JP2006066243A - Method of manufacturing electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery using electrode plate - Google Patents

Method of manufacturing electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery using electrode plate Download PDF

Info

Publication number
JP2006066243A
JP2006066243A JP2004247876A JP2004247876A JP2006066243A JP 2006066243 A JP2006066243 A JP 2006066243A JP 2004247876 A JP2004247876 A JP 2004247876A JP 2004247876 A JP2004247876 A JP 2004247876A JP 2006066243 A JP2006066243 A JP 2006066243A
Authority
JP
Japan
Prior art keywords
electrode plate
active material
secondary battery
material mixture
aqueous electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004247876A
Other languages
Japanese (ja)
Inventor
Tomomune Suzuki
智統 鈴木
Masaaki Kubota
昌明 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2004247876A priority Critical patent/JP2006066243A/en
Publication of JP2006066243A publication Critical patent/JP2006066243A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode plate superior in adhesion with an active material mixture and conductivity, and a non-aqueous electrolytic liquid secondary battery superior in cycle life characteristics using the electrode plate. <P>SOLUTION: The method of manufacturing the electrode plate for a non-aqueous electrolytic liquid secondary battery is characterized in that an active material mixture paste containing a dispersant and a binder is coated on a current collector, and after drying and removing the dispersant, pressurized, and subsequently, heat-treated under the temperature of crystallization temperature or more and less than the melting point of the binder. The method of manufacturing the electrode plate for non-aqueous electrolytic liquid secondary battery is configured such that the active material mixture contains a lithium complex oxide which can store and release lithium ions or contains a carbon material which can absorb and release lithium ions. The non-aqueous electrolytic liquid secondary battery uses the electrode plate manufactured by the above manufacturing method at least for one of the positive electrode or negative electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、活物質合剤が剥離し難く、かつ導電性に優れる非水電解液二次電池用電極板の製造方法および前記電極板を用いたサイクル寿命特性に優れる非水電解液二次電池に関する。   The present invention relates to a method for producing an electrode plate for a non-aqueous electrolyte secondary battery in which an active material mixture is hardly peeled off and excellent in conductivity, and a non-aqueous electrolyte secondary battery excellent in cycle life characteristics using the electrode plate About.

電子機器には、鉛蓄電池、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池などが用いられているが、近年、電子機器の高性能化、小型化、ポータブル化に伴って、更に高いエネルギー密度の蓄電池が要求されるようになり、これに対して、金属リチウム、リチウム合金、リチウムイオンを吸蔵および放出できる炭素材料などを活物質に用いた負極板と、リチウム含有複合酸化物、カルコゲン化合物などを活物質に用いた正極板とを組み合わせたリチウム二次電池(非水電解液二次電池)が開発され、一部実用されている。この種の二次電池は電池電圧が高く、また重量および体積あたりのエネルギー密度が大きいため、今後最も期待される二次電池(蓄電池)である。   Lead-acid batteries, nickel-cadmium batteries, nickel-hydrogen batteries, etc. are used for electronic devices. However, in recent years, as electronic devices become more sophisticated, more compact, and more portable, there are even higher energy density storage batteries. In response to this, negative electrode plates using metal lithium, lithium alloys, carbon materials that can occlude and release lithium ions, and lithium-containing composite oxides, chalcogen compounds, and the like as active materials Lithium secondary batteries (non-aqueous electrolyte secondary batteries) combined with the positive electrode plate used in the above have been developed and partially used. This type of secondary battery is the most expected secondary battery (storage battery) in the future because of its high battery voltage and high energy density per weight and volume.

リチウム二次電池に用いられる正極板または負極板は、その活物質にバインダー、導電剤などを混合し、これに分散剤を加えて混合してペースト状として集電体に塗布し、次いで前記分散剤を乾燥除去後、加圧して製造されている。
このリチウム二次電池のサイクル寿命は活物質合剤と集電体間の密着性、および活物質合剤同士の密着性に強く依存しており、これら密着性(以下、活物質合剤の密着性と総称する。)を改善する方法として、集電体にテンションを掛けつつペーストを塗布し乾燥する方法が提案されている(特許文献1)。
A positive electrode plate or a negative electrode plate used for a lithium secondary battery is mixed with a binder, a conductive agent, and the like in its active material, mixed with a dispersant, applied as a paste, and then applied to the current collector. It is manufactured by applying pressure after drying and removing the agent.
The cycle life of this lithium secondary battery strongly depends on the adhesion between the active material mixture and the current collector, and the adhesion between the active material mixtures. As a method for improving the property, a method of applying a paste while applying tension to a current collector and drying it has been proposed (Patent Document 1).

特開2002−270161号公報JP 2002-270161 A

しかしながら、前記密着性を改善した電極板を用いても十分なサイクル寿命が得られなかった。そこで、本発明者等は、サイクル寿命の向上を目的に、非水電解液二次電池用電極板の製造方法について種々検討を行った。その結果、集電体に塗布した分散剤およびバインダーを含む活物質合剤ペーストに、分散剤の乾燥除去、加圧、熱処理をこの順に施すことにより活物質合剤の密着性、電極板の導電性などが改善されることを知見し、さらに検討を重ねて本発明を完成させるに至った。
本発明は、活物質合剤の密着性、および導電性に優れる電極板の製造方法、および前記電極板を用いたサイクル寿命特性に優れる非水電解液二次電池を提供することを目的とする。
However, even if the electrode plate with improved adhesion was used, a sufficient cycle life could not be obtained. Accordingly, the present inventors have conducted various studies on methods for producing electrode plates for nonaqueous electrolyte secondary batteries with the aim of improving cycle life. As a result, the active material mixture paste containing the dispersant and the binder applied to the current collector is subjected to drying removal of the dispersant, pressurization, and heat treatment in this order to thereby improve the adhesion of the active material mixture and the conductivity of the electrode plate. The inventors have found that the properties and the like are improved, and have further studied and completed the present invention.
It is an object of the present invention to provide a method for producing an electrode plate excellent in adhesion and conductivity of an active material mixture, and a non-aqueous electrolyte secondary battery excellent in cycle life characteristics using the electrode plate. .

請求項1記載発明は、分散剤およびバインダーを含む活物質合剤ペーストを集電体に塗布したのち、前記分散剤を乾燥除去し、次いで加圧し、次いで前記バインダーの結晶化温度以上、融点未満の温度で熱処理することを特徴とする非水電解液二次電池用電極板の製造方法である。   According to the first aspect of the present invention, after applying an active material mixture paste containing a dispersant and a binder to a current collector, the dispersant is dried and removed, and then pressurized, and then at or above the crystallization temperature of the binder and below the melting point It is the manufacturing method of the electrode plate for nonaqueous electrolyte secondary batteries characterized by heat-processing at the temperature of.

請求項2記載発明は、前記活物質合剤が、リチウムイオンを吸蔵および放出できるリチウム複合酸化物またはリチウムイオンを吸収および放出できる炭素材料を含むことを特徴とする請求項1記載の非水電解液二次電池用電極板の製造方法である。   The invention according to claim 2 is the non-aqueous electrolysis according to claim 1, wherein the active material mixture contains a lithium composite oxide capable of occluding and releasing lithium ions or a carbon material capable of absorbing and releasing lithium ions. It is a manufacturing method of the electrode plate for liquid secondary batteries.

請求項3記載発明は、請求項1または請求項2記載の製造方法により製造した電極板が正極または負極の少なくとも一方に用いられていることを特徴とする非水電解液二次電池である。   A third aspect of the invention is a non-aqueous electrolyte secondary battery in which an electrode plate produced by the production method of the first or second aspect is used for at least one of a positive electrode and a negative electrode.

請求項1記載発明は、分散剤およびバインダーを含む活物質合剤ペーストを集電体に塗布したのち、前記分散剤を乾燥除去し、次いで加圧および熱処理をこの順に施す非水電解液二次電池用電極板の製造方法であり、前記加圧により活物質合剤の密着性が向上して活物質合剤が剥離し難くなり、また前記熱処理によりバインダーが再結晶して導電パスが形成され電極板の導電性が向上するものである。前記加圧により、活物質合剤(粒子)間の距離が縮まり内部抵抗の減少も期待できる。   The invention according to claim 1 is a non-aqueous electrolyte secondary solution in which an active material mixture paste containing a dispersant and a binder is applied to a current collector, and then the dispersant is dried and removed, followed by pressurization and heat treatment in this order. This is a method for producing an electrode plate for a battery. The pressurization improves the adhesion of the active material mixture and makes it difficult for the active material mixture to be peeled off, and the heat treatment forms a conductive path by recrystallization of the binder. The conductivity of the electrode plate is improved. By the pressurization, the distance between the active material mixture (particles) is shortened, and a decrease in internal resistance can be expected.

請求項2記載発明は、前記活物質合剤に、リチウムイオンを吸蔵および放出できるリチウム複合酸化物またはリチウムイオンを吸収および放出できる炭素材料を含む活物質合剤を用いた非水電解液二次電池用電極板の製造方法であり、請求項1記載発明の場合と同様に、活物質合剤が剥離し難くかつ導電性に優れる電極板が得られる。   The invention according to claim 2 is a non-aqueous electrolyte secondary using an active material mixture containing, as the active material mixture, a lithium composite oxide capable of occluding and releasing lithium ions or a carbon material capable of absorbing and releasing lithium ions. This is a method for producing an electrode plate for a battery. Similarly to the case of the first aspect of the invention, an electrode plate is obtained in which the active material mixture is difficult to peel off and is excellent in conductivity.

請求項3記載発明は、前記請求項1記載発明の電極板を正極または負極の少なくとも一方に用いた非水電解液二次電池であり、前記二次電池は、電極板の活物質合剤が剥離し難く、かつ電極板の導電性が優れるため、サイクル寿命特性に優れる。   A third aspect of the present invention is a non-aqueous electrolyte secondary battery using the electrode plate of the first aspect of the present invention as at least one of a positive electrode and a negative electrode, and the secondary battery has an active material mixture of the electrode plate. Since it is difficult to peel off and the electrode plate has excellent conductivity, it has excellent cycle life characteristics.

特に前記活物質合剤に、リチウムイオンを吸蔵および放出できるリチウム複合酸化物を含む活物質合剤を用いたリチウム二次電池は、サイクル寿命特性に優れるうえ、電池電圧が高くかつ重量および体積あたりのエネルギー密度が大きいため、電子機器の高性能化、小型化、ポータブル化に有利である。   In particular, a lithium secondary battery using an active material mixture containing a lithium composite oxide capable of occluding and releasing lithium ions in the active material mixture has excellent cycle life characteristics, a high battery voltage, and a high weight per volume and volume. Because of its high energy density, it is advantageous for improving the performance, miniaturization, and portability of electronic devices.

本発明において、活物質合剤は、正極活物質または負極活物質、およびバインダーを必須構成要素とし、所望により導電剤など他の添加剤も含むものである。   In the present invention, the active material mixture includes a positive electrode active material or a negative electrode active material, and a binder as essential components, and optionally includes other additives such as a conductive agent.

また活物質合剤ペーストは、前記活物質合剤に分散剤を添加し混合して調製したものである。前記ペーストは、分散剤にバインダーを溶解し、そこに正極活物質などを添加して調製することもできる。   The active material mixture paste is prepared by adding a dispersant to the active material mixture and mixing them. The paste can also be prepared by dissolving a binder in a dispersant and adding a positive electrode active material or the like thereto.

本発明において、分散剤の乾燥除去は、通常60〜130℃の温度で行う。60℃未満では分散剤の除去に長時間を要して生産性が劣り、130℃を超えると集電体(金属箔など)が酸化して活物質合剤との密着性が低下する。   In the present invention, the dispersant is usually removed by drying at a temperature of 60 to 130 ° C. If the temperature is less than 60 ° C., it takes a long time to remove the dispersant, resulting in poor productivity. If the temperature exceeds 130 ° C., the current collector (metal foil or the like) is oxidized and the adhesion to the active material mixture is lowered.

本発明において、前記乾燥後の加圧は金属ロール、加熱ロール、シートプレス機などを用いた常法により行える。前記加圧での圧力(加圧力)は、5000N/cm2未満では活物質合剤皮膜の密着性、均質性、導電性が十分向上せず、74000N/cm2を超えると、電極板自体(集電体含む)が破損することがある。従って前記加圧力は5000〜74000N/cm2、特には30000〜50000N/cm2で行うのが好ましい。 In the present invention, the pressurization after the drying can be performed by a conventional method using a metal roll, a heating roll, a sheet press machine or the like. When the pressure (pressing force) in the pressurization is less than 5000 N / cm 2 , the adhesion, homogeneity, and conductivity of the active material mixture film are not sufficiently improved, and when it exceeds 74000 N / cm 2 , the electrode plate itself ( (Including current collector) may be damaged. Therefore, the applied pressure is preferably 5000 to 74000 N / cm 2 , particularly 30000 to 50000 N / cm 2 .

前記加圧後の熱処理により、バインダーが再結晶して、前記加圧により切断された導電パスが再形成され、電極板の導電性が向上する。   By the heat treatment after the pressurization, the binder is recrystallized, the conductive path cut by the pressurization is re-formed, and the conductivity of the electrode plate is improved.

前記熱処理はバインダーを再結晶させるためにバインダーの再結晶温度以上の温度で行うが、上限温度はバインダーの融点未満とする。その理由は、バインダーの融点以上では、バインダーが流動し、集電体と活物質合剤との界面を覆って、電極板の導電性が低下するためである。   The heat treatment is performed at a temperature equal to or higher than the recrystallization temperature of the binder in order to recrystallize the binder, but the upper limit temperature is lower than the melting point of the binder. This is because the binder flows above the melting point of the binder, covers the interface between the current collector and the active material mixture, and the conductivity of the electrode plate decreases.

本発明において、正極活物質には、LiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合酸化物、TiO、MnO、MoO、V、TiS、MoSなどのカルコゲン化合物などリチウムを吸蔵および放出できる任意の化合物が使用できる。特に、放電電圧が高いLiCoO、LiNiO、LiMnOなどのα−NaCrO構造を有するリチウム含有酸化物、或いはLiMnが推奨される。 In the present invention, the positive electrode active material includes lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , TiO 2 , MnO 2 , MoO 3 , V 2 O 5 , TiS 2 , MoS 2. Any compound that can occlude and release lithium, such as a chalcogen compound, can be used. In particular, lithium-containing oxides having an α-NaCrO 2 structure such as LiCoO 2 , LiNiO 2 , and LiMnO 2 having a high discharge voltage, or LiMn 2 O 4 are recommended.

また負極活物質には、天然黒鉛、人造黒鉛、難黒鉛化炭素などのリチウムイオンを吸蔵および放出できる炭素材料、リチウムアルミニウム合金、リチウム鉛合金、リチウムアンチモン合金、リチウムウッド合金などのリチウム合金、金属リチウム、非晶質錫酸化物などが使用できる。特に前記炭素材料は電池のサイクル寿命特性が向上し好ましい。   In addition, the negative electrode active material includes carbon materials that can occlude and release lithium ions such as natural graphite, artificial graphite, and non-graphitizable carbon, lithium alloys such as lithium aluminum alloy, lithium lead alloy, lithium antimony alloy, and lithium wood alloy, metal Lithium, amorphous tin oxide, etc. can be used. In particular, the carbon material is preferable because the cycle life characteristics of the battery are improved.

本発明において、バインダーには、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂などが用いられる。前記熱可塑性樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリオレフィン樹脂、ポリビニル樹脂、フッ素系樹脂、ポリイミド樹脂、アルキル樹脂、NBRなどが単独もしくは複数組み合わせて用いられる。   In the present invention, a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, or the like is used as the binder. Examples of the thermoplastic resin include polyester resin, polyamide resin, polyimide resin, polyacrylate resin, polycarbonate resin, polyurethane resin, cellulose resin, polyolefin resin, polyvinyl resin, fluorine-based resin, polyimide resin, alkyl resin, NBR, and the like. It is used alone or in combination.

前記バインダーには、電子線に反応する官能基を含む化合物(モノマー、オリゴマーまたは両者の混合系)を導入(物理的混合或いは化学的結合)したバインダーが、活物質粒子間の結合が電子線照射により迅速かつ均質に行えて好ましい。   The binder is a binder in which a compound (monomer, oligomer or a mixture of both) containing a functional group that reacts with an electron beam is introduced (physically mixed or chemically bonded), and the bond between the active material particles is irradiated with an electron beam. Is preferable because it can be carried out more quickly and uniformly.

前記電子線に反応する官能基を含む化合物としては、アクリル基、ビニル基、アリル基などを有する化合物のモノマー、またはオリゴマーが挙げられる。   Examples of the compound containing a functional group that reacts with an electron beam include a monomer or oligomer of a compound having an acrylic group, a vinyl group, an allyl group, or the like.

具体的には、(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、(メタ)アクリル系含燐化合物などのプレポリマー或いはオリゴマー、またはスチレン、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、2−ヒドロキシエチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、ヘキサメチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、エチレングリコールジグリシジルアクリレート、ジエチレングリコールジグリシジルエーテルジアクリレート、ヘキサメチレングリコールジグリシジルエーテルジアクリレート、ネオペンチルグリコールジグリシジルエーテルジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレートなどの単官能或いは多官能モノマーを単独もしくは複数組み合わせたものである。   Specifically, prepolymers or oligomers such as (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, (meth) acrylic phosphorus-containing compound, styrene, (meth) acrylic Methyl methacrylate, butyl (meth) acrylate, 2-hydroxyethyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, hexamethylene glycol diacrylate, neopentyl glycol diacrylate, ethylene glycol diglycidyl acrylate, diethylene glycol diglycidyl ether diacrylate, Hexamethylene glycol diglycidyl ether diacrylate, neopentyl glycol diglycidyl ether diacrylate, trimer Propane triacrylate, pentaerythritol tetraacrylate, dipentaerythritol tetraacrylate, it is a combination of single or a plurality of monofunctional or polyfunctional monomers such as dipentaerythritol hexaacrylate.

前記電子線に反応する官能基を含む化合物のバインダー全体に占める配合比率は1〜80質量%、即ち合成樹脂バインダー99〜20質量%に対し1〜80質量%が好ましい。   The blending ratio of the compound containing a functional group that reacts with the electron beam in the entire binder is preferably 1 to 80% by mass, that is, 1 to 80% by mass with respect to 99 to 20% by mass of the synthetic resin binder.

前記官能基を含む化合物を導入したバインダーとは、例えば、樹脂中のヒドロキシル基或いはカルボキシル基と、ヒドロキシル基を有するアクリレートなどのモノマーまたはオリゴマーを、ジイソシアネートを介して、カップリングさせたものである。或いはトルイジンイソシアネート、4、4´−ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、キシレンジイソシアネートなどのイソシアネートを介して、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレートなどのアクリレート系化合物を導入したものである。   The binder into which the compound containing the functional group is introduced is, for example, a product obtained by coupling a hydroxyl group or a carboxyl group in a resin and a monomer or oligomer such as an acrylate having a hydroxyl group via a diisocyanate. Alternatively, through an isocyanate such as toluidine isocyanate, 4,4′-diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, xylene diisocyanate, 2-hydroxyethyl acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxy-3-phenoxy An acrylate compound such as propyl (meth) acrylate is introduced.

活物質合剤を構成する正極活物質または負極活物質とバインダーとの配合比率は、活物質60〜95質量%とバインダー40〜5質量%が好ましく、特に活物質70〜90質量%とバインダー30〜10質量%がより好ましい。   The mixing ratio of the positive electrode active material or negative electrode active material constituting the active material mixture to the binder is preferably 60 to 95% by mass of the active material and 40 to 5% by mass of the binder, particularly 70 to 90% by mass of the active material and the binder 30. 10 mass% is more preferable.

活物質合剤に所望により添加する導電剤はNiなどの金属粉或いは炭素粉などである。炭素粉としてはグラファイト、カーボンブラック、アセチレンブラックなどが特に好ましい。前記導電剤の添加量は活物質に対し0.1〜10質量%である。   The conductive agent added to the active material mixture as desired is a metal powder such as Ni or carbon powder. As the carbon powder, graphite, carbon black, acetylene black and the like are particularly preferable. The addition amount of the conductive agent is 0.1 to 10% by mass with respect to the active material.

前記正極活物質または負極活物質と、前記バインダーとを所定比率で配合し、これに分散剤を添加し、所望により導電剤を添加し、ホモジナイザー、ボールミル、サンドミル、ロールミルなどの混合装置により均一に混合してペーストを調製する。ペーストの粘度は、通常5000cpに調製する。前記分散剤にはトルエンなどの芳香族溶剤、アミンなどのケトン系溶媒、エステル、エーテル溶媒、アミドなどの溶媒などが挙げられる。   The positive electrode active material or the negative electrode active material and the binder are blended in a predetermined ratio, a dispersant is added thereto, a conductive agent is added as desired, and the mixture is evenly mixed by a homogenizer, a ball mill, a sand mill, a roll mill, or the like. Mix to prepare paste. The viscosity of the paste is usually adjusted to 5000 cp. Examples of the dispersant include aromatic solvents such as toluene, ketone solvents such as amines, solvents such as esters, ether solvents, and amides.

前記バインダーに電子線で反応する官能基を含む化合物が導入されていて、前記活物質合剤が塗布に適した粘度に調製されている場合は、別途、分散剤を加える必要はなく、そのまま集電体に塗布することができる。   When a compound containing a functional group that reacts with an electron beam is introduced into the binder, and the active material mixture is prepared to have a viscosity suitable for coating, it is not necessary to add a dispersant separately. It can be applied to an electric body.

次に、このようにして調製した正極活物質合剤ペーストまたは負極活物質合剤ペーストを集電体上に、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマーコート、スロットダイコート、スライドダイコート、ディップコートなどの方法により均一な厚みに塗布する。
塗布厚みは、乾燥後の厚みで10〜250μm、好ましくは50〜200μmである。
Next, the positive electrode active material mixture paste or negative electrode active material mixture paste prepared in this manner is applied to the current collector on the gravure coat, gravure reverse coat, roll coat, Meyer bar coat, blade coat, knife coat, air Apply to uniform thickness by methods such as knife coating, comma coating, slot die coating, slide die coating, dip coating.
The coating thickness is 10 to 250 μm, preferably 50 to 200 μm, after drying.

前記集電体には、無孔金属箔、多孔金属箔(例えば、打抜多孔箔、発泡メタル箔)などが用いられる。前記無孔金属箔ではその表面にペースト塗膜が形成され、前記多孔金属箔ではその表面にペーストが塗布される他、多数の孔内にペーストが充填される。   For the current collector, non-porous metal foil, porous metal foil (for example, punched porous foil, foamed metal foil) or the like is used. In the non-porous metal foil, a paste coating film is formed on the surface, and in the porous metal foil, the paste is applied to the surface, and the paste is filled in a large number of holes.

本発明の非水電解液二次電池は、例えば、前記請求項1、2記載発明で製造した正極板および負極板を、セパレータを介して積層して極板群を形成し、これを電池容器に収納し、非水電解液を注入し、施蓋し、密封したものである。   The non-aqueous electrolyte secondary battery of the present invention includes, for example, a positive electrode plate and a negative electrode plate manufactured according to the first and second aspects of the present invention, laminated via a separator to form an electrode plate group, and this is a battery container. The non-aqueous electrolyte is injected, covered, and sealed.

前記本発明の非水電解液二次電池には、一方の電極に本発明の正極板または負極板を用い、他方の電極に従来公知の電極板を用いたものも含まれる。   The non-aqueous electrolyte secondary battery of the present invention includes one using the positive electrode plate or the negative electrode plate of the present invention for one electrode and the conventionally known electrode plate for the other electrode.

前記セパレータの材料は、前記非水電解液に不溶であれば特に限定されないが、三次元空孔構造を有するポリプロピレン、ポリエチレン、これらの共重合体などのポリオレフィン系微多孔性フィルムの単層体、或いは多層体が特に好ましい。   The material of the separator is not particularly limited as long as it is insoluble in the non-aqueous electrolyte, but a monolayer of a polyolefin-based microporous film such as polypropylene, polyethylene, or a copolymer thereof having a three-dimensional pore structure, Or a multilayer body is especially preferable.

本発明において、非水電解液には、例えば、リチウム二次電池の場合、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr、などの無機リチウム塩、LiB(C、LiN(SOCF、LiC(SOCF、LiOSOCFなどの有機リチウム塩の少なくとも1種を溶媒に溶解したものが用いられる。
前記溶媒には、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、2メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトンなどの環状エステル類、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソランなどの環状エーテル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテルなどの鎖状エーテル類、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピオン酸アルキルエステル、マーロン酸ジアルキルエステル、酢酸アルキルエステルなどの鎖状エステル類などから選択した少なくとも1種が用いられる。
In the present invention, the nonaqueous electrolyte includes, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, and other inorganic lithium salts such as LiB (C 6 H 5 ) 4 in the case of a lithium secondary battery. , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiOSO 2 CF 3 and other organic lithium salts dissolved in a solvent are used.
Examples of the solvent include propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, cyclic esters such as 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, and γ-valerolactone, tetrahydrofuran, alkyltetrahydrofuran, and dialkyl. Cyclic ethers such as tetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl Ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, tetraethylene glycol And at least one selected from chain ethers such as alkyl dialkyl ether, chain esters such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propionic acid alkyl ester, meronic acid dialkyl ester, and acetic acid alkyl ester. .

前記非水電解液は、LiBFまたはLiPFまたはこれらの混合物をプロピレンカーボネートおよびエチレンカーボネートから選んだ少なくとも1種と、エチルメチルカーボネート、ジエチルカーボネートおよびジメチルカーボネートから選んだ少なくとも1種との混合溶媒に溶解したものが特に好ましい。 The non-aqueous electrolyte is a mixed solvent of at least one selected from LiBF 4 or LiPF 6 or a mixture thereof from propylene carbonate and ethylene carbonate and at least one selected from ethyl methyl carbonate, diethyl carbonate, and dimethyl carbonate. A dissolved one is particularly preferred.

(1)正極活物質合剤ペーストの調製
正極活物質として粒径1〜100μmのLiCoO粉末90重量部、バインダーとしてポリ弗化ビニリデン樹脂5重量部、導電剤としてグラファイト粉末5重量部を配合して正極活物質合剤とし、これに分散剤としてN−メチルピロリドンを配合し、これを分散機にて毎分8000回転で20分間攪拌混合して正極活物質合剤ペーストを調製した。
(1) Preparation of positive electrode active material mixture paste 90 parts by weight of LiCoO 2 powder having a particle diameter of 1 to 100 μm as a positive electrode active material, 5 parts by weight of polyvinylidene fluoride resin as a binder, and 5 parts by weight of graphite powder as a conductive agent Thus, a positive electrode active material mixture paste was mixed with N-methylpyrrolidone as a dispersant, and this was stirred and mixed at 8000 rpm for 20 minutes with a disperser to prepare a positive electrode active material mixture paste.

(2)正極板の製造
前記(1)で調製した正極活物質合剤ペーストを、ダイコータを用いて厚さ20μmのアルミ箔(集電体)の片面上に連続的に塗布し、次いで分散剤を乾燥除去した後、加圧し、その後熱処理して正極板を製造した。前記乾燥、加圧、熱処理は種々条件で行った。乾燥後の正極活物質合剤の塗膜厚さは180μmであった。
(2) Manufacture of positive electrode plate The positive electrode active material mixture paste prepared in (1) above was continuously applied on one side of a 20 μm thick aluminum foil (current collector) using a die coater, and then a dispersant. After being removed by drying, pressure was applied, followed by heat treatment to produce a positive electrode plate. The drying, pressurization, and heat treatment were performed under various conditions. The coating thickness of the positive electrode active material mixture after drying was 180 μm.

(3)負極活物質合剤ペーストの調製
負極活物質としてグラファイト粉末93重量部、バインダーとしてポリ弗化ビニリデン樹脂7重量部を配合して負極活物質合剤とし、これに分散剤としてN−メチルピロリドン2を配合し、これを分散機にて毎分8000回転で20分間攪拌混合して負極活物質合剤ペーストを調製した。
(3) Preparation of negative electrode active material mixture paste 93 parts by weight of graphite powder as a negative electrode active material and 7 parts by weight of polyvinylidene fluoride resin as a binder were used as a negative electrode active material mixture, and N-methyl was used as a dispersant. Pyrrolidone 2 was blended, and this was stirred and mixed at 8000 rpm for 20 minutes with a disperser to prepare a negative electrode active material mixture paste.

(4)負極板の製造
前記(3)で調製した負極活物質合剤ペーストをダイコータを用いて厚さ14μmの銅箔(集電体)の片面上に連続的に塗布し(塗布幅300mm)、次いで分散剤を乾燥除去した後、加圧し、その後熱処理して負極板を製造した。前記乾燥、加圧、熱処理は種々条件で行った。乾燥後の負極活物質合剤の塗膜厚さは190μmであった。
(4) Manufacture of Negative Electrode Plate The negative electrode active material mixture paste prepared in (3) above was continuously applied on one side of a 14 μm thick copper foil (current collector) using a die coater (application width 300 mm). Then, after the dispersant was dried and removed, the pressure was applied, followed by heat treatment to produce a negative electrode plate. The drying, pressurization, and heat treatment were performed under various conditions. The coating thickness of the negative electrode active material mixture after drying was 190 μm.

前記(2)、(4)で製造した正極板および負極板から試験片を切り出し、各試験片を両面テープで固定して活物質合剤塗膜のテープ剥離試験を行った。剥離強度が50N/cm以上を密着性良好、50N/cm未満を密着性不良と判定した。 Test pieces were cut out from the positive electrode plate and the negative electrode plate produced in the above (2) and (4), and each test piece was fixed with a double-sided tape to perform a tape peeling test of the active material mixture coating film. A peel strength of 50 N / cm 2 or more was determined as good adhesion, and less than 50 N / cm 2 was determined as poor adhesion.

実施例1で得られた正極板および負極板を用いて3電極板式セルを構成し、充放電サイクル試験を充放電測定装置を用い25℃の温度で行った。
前記セルは正極板と対極板(Li金属板)間に、前記正極板および対極板よりも幅広のセパレータを介在させて構成した。前記セパレータにはポリプロピレンの微多孔性フィルムを用いた。電解液にはエチレンカーボネートを主とする混合溶媒に六フッ化リン酸リチウムを1.3mol/lになるように溶解した有機溶媒を用いた。
A three-electrode plate-type cell was constructed using the positive electrode plate and negative electrode plate obtained in Example 1, and a charge / discharge cycle test was performed at a temperature of 25 ° C. using a charge / discharge measuring device.
The cell was constructed by interposing a separator wider than the positive electrode plate and the counter electrode plate between the positive electrode plate and the counter electrode plate (Li metal plate). A polypropylene microporous film was used as the separator. As the electrolytic solution, an organic solvent in which lithium hexafluorophosphate was dissolved to 1.3 mol / l in a mixed solvent mainly composed of ethylene carbonate was used.

正極板の充放電サイクル試験は、最大充電電流0.5CAの電流値で試験極の電位がLiの平衡電位に対して4.15Vになるまで充電し、10分間休止後、同一電流で2.75Vになるまで放電し、10分間休止後、再び前記充電を行う充放電サイクルを30サイクル行った。1サイクル目と30サイクル目の電池容量を測定した。   The charge / discharge cycle test of the positive electrode plate was charged until the potential of the test electrode reached 4.15 V with respect to the equilibrium potential of Li at a current value of a maximum charge current of 0.5 CA. The battery was discharged until it reached 75 V, and after charging for 10 minutes, 30 charge / discharge cycles were performed to perform the charge again. The battery capacities of the first cycle and the 30th cycle were measured.

負極板の充放電サイクル試験は、最大充電電流0.5CAの電流値で試験極の電位がLiの平衡電位に対して0Vになるまで充電し、10分間休止後、同一電流で1.5Vになるまで放電し、10分間休止後、再び前記充電を行う充放電サイクルを30サイクル行った。1サイクル目と30サイクル目の電池容量を測定した。   The charge / discharge cycle test of the negative electrode plate was charged until the potential of the test electrode reached 0 V with respect to the equilibrium potential of Li at a current value of a maximum charging current of 0.5 CA. Then, the battery was discharged for 10 minutes, and after a 10-minute pause, 30 charging / discharging cycles were performed to perform the charging again. The battery capacities of the first cycle and the 30th cycle were measured.

前記正極板および負極板の充放電サイクル試験において、30サイクル目の容量が1サイクル目の容量(初期容量)の95%以上のときサイクル寿命特性が良好、95%未満のとき不良と判定した。   In the charge / discharge cycle test of the positive electrode plate and the negative electrode plate, it was determined that the cycle life characteristics were good when the capacity at the 30th cycle was 95% or more of the capacity (initial capacity) at the first cycle, and poor when it was less than 95%.

比較例1:実施例1において、加圧を熱処理後に行った他は、実施例1と同じ方法により正極板および負極板を製造し、実施例1と同じ方法により剥離試験および充放電サイクル試験を行った。   Comparative Example 1: A positive electrode plate and a negative electrode plate were produced by the same method as in Example 1 except that the pressurization was performed after the heat treatment in Example 1, and the peeling test and the charge / discharge cycle test were conducted by the same method as in Example 1. went.

比較例2:実施例1において、熱処理を行わなかった他は、実施例1と同じ方法により正極板および負極板を製造し、実施例1と同じ方法により剥離試験および充放電サイクル試験を行った。   Comparative Example 2: A positive electrode plate and a negative electrode plate were produced by the same method as in Example 1 except that no heat treatment was performed in Example 1, and a peel test and a charge / discharge cycle test were conducted by the same method as in Example 1. .

比較例3(従来法):実施例1において、加圧を行わなかった他は、実施例1と同じ方法により正極板および負極板を製造し、実施例1と同じ方法により剥離試験および充放電サイクル試験を行った。なお、ペーストの塗布、乾燥は、集電体に800N/cmのテンションを掛けながら行った。 Comparative Example 3 (conventional method): A positive electrode plate and a negative electrode plate were produced by the same method as in Example 1 except that no pressurization was performed in Example 1, and the peel test and charge / discharge were conducted by the same method as in Example 1. A cycle test was conducted. The paste was applied and dried while applying a tension of 800 N / cm 2 to the current collector.

なお、比較例1、2において、分散剤の乾燥除去は100℃で10分間行い、熱処理は145℃で10分間行い、加圧は60000N/cmの圧力で行った。
実施例1および比較例1、2の試験結果を表1に示す。
In Comparative Examples 1 and 2, the dispersant was removed by drying at 100 ° C. for 10 minutes, the heat treatment was performed at 145 ° C. for 10 minutes, and the pressurization was performed at a pressure of 60000 N / cm 2 .
The test results of Example 1 and Comparative Examples 1 and 2 are shown in Table 1.

表1から明らかなように、実施例1(本発明例)の正極板および負極板は、活物質合剤(塗膜)の剥離強度およびサイクル寿命特性が良好であった。これは加圧により活物質の密着性が向上して活物質合剤の剥離が防止され、また加圧後、熱処理することで導電パスが形成されて電極板の導電性が向上したためである。電極板の導電性向上には、加圧により活物質合剤(粒子)間の距離が縮まり内部抵抗が減少したことも寄与している。   As is clear from Table 1, the positive electrode plate and the negative electrode plate of Example 1 (invention example) had good peel strength and cycle life characteristics of the active material mixture (coating film). This is because the adhesion of the active material is improved by pressurization to prevent the active material mixture from being peeled off, and the conductive path is formed by heat treatment after pressurization to improve the conductivity of the electrode plate. In order to improve the electrical conductivity of the electrode plate, the distance between the active material mixtures (particles) is reduced by pressurization and the internal resistance is reduced.

一方、比較例1の電極板は、熱処理後、加圧したため、熱処理で形成された導電パスが破壊し、電極板の導電性が低下してサイクル寿命特性が劣った。比較例2の電極板は熱処理を行わなかったため電極板の導電性が低く、サイクル寿命特性が劣った。比較例3の電極板は、加圧を行わなかったため活物質の密着性が悪化し、サイクル寿命特性が劣り、負極にあっては活物質合剤が脱落し充放電サイクル試験を中断した。
On the other hand, since the electrode plate of Comparative Example 1 was pressurized after the heat treatment, the conductive path formed by the heat treatment was broken, the conductivity of the electrode plate was lowered, and the cycle life characteristics were inferior. Since the electrode plate of Comparative Example 2 was not subjected to heat treatment, the conductivity of the electrode plate was low and the cycle life characteristics were inferior. Since the electrode plate of Comparative Example 3 was not pressurized, the active material adhesion deteriorated and the cycle life characteristics deteriorated. In the negative electrode, the active material mixture dropped and the charge / discharge cycle test was interrupted.

Claims (3)

分散剤およびバインダーを含む活物質合剤ペーストを集電体に塗布したのち、前記分散剤を乾燥除去し、次いで加圧し、次いで前記バインダーの結晶化温度以上、融点未満の温度で熱処理することを特徴とする非水電解液二次電池用電極板の製造方法。   After applying an active material mixture paste containing a dispersant and a binder to a current collector, the dispersant is dried and removed, then pressurized, and then heat treated at a temperature above the binder crystallization temperature and below the melting point. A method for producing an electrode plate for a non-aqueous electrolyte secondary battery. 前記活物質合剤が、リチウムイオンを吸蔵および放出できるリチウム複合酸化物またはリチウムイオンを吸収および放出できる炭素材料を含むことを特徴とする請求項1記載の非水電解液二次電池用電極板の製造方法。   2. The electrode plate for a non-aqueous electrolyte secondary battery according to claim 1, wherein the active material mixture includes a lithium composite oxide capable of inserting and extracting lithium ions or a carbon material capable of absorbing and releasing lithium ions. Manufacturing method. 請求項1または請求項2記載の製造方法により製造した電極板が正極または負極の少なくとも一方に用いられていることを特徴とする非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery, wherein an electrode plate produced by the production method according to claim 1 or 2 is used for at least one of a positive electrode and a negative electrode.
JP2004247876A 2004-08-27 2004-08-27 Method of manufacturing electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery using electrode plate Pending JP2006066243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247876A JP2006066243A (en) 2004-08-27 2004-08-27 Method of manufacturing electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery using electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247876A JP2006066243A (en) 2004-08-27 2004-08-27 Method of manufacturing electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery using electrode plate

Publications (1)

Publication Number Publication Date
JP2006066243A true JP2006066243A (en) 2006-03-09

Family

ID=36112552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247876A Pending JP2006066243A (en) 2004-08-27 2004-08-27 Method of manufacturing electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery using electrode plate

Country Status (1)

Country Link
JP (1) JP2006066243A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063991A1 (en) * 2010-11-11 2012-05-18 한국기계연구원 Method for manufacturing aluminum electrode using wetting process and aluminum electrode manufactured thereby
JP2013546133A (en) * 2010-11-10 2013-12-26 エピック ベンチャーズ インコーポレイテッド Lead acid cell with active material held in lattice
JP2015536539A (en) * 2012-10-23 2015-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing positive electrode
JP2016100205A (en) * 2014-11-21 2016-05-30 株式会社豊田自動織機 Electrode and manufacturing method thereof, and power storage device
JP2016131123A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Lithium secondary battery, power storage device including lithium secondary battery, and method for manufacturing lithium secondary battery
JP6430622B1 (en) * 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP6430619B1 (en) * 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP6430623B1 (en) * 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP6430624B1 (en) * 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
WO2019074028A1 (en) 2017-10-10 2019-04-18 日産自動車株式会社 Electrode for nonaqueous electrolyte secondary battery
WO2019074025A1 (en) 2017-10-10 2019-04-18 日産自動車株式会社 Method for producing electrode for nonaqueous electrolyte secondary battery
WO2019074029A1 (en) 2017-10-10 2019-04-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode
WO2019074030A1 (en) 2017-10-10 2019-04-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537143B2 (en) 2010-11-10 2017-01-03 Epic Ventures Inc. Lead acid cell with active materials held in a lattice
JP2013546133A (en) * 2010-11-10 2013-12-26 エピック ベンチャーズ インコーポレイテッド Lead acid cell with active material held in lattice
WO2012063991A1 (en) * 2010-11-11 2012-05-18 한국기계연구원 Method for manufacturing aluminum electrode using wetting process and aluminum electrode manufactured thereby
US10046360B2 (en) 2010-11-11 2018-08-14 Korea Institute Of Machinery And Materials Method for manufacturing aluminum electrode using solution process
JP2015536539A (en) * 2012-10-23 2015-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing positive electrode
JP2016100205A (en) * 2014-11-21 2016-05-30 株式会社豊田自動織機 Electrode and manufacturing method thereof, and power storage device
JP2016131123A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Lithium secondary battery, power storage device including lithium secondary battery, and method for manufacturing lithium secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11664502B2 (en) 2017-10-10 2023-05-30 Nissan Motor Co., Ltd. Electrode for non-aqueous electrolyte secondary battery
WO2019074029A1 (en) 2017-10-10 2019-04-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode
WO2019074030A1 (en) 2017-10-10 2019-04-18 日産自動車株式会社 Non-aqueous electrolyte secondary battery electrode
WO2019074028A1 (en) 2017-10-10 2019-04-18 日産自動車株式会社 Electrode for nonaqueous electrolyte secondary battery
WO2019074025A1 (en) 2017-10-10 2019-04-18 日産自動車株式会社 Method for producing electrode for nonaqueous electrolyte secondary battery
CN109935763A (en) * 2017-12-19 2019-06-25 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
CN110197890A (en) * 2017-12-19 2019-09-03 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
CN109935765A (en) * 2017-12-19 2019-06-25 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
JP6430623B1 (en) * 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP2019110072A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP2019110071A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP2019110064A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP2019110073A (en) * 2017-12-19 2019-07-04 住友化学株式会社 Nonaqueous electrolyte secondary battery
CN109980159A (en) * 2017-12-19 2019-07-05 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
JP6430624B1 (en) * 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430619B1 (en) * 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN109935763B (en) * 2017-12-19 2022-05-13 住友化学株式会社 Non-aqueous electrolyte secondary battery
CN109935765B (en) * 2017-12-19 2022-09-02 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP6430622B1 (en) * 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US6048372A (en) Method of producing an electrode plate used for a lithium secondary battery and a lithium secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
JP2006066243A (en) Method of manufacturing electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery using electrode plate
JP6137088B2 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
CN108370026B (en) Non-aqueous electrolyte secondary battery
JP3885227B2 (en) Non-aqueous secondary battery
KR101551682B1 (en) Electrode and method of manufacturing an active material for the electrode
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP5200329B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2002359006A (en) Secondary battery
JP2008027600A (en) Method of manufacturing cathode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using above cathode plate
JP2006066298A (en) Lithium secondary battery
CN101894971A (en) Lithium-ion secondary battery
JP2007258087A (en) Nonaqueous electrolytic solution secondary battery, and electrode plate therefor and its manufacturing method
JP2007265889A (en) Electrode plate for nonaqueous electrolytic solution secondary battery, and its manufacturing method as well as nonaqueous electrolytic solution secondary battery
JP2000006439A (en) Cathode plate and anode plate for non-aqueous electrolyte secondary cell
JP2001202945A (en) Lithium secondary battery
JPH09259890A (en) Electrode applying solution and electrode plate for nonaqueous electrolyte secondary battery
US6680148B2 (en) Method for fabricating a lithium battery with self-adhesive polymer electrolyte
JP7359337B1 (en) Negative electrode binder composition, method for producing the same, negative electrode, and secondary battery
JP7311059B2 (en) Negative electrode binder composition, negative electrode, and secondary battery
JP2002164031A (en) Battery having separator
JP2008171661A (en) Lithium-ion secondary battery
JP2017098065A (en) Electrode for secondary battery, and secondary battery using the same