何れか一項に記載の高アスペクト比な貫孔部を有する工業用部品の製造方法。   The industry having a through-hole portion having a high aspect ratio according to any one of claims 1 to 11, further comprising a step of sandwiching an adhesive sheet between the first plate-like material and the second plate-like material. Method of manufacturing parts.
JP2005300918A 2000-07-19 2005-10-14 Manufacturing method of industrial component having through hole with high aspect ratio Withdrawn JP2006068900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300918A JP2006068900A (en) 2000-07-19 2005-10-14 Manufacturing method of industrial component having through hole with high aspect ratio

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000218378 2000-07-19
JP2000280573 2000-09-14
JP2005300918A JP2006068900A (en) 2000-07-19 2005-10-14 Manufacturing method of industrial component having through hole with high aspect ratio

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001131490A Division JP4067782B2 (en) 2000-07-19 2001-04-27 Manufacturing method of industrial parts having through-holes with high aspect ratio

Publications (1)

Publication Number Publication Date
JP2006068900A true JP2006068900A (en) 2006-03-16

Family

ID=36150021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300918A Withdrawn JP2006068900A (en) 2000-07-19 2005-10-14 Manufacturing method of industrial component having through hole with high aspect ratio

Country Status (1)

Country Link
JP (1) JP2006068900A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020291A (en) * 2013-07-17 2015-02-02 コニカミノルタ株式会社 Exposure equipment and method of manufacturing light shielding member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020291A (en) * 2013-07-17 2015-02-02 コニカミノルタ株式会社 Exposure equipment and method of manufacturing light shielding member

Similar Documents

Publication Publication Date Title
JP3930300B2 (en) Punching die for simultaneous punching
JP4172920B2 (en) Debris removal method for punching and manufacturing method of punched product
JP2007260820A (en) Manufacturing method of industrial part having through-hole part of high aspect ratio
US6637102B2 (en) Process for producing an industrial member having throughholes of high aspect ratio
JP4067782B2 (en) Manufacturing method of industrial parts having through-holes with high aspect ratio
JPH06170822A (en) Sheet proceed product and production thereof
JP2002368424A (en) Multilayer board having accurate through hole and circuit board
US6502302B2 (en) Process for producing an industrial member having throughholes of high aspect ratio
JP2006068900A (en) Manufacturing method of industrial component having through hole with high aspect ratio
EP1175978B1 (en) Method for fabrication of industrial parts having high-aspect-ratio through-hole sections
JP3920036B2 (en) Manufacturing method of industrial parts having through-holes with high aspect ratio
JPH1158297A (en) Punch die
JP5617320B2 (en) Sheet material punching
JP2002160195A5 (en)
JP7318877B1 (en) LAMINATED PRODUCTION APPARATUS AND MANUFACTURING METHOD
JP2002178297A (en) Metal mold for drilling
JP5120839B2 (en) Fine hole machining method
JPH11207696A (en) Punch metallic mold
JP3968855B2 (en) Multi-sheet member processing method and processing equipment
JPH10172861A (en) Manufacture of ceramic electronic parts and method for cutting ceramic block
JP2009043449A (en) Method of manufacturing intermediate conductor for flat cabling, and manufacturing method of flat cabling
KR20150142330A (en) Manufacturing method for dummy of the pcb manufacturing mold
JP2006332635A (en) Process and apparatus of manufacturing ceramic electronic part
US20070169600A1 (en) Method and structure to enable fine grid mlc technology
JP2001009790A (en) Punch die

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701