JP2006068080A - Bioabsorbable porous material having gradient structure - Google Patents

Bioabsorbable porous material having gradient structure Download PDF

Info

Publication number
JP2006068080A
JP2006068080A JP2004251923A JP2004251923A JP2006068080A JP 2006068080 A JP2006068080 A JP 2006068080A JP 2004251923 A JP2004251923 A JP 2004251923A JP 2004251923 A JP2004251923 A JP 2004251923A JP 2006068080 A JP2006068080 A JP 2006068080A
Authority
JP
Japan
Prior art keywords
porous material
pore size
gradient structure
porosity
bioabsorbable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251923A
Other languages
Japanese (ja)
Inventor
Hidekazu Kitazono
英一 北薗
Hiroaki Kaneko
博章 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2004251923A priority Critical patent/JP2006068080A/en
Publication of JP2006068080A publication Critical patent/JP2006068080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base material suitable for cell culture in the field of regenerative medicine. <P>SOLUTION: Porous material consists of a bioabsorbable polymer. In the material, porosity is 10-90%, a pore size is 10 to 800 μm, openings are provided at its surface, pores of a 200 μm pore size exist at least on one one side by 5 pores per 1 mm<SP>2</SP>, and different porosities are included consecutively in a gradient structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生体吸収性多孔質材料に関する。更に詳しくは、細胞密度及び細胞漏れをコントロール可能な勾配構造を特徴とする生体吸収性多孔質材料、およびその製造方法に関する。   The present invention relates to a bioabsorbable porous material. More specifically, the present invention relates to a bioabsorbable porous material characterized by a gradient structure capable of controlling cell density and cell leakage, and a method for producing the same.

近年、大きく損傷したり失われた生体組織と臓器の治療法として、細胞の分化、増殖能を利用し元の生体組織および臓器に再構築する再生医療の研究が活発になってきている。生体内において細胞が分化・増殖する場合、細胞外マトリックスが足場として機能し、組織の構築を行っているが、組織が大きく損傷し欠損している場合、細胞自身がマトリックスを産生するまで人工及び天然材料で補う必要がある。つまり足場材料は組織構築の上で最適な環境を与える重要なファクターである。この足場材料に求められる特性としては、1)生体吸収性、2)細胞接着性、3)多孔質性、4)力学強度などが挙げられ、これらの特性を満足する材料を創生することを目的として、合成高分子(ポリグリコール酸、ポリ乳酸、ポリカプロラクトンなど)(例えば非特許文献1,2)、天然高分子(コラーゲン、ゼラチン、エラスチン、ヒアルロン酸、アルギン酸、キトサンなど)(例えば非特許文献3,4)、無機材料(ハイドロキシアパタイト、β−リン酸三カルシウム)(例えば非特許文献5)、およびこれらの複合体などがこれまで検討されている。   In recent years, research on regenerative medicine that uses the differentiation and proliferation ability of cells to reconstruct the original biological tissues and organs as a treatment method for severely damaged or lost biological tissues and organs has become active. When cells differentiate and proliferate in vivo, the extracellular matrix functions as a scaffold and constructs the tissue, but when the tissue is severely damaged and missing, artificial and until the cells themselves produce the matrix Must be supplemented with natural materials. In other words, the scaffold material is an important factor that gives the optimum environment for the organization. The properties required for this scaffold material include 1) bioabsorbability, 2) cell adhesion, 3) porosity, 4) mechanical strength, etc., to create a material that satisfies these properties. Objectives include synthetic polymers (polyglycolic acid, polylactic acid, polycaprolactone, etc.) (for example, non-patent documents 1 and 2), natural polymers (collagen, gelatin, elastin, hyaluronic acid, alginic acid, chitosan, etc.) (for example, non-patent documents) Documents 3 and 4), inorganic materials (hydroxyapatite, β-tricalcium phosphate) (for example, Non-Patent Document 5), and composites thereof have been studied so far.

前述したように、足場材料に求められる重要な特性の1つとして多孔質性がある。これは組織を再生させるのに必要な細胞への十分な酸素及び栄養を補給し、二酸化炭素や老廃物を速やかに排出する意味において重要である。そのため、足場材料の多孔質性を達成するために凍結乾燥法(例えば非特許文献6)、相分離法(例えば非特許文献7)、発泡法(例えば非特許文献8)により均一な多孔質体を作製している。   As described above, one of the important characteristics required for the scaffold material is porosity. This is important in terms of supplying sufficient oxygen and nutrients to the cells necessary to regenerate the tissue and expelling carbon dioxide and waste products quickly. Therefore, in order to achieve the porous property of the scaffold material, a uniform porous body is obtained by a freeze-drying method (for example, Non-Patent Document 6), a phase separation method (for example, Non-Patent Document 7), or a foaming method (for example, Non-Patent Document 8). Is making.

しかし、実際の生体組織は均一な構造ではなく連続的な勾配構造を示している。例えば関節軟骨組織においては、表層部は細胞密度が低いが、下骨に近いほど細胞密度が比較的高い。つまり、より生体に近い組織を再生させるためには連続的な勾配構造を示す足場材料の開発が重要である。しかし前記従来技術では、ポアの空間的分布を制御することが困難であり、連続的な勾配構造を示す足場材料の作製には制限がある。しかし最近になってAthanasiou他(例えば特許文献1)Mikos他(例えば特許文献2)らにより、連続的な勾配構造を示す足場材料の検討が報告されている。しかし、構造が生体に非類似であったり、製造法にソルトリーチング法が使用されているためソルトを溶出させる工程が入り、製造が複雑かつ時間が掛かるなどの問題が挙げられる。これらの課題を解決するためにETHICON INCORPORATED(例えば特許文献3)により、凍結乾燥法による連続的な勾配構造を示す足場材料の検討が報告されているが、溶媒に1,4-ジオキサンを使用しているため凍結した際得られる1,4-ジオキサンの結晶サイズが小さく、これにより凍結乾燥後の足場材料のポアサイズも同様に小さくなる。そのためこの方法により得られた足場材料は細胞が入り込み難いなどの問題がある。   However, the actual living tissue shows a continuous gradient structure rather than a uniform structure. For example, in articular cartilage tissue, the cell density of the surface layer is low, but the cell density is relatively high as it is closer to the lower bone. That is, in order to regenerate a tissue closer to a living body, it is important to develop a scaffold material showing a continuous gradient structure. However, in the prior art, it is difficult to control the spatial distribution of pores, and there is a limit to the production of a scaffold material exhibiting a continuous gradient structure. Recently, however, Athanasiou et al. (For example, Patent Document 1), Mikos et al. (For example, Patent Document 2), etc. have reported the investigation of scaffold materials exhibiting a continuous gradient structure. However, the structure is dissimilar to that of a living body, and the salt treating method is used in the manufacturing method, so that a process for eluting the salt is included, and the manufacturing is complicated and takes time. In order to solve these problems, ETHICON INCORPORATED (for example, Patent Document 3) has reported on a scaffold material showing a continuous gradient structure by a freeze-drying method. However, 1,4-dioxane was used as a solvent. Therefore, the crystal size of 1,4-dioxane obtained when frozen is small, which also reduces the pore size of the scaffold material after lyophilization. Therefore, the scaffold material obtained by this method has problems such as difficulty in entering cells.

米国特許第5,607,474号明細書U.S. Pat.No. 5,607,474 米国特許第5,514,378号明細書U.S. Pat.No. 5,514,378 特開2001-49018号公報JP 2001-49018 Y.Ikada,H.Tsuji,Macromol.Rapid.Commun.,21,117(2000)Y. Ikada, H. Tsuji, Macromol. Rapid. Commun., 21, 117 (2000) Mayer,E.Karamuk,T.Akaike,E.Wintermantal,J.Control.Release.,14,81(2000)Mayer, E. Karamuk, T. Akaike, E. Wintermantal, J. Control. Release, 14, 81 (2000) Weinberg.C.B,Bell.E,Science.,231,397(1986)Weinberg.C.B, Bell.E, Science., 231,397 (1986) Aigner.J,Tegeler.J.A,Hutzler.P,Campoccia.D,Naumann.A,. J.Biomed.Mater.Res.,42,172(1998)Aigner. J, Tegeler. J. A, Hutzler. P, Campoccia. D, Naumann. A ,. J. Biomed. Mater. Res., 42, 172 (1998) Laffargue.P.H,Marchandise.X,Bone.,25(2S),55S(1999)Laffargue.P.H, Marchandise.X, Bone., 25 (2S), 55S (1999) K.Wang,K.E.Healy,Polymer.,36,837(1995)K.Wang, K.E.Healy, Polymer., 36,837 (1995) P.X.Ma,R.Zhang,J.Biomed.Mater.Res.,45,285(1999)P.X.Ma, R.Zhang, J.Biomed.Mater.Res., 45,285 (1999) D.J.Mooney,R.Langer,Biomaterials.,17,1417(1996)D.J.Mooney, R. Langer, Biomaterials., 17, 1417 (1996)

本発明の課題は、生体吸収性多孔質材料、とくに再生医療分野において細胞培養に適した多孔質材料を提供することにある。詳細には、生体組織に類似した勾配構造を有することを特徴とし、かつ構造体のポアサイズが比較的大きい生体吸収性多孔質材料を簡易的な手法により提供することにある。   An object of the present invention is to provide a bioabsorbable porous material, particularly a porous material suitable for cell culture in the field of regenerative medicine. Specifically, it is to provide a bioabsorbable porous material characterized by having a gradient structure similar to a biological tissue and having a relatively large pore size of the structure by a simple method.

本発明の発明者は前記課題を解決するために、基材として生体吸収性ポリマーを選択し、さらに室温付近に融点を示しかつ凍結した際の結晶サイズが比較的大きい有機溶媒を用いた凍結乾燥法に着目し、生体組織に類似した勾配構造を特徴としかつ構造体のポアサイズが比較的大きい生体吸収性多孔質材料の開発に至った。   In order to solve the above problems, the inventor of the present invention selects a bioabsorbable polymer as a base material, and further freeze-drys using an organic solvent having a melting point near room temperature and a relatively large crystal size when frozen. Focusing on the method, we have developed a bioabsorbable porous material characterized by a gradient structure similar to biological tissue and having a relatively large pore size.

本発明は、以下の通りである。
1.生体吸収性ポリマーからなり、ポロシティが10〜90 %、ポアサイズが10〜800 μm、さらには表面に開孔を有し、かつ少なくとも一方の表面においてポアサイズ200 μm以上のポアが5 個/1 mm2以上存在し、かつ異なるポロシティが連続的に存在する勾配構造を特徴とする多孔質材料。
2.該生体吸収性ポリマーが、主として脂肪族ポリエステルからなる上記1記載の多孔質材料。
3.該脂肪族ポリエステルが、ポリグリコール酸、ポリ乳酸、ポリカプロラクトン、またはそれらの共重合体からなることを特徴とする上記2記載の多孔質材料。
4.生体吸収性ポリマーと、融点が15〜30 ℃である有機溶媒とからなるポリマー溶液を調整し、次いで凍結乾燥することを特徴とする上記1記載の多孔質材料の製造方法。
5.該有機溶媒がジメチルスルホキシドであることを特徴とする上記4記載の製造方法。
The present invention is as follows.
1. Consisting of a bioabsorbable polymer, the porosity is 10 to 90%, the pore size is 10 to 800 μm, and there are 5 pores on the surface with pores of 200 μm or more on at least one surface / 1. A porous material characterized by a gradient structure in which mm 2 or more exist and different porosities continuously exist.
2. The porous material as described in 1 above, wherein the bioabsorbable polymer is mainly composed of an aliphatic polyester.
3. The porous material as described in 2 above, wherein the aliphatic polyester comprises polyglycolic acid, polylactic acid, polycaprolactone, or a copolymer thereof.
4). 2. The method for producing a porous material according to 1 above, wherein a polymer solution comprising a bioabsorbable polymer and an organic solvent having a melting point of 15 to 30 ° C. is prepared and then freeze-dried.
5. The method as described in 4 above, wherein the organic solvent is dimethyl sulfoxide.

本発明によって、再生医療分野において有用な生体組織に類似した勾配構造を特徴とする生体吸収性多孔質材料を提供することが可能となった。この生体吸収性多孔質材料は再生医療分野において細胞培養基材、特に軟骨再生用基材として有用である。   The present invention has made it possible to provide a bioabsorbable porous material characterized by a gradient structure similar to biological tissue useful in the field of regenerative medicine. This bioabsorbable porous material is useful as a cell culture substrate, particularly a cartilage regeneration substrate in the field of regenerative medicine.

以下、本発明について詳述する。なお、これらの実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。   Hereinafter, the present invention will be described in detail. In addition, these Examples etc. and description illustrate this invention, and do not restrict | limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention.

本発明の多孔質材料は生体吸収性ポリマーからなり、好ましくは脂肪族エステルからなる。脂肪族エステルとしては、ポリグリコール酸、ポリ乳酸、ポリカプロラクトン、ポリジオキサノン、トリメチレンカーボネート、ポリブチレンサクシネート、ポリエチレンサクシネートおよびこれらの共重合体などが挙げられる。これらのうち、脂肪族ポリエステルとしては、ポリグリコール酸、ポリ乳酸、ポリカプロラクトンおよびこれらの共重合体が好ましい。   The porous material of the present invention comprises a bioabsorbable polymer, preferably an aliphatic ester. Examples of the aliphatic ester include polyglycolic acid, polylactic acid, polycaprolactone, polydioxanone, trimethylene carbonate, polybutylene succinate, polyethylene succinate and copolymers thereof. Among these, as the aliphatic polyester, polyglycolic acid, polylactic acid, polycaprolactone and copolymers thereof are preferable.

本発明の生体吸収性多孔質材料には、生体吸収性ポリマー以外の第2成分を含有するものであっても良い。該成分には、例えばコラーゲン、ゼラチン、フィブロネクチン、フィブリン、ラミニン、カゼイン、ケラチン、セリシン、トロンビンなどのタンパク質および/またはポリアスパラギン酸、ポリグルタミン酸、ポリリジンなどのポリアミノ酸および/またはポリガラクチュロン酸、ヘパリン、コンドロイチン硫酸、ヒアルロン酸、デルマタン硫酸、コンドロイチン、デキストラン硫酸、硫酸化セルロース、アルギン酸、デキストラン、カルボキシメチルキチン、ガラクトマンナン、アラビアガム、トラガントガム、ジェランガム、硫酸化ジェラン、カラヤガム、カラギーナン、寒天、キサンタンガム、カードラン、プルラン、セルロース、デンプン、カルボキシメチルセルロース、メチルセルロース、グルコマンナン、キチン、キトサン、キシログルカン、レンチナンなどの糖質および/またはホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルグリセロールなどのリン脂質および/またはFGF(繊維芽細胞増殖因子)、EGF(上皮増殖因子)、PDGF(血小板由来増殖因子)、TGF−β(β型形質転換増殖因子)、NGF(神経増殖因子)、HGF(肝細胞増殖因子)、BMP(骨形成因子)などの細胞増殖因子などが第2成分として挙げられる。   The bioabsorbable porous material of the present invention may contain a second component other than the bioabsorbable polymer. The components include, for example, collagen, gelatin, fibronectin, fibrin, laminin, casein, keratin, sericin, thrombin and other proteins and / or polyaspartic acid, polyglutamic acid, polylysine and other polyamino acids and / or polygalacturonic acid, Heparin, chondroitin sulfate, hyaluronic acid, dermatan sulfate, chondroitin, dextran sulfate, sulfated cellulose, alginic acid, dextran, carboxymethylchitin, galactomannan, gum arabic, tragacanth gum, gellan gum, sulfated gellan, caraya gum, carrageenan, agar, xanthan gum, Curdlan, pullulan, cellulose, starch, carboxymethylcellulose, methylcellulose, glucomannan, chitin, chitosan, xy Carbohydrates such as glucan and lentinan and / or phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and / or FGF (fibroblast growth factor), EGF (epidermal growth factor), PDGF (platelet-derived growth factor) ), Cell growth factors such as TGF-β (β-type transforming growth factor), NGF (nerve growth factor), HGF (hepatocyte growth factor), BMP (bone morphogenetic factor), and the like.

本発明の多孔質材料は、ポロシティが10〜90 %、ポアサイズが10〜800μm、さらには表面に開孔を有し、かつ少なくとも一方の表面においてポアサイズ200 μm以上のポアが5 個/1 mm2以上存在する。すなわち本発明の多孔質材料は構造体のポアサイズが比較的大きいことを特徴とする。 The porous material of the present invention has a porosity of 10 to 90%, a pore size of 10 to 800 μm, and further has pores on the surface, and at least 5 pores having a pore size of 200 μm or more on one surface / 1 mm 2. There are more. That is, the porous material of the present invention is characterized in that the pore size of the structure is relatively large.

ポロシティが10%未満であると生着する細胞数が少なく、また90%を超えると生着する細胞数は多いものの、殆どが空間であるために機械強度が低く足場材料としては好ましくない。またポアサイズが10 μm未満であると細胞が入り難く、また800 μmを超えると細胞は入るものの漏れ易く好ましくない。
さらには一方の表面においてポアサイズ200 μm以上のポアが5 個/1 mm2未満であると、細胞が入り込み難くさらには生着し難いなどの問題がある。
When the porosity is less than 10%, the number of engrafted cells is small, and when the porosity exceeds 90%, the number of engrafted cells is large. However, since most of the cells are spaces, the mechanical strength is low and it is not preferable as a scaffold material. If the pore size is less than 10 μm, it is difficult for the cells to enter, and if the pore size exceeds 800 μm, the cells enter, but are not easily leaked.
Furthermore, when the number of pores having a pore size of 200 μm or more on one surface is less than 5/1 mm 2 , there is a problem that it is difficult for cells to enter and even to engraft.

本発明の多孔質材料は、異なるポロシティが連続的に存在する勾配構造を特徴とする。異なるポロシティが連続的に存在する勾配構造とは、2段階以上の勾配構造であれば良く、多段でも2段でも構わない。
中でもポロシティが大きくかつポアサイズが大きい層と、ポロシティが小さくかつポアサイズが小さい層とが段階的に存在することが好ましい。
中でもポロシティが大きく、かつポアサイズ200 μm以上のポア数が多い層と、ポロシティが小さく、かつポアサイズ200 μm以上のポア数が少ない層とが段階的に存在することが好ましい。
The porous material of the present invention is characterized by a gradient structure in which different porosity exists continuously. The gradient structure in which different porosities exist continuously may be a gradient structure having two or more steps, and may be multi-stage or two-stage.
Among them, it is preferable that a layer having a large porosity and a large pore size and a layer having a small porosity and a small pore size are present stepwise.
In particular, it is preferable that a layer having a large porosity and a large number of pores having a pore size of 200 μm or more and a layer having a small porosity and a small number of pores having a pore size of 200 μm or more exist in stages.

2段階以上の異なるポロシティを有する構造、すなわち生体組織に類似した勾配構造を有することとなり、細胞密度及び細胞漏れをコントロールすることが可能であり、再生医療分野において細胞培養に適した基材が提供できる。
また本発明は生体吸収性ポリマーと有機溶媒とからなるポリマー溶液を調整し、次いで凍結乾燥することを特徴とする上記の多孔質材料の製造方法である。
It has a structure with two or more different porosities, that is, a gradient structure similar to biological tissue, and can control cell density and cell leakage, providing a substrate suitable for cell culture in the field of regenerative medicine it can.
The present invention is also a method for producing a porous material as described above, wherein a polymer solution comprising a bioabsorbable polymer and an organic solvent is prepared and then freeze-dried.

本発明に使用される有機溶媒としては、融点が15〜30 ℃を示す有機溶媒が好ましい。なかでもジメチルスルホキシドやスルホラン等が好ましい。融点が15 ℃以下を示す有機溶媒であると凍結乾燥後得られた成型体のポアサイズが小さく細胞培養基材としては好ましくない。また融点が30 ℃以上であると凍結はするものの乾燥中に溶媒が昇華せず成型体が得られない。さらに得られた成型体のポアサイズを考慮した場合、凍結した際得られる結晶サイズが大きいジメチルスルホキシドが最も好ましい。   The organic solvent used in the present invention is preferably an organic solvent having a melting point of 15 to 30 ° C. Of these, dimethyl sulfoxide, sulfolane and the like are preferable. An organic solvent having a melting point of 15 ° C. or lower is not preferable as a cell culture substrate because the molded article obtained after freeze-drying has a small pore size. If the melting point is 30 ° C. or higher, the molded product cannot be obtained because the solvent does not sublime during drying although it freezes. Further, when considering the pore size of the obtained molded product, dimethyl sulfoxide obtained by freezing and having a large crystal size is most preferable.

本発明で用いるポリマーと有機溶媒からなるポリマー溶液の濃度は、1〜30重量%が好ましい。1重量%以下であると得られた成型体の機械強度が低く細胞培養基材として好ましくない。また30 重量%以上であるとポリマー溶液の粘度が高くなり凍結乾燥では溶媒を十分に除去できず成型体が得られない。
本発明で用いる凍結乾燥法は特に限定はされないが、凍結する際温度勾配をつけて徐々に凍結させる方法がより均一な多孔質性材料を得る意味で好ましい。
The concentration of the polymer solution comprising the polymer and organic solvent used in the present invention is preferably 1 to 30% by weight. When the content is 1% by weight or less, the obtained molded article has a low mechanical strength and is not preferable as a cell culture substrate. On the other hand, if it is 30% by weight or more, the viscosity of the polymer solution becomes high, and the solvent cannot be sufficiently removed by lyophilization, and a molded product cannot be obtained.
The freeze-drying method used in the present invention is not particularly limited, but a method of gradually freezing with a temperature gradient when freezing is preferred in terms of obtaining a more uniform porous material.

以下の実施例により本発明の詳細をより具体的に説明する。しかし、本発明はこれら実施例に限定されるものではない。
本実施例に使用したポリ乳酸−ポリグリコール酸共重合体(50/50 Poly(DL-lactide-co-glycolide),Inherent viscosity:1.08dL/g in HFIP,30℃)はBirmingham Polymers,Inc、ジメチルスルホキシド、1,4-ジオキサンは和光純薬工業(株)製を使用した。
ポロシティについては下記式により算出した。
ε=(1-ρ/ρp)×100
ρ=4m/πd2h
(ε:ポロシティ,ρ:多孔質材料の見かけ密度,m:質量,d:半径,h:厚さ, ρp:ポリマー固有密度(50/50 Poly(DL-lactide-co-glycolide:1.34g/ml))
The details of the present invention will be described more specifically by the following examples. However, the present invention is not limited to these examples.
Polylactic acid-polyglycolic acid copolymer (50/50 Poly (DL-lactide-co-glycolide), Inherent viscosity: 1.08 dL / g in HFIP, 30 ° C.) used in this example is Birmingham Polymers, Inc, dimethyl Sulphoxide and 1,4-dioxane were manufactured by Wako Pure Chemical Industries, Ltd.
The porosity was calculated by the following formula.
ε = (1-ρ / ρp) × 100
ρ = 4m / πd 2 h
(ε: porosity, ρ: apparent density of porous material, m: mass, d: radius, h: thickness, ρp: inherent density of polymer (50/50 Poly (DL-lactide-co-glycolide: 1.34 g / ml ))

またポアサイズについては、試料をスッパタコーティング(Pt1.0nm)処理し、SEM(JSM−5310型(日本電子製)、加速電圧:2.0 kV、撮影角度30 °)により観察を行った。さらにこのSEM写真を用いて、ポアサイズ200 μm以上のポアの数をカウントした。   As for the pore size, the sample was subjected to a spatter coating (Pt 1.0 nm) and observed by SEM (JSM-5310 type (manufactured by JEOL Ltd.), acceleration voltage: 2.0 kV, photographing angle 30 °). Furthermore, using this SEM photograph, the number of pores having a pore size of 200 μm or more was counted.

[実施例1]
ポリ乳酸−ポリグリコール酸共重合体1 gを、ジメチルスルホキシド19 gに溶解し濃度5 %のドープ溶液を調整した。同様にポリ乳酸−ポリグリコール酸共重合体1 gを、ジメチルスルホキシド9 gに溶解し濃度10 %のドープ溶液を調整した。まず5 %ドープを10 mlのフッ素樹脂製容器に5 ml流し入れ、真空脱気後凍結させた。凍結はより均一なスポンジを得るため、細胞用凍結処理容器BICELLを用いて4 ℃〜-20 ℃まで-1 ℃/min で冷却して行った。さらにその上に10 %のドープ溶液を5 ml流し入れ、同様に真空脱気後、細胞用凍結処理容器BICELLを用いて凍結させた。そして20 Paで6時間凍結乾燥を行った。サンプルをエタノールで置換し真空乾燥を行い多孔体を得た。得られた多孔体のポロシティ、ポアサイズ及びポアサイズ200 μm以上のポア数を表1に示す。図1に上部のSEM写真を、図2に下部のSEM写真をを示す。
[Example 1]
1 g of polylactic acid-polyglycolic acid copolymer was dissolved in 19 g of dimethyl sulfoxide to prepare a dope solution having a concentration of 5%. Similarly, 1 g of polylactic acid-polyglycolic acid copolymer was dissolved in 9 g of dimethyl sulfoxide to prepare a dope solution having a concentration of 10%. First, 5 ml of 5% dope was poured into a 10 ml fluororesin container, frozen after vacuum degassing. In order to obtain a more uniform sponge, freezing was performed by cooling from 4 ° C. to −20 ° C. at −1 ° C./min using a cell freezing container BICELL. Further, 5 ml of a 10% dope solution was poured onto it, and after similarly vacuum degassing, it was frozen using a cell freezing vessel BICELL. Then, it was freeze-dried at 20 Pa for 6 hours. The sample was replaced with ethanol and vacuum dried to obtain a porous body. Table 1 shows the porosity, pore size, and number of pores having a pore size of 200 μm or more. FIG. 1 shows an upper SEM photograph, and FIG. 2 shows a lower SEM photograph.

[比較例1]
溶媒をジメチルスルホキシドに代わり、1,4-ジオキサン(融点:11.8 ℃)を使用した以外実施例1と同様に多孔体を得た。得られた多孔体のポロシティ、ポアサイズ及びポアサイズ200 μm以上のポア数を表1に示す。図3に上部のSEM写真を、図4に下部のSEM写真をを示す。
[Comparative Example 1]
A porous material was obtained in the same manner as in Example 1 except that 1,4-dioxane (melting point: 11.8 ° C.) was used instead of dimethyl sulfoxide. Table 1 shows the porosity, pore size, and number of pores having a pore size of 200 μm or more. FIG. 3 shows an upper SEM photograph, and FIG. 4 shows a lower SEM photograph.

Figure 2006068080
Figure 2006068080

本発明の生体組織に類似した勾配構造を特徴とする生体吸収性多孔質材料は、再生医療分野において細胞培養基材として有用である。   The bioabsorbable porous material characterized by a gradient structure similar to the biological tissue of the present invention is useful as a cell culture substrate in the field of regenerative medicine.

実施例1で得られた多孔体上部の走査型電子顕微鏡写真。The scanning electron micrograph of the upper part of the porous body obtained in Example 1. 実施例1で得られた多孔体下部の走査型電子顕微鏡写真。The scanning electron micrograph of the lower part of the porous body obtained in Example 1. 比較例1で得られた多孔体上部の走査型電子顕微鏡写真。The scanning electron micrograph of the upper part of the porous body obtained in Comparative Example 1. 比較例1で得られた多孔体下部の走査型電子顕微鏡写真。The scanning electron micrograph of the porous body lower part obtained by the comparative example 1. FIG.

Claims (5)

生体吸収性ポリマーからなり、ポロシティが10〜90 %、ポアサイズが10〜800 μm、さらには表面に開孔を有し、かつ少なくとも一方の表面においてポアサイズ200 μm以上のポアが5 個/1 mm2以上存在し、かつ異なるポロシティが連続的に存在する勾配構造を特徴とする多孔質材料。 Made of bioabsorbable polymer, porosity is 10-90%, pore size is 10-800 μm, and there are 5 pores with a pore size of 200 μm or more on at least one surface / 1 mm 2 A porous material characterized by a gradient structure in which different porosity exists continuously. 該生体吸収性ポリマーが、主として脂肪族ポリエステルからなる請求項1記載の多孔質材料。   The porous material according to claim 1, wherein the bioabsorbable polymer is mainly composed of an aliphatic polyester. 該脂肪族ポリエステルが、ポリグリコール酸、ポリ乳酸、ポリカプロラクトン、またはそれらの共重合体からなることを特徴とする請求項2記載の多孔質材料。   The porous material according to claim 2, wherein the aliphatic polyester comprises polyglycolic acid, polylactic acid, polycaprolactone, or a copolymer thereof. 生体吸収性ポリマーと融点が15〜30 ℃である有機溶媒とからなるポリマー溶液を調整し、次いで凍結乾燥することを特徴とする請求項1〜3のいずれか1項に記載の多孔質材料の製造方法。   The porous material according to any one of claims 1 to 3, wherein a polymer solution comprising a bioabsorbable polymer and an organic solvent having a melting point of 15 to 30 ° C is prepared and then freeze-dried. Production method. 該有機溶媒がジメチルスルホキシドであることを特徴とする請求項4記載の製造方法。   5. The production method according to claim 4, wherein the organic solvent is dimethyl sulfoxide.
JP2004251923A 2004-08-31 2004-08-31 Bioabsorbable porous material having gradient structure Pending JP2006068080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251923A JP2006068080A (en) 2004-08-31 2004-08-31 Bioabsorbable porous material having gradient structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251923A JP2006068080A (en) 2004-08-31 2004-08-31 Bioabsorbable porous material having gradient structure

Publications (1)

Publication Number Publication Date
JP2006068080A true JP2006068080A (en) 2006-03-16

Family

ID=36149321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251923A Pending JP2006068080A (en) 2004-08-31 2004-08-31 Bioabsorbable porous material having gradient structure

Country Status (1)

Country Link
JP (1) JP2006068080A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187852B2 (en) 2008-03-28 2012-05-29 Fujifilm Corporation Porous film
WO2015046216A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Method for producing biocompatible macromolecular porous body, biocompatible macromolecular porous body, biocompatible macromolecular block and cell structure
CN114350162A (en) * 2021-12-23 2022-04-15 之江实验室 Gradient pore structure silk fibroin film and preparation method thereof
KR20230037295A (en) * 2021-09-09 2023-03-16 김나연 Form for wet dressing and wet dressing used the same that

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187852B2 (en) 2008-03-28 2012-05-29 Fujifilm Corporation Porous film
WO2015046216A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Method for producing biocompatible macromolecular porous body, biocompatible macromolecular porous body, biocompatible macromolecular block and cell structure
JPWO2015046216A1 (en) * 2013-09-25 2017-03-09 富士フイルム株式会社 Biocompatible polymer porous body production method, biocompatible polymer porous body, biocompatible polymer block, and cell structure
JP2017113589A (en) * 2013-09-25 2017-06-29 富士フイルム株式会社 Manufacturing method of biocompatible polymer porous body, biocompatible polymer porous body, biocompatible polymer block and cell structure
JP2018070638A (en) * 2013-09-25 2018-05-10 富士フイルム株式会社 Production method of biocompatible polymeric porous body, biocompatible polymeric porous body, biocompatible polymeric block and cell structure
KR20230037295A (en) * 2021-09-09 2023-03-16 김나연 Form for wet dressing and wet dressing used the same that
KR102534658B1 (en) 2021-09-09 2023-05-18 김나연 Form for wet dressing and wet dressing used the same that
CN114350162A (en) * 2021-12-23 2022-04-15 之江实验室 Gradient pore structure silk fibroin film and preparation method thereof

Similar Documents

Publication Publication Date Title
Liu et al. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds
Rodrigues et al. Preparation and characterization of collagen‐nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications
Ma et al. Synthetic nano‐scale fibrous extracellular matrix
Pandey et al. Chitosan: Application in tissue engineering and skin grafting
US8901202B2 (en) Biocompatible material and prosthetic device made thereof for the replacement, repair and regeneration of meniscus
JP4481994B2 (en) Bioabsorbable porous material
Hoque et al. Gelatin based scaffolds for tissue engineering-a review
Kim et al. Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration
Marcolin et al. Electrospun silk fibroin–gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration
Rossi et al. Polymeric scaffolds as stem cell carriers in bone repair
CN100357352C (en) Method for preparing three-dimensional porous rack material for tissue engineering by super critical CO2 technology
Nahanmoghadam et al. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual‐leaching technique
KR20110031826A (en) Graphene/biopolymer nanofiber composites and preparation method thereof
US20150266225A1 (en) Facile Methods for Fabricating a Uniformly Patterned and Porous Nanofibrous Scaffold
Rentsch et al. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization
Sartore et al. A versatile cell-friendly approach to produce PLA-based 3D micro-macro-porous blends for tissue engineering scaffolds
Piszko et al. Brief review on poly (glycerol sebacate) as an emerging polyester in biomedical application: Structure, properties and modifications
Barbanti et al. Effect of salt leaching on PCL and PLGA (50/50) resorbable scaffolds
Yazdanpanah et al. Bioengineering of fibroblast‐conditioned polycaprolactone/gelatin electrospun scaffold for skin tissue engineering
George et al. Biopolymer-based scaffolds: Development and biomedical applications
JP2006068080A (en) Bioabsorbable porous material having gradient structure
KR20000060718A (en) Fabrication Method of Porous Polymer Scaffolds for Tissue Engneering by Using a Gas Foaming Salt
Huang et al. Carbodimide cross-linked and biodegradation-controllable small intestinal submucosa sheets
Moghadam et al. A biomimetic three-layered fibrin gel/PLLA nanofibers composite as a potential scaffold for articular cartilage tissue engineering application
CA2665511A1 (en) Matrix-gel graft without cells