JP2006068789A - Laser induced processing method - Google Patents

Laser induced processing method Download PDF

Info

Publication number
JP2006068789A
JP2006068789A JP2004257150A JP2004257150A JP2006068789A JP 2006068789 A JP2006068789 A JP 2006068789A JP 2004257150 A JP2004257150 A JP 2004257150A JP 2004257150 A JP2004257150 A JP 2004257150A JP 2006068789 A JP2006068789 A JP 2006068789A
Authority
JP
Japan
Prior art keywords
laser
workpiece
solution
laser beam
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004257150A
Other languages
Japanese (ja)
Inventor
Masaki Kondo
昌樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004257150A priority Critical patent/JP2006068789A/en
Publication of JP2006068789A publication Critical patent/JP2006068789A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser induced processing method that makes laser beam machining possible in a minute machining shape below a diffraction limit without being restricted by the type of material of a workpiece. <P>SOLUTION: A workpiece 7 is immersed and arranged in a solution 5 in which particles 6 are dispersed. A high intensity ultrashort pulsed laser beam 2 emitted from a high intensity ultrashort pulsed laser 1 is converged so as to be focused on a position on the near side of the workpiece 7, the solution 5 is pulse-irradiated. The output intensity of the high intensity ultrashort pulsed laser 1 is controlled in the manner evenly balancing the self-focusing generated by the non-linear optical effect of the solution 5 as induced by the laser beam 2 and the diffraction of the laser beam 2. As a result, the laser beam 2 is propagated in the solution 5 toward the workpiece 7 micro-linearly, and the particles 6 suspended in the solution 5 in the micro-linear region are made to collide with the workpiece 7 to perform the machining. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微細な形状の加工を種々の素材の被加工物に施すことが可能なレーザ誘起加工方法に関するものである。   The present invention relates to a laser-induced machining method capable of performing fine-shaped machining on workpieces of various materials.

ピーク出力の高いレーザ発振器は、その発振パルス幅を小さく設定することで得ることができ、1960年代にはナノ秒の発振パルス幅を持つレーザが既に開発され、さらに1990年代からはチタンサファイアレーザでのフェムト秒(fsec=10-15 sec)や過飽和吸収鏡を用いたピコ秒(psec=10-12 sec)の発振パルス幅を持つレーザが開発、市販され、様々な技術分野で利用されてきた。近年では、半導体レーザを用いてピコ秒やフェムト秒の発振パスル幅の領域でレーザ媒質に励起させて発振するレーザ発振器が市販されている。 A laser oscillator with a high peak output can be obtained by setting the oscillation pulse width to a small value. In the 1960s, a laser having an oscillation pulse width of nanosecond was already developed, and from the 1990s, a titanium sapphire laser was used. Lasers with a pulse width of femtosecond (fsec = 10 -15 sec) and picosecond (psec = 10 -12 sec) using a saturable absorber mirror have been developed, marketed, and used in various technical fields. . In recent years, laser oscillators that oscillate by being excited by a laser medium in a picosecond or femtosecond oscillation pulse width region using a semiconductor laser are commercially available.

上述のような超短パルスで高ピーク出力を有するレーザを用いた微細加工では、被加工物への熱的損傷が少ないことから、良好な加工面を得られる特徴があり、特に薄膜加工や樹脂の微細加工に適している。これに対し、従来のナノ秒の発振パルス幅を持つレーザを用いた微細加工やエキシマレーザの紫外光を用いたアブレーション加工では、レーザの発振パルス幅が大きいために、被加工物への熱的損傷の発生が否めない。   Fine processing using a laser having a high peak output with an ultrashort pulse as described above has a feature that a good processed surface can be obtained because there is little thermal damage to the workpiece, especially thin film processing and resin Suitable for fine processing. In contrast, in conventional microfabrication using a laser with an oscillation pulse width of nanoseconds and ablation processing using ultraviolet light from an excimer laser, the laser oscillation pulse width is large. Damage cannot be denied.

一方、微細加工の限界は、レーザ光を理想的にその回折限界まで集光したビーム径に依存する。一般に、レーザ光を集光性の良いTEM00モード(基本モード)においてその回折限界まで集光した場合、そのビーム径dは、レーザ波長をλ、集光レンズの焦点距離をf、集光レンズのビーム径をwとすると、
d=1.22×λ×(f/w) または、d=(1.22×λ)/NA
の式で表される。
On the other hand, the limit of microfabrication depends on the diameter of the beam that condenses the laser beam ideally to its diffraction limit. In general, when a laser beam is condensed up to its diffraction limit in the TEM 00 mode (fundamental mode) with good condensing property, the beam diameter d is λ, the focal length of the condensing lens is f, and the condensing lens If the beam diameter of is w,
d = 1.22 × λ × (f / w) or d = (1.22 × λ) / NA
It is expressed by the following formula.

上記式から明らかなように、小さな集光ビーム径dを得るためには、短波長レーザを用いてレーザ波長λを小さく設定するか、開口数NAが大きく、且つ焦点距離の小さい集光レンズで大きなビームを使うことが考えられる。   As is clear from the above equation, in order to obtain a small focused beam diameter d, a short wavelength laser is used to set the laser wavelength λ small, or a condensing lens with a large numerical aperture NA and a small focal length. It is conceivable to use a large beam.

ところが、極めて大きなビームを使う場合には、集光レンズの収差に起因して最小の集光ビーム径が得られない場合があり、しかも、焦点深度(ピントの合う距離の範囲)は開口数NAの2乗に比例して小さくなるから、集光レンズと被加工物との間の距離を調節しながら加工する方式が必要となる。また、上記式は、レーザ光の集光ビーム径を単に算出するための式であって、レーザ光を実際に被加工物に照射した場合には、レーザ光のエネルギだけでなく、被加工物における素材の波長による吸収特性、加工形状および表面状態に応じて実際の集光ビーム径の大きさが異なる。但し、一般的には回折限界を超えて集光する方法は存在せず、そのため、従来では回折限界を大きく超える程の微細な加工手段が存在しなかった。   However, when an extremely large beam is used, the minimum focused beam diameter may not be obtained due to the aberration of the focusing lens, and the focal depth (range of focus distance) is NA. Therefore, a method of processing while adjusting the distance between the condenser lens and the workpiece is required. Further, the above expression is an expression for simply calculating the focused beam diameter of the laser beam, and when the workpiece is actually irradiated with the laser beam, not only the energy of the laser beam but also the workpiece The actual focused beam diameter varies depending on the absorption characteristics depending on the wavelength of the material, the processing shape, and the surface state. However, in general, there is no method for condensing light beyond the diffraction limit, and thus there has conventionally been no fine processing means that greatly exceeds the diffraction limit.

ところが、近年では、上記回折限界を超えたレーザ光の集光ビーム径を得て微細な加工を行える加工方法として、レーザ誘起チャネリング加工が提案されている(特許文献1参照)。このレーザ誘起チャネリング加工は、高強度超短パルスレーザ光を被加工物に入力し、カー効果によって被加工物の等位相面の空間的変化を起こして、高強度超短パルスレーザ光の自己収束が起こるとともに、カー効果により自己収束された高強度超短パルスレーザ光により光学的ブレークダウンを起こして、被加工物中にプラズマ発生させることにより高強度超短パルスレーザ光を自己発散させ、高強度超短パルスレーザ光の被加工物への入力強度を制御することによって高強度超短パルスレーザ光の自己発散により自己収束を打ち消して、高強度超短パルスレーザ光の自己発散と自己収束とをバランスさせることにより、高強度超短パルスレーザ光が固体内部に伝搬する方向に向かって線状の加工が行われるようにし、透明材料の被加工物の表面に損傷を与えることなく内部のみの加工を行うものである。   However, in recent years, laser-induced channeling has been proposed as a processing method capable of obtaining a focused beam diameter of laser light exceeding the diffraction limit and performing fine processing (see Patent Document 1). In this laser-induced channeling process, high-intensity ultrashort pulse laser light is input to the work piece, and the Kerr effect causes a spatial change of the equiphase surface of the work piece, so that self-focusing of the high-intensity ultra-short pulse laser light occurs. In addition, optical breakdown occurs due to the high-intensity ultrashort pulse laser beam that is self-focused by the Kerr effect, and plasma is generated in the work piece to cause the high-intensity ultrashort pulse laser beam to self-diverge, Self-divergence and self-convergence of high-intensity ultrashort pulsed laser light are canceled by controlling the input intensity of the intense ultrashort-pulsed laser light to the workpiece by self-divergence of the high-intensity ultrashort pulsed laser light. Is balanced so that high-intensity ultra-short pulse laser light is linearly processed in the direction of propagation inside the solid, and the transparent material is processed. And performs processing only inside without the surface of damaging.

上記レーザ誘起チャネリング加工では、透明材料に微細な加工を行うことが可能であり、その最小ビーム径dは、
d=(1.22×λ)/ルート(8×N0×N2)
の式で表される。但し、上記式において、屈折率Nは、N=N0+N2、N2=Δ+lであり、lはレーザインテシチティ、Δは非線形定数である。したがって、上記式から明らかなように、レーザ光のビーム径はレーザインテシチティlに依存する。
In the laser induced channeling process, it is possible to perform a fine process on a transparent material, and the minimum beam diameter d is
d = (1.22 × λ) / route (8 × N0 × N2)
It is expressed by the following formula. However, in the above formula, the refractive index N is N = N0 + N2 and N2 = Δ + 1, where l is the laser integrity and Δ is a nonlinear constant. Therefore, as apparent from the above formula, the beam diameter of the laser light depends on the laser integrity l.

また、従来では、光の吸収が少ないことに起因して直接的なレーザエッチング法を利用することが困難であるガラスなどの透明材料に微細加工を施す手段として、レーザ照射で透明材料を簡便に、且つ精密に微細加工できるように図った透明材料のレーザ微細加工方法(特許文献2参照)や、透明材料に対し高い加工面精度で微細加工できるように図ったレーザ加工方法(特許文献3参照)が提案されている。   Conventionally, as a means of finely processing a transparent material such as glass, which is difficult to use a direct laser etching method due to low light absorption, the transparent material can be simply applied by laser irradiation. In addition, a laser micromachining method for a transparent material designed to allow precise micromachining (see Patent Document 2), and a laser processing method designed to perform micromachining with high processing surface accuracy for a transparent material (see Patent Document 3) ) Has been proposed.

上記特許文献2のレーザ微細加工方法では、図2に示すように、レーザ光のレーザ波長に強い吸収性を有する流動性物質23を、透明材料からなる被加工物21の裏面(図の左側面)に接触させた状態で、レーザ光22を、被加工物21の表面(図の右側面)から入射して、被加工物21を通して流動性物質23と被加工物21との接触面に照射する。これにより、被加工物21におけるレーザ光22の入射側である表面には何らの変化もないが、被加工物21における流動性物質23と接触した裏面にはレーザ光22の照射部分にのみ選択的にエッチングが行われる。ここで、レーザ光22を例えばマスクパターンを通して照射すれば、線幅が数マイクロメータの微細構造の形成が可能であり、しかも、その形成部分には何らの化学的な劣化や損傷を与えない。   In the laser microfabrication method of Patent Document 2 described above, as shown in FIG. 2, a fluid substance 23 having a strong absorption for the laser wavelength of the laser beam is applied to the back surface (the left side surface of the drawing) of the workpiece 21 made of a transparent material. ) Is incident on the surface of the workpiece 21 (the right side surface in the figure), and is irradiated to the contact surface between the fluid material 23 and the workpiece 21 through the workpiece 21. To do. As a result, there is no change on the surface on the workpiece 21 where the laser beam 22 is incident, but only the portion irradiated with the laser beam 22 is selected on the back surface of the workpiece 21 in contact with the fluid substance 23. Etching is performed. Here, if the laser beam 22 is irradiated through a mask pattern, for example, a fine structure having a line width of several micrometers can be formed, and the formed portion is not chemically degraded or damaged.

一方、上記特許文献3のレーザ加工方法は、図3に示すように、レーザ光34の吸収が少ない溶媒に微粒子32を分散してなる溶液33を、基板状の被加工物31の表面(図の上面)に塗布などの手段で接触させ、光学系やマスクにより空間選択したレーザ光34を、上記被加工物31に対し表面側から照射して、レーザ光34のエネルギを微粒子32に吸収させ、このレーザ光34で励起された微粒子32の被加工物31への衝突または電子遷移により被加工物31を加工して、微小な除去を行うものである。このレーザ加工方法では、微粒子32からのエネルギ移動を用いることで、被加工物31の極表面のみを加工することが可能となるから、レーザ光の吸収が被加工物の内部にも侵入する通常のレーザアブレーション法での被加工物の直接加工とは異なり、加工面制度の高いレーザ加工が可能となる。
特開平11−207479号公報 特許第3012926号公報 特開2002−178171号公報
On the other hand, in the laser processing method of Patent Document 3, as shown in FIG. 3, a solution 33 in which fine particles 32 are dispersed in a solvent that hardly absorbs laser light 34 is applied to the surface of a substrate-like workpiece 31 (FIG. The laser beam 34 is contacted to the upper surface of the substrate 31 by means of coating or the like and spatially selected by an optical system or a mask, and the workpiece 31 is irradiated from the surface side so that the energy of the laser beam 34 is absorbed by the fine particles 32. The workpiece 31 is processed by collision of the fine particles 32 excited by the laser beam 34 with the workpiece 31 or electronic transition, and minute removal is performed. In this laser processing method, by using the energy transfer from the fine particles 32, it is possible to process only the pole surface of the workpiece 31, so that the absorption of the laser light usually enters the inside of the workpiece. Unlike direct machining of a workpiece by the laser ablation method, laser machining with a high machining surface system is possible.
Japanese Patent Laid-Open No. 11-207479 Japanese Patent No. 3012926 JP 2002-178171 A

しかしながら、上記特許文献1の高強度超短パルスレーザ加工方法では、レーザ光を微小なビーム径に集光できたとしても、加工対象がガラスなどの透明材料に限定されてしまうとともに、被加工物の内部加工を行うに留まってしまう、つまり被加工物の表面の微細加工を行うことができないという課題がある。   However, in the high-intensity ultrashort pulse laser processing method of Patent Document 1 described above, the processing object is limited to a transparent material such as glass even if the laser beam can be condensed to a minute beam diameter. However, there is a problem that the surface of the workpiece cannot be finely processed.

この課題を解消する手段として、従来では、透明材料にレーザ誘起チャネリング加工が施されない程度にチャネリングだけを起こさせて、透明材料端に被加工物を設置して加工する方法も提案されている。ところが、この場合、被加工物の加工閾値以下で透明材料にチャネリングを起こさないようにレーザ出力を制御するためには、最適な材料の組み合わせが必要となり、やはり被加工物における加工可能な種類が制限されてしまうという問題があり、さらに、透明材料端から出たレーザ光は空気中での屈折率に支配されてレーザ光の自己拡散と自己収束のバランスが崩れ易いので、レーザ光を所定のビーム径にするためには、レーザ出力と集光光学系のコントロールが必要となり、非常に難しい制御が要求される。   As a means for solving this problem, conventionally, a method has also been proposed in which only the channeling is caused to the extent that laser-induced channeling is not performed on the transparent material, and the workpiece is placed on the end of the transparent material. However, in this case, in order to control the laser output so that channeling does not occur in the transparent material below the processing threshold of the workpiece, an optimal combination of materials is required, and there are also types of workpieces that can be processed. In addition, there is a problem that the laser beam emitted from the edge of the transparent material is controlled by the refractive index in the air, and the balance between self-diffusion and self-convergence of the laser beam is easily lost. In order to obtain the beam diameter, it is necessary to control the laser output and the focusing optical system, and very difficult control is required.

一方、上記特許文献2および3の加工方法は、何れもレーザ波長に対し高い吸収性を持つ流動性物質23または微粒子32が被加工物21,31に衝突することにより加工を施すものであるが、レーザ強度が最も高い部分で微粒子32が励起されるので、被加工物21,31の加工範囲はレーザ光のビーム径に依存する。したがって、これらの加工方法においても、回折限界よりも極めて小さい領域の加工を行うのは難しい。つまり、特許文献2および3の各加工方法は、極論すれば、何れも比較的大きな領域を平滑に加工するのに適したものであると言える。   On the other hand, both of the processing methods of Patent Documents 2 and 3 perform processing when the fluid material 23 or the fine particles 32 having high absorption with respect to the laser wavelength collide with the workpieces 21 and 31. Since the fine particles 32 are excited in the portion having the highest laser intensity, the processing range of the workpieces 21 and 31 depends on the beam diameter of the laser beam. Therefore, even in these processing methods, it is difficult to process a region extremely smaller than the diffraction limit. That is, it can be said that each of the processing methods of Patent Documents 2 and 3 is suitable for processing a relatively large region smoothly, as far as possible.

そこで、本発明は、上記従来の課題に鑑みてなされたもので、被加工物の材料の制約を受けることなく、回折限界以下の微小な加工形状のレーザ加工を行うことができるレーザ誘起加工方法を提供することを目的とするものである。   Therefore, the present invention has been made in view of the above-described conventional problems, and can perform laser processing of a minute processing shape below the diffraction limit without being restricted by the material of the workpiece. Is intended to provide.

上記目的を達成するために、請求項1に係る発明のレーザ誘起加工方法は、被加工物を、微粒子を分散した溶液中に浸漬させて配置し、高強度超短パルスレーザから出射した高強度超短パルスレーザ光を、前記被加工物の手前側位置に焦点を結ぶように集光して前記溶液にパルス照射し、前記高強度超短パルスレーザの出力強度を制御することにより、レーザ光によって誘起される前記溶液の非線形光学効果により発生する自己集束とレーザ光の回折とが釣り合うようにバランスさせて、レーザ光を前記溶液内において微小線状に前記被加工物に向け伝播させ、その微小線状の領域内の溶液中に浮遊する前記微粒子を前記被加工物に衝突させて加工を行うことを特徴としている。   In order to achieve the above object, the laser-induced machining method of the invention according to claim 1 is a high-intensity emitted from a high-intensity ultrashort pulse laser, wherein the workpiece is immersed in a solution in which fine particles are dispersed. By condensing the ultrashort pulse laser beam so as to focus on the near side position of the workpiece and irradiating the solution with pulses, the laser beam is controlled by controlling the output intensity of the high intensity ultrashort pulse laser. The self-focusing generated by the nonlinear optical effect of the solution induced by the balance is balanced so that the diffraction of the laser beam is balanced, and the laser beam is propagated toward the workpiece in a fine line shape in the solution. Processing is performed by causing the fine particles floating in a solution in a micro linear region to collide with the workpiece.

請求項2に係る発明は、請求項1の発明のレーザ誘起加工方法において、溶液中に分散する微粒子の大きさを変えて被加工物に施す微細加工寸法および加工面粗さを可変調整し、レーザ光の照射時間を可変制御して被加工物に施す加工深さを可変調整するようにした。   According to a second aspect of the present invention, in the laser induced processing method of the first aspect of the invention, the finely processed dimension and the processed surface roughness applied to the workpiece by changing the size of the fine particles dispersed in the solution are variably adjusted. The processing depth applied to the workpiece is variably adjusted by variably controlling the irradiation time of the laser beam.

請求項1の発明では、レーザ光を回折限界以下の微小なビーム径に集光することができ、その集光したレーザ光における微小線状の領域内において溶液中に浮遊する微粒子を被加工物に衝突させて加工を行うようにしたので、従来技術のように被加工物が透明材料に限定され、且つ固体内部のみを加工あるいは改質するものとは異なり、被加工物の素材の制約を受けることなく、被加工物の被加工面の表面にレーザ光の回折限界以下の微細な加工を行うことが可能となる。しかも、チャネリング効果が作用する領域においては、回折限界以下の微小な一定のビーム径に集光されたレーザ光の長さが長くなるため、光学系としてNAの大きなものを用いた場合であっても、この光学系によるレーザ光の焦点位置の調整が不要となる利点がある。   According to the first aspect of the present invention, the laser beam can be condensed to a minute beam diameter of the diffraction limit or less, and the fine particles floating in the solution in the minute linear region of the condensed laser beam are processed. The workpiece is limited to a transparent material as in the prior art, and unlike the one that only processes or modifies the interior of the solid, there is a restriction on the material of the workpiece. Without being received, it becomes possible to perform fine processing below the diffraction limit of laser light on the surface of the processing surface of the processing object. In addition, in the region where the channeling effect acts, the length of the laser beam condensed to a small constant beam diameter below the diffraction limit becomes long, so that an optical system having a large NA is used. However, there is an advantage that adjustment of the focal position of the laser beam by this optical system becomes unnecessary.

請求項2の発明では、レーザ照射エネルギを変化させることなく、集光したレーザ光のビーム径をそのまま維持しながらも、溶液中に分散する微粒子の大きさを変えることにより、所要の微細加工寸法および所要形状の加工面粗さを支障なく得られるように設定することができ、レーザ光の照射時間を可変制御することにより、所要の加工深さを得られるように設定することができる。   According to the second aspect of the present invention, the required fine processing dimension can be obtained by changing the size of the fine particles dispersed in the solution while maintaining the beam diameter of the focused laser beam without changing the laser irradiation energy. In addition, it is possible to set so that the processed surface roughness of the required shape can be obtained without hindrance, and it is possible to set the required processing depth to be obtained by variably controlling the irradiation time of the laser beam.

以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図1は本発明の一実施の形態に係るレーザ誘起加工方法を具現化するための構成の概略説明図である。同図において、容器4内には微粒子6を分散した溶液5が充満され、基板状の被加工物7は溶液5中に浸漬して容器4の底面上に配置される。被加工物7はこれの被加工面(この実施の形態において図の上面)が溶液5中に漬かるように配置されていればよい。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic explanatory diagram of a configuration for realizing a laser induced machining method according to an embodiment of the present invention. In the figure, the container 4 is filled with a solution 5 in which fine particles 6 are dispersed, and a substrate-like workpiece 7 is immersed in the solution 5 and disposed on the bottom surface of the container 4. It is only necessary that the workpiece 7 be arranged so that its processing surface (the upper surface in the figure in this embodiment) is immersed in the solution 5.

高強度超短パルスレーザ1からは、発振パルス幅がピコ秒以下であって高いピーク出力を有する高強度長短パルスレーザ光2が出射される。このレーザ光2は、集光レンズ3により集光されて、溶液5内部における被加工物7に対し手前側位置で焦点Fを結ぶように設定されている。なお、上記高強度長短パルスレーザ光2としては、フェムト秒の発振パルス幅を有するものを用いるのが好ましい。   The high intensity ultrashort pulse laser 1 emits high intensity long and short pulse laser light 2 having an oscillation pulse width of picosecond or less and a high peak output. The laser beam 2 is collected by the condenser lens 3 and is set so as to form a focal point F at the near side position with respect to the workpiece 7 in the solution 5. As the high-intensity long / short pulse laser beam 2, one having a femtosecond oscillation pulse width is preferably used.

本発明においては、微粒子6および被加工物7のレーザ光2の吸収特性は特に重要問題ではない。したがって、上記微粒子6としては、例えば、磁性体、プラスチックまたはガラスなどを好適に用いることができるが、微細加工の均一性を得るためには、可及的に直径が揃った微粒子6を用いるのが好ましい。また、上記溶液としては、例えば、純水を用いることができる。   In the present invention, the absorption characteristics of the laser beam 2 of the fine particles 6 and the workpiece 7 are not particularly important. Therefore, for example, a magnetic material, plastic, or glass can be suitably used as the fine particles 6, but in order to obtain fine processing uniformity, the fine particles 6 having a uniform diameter as much as possible are used. Is preferred. Moreover, as the solution, for example, pure water can be used.

溶液5における高強度長短パルスレーザ光2の焦点Fの近傍箇所の一部分は、レーザ光2により誘起されて非線形光学材料として作用することにより、レーザ光2の高エネルギ密度によって非線形光学効果(レーザ光の電界が強くなると、物質の分極などがレーザ光の電界に比例して線形に応答しなくなる効果)が生じ、この非線形光学効果によって集光する作用、つまり自己集束を起こす。   A part of the vicinity of the focal point F of the high-intensity long / short pulse laser beam 2 in the solution 5 is induced by the laser beam 2 and acts as a nonlinear optical material, so that the nonlinear optical effect (laser beam) is increased by the high energy density of the laser beam 2. When the electric field becomes stronger, an effect that the polarization of the substance does not respond linearly in proportion to the electric field of the laser light occurs), and an action of focusing by this nonlinear optical effect, that is, self-focusing occurs.

ここで、高強度超短パルスレーザ1では、レーザ光2の回折により広がろうとする作用と非線形光学効果による集光する働き(自己集束)とが釣り合うように、自体から出射するレーザ光2の出力強度が制御される。このようにしてレーザ光2の回折と自己集束とをバランスさせることにより、レーザ光2は、回折限界以下のビーム径に集光され、且つそのビーム径を維持したままの微小線状で溶液5内を伝播する。すなわち、溶液5内にはチャネリング現象が生じる。なお、チャネリング現象が発生しなかった場合には、レーザ光2が一旦焦点を結んだのちに、図1に2点鎖線で示すように広がりながら溶液5中を伝播していく。   Here, in the high-intensity ultrashort pulse laser 1, the action of the laser light 2 emitted from itself is balanced so that the action of spreading by the diffraction of the laser light 2 and the action of focusing by the nonlinear optical effect (self-focusing) are balanced. The output intensity is controlled. By balancing the diffraction and self-focusing of the laser beam 2 in this way, the laser beam 2 is condensed to a beam diameter below the diffraction limit, and the solution 5 is in the form of a fine line while maintaining the beam diameter. Propagate inside. That is, a channeling phenomenon occurs in the solution 5. When the channeling phenomenon does not occur, the laser beam 2 is once focused and then propagates through the solution 5 while spreading as shown by a two-dot chain line in FIG.

上記チャネリング現象の発生に伴い回折限界以下の微小なビーム径に集光された高ピーク出力のレーザ光2は、その微小なビーム径を維持したままの微小線状で溶液5内を被加工物7まで伝播し、この微小線状のレーザ光2の伝播経路に存在する溶液5中に浮遊する微粒子6が被加工物7に衝突することにより、被加工物7の表面の被加工面には極めて微細な加工が施される。このとき、容器4が設置されたステージ8は水平方向に移動制御される。これにより、レーザ光2の光軸に対し直交方向に相対移動される被加工物7の表面である被加工面には、微細な所要のパターンが形成加工される。   The laser beam 2 having a high peak output focused to a small beam diameter below the diffraction limit due to the occurrence of the channeling phenomenon passes through the solution 5 in the form of a minute line while maintaining the minute beam diameter. 7, and the fine particles 6 that float in the solution 5 existing in the propagation path of the micro linear laser beam 2 collide with the work piece 7, so that the work surface on the surface of the work piece 7 Extremely fine processing is applied. At this time, the stage 8 on which the container 4 is installed is controlled to move in the horizontal direction. Thereby, a fine required pattern is formed and processed on the surface to be processed, which is the surface of the workpiece 7 that is relatively moved in the direction orthogonal to the optical axis of the laser beam 2.

上述した特許文献1の高強度超短パルスレーザ加工方法では被加工物が透明材料に限定され、且つ固体内部のみを加工あるいは改質するのに対し、上記実施の形態のレーザ誘起加工方法では、回折限界以下の微小なビーム径に集光したレーザ光における微小線状の領域内において溶液5中に浮遊する微粒子6を被加工物7に衝突させて加工を行うことから、被加工物7の素材の制約を受けることなく、被加工物7の被加工面の表面にレーザ光2の回折限界以下の微細な加工を行うことが可能となる。しかも、チャネリング効果が作用する領域においては、回折限界以下の微小な一定のビーム径に集光されたレーザ光2の長さ(深度)が長くなる(深くなる)ため、集光レンズ3を含む光学系としてNAの大きなものを用いた場合であっても、この光学系によるレーザ光2の焦点位置の調整が不要となる利点がある。   In the high-intensity ultrashort pulse laser processing method of Patent Document 1 described above, the workpiece is limited to a transparent material, and only the inside of the solid is processed or modified. In the laser-induced processing method of the above embodiment, Since the fine particles 6 floating in the solution 5 collide with the workpiece 7 in the minute linear region of the laser beam condensed to a minute beam diameter below the diffraction limit, the workpiece 7 is processed. Without being restricted by the material, it is possible to perform fine processing below the diffraction limit of the laser beam 2 on the surface of the processing surface of the workpiece 7. In addition, in the region where the channeling effect acts, the length (depth) of the laser light 2 condensed to a small constant beam diameter below the diffraction limit becomes longer (deeper), so that the condenser lens 3 is included. Even when an optical system having a large NA is used, there is an advantage that adjustment of the focal position of the laser beam 2 by this optical system becomes unnecessary.

なお、実用化に際しては、ポンプなどを用いて溶液5を循環させることにより、微粒子6の分布が常に均一になるようすることが好ましく、それにより、被加工物7に常に均一な微細加工を施すことができる。特に、上記実施の形態では、レーザ光2の高強度エネルギによって溶液5に気泡が発生する可能性があり、気泡が発生した場合にはレーザ光2が被加工物7に十分に照射されないおそれがあることから、上述のように溶液5を循環させる手段を採用することが望ましい。   In practical use, it is preferable that the solution 5 is circulated using a pump or the like so that the distribution of the fine particles 6 is always uniform, whereby the workpiece 7 is always subjected to uniform fine processing. be able to. In particular, in the above embodiment, bubbles may be generated in the solution 5 due to the high intensity energy of the laser light 2, and when the bubbles are generated, there is a possibility that the workpiece 7 is not sufficiently irradiated with the laser light 2. For this reason, it is desirable to employ means for circulating the solution 5 as described above.

ところで、既存の多くのアブレーション加工では、レーザ照射エネルギ密度を下げることにより、ビーム部に分布した高エネルギ部分で微細加工する場合がある。ところが、上記実施の形態のレーザ誘起加工方法では、加工幅や加工径などの微細加工寸法、加工面粗さまたは加工深さを調整して所要値や所望状態に設定するに際して、上述のようなレーザ照射エネルギを変化させる手段を採用すると、非線形光学効果による自己集束と回折とのバランスが崩れて、チャネリング現象の発生箇所やチャネリング効果の長さ、さらにはレーザ光2のビーム径までもが変化してしまう不具合が生じるおそれがある。   By the way, in many existing ablation processes, there is a case where fine processing is performed at a high energy part distributed in the beam part by lowering the laser irradiation energy density. However, in the laser induced machining method of the above-described embodiment, when the fine machining dimensions such as the machining width and the machining diameter, the machining surface roughness, or the machining depth are adjusted and set to the required values or desired states, If a means for changing the laser irradiation energy is adopted, the balance between self-focusing and diffraction due to the nonlinear optical effect is lost, and the location of the channeling phenomenon, the length of the channeling effect, and even the beam diameter of the laser beam 2 change. There is a risk of malfunction.

そこで、上記実施の形態では、集光したレーザ光2のビーム径をそのまま維持しながらも、下記の手段を採用することにより、所要の微細加工寸法、加工面粗さおよび加工深さを得られるように図っている。すなわち、微細加工寸法および加工面粗さは、溶液5中に分散する微粒子6の大きさ(直径)を変えることにより、所要値および所要形状を支障なく得られるように設定し、加工深さは、レーザ光2の照射時間を可変制御することにより、所要値を得られるように設定している。上記レーザ光2の照射時間は、照射回数つまり照射パルス数を可変することによって制御する。   Therefore, in the above-described embodiment, while maintaining the beam diameter of the focused laser beam 2 as it is, the required fine processing dimensions, processing surface roughness, and processing depth can be obtained by employing the following means. I am trying so. That is, the fine processing dimension and the processing surface roughness are set so that the required value and the required shape can be obtained without hindrance by changing the size (diameter) of the fine particles 6 dispersed in the solution 5, and the processing depth is The required value can be obtained by variably controlling the irradiation time of the laser beam 2. The irradiation time of the laser beam 2 is controlled by varying the number of irradiations, that is, the number of irradiation pulses.

本発明に係るレーザ誘起加工方法では、透明材料のみに限定されることなく、様々な素材の被加工物における被加工面の表面に、レーザ光の回折限界以下の微細な形状の加工を支障なく施すことができる。   The laser induced machining method according to the present invention is not limited to only transparent materials, and it is possible to machine fine shapes below the diffraction limit of laser light on the surface of the workpiece surface of workpieces of various materials. Can be applied.

本発明の一実施の形態に係るレーザ誘起加工方法を具現化するための構成の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the structure for embodying the laser induction processing method which concerns on one embodiment of this invention. 従来のレーザ微細加工方法の原理を示す概略断面図。The schematic sectional drawing which shows the principle of the conventional laser microfabrication method. 従来のレーザ加工方法を具現化した構成を示す概略斜視図。The schematic perspective view which shows the structure which actualized the conventional laser processing method.

符号の説明Explanation of symbols

1 高強度超短パルスレーザ
2 高強度超短パルスレーザ光
5 溶液
6 微粒子
7 被加工物
DESCRIPTION OF SYMBOLS 1 High intensity | strength ultrashort pulse laser 2 High intensity | strength ultrashort pulse laser beam 5 Solution 6 Fine particle 7 Workpiece

Claims (2)

被加工物を、微粒子を分散した溶液中に浸漬させて配置し、
高強度超短パルスレーザから出射した高強度超短パルスレーザ光を、前記被加工物の手前側位置に焦点を結ぶように集光して前記溶液にパルス照射し、
前記高強度超短パルスレーザの出力強度を制御することにより、レーザ光によって誘起される前記溶液の非線形光学効果により発生する自己集束とレーザ光の回折とが釣り合うようにバランスさせて、レーザ光を前記溶液内において微小線状に前記被加工物に向け伝播させ、その微小線状の領域内の溶液中に浮遊する前記微粒子を前記被加工物に衝突させて加工を行うことを特徴とするレーザ誘起加工方法。
Place the work piece soaked in a solution in which fine particles are dispersed,
The high-intensity ultrashort pulse laser beam emitted from the high-intensity ultrashort pulse laser is focused so as to focus on the near side position of the workpiece, and pulsed to the solution,
By controlling the output intensity of the high-intensity ultrashort pulse laser, the self-focusing generated by the nonlinear optical effect of the solution induced by the laser beam and the diffraction of the laser beam are balanced to balance the laser beam. A laser which propagates toward the workpiece in the form of a fine line in the solution and makes the fine particles suspended in the solution in the fine line region collide with the work piece to perform the processing. Induction machining method.
溶液中に分散する微粒子の大きさを変えて被加工物に施す微細加工寸法および加工面粗さを可変調整し、レーザ光の照射時間を可変制御して被加工物に施す加工深さを可変調整するようにした請求項1に記載のレーザ誘起加工方法。
By changing the size of the fine particles dispersed in the solution, the fine processing dimensions and surface roughness applied to the workpiece are variably adjusted, and the laser beam irradiation time is variably controlled to change the processing depth applied to the workpiece. The laser induced machining method according to claim 1, which is adjusted.
JP2004257150A 2004-09-03 2004-09-03 Laser induced processing method Pending JP2006068789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257150A JP2006068789A (en) 2004-09-03 2004-09-03 Laser induced processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257150A JP2006068789A (en) 2004-09-03 2004-09-03 Laser induced processing method

Publications (1)

Publication Number Publication Date
JP2006068789A true JP2006068789A (en) 2006-03-16

Family

ID=36149929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257150A Pending JP2006068789A (en) 2004-09-03 2004-09-03 Laser induced processing method

Country Status (1)

Country Link
JP (1) JP2006068789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296534A (en) * 2006-04-27 2007-11-15 Sigma Koki Kk Method and apparatus for short pulsed laser beam machining
US11247932B2 (en) * 2018-01-26 2022-02-15 Corning Incorporated Liquid-assisted laser micromachining systems and methods for processing transparent dielectrics and optical fiber components using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296534A (en) * 2006-04-27 2007-11-15 Sigma Koki Kk Method and apparatus for short pulsed laser beam machining
US11247932B2 (en) * 2018-01-26 2022-02-15 Corning Incorporated Liquid-assisted laser micromachining systems and methods for processing transparent dielectrics and optical fiber components using same

Similar Documents

Publication Publication Date Title
US10377658B2 (en) Apparatuses and methods for laser processing
Duocastella et al. Bessel and annular beams for materials processing
US6995336B2 (en) Method for forming nanoscale features
US20210053160A1 (en) Method and System for Ultrafast Laser-based Material Removal, Figuring and Polishing
Sanner et al. Direct ultrafast laser micro-structuring of materials using programmable beam shaping
KR20150016168A (en) Method and apparatus for non-ablative, photoaccoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
KR20200040808A (en) Apparatus and method for simultaneous multiple laser processing of transparent workpieces
CN104625416B (en) Based on square hole auxiliary electron dynamic regulation crystal silicon surface periodic micro-nano structure method
JP5188764B2 (en) Laser processing apparatus and laser processing method
Zhang et al. High aspect-ratio micromachining of polymers with an ultrafast laser
JP2015510581A (en) Method for producing patterned X-ray optical element
TWI713593B (en) Method of forming hole in glass substrate by using pulsed laser, and method of producing glass substrate provided with hole
JP2002096187A (en) Laser beam machine and machining method
KR20200125954A (en) How to laser form transparent articles from transparent mother sheet and process transparent articles in the field
JP2007175778A (en) Method for processing transparent body by laser
Metzner et al. Study on laser ablation of glass using MHz-to-GHz burst pulses
KR101049381B1 (en) Hybrid laser processing device using ultrasonic vibration
JPH10305374A (en) Laser processing method for transparent member
JP2006068789A (en) Laser induced processing method
Zheng et al. Polarisation-independence of femtosecond laser machining of fused silica
Choi et al. Femtosecond laser-induced line structuring on mold stainless steel STAVAX with various scanning speeds and two polarization configurations
Belloni et al. Burst mode versus single-pulse machining for Bessel beam micro-drilling of thin glass: Study and comparison
Michalowski et al. Laser surface structuring with long depth of focus
Demirci et al. Direct micro-structuring of Si (111) surfaces through nanosecond laser Bessel beams
JP2009045637A (en) Laser beam machining apparatus