JP2006066255A - Cathode for fuel cell and solid polymer fuel cell including the same - Google Patents

Cathode for fuel cell and solid polymer fuel cell including the same Download PDF

Info

Publication number
JP2006066255A
JP2006066255A JP2004248073A JP2004248073A JP2006066255A JP 2006066255 A JP2006066255 A JP 2006066255A JP 2004248073 A JP2004248073 A JP 2004248073A JP 2004248073 A JP2004248073 A JP 2004248073A JP 2006066255 A JP2006066255 A JP 2006066255A
Authority
JP
Japan
Prior art keywords
cathode
catalyst
fuel cell
oxygen
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004248073A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawamura
哲雄 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004248073A priority Critical patent/JP2006066255A/en
Publication of JP2006066255A publication Critical patent/JP2006066255A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cathode having an excellent electrode characteristic to an oxygen reduction reaction and comprising a carrier carrying a novel catalyst that reduces the amount of use of a platinum catalyst, and to provide a solid polymer fuel cell including the cathode and capable of providing a high battery output. <P>SOLUTION: The cathode for a fuel cell includes a catalyst layer comprising a catalyst-carrying conductive carrier and a polymer electrolyte. A composite oxide containing a noble metal element (element A) and an element constituting a nonstoichiometric oxide (element B) is carried as the catalyst by the conductive carrier. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用カソード及びこれを備えた固体高分子型燃料電池に関する。   The present invention relates to a cathode for a fuel cell and a polymer electrolyte fuel cell including the same.

高分子電解質膜を有する固体高分子型燃料電池は、小型軽量化が容易であることから、電気自動車等の移動車両や、小型コジェネレーションシステムの電源等としての実用化が期待されている。しかし、固体高分子型燃料電池は作動温度が比較的低くその排熱が補機動力などに有効利用しにくいため、その実用化のためにはアノード反応ガス(純水素等)の利用率及びカソード反応ガス(空気等)の利用率の高い作動条件下において、高い発電効率及び高い出力密度を得ることのできる性能が要求されている。   Since a polymer electrolyte fuel cell having a polymer electrolyte membrane is easily reduced in size and weight, it is expected to be put to practical use as a mobile vehicle such as an electric vehicle or a power source for a small cogeneration system. However, since solid polymer fuel cells have a relatively low operating temperature and their exhaust heat is difficult to use effectively for auxiliary power, etc., the utilization rate of the anode reaction gas (pure hydrogen, etc.) and the cathode for practical use. There is a demand for performance capable of obtaining high power generation efficiency and high power density under operating conditions with a high utilization rate of reaction gas (such as air).

固体高分子型燃料電池のアノード及びカソードの各触媒層内における電極反応は、各反応ガスと、触媒と、含フッ素イオン交換樹脂(電解質)とが同時に存在する三相界面(以下、反応サイトという)において進行する。そのため、固体高分子型燃料電池においては、従来より、金属触媒又は金属担持触媒(例えば、比表面積の大きなカーボンブラック担体に白金等の金属触媒を担持した金属担持カーボン等)等の触媒を高分子電解質膜と同種或いは異種の含フッ素イオン交換樹脂で被覆して触媒層の構成材料として使用し、いわゆる触媒層内の反応サイトの3次元化を行なうことにより当該反応サイトの増大化が図られている。   The electrode reaction in each catalyst layer of the anode and cathode of the polymer electrolyte fuel cell is a three-phase interface (hereinafter referred to as reaction site) in which each reaction gas, catalyst, and fluorine-containing ion exchange resin (electrolyte) are present simultaneously. ). Therefore, in a polymer electrolyte fuel cell, a catalyst such as a metal catalyst or a metal-supported catalyst (for example, a metal-supported carbon in which a metal catalyst such as platinum is supported on a carbon black support having a large specific surface area) is used as a polymer. Using the same or different type of fluorine-containing ion exchange resin as the electrolyte membrane and using it as a constituent material of the catalyst layer, the reaction sites in the catalyst layer are three-dimensionalized to increase the reaction sites. Yes.

上記の触媒を被覆する含フッ素イオン交換樹脂としては、デュポン社製「ナフィオン」等に代表されるようなイオン導電性が高くかつ、酸化及び還元雰囲気下において化学的に安定なスルホン酸基を有するパーフルオロカーボン重合体(以下、スルホン酸型パーフルオロカーボン重合体という)が使用されている。   The fluorine-containing ion exchange resin that coats the above catalyst has a high ionic conductivity as represented by “Nafion” manufactured by DuPont and the like, and has a sulfonic acid group that is chemically stable in an oxidizing and reducing atmosphere. A perfluorocarbon polymer (hereinafter referred to as sulfonic acid type perfluorocarbon polymer) is used.

しかし、従来のカソードの触媒層に含まれている含フッ素イオン交換樹脂はイオン伝導性と化学的安定性に優れている反面、樹脂内の酸素ガス透過性が不十分であるため、触媒層内の酸素透過性が不十分となり、カソードにおける酸素還元反応の過電圧が大きくなり、高い電極特性を得ることが困難となっていた。   However, while the conventional fluorine-containing ion exchange resin contained in the catalyst layer of the cathode is excellent in ion conductivity and chemical stability, the oxygen gas permeability in the resin is insufficient. As a result, the oxygen permeability of the cathode becomes insufficient, the overvoltage of the oxygen reduction reaction at the cathode increases, and it is difficult to obtain high electrode characteristics.

これに対して、下記特許文献1においては、触媒を被覆する含フッ素イオン交換樹脂に含フッ素エーテル化合物を混合してカソードの触媒層内の酸素透過性を増加させることによりカソードの過電圧の低減を図った固体高分子形燃料電池が提案されている。   On the other hand, in Patent Document 1 below, the cathode overvoltage is reduced by increasing the oxygen permeability in the cathode catalyst layer by mixing a fluorine-containing ether compound with the fluorine-containing ion exchange resin coating the catalyst. A proposed polymer electrolyte fuel cell has been proposed.

しかしながら、特許文献1に記載の固体高分子形燃料電池であっても、カソードの触媒層内の酸素透過性が不十分であり、カソードの過電圧を十分に低減できておらず、また、カソードの触媒層の耐久性が不十分であり、電池寿命が短いという問題がある。これは、好ましいとされる含フッ素エーテル化合物が油状の低分子化合物であるため、発電中においてこれが反応生成水に徐々に溶解するか、それに同伴して含フッ素イオン交換樹脂から脱離し、更に、生成水とともに触媒層から排出されてしまうからであると考えられる。   However, even in the polymer electrolyte fuel cell described in Patent Document 1, the oxygen permeability in the catalyst layer of the cathode is insufficient, and the cathode overvoltage cannot be sufficiently reduced. There is a problem that the durability of the catalyst layer is insufficient and the battery life is short. This is because the preferred fluorine-containing ether compound is an oily low molecular weight compound, so that it gradually dissolves in the reaction product water during power generation, or is accompanied by it and desorbed from the fluorine-containing ion exchange resin. It is thought that it is because it is discharged from the catalyst layer together with the produced water.

そこで、下記特許文献2には、高い酸素透過性を有しかつ実質的にイオン交換基を有しない高分子化合物を燃料電池の電極触媒層に含有させることにより、特にカソードにおける電極特性を向上させることが開示されている。   Therefore, Patent Document 2 below improves the electrode characteristics particularly in the cathode by including a polymer compound having high oxygen permeability and substantially having no ion exchange group in the electrode catalyst layer of the fuel cell. It is disclosed.

又、下記特許文献3には、血液中に含まれるヘモグロビンを模した、酸素と特異的かつ可逆的な結合をする金属錯体を含む酸素輸送担体の溶液を、疎水性でかつ二酸化炭素の溶解速度の遅い媒質中に分散させた分散液を、膜化して酸素選択透過膜とし、外気に通じる空気取り入れ孔を有する電池容器内に、空気取り入れ孔に沿って、酸素を活物質とするガス拡散電極を設けるとともに、このガス拡散電極と空気取り入れ孔との間に、上記の酸素選択透過膜を介在させた電池が開示されている。   Patent Document 3 below discloses a solution of an oxygen transport carrier containing a metal complex that specifically mimics hemoglobin contained in blood and has a specific and reversible bond with oxygen. Diffusion electrode using oxygen as active material along the air intake hole in the battery container having the air intake hole communicating with the outside air by forming the dispersion liquid dispersed in the slow medium into a membrane to form an oxygen selective permeable membrane And a battery in which the oxygen selective permeable membrane is interposed between the gas diffusion electrode and the air intake hole.

特開平11−354129号公報JP 11-354129 A 特開2002−252001号公報JP 2002-252001 A 特開平8−173775号公報JP-A-8-173775

特許文献2のように、触媒作成時に酸素透過樹脂を触媒担持カーボンと電解質と混合して形成すると、酸素透過樹脂が電極中に分散するため、生成水が増えると酸素を触媒表面近傍に導くことが行われにくくなる。つまり、生成水の排水経路と酸素の拡散経路が同じ場所にあることが問題である。電極内部に於いて、電極反応は三相界面と呼ばれる反応ガス、触媒、電解質が会合するサイトにて進行する。三相界面への酸素の供給が一つの重要な課題としてある。特許文献2では、酸素透過係数の高いポリマーと電解質と触媒とを物理的に混合することにより、反応の効率を上げているが、実際に酸素が必要とするのは三相界面であり、単なる物理的混合では三相界面近傍に集中的に高い酸素透過性ポリマーを存在させることはできない。その為、高い酸素透過材料を用いてもその能力を十二分に発揮させることができない。結局、電極反応は三相界面において行われるという考えに対するアプローチが十分でないといえる。   If the oxygen-permeable resin is mixed with the catalyst-supporting carbon and the electrolyte when the catalyst is prepared as in Patent Document 2, the oxygen-permeable resin is dispersed in the electrode. Is difficult to be performed. That is, it is a problem that the drainage path of the generated water and the oxygen diffusion path are in the same place. Inside the electrode, the electrode reaction proceeds at a site called a three-phase interface where the reaction gas, catalyst, and electrolyte meet. Supplying oxygen to the three-phase interface is an important issue. In Patent Document 2, the efficiency of the reaction is increased by physically mixing a polymer having a high oxygen permeability coefficient, an electrolyte, and a catalyst. However, oxygen actually requires a three-phase interface, In physical mixing, a high oxygen-permeable polymer cannot be concentrated in the vicinity of the three-phase interface. Therefore, even if a high oxygen permeable material is used, the ability cannot be fully exhibited. After all, it can be said that the approach to the idea that the electrode reaction takes place at the three-phase interface is not sufficient.

また、特許文献3のように、単にガス拡散電極と空気取り入れ孔との間に、酸素選択透過膜を介在させた電池では、直接触媒に酸素を拡散させるものではなく、その触媒活性を十分に高めることができなかった。即ち、出力を高める際、カソードでの反応速度が大きくなり酸素供給量が不足するために、電池性能の低下を引き起こすことが問題であった。   In addition, as in Patent Document 3, a battery in which an oxygen selective permeable membrane is simply interposed between the gas diffusion electrode and the air intake hole does not directly diffuse oxygen into the catalyst, and its catalytic activity is sufficient. I could not increase it. That is, when the output is increased, the reaction rate at the cathode is increased and the oxygen supply amount is insufficient.

他方、高分子電解質型燃料電池を実用化する上での課題の一つは、材料コストである。これを解決する手段の一つが白金量の低減である。外部から供給される酸素のうち、触媒である白金に吸着せずに未反応のまま外部へ排出される酸素が多いため(酸素利用率が低い)、必要発電性能を発現するには、多量の白金を使用して反応酸素量を増やす必要があった。これが、白金使用量の増量によるコスト高の原因である。   On the other hand, one of the problems in putting a polymer electrolyte fuel cell into practical use is material cost. One means for solving this is to reduce the amount of platinum. Of the oxygen supplied from the outside, there is a large amount of oxygen that is not reacted and is discharged to the outside without being adsorbed on the catalyst platinum (low oxygen utilization rate). It was necessary to increase the amount of reactive oxygen using platinum. This is the cause of the high cost due to the increased amount of platinum used.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、酸素還元反応に対する優れた電極特性を有するカソード、及びこれを備えた高い電池出力を得ることのできる固体高分子型燃料電池を提供するとともに、白金触媒の使用量を低減させる新規触媒を担持した担体からなるカソードを提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has a cathode having excellent electrode characteristics with respect to an oxygen reduction reaction, and a solid polymer fuel cell capable of obtaining a high battery output equipped with the cathode. It is another object of the present invention to provide a cathode comprising a carrier carrying a novel catalyst that reduces the amount of platinum catalyst used.

本発明者は、新規触媒を担持した担体を用いて、カーボン上の触媒元素に酸素分子が拡散できる経路を確保することにより、上記課題が解決することを見出し本発明に至った。   The present inventor has found that the above problems can be solved by securing a path through which oxygen molecules can diffuse into the catalytic element on carbon using a carrier carrying a novel catalyst, and has reached the present invention.

即ち、第1に、本発明は、燃料電池用カソードの発明であり、触媒担持導電性担体と、高分子電解質とからなる触媒層を有する燃料電池用カソードであって、前記触媒担持導電性担体には貴金属元素及び不定比酸化物を構成する元素を含む複合酸化物が触媒として担持されていることを特徴とする。カソード触媒層に供給される酸素を、該複合酸化物中の不定比酸化物を構成する元素が取り込み(吸着または吸収または吸蔵)、近接する貴金属元素へ供給する事で酸素利用効率を高める。この機能により、従来触媒(白金担持カーボン等)よりも少ない貴金属量で、同等の電池性能を発揮できる。   That is, first, the present invention relates to a cathode for a fuel cell, which is a cathode for a fuel cell having a catalyst layer composed of a catalyst-supporting conductive carrier and a polymer electrolyte, and the catalyst-supporting conductive carrier. Is characterized in that a composite oxide containing a noble metal element and an element constituting a non-stoichiometric oxide is supported as a catalyst. Oxygen supplied to the cathode catalyst layer is taken in (adsorbed, absorbed, or occluded) by the elements constituting the non-stoichiometric oxide in the composite oxide, and supplied to adjacent noble metal elements, thereby improving oxygen utilization efficiency. With this function, the same battery performance can be exhibited with a smaller amount of noble metal than conventional catalysts (such as platinum-supported carbon).

本発明で触媒として用いられる前記複合酸化物は、下記一般式

(Aは貴金属元素、Bは不定比酸化物を構成する元素、Cは任意成分である任意の金属元素であり、0<a≦1.0、0<b≦1.0、0≦c≦1.0、0<z≦6である。)
で表される。前記一般式中の、Aとしては、Pt、Pd、Rh、Ir、Auから選択される1種以上の貴金属元素が好ましく例示され、Bとしては、Ce、Mn、Ti、V、Fe、Co、Cu、Nb、Tc、Re、Os、Sn、Pb、Sb、Bi、Pr、Wから選択される1種以上の不定比酸化物を構成する元素が好ましく例示される。即ち、酸化数の変化によって不定比酸化物を構成する酸化数変動性金属元素である。Cは任意成分であり、上記貴金属元素及び不定比酸化物を構成する元素以外の任意の金属元素である。
The composite oxide used as a catalyst in the present invention has the following general formula A a B b C c O x
(A is a noble metal element, B is an element constituting a non-stoichiometric oxide, C is an arbitrary metal element which is an optional component, and 0 <a ≦ 1.0, 0 <b ≦ 1.0, 0 ≦ c ≦ 1.0 and 0 <z ≦ 6.)
It is represented by In the general formula, A is preferably exemplified by one or more noble metal elements selected from Pt, Pd, Rh, Ir, and Au, and B includes Ce, Mn, Ti, V, Fe, Co, Preferable examples include elements constituting one or more non-stoichiometric oxides selected from Cu, Nb, Tc, Re, Os, Sn, Pb, Sb, Bi, Pr, and W. That is, it is an oxidation number variable metal element that forms a non-stoichiometric oxide by changing the oxidation number. C is an optional component, and is an optional metal element other than the elements constituting the noble metal element and the nonstoichiometric oxide.

より具体的には、前記複合酸化物として、Pt0.1Ce0.6Zr0.3BaO、Pt0.1Ce0.6Zr0.2Nd0.1BaO、Pt0.2Ce0.8MgO、Pt0.1Mn0.6Zr0.3BaO、Pt0.1Pr0.6Zr0.3BaO等が挙げられるが、これらに限定されるものではない。 More specifically, as the composite oxide, Pt 0.1 Ce 0.6 Zr 0.3 BaO 3 , Pt 0.1 Ce 0.6 Zr 0.2 Nd 0.1 BaO 3 , Pt 0.2 Ce 0.8 MgO 3 , Pt 0.1 Mn 0.6 Zr 0.3 BaO 3 , Pt 0.1 Pr 0.6 Zr 0.3 BaO 3 and the like are exemplified, but not limited thereto. .

本発明のカソードは、導電性担体に貴金属元素及び不定比酸化物を構成する元素からなる複合酸化物触媒が担持されているので、触媒表面へ酸素分子の拡散経路が、不定比酸化物を構成する元素によって確保されるため、触媒層内の反応サイト近傍の反応ガスの濃度を従来よりも高くすることが可能である。その結果、電極反応における交換電流密度を増大させることができ、酸素過電圧を低減できる。すなわち、高い電極特性を得ることができる。特に、固体高分子型燃料電池のカソードとして使用すれば、カソードの酸素還元反応の過電圧を効果的に低減させることができるので、カソードの電極特性を向上させることができる。酸素ガスの不足は、特に、燃料電池が運転中に生じるが、本発明により、長時間の運転中も高い電極特性を維持することが出来る。同時に、高価な貴金属の使用量を低減させることができる。   In the cathode of the present invention, since the composite oxide catalyst composed of the noble metal element and the element constituting the non-stoichiometric oxide is supported on the conductive support, the diffusion path of oxygen molecules to the catalyst surface constitutes the non-stoichiometric oxide. Therefore, the concentration of the reaction gas in the vicinity of the reaction site in the catalyst layer can be made higher than before. As a result, the exchange current density in the electrode reaction can be increased, and the oxygen overvoltage can be reduced. That is, high electrode characteristics can be obtained. In particular, when used as a cathode of a polymer electrolyte fuel cell, the overvoltage of the oxygen reduction reaction at the cathode can be effectively reduced, so that the electrode characteristics of the cathode can be improved. Although the shortage of oxygen gas occurs particularly during operation of the fuel cell, the present invention makes it possible to maintain high electrode characteristics even during long-time operation. At the same time, the amount of expensive noble metal used can be reduced.

また、空気を酸化剤に用いる燃料電池では窒素の存在が電極の反応抑制の原因となり得る。本発明では不定比酸化物を構成する元素を有する複合酸化物触媒を担持することにより、窒素ガスの拡散を抑制し、電極近傍に於ける高い酸素濃度を実現し、より高い発電性能を得ることができる。   In addition, in a fuel cell using air as an oxidant, the presence of nitrogen can cause an electrode reaction suppression. In the present invention, by supporting a composite oxide catalyst having an element constituting a non-stoichiometric oxide, diffusion of nitrogen gas is suppressed, a high oxygen concentration in the vicinity of the electrode is realized, and higher power generation performance is obtained. Can do.

本発明においては、貴金属元素及び不定比酸化物を構成する元素を含む複合酸化物触媒が担持される導電性担体として、カーボン粉末または繊維状炭素材料であることが好ましい。   In the present invention, the conductive support on which the composite oxide catalyst containing the noble metal element and the element constituting the non-stoichiometric oxide is supported is preferably carbon powder or a fibrous carbon material.

第2に、本発明は、触媒担持導電性担体と、高分子電解質とからなる触媒層を有する燃料電池用カソードの製造方法の発明であり、導電性担体を溶媒に懸濁させる工程と、該懸濁液に1種以上の貴金属元素の塩、1種以上の不定比酸化物を構成する元素の塩、及び所望によりその他の金属元素の塩を溶解させる工程と、該懸濁液を焼成する工程と、得られた貴金属元素と不定比酸化物を構成する元素複合酸化物が触媒として担持されている導電性担体に電解質溶液を混合する工程とを含むことを特徴とする。   Second, the present invention is an invention of a method for producing a cathode for a fuel cell having a catalyst layer comprising a catalyst-supporting conductive carrier and a polymer electrolyte, the step of suspending the conductive carrier in a solvent, A step of dissolving a salt of one or more precious metal elements, a salt of an element constituting one or more nonstoichiometric oxides, and a salt of another metal element, if desired, in the suspension, and firing the suspension And a step of mixing an electrolyte solution with a conductive carrier on which the obtained noble metal element and the element composite oxide constituting the non-stoichiometric oxide are supported as a catalyst.

第3に、本発明は、アノードと、カソードと、アノードとカソードとの間に配置された高分子電解質膜とを有する固体高分子型燃料電池であって、カソードとして前述のカソードを備えることを特徴とする固体高分子型燃料電池である。   Third, the present invention is a polymer electrolyte fuel cell having an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, comprising the above-described cathode as a cathode. This is a feature of a solid polymer fuel cell.

このように、先に述べた酸素還元反応に対する優れた電極特性を有する本発明のカソードを備えることにより、高い電池出力を有する固体高分子型燃料電池を構成することが可能となる。また、先に述べたように、本発明のカソードはフラッディングの発生を十分に防止することができるとともに耐久性に優れているので、これを備える本発明の固体高分子型燃料電池は高い電池出力を長期にわたり安定して得ることが可能となる。同時に、貴金属の使用量が低減しているので燃料電池のコスト低減に役立つ。   Thus, by providing the cathode of the present invention having excellent electrode characteristics with respect to the oxygen reduction reaction described above, it becomes possible to configure a polymer electrolyte fuel cell having a high cell output. In addition, as described above, the cathode of the present invention can sufficiently prevent the occurrence of flooding and is excellent in durability. Therefore, the polymer electrolyte fuel cell of the present invention including the cathode has a high cell output. Can be obtained stably over a long period of time. At the same time, the amount of noble metal used is reduced, which helps to reduce the cost of the fuel cell.

本発明によれば、燃料電池用カソードの触媒層に貴金属元素及び不定比酸化物を構成する元素を含む複合酸化物が触媒として存在していることにより、触媒層のガス拡散の影響を受けることなく電極近傍に於ける高い酸素濃度を実現し、より高い発電性能を得ることができた。   According to the present invention, the presence of the composite oxide containing the noble metal element and the element constituting the non-stoichiometric oxide in the catalyst layer of the cathode for the fuel cell is affected by the gas diffusion of the catalyst layer. In addition, a high oxygen concentration in the vicinity of the electrode was realized, and higher power generation performance could be obtained.

以下、本発明のカソード及びこれを備えた固体高分子型燃料電池の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the cathode of the present invention and a polymer electrolyte fuel cell including the cathode will be described in detail.

図1に、従来技術のカソードでの触媒電極反応の概念図を示す。外部から供給された酸素のうち、一部は利用されないで排出される。触媒近くに拡散して来た酸素分子は、プロトンと電子と下記化学式の反応を行って水分子を生成する。
+ 4H + 4e ―――→ 2H
FIG. 1 shows a conceptual diagram of the catalytic electrode reaction at the cathode of the prior art. Part of the oxygen supplied from the outside is exhausted without being used. Oxygen molecules that have diffused near the catalyst react with protons and electrons to generate water molecules.
O 2 + 4H + + 4e − −− →→ 2H 2 O

図2に、本発明のカソードでの触媒電極反応の概念図を示す。貴金属元素(元素A)及び不定比酸化物を構成する元素(元素B)を含む複合酸化物が触媒として導電性カーボンに担持されている。触媒Bは外部から供給された酸素を取り込み(図2(a))、近接する触媒Aに供給する(図2(b))。触媒Aはカソード反応
+ 4H + 4e ―――→ 2H
を起こす。これにより、酸素の利用率が向上する。
FIG. 2 shows a conceptual diagram of the catalytic electrode reaction at the cathode of the present invention. A composite oxide containing a noble metal element (element A) and an element constituting the nonstoichiometric oxide (element B) is supported on conductive carbon as a catalyst. The catalyst B takes in oxygen supplied from the outside (FIG. 2A) and supplies it to the adjacent catalyst A (FIG. 2B). Catalyst A is cathodic reaction O 2 + 4H + + 4e − −− →→ 2H 2 O
Wake up. Thereby, the utilization factor of oxygen improves.

電極反応は三相界面と呼ばれる反応ガス、触媒、電解質が会合するサイトにて進行する。三相界面への酸素の供給が一つの重要なトピックとしてある。電池の出力を高くした場合、反応に大量の酸素が必要となり、触媒近傍に酸素がなければ発電特性は急激に低下する。従来の技術では高濃度の酸素を供給するという形式であるが、図1に示すように、実際の反応は三相界面(触媒近傍)で行われるので、ここに酸素が供給されていなければその能力を十二分に発揮させることができない。特に、出力をあげた場合、触媒表面での酸素消費量は上昇するが、外部から触媒表面に至る酸素の拡散速度は殆ど変化することがない。その為、ある一定以上の触媒表面での酸素の消費速度が、触媒表面への酸素の供給速度を上回った場合、触媒近傍付近の酸素欠により発電特性は低下する。これに対して、図2に示すように、本発明では、触媒Aへの酸素の供給速度を高めることによって、触媒近傍付近の酸素欠による発電特性の低下を防止している。   The electrode reaction proceeds at a site called a three-phase interface where reaction gas, catalyst, and electrolyte meet. The supply of oxygen to the three-phase interface is an important topic. When the output of the battery is increased, a large amount of oxygen is required for the reaction, and if there is no oxygen in the vicinity of the catalyst, the power generation characteristics deteriorate rapidly. In the conventional technique, a high concentration oxygen is supplied. However, as shown in FIG. 1, the actual reaction is performed at the three-phase interface (near the catalyst). The ability cannot be fully demonstrated. In particular, when the output is increased, the amount of oxygen consumed on the catalyst surface increases, but the diffusion rate of oxygen from the outside to the catalyst surface hardly changes. Therefore, when the oxygen consumption rate on the catalyst surface above a certain level exceeds the oxygen supply rate on the catalyst surface, the power generation characteristics deteriorate due to lack of oxygen in the vicinity of the catalyst. On the other hand, as shown in FIG. 2, in the present invention, by increasing the supply rate of oxygen to the catalyst A, a decrease in power generation characteristics due to lack of oxygen in the vicinity of the catalyst is prevented.

本発明の固体高分子型燃料電池のカソードは、触媒層を備えるが、触媒層と、該触媒層に隣接して配置されるガス拡散層とからなることが好ましい。ガス拡散層の構成材料としては、例えば、電子伝導性を有する多孔質体(例えば、カーボンクロスやカーボンペーパー)が使用される。   The cathode of the polymer electrolyte fuel cell of the present invention comprises a catalyst layer, and preferably comprises a catalyst layer and a gas diffusion layer disposed adjacent to the catalyst layer. As a constituent material of the gas diffusion layer, for example, a porous body having electronic conductivity (for example, carbon cloth or carbon paper) is used.

本発明において、触媒担持導電体中に含有される、貴金属元素(元素A)及び不定比酸化物を構成する元素(元素B)を含む複合酸化物からなる触媒は、電気伝導性の担体に担持されていることが好ましい。この担体は特に限定されないが、比表面積が200m/g以上のカーボン材料が好ましい。例えば、カーボンブラックや活性炭などが好ましく使用される。 In the present invention, a catalyst composed of a composite oxide containing a noble metal element (element A) and an element constituting a nonstoichiometric oxide (element B) contained in a catalyst-carrying conductor is supported on an electrically conductive carrier. It is preferable that Although this support | carrier is not specifically limited, The carbon material whose specific surface area is 200 m < 2 > / g or more is preferable. For example, carbon black or activated carbon is preferably used.

また、本発明の触媒層に含有される高分子電解質としては、含フッ素イオン交換樹脂が好ましく、特に、スルホン酸型パーフルオロカーボン重合体であることが好ましい。スルホン酸型パーフルオロカーボン重合体は、カソード内において長期間化学的に安定でかつ速やかなプロトン伝導を可能にする。   The polymer electrolyte contained in the catalyst layer of the present invention is preferably a fluorinated ion exchange resin, and particularly preferably a sulfonic acid type perfluorocarbon polymer. The sulfonic acid-type perfluorocarbon polymer enables proton conduction that is chemically stable and rapid in the cathode for a long period of time.

また、本発明のカソードの触媒層の層厚は、通常のガス拡散電極と同等であればよく、1〜100μmであることが好ましく、3〜50μmであることがより好ましい。   The layer thickness of the catalyst layer of the cathode of the present invention may be the same as that of a normal gas diffusion electrode, preferably 1 to 100 μm, more preferably 3 to 50 μm.

固体高分子型燃料電池においては、通常、アノードの水素酸化反応の過電圧に比較してカソードの酸素還元反応の過電圧が非常に大きいので、上記のようにカソードの触媒層内の反応サイト近傍の酸素濃度を増加させて当該反応サイトを有効に利用し、カソードの電極特性を向上させることは、電池の出力特性を向上させる上で効果的である。   In a polymer electrolyte fuel cell, since the overvoltage of the cathode oxygen reduction reaction is usually very large compared to the overvoltage of the anode hydrogen oxidation reaction, the oxygen in the vicinity of the reaction site in the cathode catalyst layer as described above. Increasing the concentration to effectively use the reaction site and improving the electrode characteristics of the cathode is effective in improving the output characteristics of the battery.

一方、アノードの構成は特に限定されず、例えば、公知のガス拡散電極の構成を有していてよい。   On the other hand, the configuration of the anode is not particularly limited. For example, the anode may have a configuration of a known gas diffusion electrode.

また、本発明の固体高分子型燃料電池に使用する高分子電解質膜は、湿潤状態下で良好なイオン伝導性を示すイオン交換膜であれば特に限定されない。高分子電解質膜を構成する固体高分子材料としては、例えば、スルホン酸基を有するパーフルオロカーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を用いることができる。中でも、スルホン酸型パーフルオロカーボン重合体が好ましい。そして、この高分子電解質膜は、触媒層に含まれる含フッ素イオン交換樹脂と同じ樹脂からなっていてもよく、異なる樹脂からなっていてもよい。   In addition, the polymer electrolyte membrane used in the solid polymer fuel cell of the present invention is not particularly limited as long as it is an ion exchange membrane exhibiting good ion conductivity in a wet state. As the solid polymer material constituting the polymer electrolyte membrane, for example, a perfluorocarbon polymer having a sulfonic acid group, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group can be used. Among these, a sulfonic acid type perfluorocarbon polymer is preferable. And this polymer electrolyte membrane may consist of the same resin as the fluorine-containing ion exchange resin contained in a catalyst layer, and may consist of different resin.

本発明のカソードの触媒層は、予め、導電性担体に貴金属元素及び不定比酸化物を構成する元素を含む複合酸化物からなる触媒を担持させたものと高分子電解質を溶媒又は分散媒に溶解又は分散した塗工液を用いて作製することができる。または、触媒担持導電性担体と、高分子電解質と、貴金属元素及び不定比酸化物を構成する元素を含む複合酸化物からなる触媒とが、溶媒又は分散媒に溶解又は分散した塗工液を用いて作製することができる。ここで用いる溶媒又は分散媒としては、例えばアルコール、含フッ素アルコール、含フッ素エーテル等が使用できる。そして、塗工液をイオン交換膜又はガス拡散層となるカーボンクロス等に塗工することにより触媒層が形成される。また、別途用意した基材に上記塗工液を塗工して塗工層を形成し、これをイオン交換膜上に転写することによってもイオン交換膜上に触媒層が形成できる。   The catalyst layer of the cathode of the present invention is prepared by previously dissolving a catalyst comprising a composite oxide containing a noble metal element and an element constituting a nonstoichiometric oxide on a conductive support and a polymer electrolyte dissolved in a solvent or dispersion medium. Or it can produce using the dispersed coating liquid. Alternatively, a coating liquid in which a catalyst-carrying conductive carrier, a polymer electrolyte, and a catalyst made of a composite oxide containing a noble metal element and an element constituting a nonstoichiometric oxide are dissolved or dispersed in a solvent or a dispersion medium is used. Can be produced. As the solvent or dispersion medium used here, for example, alcohol, fluorine-containing alcohol, fluorine-containing ether and the like can be used. And a catalyst layer is formed by apply | coating a coating liquid to the carbon cloth etc. which become an ion exchange membrane or a gas diffusion layer. Alternatively, the catalyst layer can be formed on the ion exchange membrane by coating the coating solution on a separately prepared substrate to form a coating layer and transferring the coating layer onto the ion exchange membrane.

ここで、触媒層をガス拡散層上に形成した場合には、触媒層とイオン交換膜とを接着法やホットプレス法等により接合することが好ましい。また、イオン交換膜上に触媒層を形成した場合には、触媒層のみでカソードを構成してもよいが、更に触媒層に隣接してガス拡散層を配置し、カソードとしてもよい。   Here, when the catalyst layer is formed on the gas diffusion layer, it is preferable to join the catalyst layer and the ion exchange membrane by an adhesion method, a hot press method, or the like. Further, when the catalyst layer is formed on the ion exchange membrane, the cathode may be constituted only by the catalyst layer, but a gas diffusion layer may be further arranged adjacent to the catalyst layer to serve as the cathode.

カソードの外側には、通常ガスの流路が形成されたセパレータが配置され、当該流路にアノードには水素を含むガス、カソードには酸素を含むガスが供給されて固体高分子型燃料電池が構成される。   A separator having a normal gas flow path is disposed outside the cathode, and a gas containing hydrogen is supplied to the anode, and a gas containing oxygen is supplied to the cathode. Composed.

以下、実施例及び比較例を挙げて本発明のカソード及び固体高分子型燃料電池について詳しく説明する。   Hereinafter, the cathode and the polymer electrolyte fuel cell of the present invention will be described in detail with reference to Examples and Comparative Examples.

[試料の調製]
通常、カソードにはPt/C触媒を電極触媒として用いる(比較例)。今回は、Pt0.1Ce0.6Zr0.3BaO、を担持させて実験を行った(実施例)。
[Sample preparation]
Usually, a Pt / C catalyst is used as an electrode catalyst for the cathode (comparative example). This time, Pt 0.1 Ce 0.6 Zr 0.3 BaO 3 was supported and an experiment was performed (Example).

(実施例)
カーボンブッラク粉末(Ketjen EC)を所定量、イオン交換水に懸濁させた。塩化白金(4)酸、硝酸2アンモニウムセリウム、オキシ硝酸ジルコニウム、硝酸バリウムを所定量、上記懸濁液に溶解させた。ここで、白金量が、カーボンと複合酸化物の総量に対して、30wt%含有されるように塩化白金(4)酸を溶解させた。撹拌しながら、アンモニア水をpH=9.5±0.2になるまで滴下した。2時間撹拌した後、120℃で、ある程度水を蒸発させた。真空乾燥させた後、大気焼成炉で、350℃、5時間焼成した。こうしてPt0.1Ce0.6Zr0.3BaOが得られた。
(Example)
A predetermined amount of carbon black powder (Ketjen EC) was suspended in ion-exchanged water. Platinum chloride (4) acid, diammonium cerium nitrate, zirconium oxynitrate, and barium nitrate were dissolved in predetermined amounts in the suspension. Here, platinum chloride (4) acid was dissolved so that the platinum amount was 30 wt% with respect to the total amount of carbon and composite oxide. While stirring, aqueous ammonia was added dropwise until pH = 9.5 ± 0.2. After stirring for 2 hours, water was evaporated to some extent at 120 ° C. After vacuum drying, it was baked at 350 ° C. for 5 hours in an atmospheric baking furnace. Thus Pt 0.1 Ce 0.6 Zr 0.3 BaO 3 was obtained.

得られたPt0.1Ce0.6Zr0.3BaO担持カーボンに、イオン交換水、電解質(Nafion:商標名)溶液、エタノール、ポリエチレングリコールを所定量混合して、触媒インクを作製した。触媒インクをテフロン(商標名)樹脂膜に膜厚6milにキャストした後、乾燥させて、13cmに切り出した。 Predetermined amounts of ion-exchanged water, an electrolyte (Nafion: trade name) solution, ethanol, and polyethylene glycol were mixed with the obtained Pt 0.1 Ce 0.6 Zr 0.3 BaO 3 -supported carbon to prepare a catalyst ink. . The catalyst ink was cast on a Teflon (trade name) resin film to a film thickness of 6 mil, then dried and cut into 13 cm 2 .

上記キャスト膜を電解質膜にホットプレスしてMEAを作製した。MEAをセルに組み付け、下記の評価をした。   The cast film was hot pressed onto an electrolyte film to prepare an MEA. MEA was assembled into the cell and evaluated as follows.

(比較例)
市販のPt(60wt%)担持カーボンを用いた。触媒インクの調製、キャスト、MEAの作製、MEAのセルに組み付け、評価は実施例と同じであった。
(Comparative example)
Commercially available Pt (60 wt%) supported carbon was used. Preparation of the catalyst ink, casting, production of MEA, assembly in the cell of MEA, and evaluation were the same as in the examples.

[触媒活性評価]
電極面積12.96cmの単セルにて下記の発電評価試験を行った。
「ガス流量」 アノード:H 500cc/min
カソード:空気 1000cc/min
「圧力」 アノード: 0.2MPa
カソード: 0.2MPa
「セル温度」 80℃
[Catalyst activity evaluation]
The following power generation evaluation test was conducted in a single cell having an electrode area of 12.96 cm 2 .
“Gas flow rate” Anode: H 2 500 cc / min
Cathode: Air 1000cc / min
“Pressure” Anode: 0.2 MPa
Cathode: 0.2 MPa
“Cell temperature” 80 ℃

図3に評価結果を示す。図3の結果より、本発明の触媒が担持された電極を用いた燃料電池は、白金触媒が担持された電極を用いた比較例と比べて、発電性能において遜色ないことが分る。しかも、実施例の触媒を用いたMEAは、比較例の従来触媒を用いたMEAの1/2の白金量で同等の性能を示した。   FIG. 3 shows the evaluation results. From the results of FIG. 3, it can be seen that the fuel cell using the electrode carrying the catalyst of the present invention is inferior in power generation performance as compared with the comparative example using the electrode carrying the platinum catalyst. Moreover, the MEA using the catalyst of the example showed equivalent performance with a platinum amount ½ that of the MEA using the conventional catalyst of the comparative example.

従来のカソードでの触媒電極反応の概念図を示す。The conceptual diagram of the catalyst electrode reaction in the conventional cathode is shown. 本発明のカソードでの触媒電極反応の概念図を示す。The conceptual diagram of the catalyst electrode reaction in the cathode of this invention is shown. 実施例と比較例の電圧−電流密度曲線を示す。The voltage-current density curve of an Example and a comparative example is shown.

Claims (6)

触媒担持導電性担体と、高分子電解質とからなる触媒層を有する燃料電池用カソードであって、前記触媒担持導電性担体には貴金属元素及び不定比酸化物を構成する元素を含む複合酸化物が触媒として担持されていることを特徴とする燃料電池用カソード。   A cathode for a fuel cell having a catalyst layer composed of a catalyst-supporting conductive support and a polymer electrolyte, wherein the catalyst-supporting conductive support includes a composite oxide containing a noble metal element and an element constituting a non-stoichiometric oxide. A cathode for a fuel cell, which is supported as a catalyst. 前記複合酸化物が、下記一般式

(Aは貴金属元素、Bは不定比酸化物を構成する元素、Cは任意成分である任意の金属元素であり、0<a≦1.0、0<b≦1.0、0≦c≦1.0、0<z≦6である。)
で表されることを特徴とする請求項1に記載の燃料電池用カソード。
The composite oxide has the following general formula A a B b C c O x
(A is a noble metal element, B is an element constituting a non-stoichiometric oxide, C is an arbitrary metal element which is an optional component, and 0 <a ≦ 1.0, 0 <b ≦ 1.0, 0 ≦ c ≦ 1.0 and 0 <z ≦ 6.)
2. The fuel cell cathode according to claim 1, wherein
前記一般式中の、AはPt、Pd、Rh、Ir、Auから選択される1種以上の貴金属元素であり、BはCe、Mn、Ti、V、Fe、Co、Cu、Nb、Tc、Re、Os、Sn、Pb、Sb、Bi、Pr、Wから選択される1種以上の不定比酸化物を構成する元素であることを特徴とする請求項2に記載の燃料電池用カソード。   In the general formula, A is one or more noble metal elements selected from Pt, Pd, Rh, Ir, and Au, and B is Ce, Mn, Ti, V, Fe, Co, Cu, Nb, Tc, The cathode for a fuel cell according to claim 2, which is an element constituting one or more non-stoichiometric oxides selected from Re, Os, Sn, Pb, Sb, Bi, Pr, and W. 前記複合酸化物が、Pt0.1Ce0.6Zr0.3BaO、Pt0.1Ce0.6Zr0.2Nd0.1BaO、Pt0.2Ce0.8MgOから選択される1種以上であることを特徴とする請求項2又は3に記載の燃料電池用カソード。 The composite oxide, Pt 0.1 Ce 0.6 Zr 0.3 BaO 3, Pt 0.1 Ce 0.6 Zr 0.2 Nd 0.1 BaO 3, Pt 0.2 Ce 0.8 MgO 3 The fuel cell cathode according to claim 2, wherein the cathode is one or more selected from the group consisting of: 触媒担持導電性担体と、高分子電解質とからなる触媒層を有する燃料電池用カソードの製造方法であって、導電性担体を溶媒に懸濁させる工程と、該懸濁液に1種以上の貴金属元素の塩、1種以上の不定比酸化物を構成する元素の塩、及び所望によりその他の金属元素の塩を溶解させる工程と、該懸濁液を焼成する工程と、得られた貴金属元素と不定比酸化物を構成する元素複合酸化物が触媒として担持されている導電性担体に電解質溶液を混合する工程とを含むことを特徴とする燃料電池用カソードの製造方法。   A method for producing a cathode for a fuel cell having a catalyst layer comprising a catalyst-supporting conductive carrier and a polymer electrolyte, the step of suspending the conductive carrier in a solvent, and at least one noble metal in the suspension A step of dissolving a salt of an element, a salt of an element constituting one or more nonstoichiometric oxides, and a salt of another metal element if desired, a step of firing the suspension, and a noble metal element obtained And a step of mixing an electrolyte solution with a conductive support on which an elemental composite oxide constituting the non-stoichiometric oxide is supported as a catalyst. アノードと、カソードと、前記アノードと前記カソードとの間に配置された高分子電解質膜とを有する固体高分子型燃料電池であって、前記カソードとして請求項1〜4の何れかに記載の燃料電池用カソードを備えることを特徴とする固体高分子型燃料電池。   5. A polymer electrolyte fuel cell comprising an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode, wherein the fuel according to claim 1 is used as the cathode. A polymer electrolyte fuel cell comprising a battery cathode.
JP2004248073A 2004-08-27 2004-08-27 Cathode for fuel cell and solid polymer fuel cell including the same Pending JP2006066255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248073A JP2006066255A (en) 2004-08-27 2004-08-27 Cathode for fuel cell and solid polymer fuel cell including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248073A JP2006066255A (en) 2004-08-27 2004-08-27 Cathode for fuel cell and solid polymer fuel cell including the same

Publications (1)

Publication Number Publication Date
JP2006066255A true JP2006066255A (en) 2006-03-09

Family

ID=36112562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248073A Pending JP2006066255A (en) 2004-08-27 2004-08-27 Cathode for fuel cell and solid polymer fuel cell including the same

Country Status (1)

Country Link
JP (1) JP2006066255A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005284A (en) * 2005-05-27 2007-01-11 Asahi Kasei Corp Electrode catalyst for fuel cell and its manufacturing method
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and its manufacturing method, electrode for fuel cell, and manufacturing method for membrane electrode structure
CN113795332A (en) * 2019-05-20 2021-12-14 株式会社Acr Cathode electrode for fuel cell, method for producing same, and solid polymer fuel cell provided with cathode electrode for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262663A (en) * 1998-03-19 1999-09-28 Toyota Motor Corp Exhaust gas cleaning catalyst and production thereof
JP2003173786A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Forming method and device of catalyst layer for solid polymer fuel cell
JP2003201417A (en) * 2001-10-30 2003-07-18 Ne Chemcat Corp Carbon black, electrode catalyst carrier formed from the carbon black, electrode catalyst using carrier and electrochemical device using carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262663A (en) * 1998-03-19 1999-09-28 Toyota Motor Corp Exhaust gas cleaning catalyst and production thereof
JP2003201417A (en) * 2001-10-30 2003-07-18 Ne Chemcat Corp Carbon black, electrode catalyst carrier formed from the carbon black, electrode catalyst using carrier and electrochemical device using carrier
JP2003173786A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Forming method and device of catalyst layer for solid polymer fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005284A (en) * 2005-05-27 2007-01-11 Asahi Kasei Corp Electrode catalyst for fuel cell and its manufacturing method
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and its manufacturing method, electrode for fuel cell, and manufacturing method for membrane electrode structure
CN113795332A (en) * 2019-05-20 2021-12-14 株式会社Acr Cathode electrode for fuel cell, method for producing same, and solid polymer fuel cell provided with cathode electrode for fuel cell
CN113795332B (en) * 2019-05-20 2024-03-15 株式会社Acr Cathode electrode for fuel cell, method for producing same, and solid polymer fuel cell provided with cathode electrode for fuel cell

Similar Documents

Publication Publication Date Title
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP5528630B2 (en) Fuel cell with cathode electrode using iron redox couple
JP2007180038A (en) Improved electrode
JP4349368B2 (en) Cathode for fuel cell and polymer electrolyte fuel cell having the same
JP4859124B2 (en) Membrane electrode unit, manufacturing method thereof, and direct methanol fuel cell
KR100599808B1 (en) Electrode for fuel cell and fuel cell system comprising same
JP2009026501A (en) Electrolyte membrane-electrode assembly
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
JP4919005B2 (en) Method for producing electrode for fuel cell
JP2004510316A (en) Tungsten-containing fuel cell catalyst and method for producing the same
JP4311070B2 (en) Cathode for fuel cell and polymer electrolyte fuel cell having the same
JP2008098140A (en) Electrode catalyst for electrochemical cell, its manufacturing method, electrochemical cell, unit cell for fuel cell, and fuel cell
JP2006236778A (en) Catalyst for fuel cell, membrane electrode complex, and solid polymer electrolyte fuel cell
JP2003142111A (en) Electrode for solid high polymer type fuel cell and its manufacturing method
JP2006066255A (en) Cathode for fuel cell and solid polymer fuel cell including the same
JP2008140703A (en) Composition material for battery, and film containing the same
JP2008091264A (en) Cathode for fuel cell and solid polymer electrolyte fuel cell equipped with this
JP2009070733A (en) Manufacturing method of single-chamber fuel cell and modified manganese oxide
JP2005100780A (en) Cathode for fuel cell, and solid polymer fuel cell equipped with this
JP4333195B2 (en) Cathode for fuel cell and polymer electrolyte fuel cell having the same
JP2006179412A (en) Fuel cell electrode catalyst layer and fuel cell using the same
JP2008176964A (en) Cathode for fuel cell, and solid polymer fuel cell equipped with it
JP2006344441A (en) Manufacturing method for catalyst mixture for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the catalyst mixture obtained by the manufacturing method
JP2002373662A (en) Electrode for solid polymer fuel cell
RU2522979C2 (en) Method of manufacturing metal-oxide catalytic electrode for low-temperature fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405