JP2006064738A - Electrifying device and image forming apparatus - Google Patents
Electrifying device and image forming apparatus Download PDFInfo
- Publication number
- JP2006064738A JP2006064738A JP2004243678A JP2004243678A JP2006064738A JP 2006064738 A JP2006064738 A JP 2006064738A JP 2004243678 A JP2004243678 A JP 2004243678A JP 2004243678 A JP2004243678 A JP 2004243678A JP 2006064738 A JP2006064738 A JP 2006064738A
- Authority
- JP
- Japan
- Prior art keywords
- gel
- charged
- conductive medium
- conductive
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
Description
本発明は帯電装置、特に接触帯電装置、及び該帯電装置を備えた画像形成装置に関する。 The present invention relates to a charging device, in particular, a contact charging device, and an image forming apparatus including the charging device.
従来、電子写真装置等の画像形成装置において、電子写真感光体等の被帯電体を帯電する手段として、コロナ放電を利用したコロナ帯電器が主に用いられてきた。コロナ帯電器は、被帯電体と非接触に配置し、例えばワイヤ電極や針電極等に高電圧を印加してコロナ放電を起こして、その放電電流の一部を被帯電体に流すことで被帯電体を所定の電位に帯電させるものである。 Conventionally, in an image forming apparatus such as an electrophotographic apparatus, a corona charger using corona discharge has been mainly used as means for charging an object to be charged such as an electrophotographic photosensitive member. The corona charger is placed in non-contact with the object to be charged, for example, a high voltage is applied to a wire electrode or a needle electrode to cause corona discharge, and a part of the discharge current is passed through the object to be charged. The charged body is charged to a predetermined potential.
しかしながら、このコロナ帯電器はコロナ放電を利用するため、多量のオゾンが発生して人体に悪影響を及ぼし、またコロナ放電による放電生成物が被帯電体表面に付着して被帯電体の寿命を短くするという問題があった。更に高電圧電源が必要であり、電源コストが高いという欠点もあった。 However, since this corona charger uses corona discharge, a large amount of ozone is generated, which adversely affects the human body, and discharge products from the corona discharge adhere to the surface of the object to be charged, shortening the life of the object to be charged. There was a problem to do. Furthermore, a high voltage power source is necessary, and there is a disadvantage that the power source cost is high.
近年、コロナ帯電器と比べて低オゾン、低電力などの利点があることから接触帯電器が多数提案、実用化されている。 In recent years, many contact chargers have been proposed and put to practical use because they have advantages such as low ozone and low power compared to corona chargers.
接触帯電器は、被帯電体に接触させた導電性の電極に所定の帯電バイアスを印加して、被帯電面を所定の極性・電位に帯電させるものである。電極としては、例えば帯電ローラ、ファーブラシ、磁気ブラシ、ブレード等が用いられる。 The contact charger applies a predetermined charging bias to a conductive electrode brought into contact with an object to be charged to charge the surface to be charged to a predetermined polarity / potential. As the electrode, for example, a charging roller, a fur brush, a magnetic brush, a blade, or the like is used.
接触帯電の帯電機構には2種類あることが知られている。一つは放電による帯電機構であり、もう一つは電極から被帯電体へ直接電荷が注入される機構である。 It is known that there are two types of contact charging mechanisms. One is a charging mechanism by discharge, and the other is a mechanism in which charges are directly injected from an electrode to an object to be charged.
放電帯電機構では、被帯電体と電極との微小な間隙で起こる放電現象を利用する。このため、コロナ帯電に比べて低電圧で帯電できるものの、所望の帯電電位にしきい電圧を加えた電圧を電極に印加する必要がある。また、コロナ帯電に比べてオゾン発生量は減少するものの、放電現象を利用した帯電方式であるため放電生成物による弊害は避けられない。 In the discharge charging mechanism, a discharge phenomenon that occurs in a minute gap between an object to be charged and an electrode is used. For this reason, although it can be charged at a lower voltage than the corona charging, it is necessary to apply a voltage obtained by adding a threshold voltage to a desired charging potential to the electrode. In addition, although the amount of ozone generated is smaller than that of corona charging, the charging method using the discharge phenomenon is unavoidable due to discharge products.
注入帯電機構では、接触電極から被帯電体に、放電現象を介さずに直接電荷が注入される。電極に印加した電圧が放電しきい値以下の電圧であっても、被帯電体表面を印加電圧にほぼ等しい電圧に被帯電体を帯電できるので、上記の放電現象を利用した接触帯電よりも更に低い電圧で利用できる。また、放電が起きずイオンの発生を伴わないため、放電生成物による弊害がない。 In the injection charging mechanism, a charge is directly injected from a contact electrode to an object to be charged without going through a discharge phenomenon. Even if the voltage applied to the electrode is equal to or lower than the discharge threshold, the surface of the object to be charged can be charged to a voltage substantially equal to the applied voltage. Available at low voltage. Further, since no discharge occurs and no ions are generated, there is no harmful effect caused by the discharge product.
注入帯電機構で具体的には、被帯電体への電荷移動媒体として液体、粉体およびゲル等の流動体を用いる方法が知られている(特許文献1)。電荷移動媒体として流動体を用いることで、電荷移動媒体が被帯電体面に密な接触を維持できるため、均一性に優れ、かつ帯電能の高い直接注入帯電を行うことができるようになるので、上記接触電極による被帯電体の接触帯電は直接注入帯電が有効である。さらに流動体としてゲルを用いることで液体や粉体を用いる場合より、揮発や飛び散り、漏洩など問題を生じることなく、取扱いおよび加工が容易となることが知られている。
しかしながら、従来の帯電用ゲルは水を溶媒とするハイドロゲルが用いられており、以下の問題があった。
(1)溶媒の揮発によるゲルの容量減少が生じやすく、被帯電体への接触面積減少などのために安定した帯電を維持できない;および
(2)揮発成分が現像部、転写部などの周辺プロセスに悪影響を及ぼし、現像ムラや転写ムラなどを生じ、安定した画像形成を維持できない。
However, hydrogels using water as a solvent for conventional charging gels have the following problems.
(1) The volume of the gel is likely to decrease due to the volatilization of the solvent, and stable charging cannot be maintained due to a decrease in the contact area with the charged body; and (2) Peripheral processes such as the developing unit and the transfer unit Adversely affects the development, causes development unevenness and transfer unevenness, and cannot maintain stable image formation.
本発明は、簡便かつ長期に渡って安定した均一注入帯電を実現する帯電装置、及び該帯電装置を備えた画像形成装置を提供することを目的とする SUMMARY OF THE INVENTION An object of the present invention is to provide a charging device that realizes simple and stable uniform injection charging over a long period of time, and an image forming apparatus including the charging device.
本発明は、表面が移動する被帯電体の該表面に接触配置されるゲル状の導電性媒体に帯電用電圧を印加することで該被帯電体を帯電させる帯電装置であって、該ゲル状導電性媒体が低揮発性であることを特徴とする帯電装置に関する。 The present invention relates to a charging device for charging a charged object by applying a charging voltage to a gel-like conductive medium disposed in contact with the surface of the charged object whose surface moves. The present invention relates to a charging device in which a conductive medium has low volatility.
本発明はまた、表面が移動する被帯電体、該被帯電体を一様に帯電させる上記帯電装置、被帯電体上に静電潜像を形成する露光装置、静電潜像を現像してトナー像を形成する現像装置、およびトナー像を被転写体に転写する転写装置を備えた画像形成装置に関する。 The present invention also provides an object to be charged whose surface is moved, the above-described charging device for uniformly charging the object to be charged, an exposure device for forming an electrostatic latent image on the object to be charged, and developing the electrostatic latent image. The present invention relates to a developing device that forms a toner image and an image forming device that includes a transfer device that transfers the toner image to a transfer target.
本発明の帯電装置では、被帯電体への電荷移動媒体としてゲル状導電性媒体を介在させることにより、電極から被帯電体への実質的にオゾンレスな電荷注入を効率的かつ簡便に行うことができる。さらにゲル状導電性媒体として低揮発性のものを用いることで、密閉生を特に高める必要がなく、揮発成分による画質、作業性の悪化や容量変化による影響を抑えて、長期に渡って安定に効率よく均一に被帯電体を帯電できる。 In the charging device of the present invention, by interposing a gel-like conductive medium as a charge transfer medium to the object to be charged, substantially ozone-less charge injection from the electrode to the object to be charged can be performed efficiently and simply. it can. Furthermore, by using a low-volatile material as the gel-like conductive medium, there is no need to particularly increase the sealing quality, and the effects of deterioration in image quality, workability, and capacity change due to volatile components are suppressed and stable over a long period of time. The object to be charged can be charged efficiently and uniformly.
本発明の帯電装置は少なくとも、被帯電体の表面に接触配置されるゲル状の導電性媒体、および該ゲル状導電性媒体と電気的に導通するように配置されて該ゲル状導電性媒体に帯電用電圧を印加する電極を含んでなるものである。本発明において、ゲル状導電性媒体および電極の構成・配置は、電極によってゲル状導電性媒体に帯電用電圧を印加することで被帯電体表面を一様に帯電できる限り、特に制限されるものではない。
以下、本発明の帯電装置の実施形態を、当該帯電装置を備えた画像形成装置を示す図面を用いて説明するが、本発明の帯電装置は上記のゲル状導電性媒体および電極を有する限り、それらの実施形態に限定されて解釈されるべきでないことは明らかである。
The charging device according to the present invention includes at least a gel-like conductive medium disposed in contact with the surface of an object to be charged, and the gel-shaped conductive medium disposed so as to be electrically connected to the gel-shaped conductive medium. It comprises an electrode for applying a charging voltage. In the present invention, the configuration and arrangement of the gel-like conductive medium and the electrode are particularly limited as long as the surface of the object to be charged can be uniformly charged by applying a charging voltage to the gel-like conductive medium by the electrode. is not.
Hereinafter, an embodiment of the charging device of the present invention will be described with reference to the drawings showing an image forming apparatus provided with the charging device. However, as long as the charging device of the present invention has the above-described gel-like conductive medium and electrode, It should be clear that they should not be construed as limited to those embodiments.
(第1実施形態)
図1(A)は本発明の帯電装置を備えた画像形成装置の一例を示す概略構成図である。図1(A)の画像形成装置は、表面が移動する被帯電体1、該被帯電体を一様に帯電させる帯電装置2、被帯電体上に静電潜像を形成する露光装置3、静電潜像を現像してトナー像を形成する現像装置4、およびトナー像を被転写体6に転写する転写装置5を備えてなっている。
(First embodiment)
FIG. 1A is a schematic configuration diagram illustrating an example of an image forming apparatus including the charging device of the present invention. The image forming apparatus of FIG. 1A includes a
被帯電体は表面を移動させながら、その表面で帯電、露光、現像等を行う、いわゆる感光体であり、通常は円筒形状を有し、その軸を中心として回転することによって表面が移動する。被帯電体表面には、ゲル状導電性媒体の付着を長期にわたって防止する観点から、コート処理を施しておくことが好ましい。コート処理はコート材料を溶剤に溶解してなる溶液を被帯電体表面に塗布し、乾燥することによって行われる。コート材料としては、例えば、ポリウレタン樹脂、シリコーン樹脂、フッ素含有樹脂、ホスファゼン樹脂等が挙げられる。溶剤はコート材料を溶解可能な限り特に制限されず、例えば、メチルエチルケトン、イソプロパノール、ヘキサン、トルエン、THF等が挙げられる。コート厚みは特に制限されず、通常は1〜20μm、特に2〜10μmが好適である。 A member to be charged is a so-called photosensitive member that performs charging, exposure, development, and the like on the surface while moving the surface, and usually has a cylindrical shape, and the surface moves by rotating about its axis. The surface of the member to be charged is preferably subjected to a coating treatment from the viewpoint of preventing adhesion of the gel-like conductive medium over a long period of time. The coating treatment is performed by applying a solution obtained by dissolving the coating material in a solvent to the surface of the member to be charged and drying it. Examples of the coating material include polyurethane resin, silicone resin, fluorine-containing resin, and phosphazene resin. The solvent is not particularly limited as long as it can dissolve the coating material, and examples thereof include methyl ethyl ketone, isopropanol, hexane, toluene, and THF. The coat thickness is not particularly limited, and usually 1 to 20 μm, particularly 2 to 10 μm is preferable.
本発明の帯電装置の第1実施形態において、帯電装置2は、図1(A)に示すように、ゲル状導電性媒体2aが被帯電体1の表面に接触配置され、電極2bが被帯電体表面の移動方向においてゲル状導電性媒体2aより下流側で被帯電体1に対し非接触の状態で配置され、ゲル状導電性媒体2aを平板状電極2bでせき止め保持する平板せき止め型構成を有する。図1(B)は図1(A)の画像形成装置をx方向から見たときの電極、ゲル状導電性媒体および被帯電体の概略見取り図である。このようにゲル状導電性媒体に電圧を印加する電極が被帯電体の移動方向においてゲル状導電性媒体の下流側に配置されるので、該導電性媒体に確実に接触し、電圧を印加できる。また電極がゲル状導電性媒体の保持機能も有するため、ゲル状導電性媒体の保持材を別途設ける必要がなく、装置を簡素化できる。
In the first embodiment of the charging device of the present invention, as shown in FIG. 1A, the
ゲル状導電性媒体2aは、被帯電体表面の移動に伴って当該表面に擦られながら、または当該表面との摩擦力により回転して新たな接触・剥離を繰り返しながら、継続的に被帯電体表面と接触して、被帯電体表面を帯電させるものである。図1(A)においてゲル状導電性媒体は電極と接触するように被帯電体表面に載置されればよい。 The gel-like conductive medium 2a is continuously struck while being rubbed with the surface of the body to be charged, or rotating and renewing contact / peeling by the frictional force with the surface. In contact with the surface, the surface of the member to be charged is charged. In FIG. 1A, the gel-like conductive medium may be placed on the surface of the member to be charged so as to be in contact with the electrode.
本発明において「ゲル状」とは、三次元的な網目構造のなかに溶媒が取り込まれた状態のものを意味し、形状や粘度は特に制限されない。 In the present invention, “gel” means a state in which a solvent is incorporated in a three-dimensional network structure, and the shape and viscosity are not particularly limited.
そのようなゲル状の導電性媒体は低揮発性を有するものであり、すなわち溶媒として少なくとも水よりも低い蒸気圧をもつ低揮発性溶媒から構成されるものである。ゲル状導電性媒体を構成する網目構造はポリマーからなっていてもよいし、又は水素結合、静電結合、配位結合、ファンデアワールス結合、分子の絡み合いによる結合等の分子間結合によって網目構造化し得る低分子化合物からなっていてもよい。 Such a gel-like conductive medium has low volatility, that is, is composed of a low volatility solvent having a vapor pressure lower than that of water as a solvent. The network structure constituting the gel-like conductive medium may be composed of a polymer or a network structure by intermolecular bonds such as hydrogen bonds, electrostatic bonds, coordination bonds, van der Waals bonds, and molecular entanglement bonds. It may be composed of a low molecular compound that can be converted into a low molecular weight compound.
ゲル状導電性媒体の揮発性は低いほど好ましく、本発明においてはゲル状導電性媒体の蒸気圧が水より低ければよい。詳しくは25℃における蒸気圧が3167.5Pa以下、好ましくは300Pa以下、さらに好ましくは3Pa以下であることが好ましい。 The lower the volatility of the gel-like conductive medium is, the better. In the present invention, the gel-like conductive medium only needs to have a vapor pressure lower than that of water. Specifically, the vapor pressure at 25 ° C. is 3167.5 Pa or less, preferably 300 Pa or less, more preferably 3 Pa or less.
ゲル状導電性媒体の導電性は体積抵抗率が1×1010Ωcm以下であればよい。被帯電体を十分に帯電できるためである。画像形成装置をプロセススピード150mm/sec以上の高速で使用する場合であっても十分な帯電量を確保する観点からは、ゲル状導電性媒体の体積抵抗率は1×108Ωcm以下、特に1×106Ωcm以下であることが好ましい。一方、ゲル状導電性媒体の体積抵抗率の下限は特に限定されないが、0.01Ωcm以上であれば、被帯電体表面に過度な電流が流れることなく、安定な帯電を行うことができる。好ましくは0.1Ωcm以上、特に1Ωcm以上である。 The conductivity of the gel-like conductive medium may be such that the volume resistivity is 1 × 10 10 Ωcm or less. This is because the member to be charged can be sufficiently charged. From the viewpoint of securing a sufficient charge amount even when the image forming apparatus is used at a process speed of 150 mm / sec or higher, the volume resistivity of the gel-like conductive medium is 1 × 10 8 Ωcm or less, particularly 1 X10 6 Ωcm or less is preferable. On the other hand, the lower limit of the volume resistivity of the gel-like conductive medium is not particularly limited, but if it is 0.01 Ωcm or more, stable charging can be performed without excessive current flowing on the surface of the charged body. Preferably it is 0.1 Ωcm or more, particularly 1 Ωcm or more.
本明細書中、体積抵抗率はTOA製超高精度導電率計(製品名:デジタル超絶縁/微少電流計)によって測定された値を用いている。しかし、上記装置によって測定されなければならないというわけではなく、上記装置と同様の原理・原則に従って測定可能な装置であればいかなる装置によって測定されてもよい。 In this specification, the volume resistivity is a value measured by a TOA ultra-high precision conductivity meter (product name: digital super insulation / micro ammeter). However, it does not have to be measured by the above-mentioned device, and may be measured by any device that can measure according to the same principle and principle as the above-mentioned device.
ゲル状導電性媒体の有するそのような導電性は、溶媒に導電性のものを使用する方法、網目構造構成分子に導電性のものを使用する方法、およびゲル状媒体に導電性粉体を分散させる方法等によって達成可能である。好ましくは、溶媒に導電性のものを使用する方法、およびゲル状媒体に導電性粉体を分散させる方法が採用される。これらの方法は単独または組み合わせて採用されてよい。 Such a conductive property of the gel-like conductive medium is obtained by using a conductive material as a solvent, using a conductive material as a network constituent molecule, and dispersing conductive powder in the gel-like medium. It can be achieved by the method of making it. Preferably, a method of using a conductive material as a solvent and a method of dispersing conductive powder in a gel-like medium are employed. These methods may be employed alone or in combination.
導電性溶媒としていわゆるイオン性液体が使用可能である。イオン性液体としてイミダゾリウム塩、ピリジニウム塩、アンモニウム塩等が挙げられる。イオン性液体の具体例として、例えば、エチルメチルイミダゾリウムカチオンと(CF3SO2)2N−からなる塩、N−メチル−N’−メトキシメチルイミダゾリウムブロミド、N−メチル−N’−メトキシエチルイミダゾリウムブロミド、1−エチル−3−メチルイミダゾリウムブロミド等が挙げられる。これらのイオン性液体は例えば特願2000−184298号公報で開示された方法に従って合成することができる。イオン性液体を使用することにより、ゲル状導電性媒体の高導電性と低揮発性とを同時に実現できる。
また導電性溶媒として、後述の非導電性溶媒に支持電解質を溶解した電解液も使用できる。支持電解質としては例えば、アルカリ金属イオン、第4アルキルアンモニウム、ハロゲンイオン、硫酸イオン、過塩素酸イオンなどが利用できる。
導電性溶媒は互いに相溶する2種類以上のものを組み合わせて使用してもよい。
A so-called ionic liquid can be used as the conductive solvent. Examples of the ionic liquid include imidazolium salts, pyridinium salts, ammonium salts, and the like. Specific examples of ionic liquids, for example, ethyl methyl imidazolium cation (CF 3 SO 2) 2 N - as a salt, N- methyl -N'- methoxy-methylimidazolium bromide, N- methyl -N'- methoxy Examples thereof include ethyl imidazolium bromide and 1-ethyl-3-methyl imidazolium bromide. These ionic liquids can be synthesized, for example, according to the method disclosed in Japanese Patent Application No. 2000-184298. By using an ionic liquid, high conductivity and low volatility of the gel-like conductive medium can be realized at the same time.
Moreover, the electrolysis solution which melt | dissolved the supporting electrolyte in the below-mentioned nonelectroconductive solvent can also be used as an electroconductive solvent. As the supporting electrolyte, for example, alkali metal ions, quaternary alkyl ammoniums, halogen ions, sulfate ions, perchlorate ions and the like can be used.
Two or more types of conductive solvents that are compatible with each other may be used in combination.
網目構造を構成し得る導電性分子として導電性ポリマーおよび導電性低分子化合物が使用可能である。
導電性ポリマーとして、例えば、π電子共役系ポリマー、後述の非導電性ポリマーにI2やBr2などをドープして導電性を高めたもの、高分子電荷移動錯体などが挙げられる。π電子共役系ポリマーはπ電子共役系ユニットを主鎖に有する直鎖状または分枝状ポリマー、π電子共役系ユニットを側鎖に有する分枝状ポリマー、およびそれらの3次元架橋体等である。そのような導電性ポリマーの具体例として、例えば、ポリアセチレン、ポリチオフェン、I2をドープしたポリエチレン、セグメント化ポリウレタン等が挙げられる。
導電性ポリマーはオレフィン類やアセチレン類の重合、芳香族ジハロゲン化物の重縮合、ピロール、チオフェン、アニリンなどの酸化重合などによって得られる。また得られたポリマーのヨウ素ドーピングにより導電度を上げることができる。
高分子電荷移動錯体としては、例えば、ポリビニルカルバゾール−トリニトロフルオレノン系、ポリビニルピリジン−ヨウ素系、ポリカチオンイオノマー−テトラシアノキノジメタン系などが挙げられる。
Conductive polymers and conductive low molecular compounds can be used as the conductive molecules that can form a network structure.
Examples of the conductive polymer include a π-electron conjugated polymer, a non-conductive polymer to be described later doped with I 2 or Br 2 to increase conductivity, a polymer charge transfer complex, and the like. The π-electron conjugated polymer is a linear or branched polymer having a π-electron conjugated unit in the main chain, a branched polymer having a π-electron conjugated unit in the side chain, and a three-dimensional cross-linked product thereof. . Specific examples of such conductive polymers such as polyacetylene, polythiophene, polyethylene doped with I 2, segmented polyurethane, and the like.
The conductive polymer can be obtained by polymerization of olefins and acetylenes, polycondensation of aromatic dihalides, oxidative polymerization of pyrrole, thiophene, aniline and the like. The conductivity can be increased by iodine doping of the obtained polymer.
Examples of the polymer charge transfer complex include polyvinyl carbazole-trinitrofluorenone series, polyvinyl pyridine-iodine series, polycation ionomer-tetracyanoquinodimethane series, and the like.
導電性低分子化合物として、有機電荷移動錯体およびイオンラジカル塩、またはグライム類が挙げられている。有機電荷移動錯体として例えば、テトチアフルバレン−テトラシアノキノジメタン錯体などが挙げられる。また、イオンラジカル塩として例えば、アンモニウムイオン−テトラシアノキノジメタン錯体などが挙げられる。またグライム塩としては例えば、ジエトキシエタン、プロポキシエタンなどが挙げられる。
導電性分子は2種類以上のものを組み合わせて使用してもよい。
Examples of the conductive low molecular weight compound include organic charge transfer complexes and ion radical salts, or glymes. Examples of the organic charge transfer complex include cetothiafulvalene-tetracyanoquinodimethane complex. Examples of the ion radical salt include ammonium ion-tetracyanoquinodimethane complex. Examples of the glyme salt include diethoxyethane and propoxyethane.
Two or more kinds of conductive molecules may be used in combination.
導電性粉体としては、例えば、導電性カーボン、金属粉、導電性酸化亜鉛などの金属酸化物等が挙げられる。導電性粉体の平均一次粒径としては、粒子の製造コスト、分散性の観点から、0.01〜100μm、特に0.02〜50μmが好適である。導電性粉体は2種類以上のものを組み合わせて使用してもよい。 As electroconductive powder, metal oxides, such as electroconductive carbon, metal powder, electroconductive zinc oxide, etc. are mentioned, for example. The average primary particle size of the conductive powder is preferably 0.01 to 100 μm, particularly 0.02 to 50 μm, from the viewpoint of the production cost and dispersibility of the particles. Two or more kinds of conductive powders may be used in combination.
ゲル状導電性媒体の調製に際しては、得られるゲル状導電性媒体が所望の導電性および低揮発性を有する限り、非導電性分子および非導電性溶媒が使用されてもよい。 In preparing the gel-like conductive medium, non-conductive molecules and non-conductive solvents may be used as long as the resulting gel-like conductive medium has the desired conductivity and low volatility.
非導電性分子は網目構造を構成し得る非導電性の分子であり、非導電性ポリマーおよび非導電性低分子化合物が使用可能である。
非導電性ポリマーとして、例えば、シリコーン、セルロース、ポリブタジエン、ポリエーテル、ポリエステル、アクリルおよびそれらの共重合体および3次元架橋体等が挙げられる。エチルセルロースはエトセル(日新化成製)として、アクリルはメタクリル酸2−ジメチルアミノエチル(和光製)として、シリコーンはKSG−15(信越シリコーン製)として入手可能である。
Non-conductive molecules are non-conductive molecules that can form a network structure, and non-conductive polymers and non-conductive low-molecular compounds can be used.
Examples of the non-conductive polymer include silicone, cellulose, polybutadiene, polyether, polyester, acrylic, a copolymer thereof, and a three-dimensional crosslinked product. Ethyl cellulose is available as etosel (Nisshin Kasei), acrylic is 2-dimethylaminoethyl methacrylate (Wako), and silicone is KSG-15 (Shin-Etsu Silicone).
非導電性低分子化合物としては水素結合などの分子間相互作用による繊維状会合体の形成および、ファンデアワールス力などによる会合体間の結合・三次元化が可能である化合物が使用可能である。
非導電性低分子化合物の具体例として、例えば、一般式(I);
Specific examples of the non-conductive low molecular weight compound include, for example, the general formula (I);
一般式(I)により表される有機化合物は、各種の合成法を利用することによって調製することができる。例えば、一般式(I)におけるR1〜R4に対応するエーテル基を有する第一アミンとアミノ基を保護されたアミノ酸の二つのカルボキシル基とを反応させて二組のアミド結合を形成し、得られた化合物の保護基を除去した後、これにグルコノラクトンを反応させて糖アミド部分(R5)を形成する。 The organic compound represented by the general formula (I) can be prepared by utilizing various synthetic methods. For example, a primary amine having an ether group corresponding to R 1 to R 4 in the general formula (I) is reacted with two carboxyl groups of an amino group protected amino acid to form two sets of amide bonds, After removing the protecting group of the obtained compound, this is reacted with gluconolactone to form a sugar amide moiety (R 5 ).
例えば、N−ラウロイル−L−グルタミン酸−α,β−ビス−n−ブチルアミドおよび12−ヒドロキシステアリン酸は和光純薬から市販されている。
非導電性分子は2種類以上のものを組み合わせて使用してもよい。
For example, N-lauroyl-L-glutamic acid-α, β-bis-n-butyramide and 12-hydroxystearic acid are commercially available from Wako Pure Chemical.
Two or more kinds of non-conductive molecules may be used in combination.
非導電性溶媒は前記蒸気圧を有する低揮発性のものが使用され、例えば、イソパラフィンおよびパラフィン類などの炭化水素系液体、ジメチルポリシロキサンなどのシリコーン液体、フッ素化合物液体、植物油、トリエチレングリコールなどの低蒸気圧溶媒等が挙げられる。非導電性溶媒は互いに相溶する2種類以上のものを組み合わせて使用してもよい。 A non-volatile solvent having a low volatility having the above-mentioned vapor pressure is used. For example, hydrocarbon liquids such as isoparaffin and paraffin, silicone liquid such as dimethylpolysiloxane, fluorine compound liquid, vegetable oil, triethylene glycol, etc. And low vapor pressure solvents. Two or more non-conductive solvents that are compatible with each other may be used in combination.
ゲル状導電性媒体は網目構造構成分子を溶媒および所望により導電性粉体と混合することによって調製可能である。
網目構造構成分子と溶媒との使用割合は、通常、重量比(網目構造構成分子/溶媒)で1/1〜1/500、特に1/10〜1/100が好ましい。
The gel-like conductive medium can be prepared by mixing the network constituent molecules with a solvent and optionally a conductive powder.
The ratio of the network-constituting molecule to the solvent is usually 1/1 to 1/500, and preferably 1/10 to 1/100, in terms of weight ratio (network-constituting molecule / solvent).
導電性分子、導電性溶媒および導電性粉体の使用量はゲル状導電性媒体が所望の導電性を有する限り特に制限されない。
例えば、導電性溶媒を使用することだけでゲル状導電性媒体の導電性を達成する場合、導電性溶媒の使用量は通常、ゲル状導電性媒体全量に対して50〜99.9重量%、特に80〜99重量%が好適である。
また例えば、導電性粉体を使用することだけでゲル状導電性媒体の導電性を達成する場合、導電性粉体の使用量は通常、ゲル状導電性媒体全量に対して0.01〜50重量%、特に0.1〜30重量%が好適である。
The usage-amount of a conductive molecule, a conductive solvent, and conductive powder is not restrict | limited especially as long as a gel-like conductive medium has desired electroconductivity.
For example, when the conductivity of the gel-like conductive medium is achieved only by using a conductive solvent, the amount of the conductive solvent used is usually 50 to 99.9% by weight based on the total amount of the gel-like conductive medium, 80 to 99% by weight is particularly suitable.
Also, for example, when the conductivity of the gel-like conductive medium is achieved only by using the conductive powder, the amount of the conductive powder used is usually 0.01 to 50 with respect to the total amount of the gel-like conductive medium. % By weight, in particular 0.1 to 30% by weight is preferred.
帯電装置に使用されるゲル状導電性媒体の量は、本発明の目的を達成できる限り特に制限されず、例えば、軸方向長さ250mmおよび直径30mmの円筒状被帯電体を使用する場合で通常、1〜50g、特に5〜30gが好適である。 The amount of the gel-like conductive medium used in the charging device is not particularly limited as long as the object of the present invention can be achieved. For example, when a cylindrical charged body having an axial length of 250 mm and a diameter of 30 mm is used, 1 to 50 g, particularly 5 to 30 g is preferred.
電極2bは、図示しない電源と電気的に連結されてゲル状導電性媒体に帯電用電圧を印加可能な限りいかなる材料からなっていてよく、例えば、アルミなどの金属、導電性ポリウレタンなどの導電性樹脂等が挙げられる。 The electrode 2b may be made of any material as long as it is electrically connected to a power source (not shown) and can apply a charging voltage to the gel-like conductive medium. For example, the electrode 2b is made of a conductive material such as a metal such as aluminum or a conductive polyurethane. Examples thereof include resins.
電極2bと被帯電体1との間隙(y1;図1参照)はゲル状導電性媒体をせき止め保持可能であって、かつ放電が起こらない限り特に制限されず、ゲル状導電性媒体の流動性に依存するが、通常0〜20mm、特に0.05〜10mmが好適である。 The gap (y 1 ; see FIG. 1) between the electrode 2b and the member to be charged 1 is not particularly limited as long as it can hold the gel-like conductive medium and does not discharge, and the flow of the gel-like conductive medium Although it depends on the properties, 0 to 20 mm, usually 0.05 to 10 mm is preferable.
電極2bによってゲル状導電性媒体2aに印加される帯電用電圧は特に制限されるものではない。例えば、直流電圧で−800〜−300Vが好ましいが、この範囲に限定されるものではない。また帯電用電圧は直流電圧に交流電圧を重畳された帯電バイアスであってもよい。その場合は、ACピーク間電圧は50〜2000V、周波数は500〜2000Hz、直流電圧は−800〜−300Vが好ましい。本発明においては電極によってゲル状導電性媒体に電圧を印加すると、印加された電圧がそのまま、ゲル状導電性媒体と被帯電体との接触領域における被帯電体表面に印加され、当該被帯電体表面が当該電圧電位に一様に帯電される。そのような帯電は、被帯電体表面が連続して移動するときでもゲル状導電性媒体に電圧を印加し続けることによって継続して可能である。 The charging voltage applied to the gel-like conductive medium 2a by the electrode 2b is not particularly limited. For example, −800 to −300 V is preferable in terms of DC voltage, but it is not limited to this range. The charging voltage may be a charging bias in which an AC voltage is superimposed on a DC voltage. In this case, the AC peak voltage is preferably 50 to 2000 V, the frequency is 500 to 2000 Hz, and the DC voltage is preferably −800 to −300 V. In the present invention, when a voltage is applied to the gel-like conductive medium by the electrode, the applied voltage is applied as it is to the surface of the member to be charged in the contact area between the gel-like conductive medium and the member to be charged. The surface is uniformly charged to the voltage potential. Such charging can be continued by continuously applying a voltage to the gel-like conductive medium even when the surface of the object to be charged moves continuously.
露光装置3は、帯電装置によって一様に帯電された被帯電体1の表面に、印字データに対応した静電潜像を形成するものである。例えば、レーザーダイオード、ポリゴンミラー、fθ光学素子を内蔵したレーザー露光装置等が使用可能である。
The
現像装置4は、被帯電体表面に形成された静電潜像に、帯電されたトナーを供給するものである。帯電トナーが供給されると、当該トナーは静電気力によって被帯電体に吸着され、静電潜像が可視化されトナー像が形成される。現像装置に収容されるトナーは、1成分トナー又は2成分トナーのいずれであってもよい。 The developing device 4 supplies charged toner to the electrostatic latent image formed on the surface of the member to be charged. When the charged toner is supplied, the toner is attracted to the member to be charged by electrostatic force, the electrostatic latent image is visualized, and a toner image is formed. The toner stored in the developing device may be either a one-component toner or a two-component toner.
転写装置5は、被帯電体表面に形成されたトナー像を、用紙等の転写体6に転写するものである。
The
画像形成装置には、被帯電体移動方向においてゲル状導電性媒体より上流側であって転写装置より下流側に、被帯電体表面をクリーニングするクリーニング部材(図示せず)が設けられていてもよい(他の実施形態においても同様である)。クリーニング部材を設けることによって、ゲル状導電性媒体が残トナーなどに汚染されにくくなり、ゲルの導電性能がより長期間安定する。 The image forming apparatus may be provided with a cleaning member (not shown) for cleaning the surface of the charged body upstream of the gel-like conductive medium and downstream of the transfer apparatus in the moving direction of the charged body. Good (the same applies to other embodiments). By providing the cleaning member, the gel-like conductive medium is hardly contaminated with residual toner and the like, and the conductive performance of the gel is stabilized for a longer period.
(第2実施形態)
第1実施形態においてゲル状導電性媒体2aは電極2bによってせき止め保持されているが、電極と被帯電体との間隙が大きすぎて、電極がゲル状導電性媒体をせき止め保持できない場合は、保持材を新たに設けても良い。すなわち、第2の実施形態においては、図2(A)に示すように、保持材12cが被帯電体表面の移動方向において電極12bより下流側で被帯電体1に対し非接触または接触の状態で配置され、該保持材12cによってゲル状導電性媒体12aがせき止め保持される。このとき保持材12cはゲル状導電性媒体12aと電極12bとの電気的接触を確保しつつ、ゲル状導電性媒体12aのせき止め保持を達成できる限り、いかなる位置に配置されてもよいが、通常は電極12bに接触固定される。図2(B)は図2(A)の画像形成装置をx方向から見たときの電極、ゲル状導電性媒体、保持材および被帯電体の概略見取り図である。
(Second Embodiment)
In the first embodiment, the gel-like conductive medium 2a is held by the electrode 2b, but if the gap between the electrode and the object to be charged is too large and the electrode cannot hold the gel-like conductive medium, it is held. A new material may be provided. That is, in the second embodiment, as shown in FIG. 2A, the holding
ゲル状導電性媒体12aおよび電極12bは、電極と被帯電体との間隙が大きすぎて、ゲル状導電性媒体が保持材によってせき止め保持されること以外、図1(A)のゲル状導電性媒体2aおよび電極2bと同様である。なお、図2(A)においてゲル状導電性媒体は電極および保持材と接触するように被帯電体表面に載置されればよい。
電極12bと被帯電体1との間隙(y2;図2参照)は、電極とゲル状導電性媒体との電気的接触を確保できる限り特に制限されず、ゲル状導電性媒体の量に依存するが、通常0.05〜20mm、特に0.1〜10mmが好適である。
The gel-like conductive medium 12a and the electrode 12b have the gel-like conductivity shown in FIG. 1A except that the gap between the electrode and the member to be charged is too large and the gel-like conductive medium is held by the holding material. The same as the medium 2a and the electrode 2b. In FIG. 2A, the gel conductive medium may be placed on the surface of the member to be charged so as to be in contact with the electrode and the holding material.
The gap (y 2 ; see FIG. 2) between the electrode 12b and the member to be charged 1 is not particularly limited as long as electrical contact between the electrode and the gel-like conductive medium can be ensured, and depends on the amount of the gel-like conductive medium. However, usually 0.05 to 20 mm, particularly 0.1 to 10 mm is preferable.
保持材12cの構成材料はゲル状導電性媒体をせき止め保持できる限り特に制限されず、導電性を有するものから有しないものまでいかなる材料であってよい。例えば、アルミなどの金属、導電性ポリウレタンなどの導電性樹脂、ウレタンゴムなどの絶縁性ゴム等が挙げられる。
The constituent material of the holding
保持材12cと被帯電体1との間隙(z1;図2参照)はゲル状導電性媒体をせき止め保持可能である限り特に制限されず、ゲル状導電性媒体の流動性に依存する。通常、0〜20mm、特に0.05〜10mmの範囲が好適である。被帯電体表面のクリーニング作用の観点から、保持材は被帯電体と接触して配置されることが好ましい。このとき、クリーニング部材を別途設ける必要がなくなるので、装置を簡素化できる。一方、被帯電体の磨耗低減の観点から、保持材は被帯電体と非接触で配置されることが好ましい。
The gap (z 1 ; see FIG. 2) between the holding
図2(A)および(B)の画像形成装置は、帯電装置が上記構成を有する帯電装置12であること以外、図1(A)および(B)と同様である。図2(A)および(B)における図1(A)および(B)の符号と同じ符号は同様であるため、それらの説明は省略する。
2A and 2B is the same as that shown in FIGS. 1A and 1B except that the charging device is the charging
(第3実施形態)
また第2実施形態において保持材が導電性を有する場合は、電極とゲル状導電性媒体との間に保持材を設けても良い。すなわち、第3実施形態においては、図3(A)に示すように、保持材22cが被帯電体表面の移動方向において電極22bより上流側であって、ゲル状導電性媒体22aより下流側で被帯電体1に対し非接触または接触の状態で配置され、該保持材22cによってゲル状導電性媒体22aがせき止め保持される。このとき保持材22cはゲル状導電性媒体22aおよび電極22bと電気的に連結され、導通状態にある。図3(B)は図3(A)の画像形成装置をx方向から見たときの電極、ゲル状導電性媒体、保持材および被帯電体の概略見取り図である。
(Third embodiment)
In the second embodiment, when the holding material has conductivity, the holding material may be provided between the electrode and the gel-like conductive medium. That is, in the third embodiment, as shown in FIG. 3A, the holding material 22c is upstream of the
ゲル状導電性媒体22aおよび電極22bは、それらの間に保持材22cが配置され、ゲル状導電性媒体が当該保持材22cによってせき止め保持されること以外、図1(A)のゲル状導電性媒体2aおよび電極2bと同様である。なお、図3(A)においてゲル状導電性媒体は保持材と接触するように被帯電体表面に載置されればよい。
電極22bと被帯電体1との間隙(y3;図3参照)は、電極と保持材との電気的接触を確保できる限り特に制限されず、通常0.05〜20mm、特に0.1〜10mmが好適である。
The gel-like conductive medium 22a and the
The gap (y 3 ; see FIG. 3) between the
保持材22cの構成材料はゲル状導電性媒体をせき止め保持可能で、かつ導電性を有する限り特に制限されず、例えば、アルミなどの金属、導電性ポリウレタンなどの導電性樹脂等が挙げられる。 The constituent material of the holding member 22c is not particularly limited as long as it can hold the gel-like conductive medium and has conductivity, and examples thereof include metals such as aluminum and conductive resins such as conductive polyurethane.
保持材22cと被帯電体1との間隙(z2;図3参照)はゲル状導電性媒体をせき止め保持可能である限り特に制限されず、ゲル状導電性媒体の流動性に依存する。通常、図2における保持材12cと被帯電体1との間隙(z1)と同様の範囲が好適である。
The gap (z 2 ; see FIG. 3) between the holding material 22c and the
図3(A)および(B)の画像形成装置は、帯電装置が上記構成を有する帯電装置22であること以外、図1(A)および(B)と同様である。図3(A)および(B)における図1(A)および(B)の符号と同じ符号は同様であるため、それらの説明は省略する。
3A and 3B is the same as that shown in FIGS. 1A and 1B except that the charging device is the charging
(第4実施形態)
第1実施形態において、ゲル状導電性媒体を回転保持するために軸状の保持材を新たに設けても良い。すなわち、第4の実施形態においては、図4(A)に示すように、保持材32cが被帯電体表面の移動方向において電極32bより上流側でゲル状導電性媒体32aを貫通するように配置され、該保持材32cの回転に伴ってゲル状導電性媒体32aが該保持材32cを軸として回転保持される。これによって被帯電体1との接触領域に存在するゲル状導電性媒体の流動(入れ替え)が促進され、ゲル状導電性媒体全体をより有効に利用できるため、より安定な帯電が効率よく達成できる。図4(B)は図4(A)の画像形成装置をx方向から見たときの電極、ゲル状導電性媒体、保持材および被帯電体の概略見取り図である。
(Fourth embodiment)
In the first embodiment, a shaft-shaped holding material may be newly provided to rotate and hold the gel-like conductive medium. That is, in the fourth embodiment, as shown in FIG. 4A, the holding material 32c is disposed so as to penetrate the gel-like conductive medium 32a upstream from the
ゲル状導電性媒体32aおよび電極32bは、電極とゲル状導電性媒体との電気的接触を確保できる範囲内で電極と被帯電体との間隙が設定されること以外、図1(A)のゲル状導電性媒体2aおよび電極2bと同様である。なお、図4(A)においてゲル状導電性媒体は保持材に貫通されながら電極と接触するように被帯電体表面に載置されればよい。
電極32bと被帯電体1との間隙(y4;図4参照)は、ゲル状導電性媒体の量に依存するが、通常0〜20mm、特に0.05〜10mmが好適である。
The gel-like conductive medium 32a and the
The gap (y 4 ; see FIG. 4) between the
保持材32cはゲル状導電性媒体32aを回転保持可能な限り、いかなる方向および周速で回転していてもよい。保持材32cは好ましくは、被帯電体1との間の領域において被帯電体1と同方向および同周速で回転するように調整される。
The holding member 32c may rotate at any direction and circumferential speed as long as the gel-like conductive medium 32a can be rotated and held. The holding member 32c is preferably adjusted so as to rotate in the same direction and at the same peripheral speed as the
保持材32cはゲル状導電性媒体の保持をより有効に達成する観点から、表面に突起やくぼみなどの凹凸(図示せず)を有することが好ましく、あるいは表面粗さを調整することも好ましい。 From the viewpoint of more effectively achieving the holding of the gel-like conductive medium, the holding member 32c preferably has irregularities (not shown) such as protrusions and depressions on the surface, or it is also preferable to adjust the surface roughness.
保持材32cの構成材料はゲル状導電性媒体を回転保持できる限り特に制限されず、導電性を有するものから有しないものまでいかなる材料であってよい。例えば、保持材12cと同様の構成材料が挙げられる。また保持材32cが導電性を有する場合、電極32bのかわりに、あるいは両方に帯電電圧を印加してもよい。前者の場合は、保持材32cを電極32cとし、電極32bを保持材32bとみなし、32bの材質は絶縁性としてもかまわない。
The constituent material of the holding member 32c is not particularly limited as long as the gel-like conductive medium can be rotated and held, and may be any material from conductive to non-conductive. For example, the constituent material similar to the holding
保持材32cと被帯電体1との間隙はゲル状導電性媒体を回転保持可能である限り特に制限されない。 The gap between the holding member 32c and the member to be charged 1 is not particularly limited as long as the gel-like conductive medium can be rotated and held.
図4(A)および(B)の画像形成装置は、帯電装置が上記構成を有する帯電装置32であること以外、図1(A)および(B)と同様である。図4(A)および(B)における図1(A)および(B)の符号と同じ符号は同様であるため、それらの説明は省略する。
The image forming apparatus shown in FIGS. 4A and 4B is the same as that shown in FIGS. 1A and 1B except that the charging device is the charging
(第5実施形態)
第5実施形態において、帯電装置42は、図5(A)に示すように、軸状電極42bの周りにゲル状導電性媒体42aがコートされてなる軸コート型構成を有し、当該帯電装置42はゲル状導電性媒体42aが被帯電体1に対し接触するように配置される。このとき、帯電装置42は被帯電体表面の帯電を達成可能な限り、いかなる方向および周速で回転していてよく、または固定されていてもよい。通常、帯電装置42は、被帯電体1との接触領域において同方向および同周速で回転するように調整される。図5(B)は図5(A)の画像形成装置をx方向から見たときの電極、ゲル状導電性媒体および被帯電体の概略見取り図である。
(Fifth embodiment)
In the fifth embodiment, as shown in FIG. 5A, the charging
電極42bと被帯電体1との間隙(y5;図5参照)はゲル状導電性媒体のコート厚みに依存して決定され、通常は0.001〜10mm、特に0.1〜5mmが好適である。
The gap (y 5 ; see FIG. 5) between the electrode 42b and the
ゲル状導電性媒体42aおよび電極42bはそれぞれ、上記のような構成・形状を有すること以外、図1(A)のゲル状導電性媒体2aおよび電極2bと同様である。なお、図5(A)においてゲル状導電性媒体は軸状電極をコートしながら被帯電体表面と接触するように配置されればよい。 The gel-like conductive medium 42a and the electrode 42b are the same as the gel-like conductive medium 2a and the electrode 2b in FIG. 1A, respectively, except that they have the configuration and shape as described above. In FIG. 5A, the gel-like conductive medium may be disposed so as to contact the surface of the member to be charged while coating the shaft-like electrode.
図5(A)および(B)において、保持材42cが設けられているが、なくてもよい。保持材42cと被帯電体1との間隙(Z3;図5参照)は通常0〜20mm、特に0.05〜10mmが好適である。
5A and 5B, the holding member 42c is provided, but it may not be provided. The gap (Z 3 ; see FIG. 5) between the holding member 42c and the
図5(A)および(B)の画像形成装置は、帯電装置が上記構成を有する帯電装置42であること以外、図1(A)および(B)と同様である。図5(A)および(B)における図1(A)および(B)の符号と同じ符号は同様であるため、それらの説明は省略する。
The image forming apparatus shown in FIGS. 5A and 5B is the same as that shown in FIGS. 1A and 1B except that the charging device is the charging
(第6実施形態)
第6実施形態において、帯電装置52は、図6(A)に示すように、平板状電極52bにおける軸に平行な一方の端面の周りがゲル状導電性媒体52aでコートされてなる平板コート型構成を有し、当該帯電装置52はゲル状導電性媒体52aが被帯電体1に対し接触するように配置される。図6(B)は図6(A)の画像形成装置をx方向から見たときの電極、ゲル状導電性媒体および被帯電体の概略見取り図である。
(Sixth embodiment)
In the sixth embodiment, as shown in FIG. 6A, the charging
電極52bと被帯電体1との間隙(y6;図6参照)はゲル状導電性媒体のコート厚みに依存して決定され、通常は0〜20mm、特に0.05〜10mmが好適である。
The gap (y 6 ; see FIG. 6) between the
ゲル状導電性媒体52aおよび電極52bはそれぞれ、上記のような構成・形状を有すること以外、図1(A)のゲル状導電性媒体2aおよび電極2bと同様である。なお、図6(A)においてゲル状導電性媒体は平板状電極の一方の端面をコートしながら被帯電体表面と接触するように配置されればよい。
The gel-like conductive medium 52a and the
図6(A)および(B)の画像形成装置は、帯電装置が上記構成を有する帯電装置52であること以外、図1(A)および(B)と同様である。図6(A)および(B)における図1(A)および(B)の符号と同じ符号は同様であるため、それらの説明は省略する。
The image forming apparatus shown in FIGS. 6A and 6B is the same as that shown in FIGS. 1A and 1B except that the charging device is the charging
以上の実施形態で示した画像形成装置はいずれも、被帯電体および現像装置をそれぞれ一つずつしか有さないモノクロ用であるが、フルカラー用に適用されてもよい。 All of the image forming apparatuses shown in the above embodiments are for monochrome, each having only one member to be charged and one developing device, but may be applied to full color.
フルカラー用画像形成装置としては、例えば、1個の被帯電体の周りに各色の4個の現像装置が備えられているいわゆる4サイクル型、および各色に対応した4個の被帯電体が中間転写体(前記転写体に対応する)の移動方向に沿って並んで備えられているいわゆるタンデム型が挙げられる。これらのどの形式のフルカラー画像形成装置においても、被帯電体表面の帯電を行う帯電器として本発明の帯電装置が備わっていればよく、通常、1個の被帯電体に対して1個の本発明の帯電装置が使用される。 As a full-color image forming apparatus, for example, a so-called four-cycle type in which four developing devices of each color are provided around one charged body, and four charged bodies corresponding to each color are intermediate transfer. There is a so-called tandem type that is provided along the moving direction of the body (corresponding to the transfer body). In any of these types of full-color image forming apparatuses, it is sufficient if the charging device of the present invention is provided as a charger for charging the surface of the object to be charged. Usually, one book is provided for one object to be charged. The inventive charging device is used.
<ゲル状導電性媒体の調製>
ゲル状導電性媒体を以下の方法により調製した。
(ゲルA)
シリコーンゲル(KSG−16:信越シリコーン製)100重量部に対して導電性酸化亜鉛(パゼットCK:ハクスイテック製)10重量部を混合し、ゲルAを得た。
<Preparation of gel-like conductive medium>
A gel-like conductive medium was prepared by the following method.
(Gel A)
10 parts by weight of conductive zinc oxide (Pazette CK: manufactured by Hakusui Tech Co., Ltd.) was mixed with 100 parts by weight of silicone gel (KSG-16: manufactured by Shin-Etsu Silicone) to obtain Gel A.
(ゲルB)
まず、前記一般式(II)の有機化合物を以下の反応スキームに従って合成した。
First, the organic compound of the general formula (II) was synthesized according to the following reaction scheme.
化合物(A)の合成;
200mlナス型フラスコに3−ラウリルオキシプロピル−1−アミン(アクロス(株)製、Mw:243.43)4.3g(17.8mmol)、t−ブチルオキシカルボニル−L−グルタミン酸(Boc−L−Glu−OH、国産化学(株)製、Mw:247.11)2.0g(8.1mmol)、及びトリエチルアミン(キシダ化学(株)製、Mw:101.6)1.8g(17.8mmol)を投入し、乾燥テトラヒドロフラン(THF)150mlに溶解した。氷冷下攪拌しながらシアノリン酸ジエチル(DEPC、Aldrich製、Mw:163.11)2.9g(17.8mmol)を加えた。室温で2日間攪拌後、THFを減圧留去し、油状の残滓にクロロホルムを加え、さらに5%炭酸ナトリウム水溶液を加えて2回振とうした。クロロホルム相を分取し、無水硫酸ナトリウムを用いて余分な水分を取り除いた。溶媒のクロロホルムを減圧留去し、残滓にアセトンを加えて再結晶を行い、無色粉末を得た(化合物(A)、収量=3.71g、収率=65%)。
Synthesis of compound (A);
In a 200 ml eggplant-shaped flask, 4.3 g (17.8 mmol) of 3-lauryloxypropyl-1-amine (manufactured by Acros Co., Ltd., Mw: 243.43), t-butyloxycarbonyl-L-glutamic acid (Boc-L- Glu-OH, manufactured by Kokusan Chemical Co., Ltd., Mw: 247.11) 2.0 g (8.1 mmol), and triethylamine (produced by Kishida Chemical Co., Ltd., Mw: 101.6) 1.8 g (17.8 mmol) Was dissolved in 150 ml of dry tetrahydrofuran (THF). While stirring with ice cooling, 2.9 g (17.8 mmol) of diethyl cyanophosphate (DEPC, manufactured by Aldrich, Mw: 163.11) was added. After stirring at room temperature for 2 days, THF was distilled off under reduced pressure, chloroform was added to the oily residue, and a 5% aqueous sodium carbonate solution was further added, followed by shaking twice. The chloroform phase was separated and excess water was removed using anhydrous sodium sulfate. The solvent chloroform was distilled off under reduced pressure, and acetone was added to the residue for recrystallization to obtain a colorless powder (compound (A), yield = 3.71 g, yield = 65%).
化合物(B)の合成;
上記化合物(A)(Mw:698.07) 3.7g(5.3 mmol)を乾燥ジクロロメタン100 mlに溶解し、攪拌しながらトリフルオロ酢酸(TFA、キシダ化学(株)製、Mw:114.02)を全体の20 重量%になるように加え、室温にて3時間攪拌した。その後、トリフルオロ酢酸とジクロロメタンを減圧留去し、油状の残滓にアセトンを加えて溶解し、氷冷下35 重量%塩酸水溶液を1 ml加え、生じた沈殿を濾別した。これを酢酸エチルにより再結晶化し、無色粉末を得た(化合物(B)、収量 = 2.56 g、収率 =76 %)。
Synthesis of compound (B);
The above compound (A) (Mw: 698.07) 3.7 g (5.3 mmol) was dissolved in 100 ml of dry dichloromethane and stirred with trifluoroacetic acid (TFA, manufactured by Kishida Chemical Co., Ltd., Mw: 114. 02) was added so that it might become 20 weight% of the whole, and it stirred at room temperature for 3 hours. Thereafter, trifluoroacetic acid and dichloromethane were distilled off under reduced pressure, and acetone was added to dissolve the oily residue. Under ice-cooling, 1 ml of 35 wt% aqueous hydrochloric acid was added, and the resulting precipitate was separated by filtration. This was recrystallized from ethyl acetate to obtain a colorless powder (compound (B), yield = 2.56 g, yield = 76%).
有機化合物(II)の合成;
上記化合物(B)(Mw:634.42)2.56g(4.0mmol)とトリエチルアミン(キシダ化学(株)Mw:101.6)0.61g(6.0mmol)をクロロホルムに溶解し、さらにイオン交換水を加えて振とうした。クロロホルム相を分取し、無水硫酸ナトリウムを用いて乾燥した。クロロホルムを減圧留去し、残滓にエタノールを加えて溶解し、さらにグルコノ−δ−ラクトン(キシダ化学(株)Mw:178.14)0.56g(3.1mmol)を加えた後、環流攪拌した。2日後薄層クロマトグラフィー(TLC−FID、CHCl3:CH3OH=10:1)で分析したところ、原料(化合物(B))のピークが残っていたので、さらにグルコノ−δ−ラクトン0.5gを加えて2日間環流攪拌を行った。環流停止後、氷冷して生じた沈殿を濾別し、エタノールにより再結晶化し、有機化合物(II)の無色粉末を得た(収量=1.4g、収率=45%)。
Synthesis of organic compound (II);
The above compound (B) (Mw: 634.42) 2.56 g (4.0 mmol) and triethylamine (Kishida Chemical Co., Ltd. Mw: 101.6) 0.61 g (6.0 mmol) were dissolved in chloroform, and further ionized. Added exchange water and shaken. The chloroform phase was separated and dried using anhydrous sodium sulfate. Chloroform was distilled off under reduced pressure, ethanol was added to the residue and dissolved, and 0.56 g (3.1 mmol) of glucono-δ-lactone (Kishida Chemical Co., Ltd. Mw: 178.14) was added, followed by stirring under reflux. . Two days later, analysis by thin layer chromatography (TLC-FID, CHCl 3 : CH 3 OH = 10: 1) showed that the peak of the raw material (compound (B)) remained. 5 g was added and reflux stirring was performed for 2 days. After the reflux was stopped, the ice-cooled precipitate was filtered off and recrystallized with ethanol to obtain a colorless powder of organic compound (II) (yield = 1.4 g, yield = 45%).
次いで、1−エチル−3−メチルイミダゾリウムブロミド(アクロス製)に有機化合物(II)を濃度10mMとなるように添加し、加熱分散させて6時間静置してゲルBを得た。 Next, the organic compound (II) was added to 1-ethyl-3-methylimidazolium bromide (manufactured by Acros) to a concentration of 10 mM, dispersed by heating, and allowed to stand for 6 hours to obtain Gel B.
(ゲルC)
金属せっけん(モレスコアンバーSB50N:モレスコ製)を2重量%添加したホワイトオイル(松村石油研究所製モレスコホワイトP40)に、N−ラウロイル−L−グルタミン酸−α,β−ビス−n−ブチルアミド(和光製)を3重量%混合し、10分間加熱撹拌後、室温で静置してゲルCを得た。
(Gel C)
N-lauroyl-L-glutamic acid-α, β-bis-n-butyramide (white oil (Molesco White P40 manufactured by Matsumura Oil Research Institute) added with 2% by weight of metal soap (Molesco Amber SB50N: manufactured by Moresco) Wako) was mixed at 3% by weight, heated and stirred for 10 minutes, and then allowed to stand at room temperature to obtain Gel C.
(ゲルD)
PVA(クラレ製KポリマーKM−618)粉体24g、純水276gを70℃に加熱しながらスターラーで1時間撹拌した。無水四ホウ酸ナトリウム(和光製)1g、純水166gを70℃に加熱しながらスターラーで1時間撹拌した。無水四ホウ酸ナトリウム水溶液をPVA水溶液に(無水四ホウ酸ナトリウム水溶液が)3%wtになるように混合し、撹拌した。
(Gel D)
24 g of PVA (Kuraray K polymer KM-618) powder and 276 g of pure water were stirred with a stirrer for 1 hour while being heated to 70 ° C. 1 g of anhydrous sodium tetraborate (manufactured by Wako) and 166 g of pure water were stirred with a stirrer for 1 hour while being heated to 70 ° C. An anhydrous sodium tetraborate aqueous solution was mixed with an aqueous PVA solution (an anhydrous sodium tetraborate aqueous solution) at 3% wt and stirred.
(ゲルの物性)
ゲルA:蒸気圧10Pa、体積抵抗率1×106Ωcm
ゲルB:蒸気圧0.01Pa、体積抵抗率2×102Ωcm
ゲルC:蒸気圧0.8Pa、体積抵抗率1×104Ωcm
ゲルD:蒸気圧3168Pa、体積抵抗率1×103Ωcm
(Physical properties of the gel)
Gel A: Vapor pressure 10Pa,
Gel B: vapor pressure 0.01 Pa,
Gel C: vapor pressure 0.8 Pa,
Gel D: vapor pressure 3168 Pa,
<評価>
得られたゲルを各種実施形態の画像形成装置に搭載し、以下の項目について評価した。なお被帯電体表面には以下の処理を行った。被帯電体寸法は軸方向長さ250mmおよび直径30mmであった。
(表面処理方法)
ポリカーボネート100部に対してPTFEを70部添加した材料をTHF/トルエンを9/1で混合した溶剤に溶解した溶液を被帯電体表面に7μm厚で塗布し、120℃のオーブンで40分間乾燥することによって表面層を形成した。
<Evaluation>
The obtained gel was mounted on the image forming apparatus of various embodiments, and the following items were evaluated. The surface to be charged was subjected to the following treatment. The dimensions of the member to be charged were an axial length of 250 mm and a diameter of 30 mm.
(Surface treatment method)
A solution in which 70 parts of PTFE is added to 100 parts of polycarbonate and dissolved in a solvent in which THF / toluene is mixed in 9/1 is applied to the surface of the object to be charged in a thickness of 7 μm and dried in an oven at 120 ° C. for 40 minutes. Thus, a surface layer was formed.
(初期および耐久時の平均帯電量)
平均耐電量については、25℃、50%RHの環境下で被帯電体の表面電位測定をおこなった。表面電位は、帯電用電極にDC−500Vを印加して被帯電体を帯電させたときの、該被帯電体の表面電位V0を、トレックジャパン株式会社製の表面電位計MODEL344、プローブ6000B−16を用いて測定した。測定結果は次の基準で評価し、◎、○を実用上問題ないレベルと判断した。
◎;|V0|>470V
○;430V≦|V0|≦470V
×;|V0|<430V
(Average charge during initial and endurance)
Regarding the average withstand voltage, the surface potential of the object to be charged was measured in an environment of 25 ° C. and 50% RH. As for the surface potential, the surface potential V0 of the object to be charged when DC-500V is applied to the charging electrode to charge the object to be charged is the surface potential meter MODEL344 manufactured by Trek Japan Co., Ltd., probe 6000B-16. It measured using. The measurement results were evaluated according to the following criteria, and “◎” and “判断” were judged to be practically acceptable levels.
◎; | V0 |> 470V
○: 430V ≦ | V0 | ≦ 470V
×; | V0 | <430V
(初期および耐久時の帯電ムラ)
帯電ムラ評価については、25℃、50%RHの環境下でハーフ画像の画像形成をおこない、画像のザラツキを官能試験で判断した。画像形成における画像パターンは、2ドット×2ドットのハーフトーンパターンを採用した。画質評価は目視観察結果を次の基準で評価した。
◎;画像ムラが認識されない;
○;画像ムラが認識されるが、実用上問題なし;
×;画像ムラが著しく、実用上問題がある。
(Electric charge unevenness in initial and durability)
For evaluation of charging unevenness, half-image formation was performed in an environment of 25 ° C. and 50% RH, and the roughness of the image was judged by a sensory test. A halftone pattern of 2 dots × 2 dots was adopted as an image pattern in image formation. For the image quality evaluation, the visual observation results were evaluated according to the following criteria.
◎: Uneven image is not recognized;
○: Image unevenness is recognized, but there is no practical problem;
X: Image unevenness is remarkably problematic in practical use.
結果を以下の表に示す。なお、使用した画像形成装置の構成を示す図番号、装置条件等をまとめて示す。耐久時は25℃、50%RH環境下でA4画像5000枚プリント後を意味する。 The results are shown in the table below. In addition, a figure number indicating the configuration of the used image forming apparatus, apparatus conditions, and the like are collectively shown. Durability means after printing 5000 sheets of A4 images in an environment of 25 ° C. and 50% RH.
1:被帯電体(感光体)、2:12:22:32:42:52:62:帯電装置、2a:12a:22a:32a:42a:52a:ゲル状導電性媒体、2b:12b:22b:32b:42b:52b:電極、3:露光装置、4:現像装置、5:転写装置、6:被転写体、12c:22c:32c:保持材。
1: Charged body (photoconductor), 2: 12: 22: 32: 42: 52: 62: charging device, 2a: 12a: 22a: 32a: 42a: 52a: gel-like conductive medium, 2b: 12b: 22b : 32b: 42b: 52b: electrode, 3: exposure device, 4: developing device, 5: transfer device, 6: transfer target, 12c: 22c: 32c: holding material.
Claims (5)
An object to be charged whose surface moves, the charging device according to claim 1 for uniformly charging the object to be charged, an exposure device for forming an electrostatic latent image on the object to be charged, an electrostatic latent An image forming apparatus comprising: a developing device that develops an image to form a toner image; and a transfer device that transfers the toner image to a transfer target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004243678A JP2006064738A (en) | 2004-08-24 | 2004-08-24 | Electrifying device and image forming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004243678A JP2006064738A (en) | 2004-08-24 | 2004-08-24 | Electrifying device and image forming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006064738A true JP2006064738A (en) | 2006-03-09 |
Family
ID=36111324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004243678A Pending JP2006064738A (en) | 2004-08-24 | 2004-08-24 | Electrifying device and image forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006064738A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010051863A (en) * | 2008-08-27 | 2010-03-11 | Omega:Kk | Electrode structure |
JP2013195509A (en) * | 2012-03-16 | 2013-09-30 | Ricoh Co Ltd | Method and device for charging |
-
2004
- 2004-08-24 JP JP2004243678A patent/JP2006064738A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010051863A (en) * | 2008-08-27 | 2010-03-11 | Omega:Kk | Electrode structure |
JP2013195509A (en) * | 2012-03-16 | 2013-09-30 | Ricoh Co Ltd | Method and device for charging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001175016A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
CN104508564B (en) | Electrophtography photosensor, electrophotographic photoreceptor cartridge and image forming apparatus | |
KR100730679B1 (en) | Developing apparatus, cartridge and image forming apparatus | |
JPH11160998A (en) | Developing roller and manufacture thereof | |
JP2006064738A (en) | Electrifying device and image forming apparatus | |
JP4600106B2 (en) | Image forming apparatus | |
JP5730107B2 (en) | Conductive member, process cartridge, and electrophotographic apparatus | |
JP4047056B2 (en) | Conductive member, image forming apparatus using the same, and process cartridge | |
JP4333133B2 (en) | Charging member and transfer roll | |
JP2007225692A (en) | Electrifying apparatus | |
CN100576103C (en) | Charged roller and image processing system with this charged roller | |
CN100456152C (en) | Charging apparatus, process cartridge and image forming apparatus | |
US5554469A (en) | Charging processes with liquid compositions | |
JP3347623B2 (en) | Charging device and electrophotographic device | |
JP2008233157A (en) | Developing roller | |
JP2005077990A (en) | Developing device of image forming apparatus | |
JP2000122405A (en) | Developing roller adopted for non-magnetic non-contact developing system | |
JP3149550B2 (en) | Contact type charging device and image forming device | |
JP3070144B2 (en) | Charging device | |
JPH07295332A (en) | Electrostatic charging member and electrophotographic device provided with it | |
JP3855440B2 (en) | Developing roller for electrophotography | |
JPH04138477A (en) | Electrifying device | |
JP3412932B2 (en) | Charging member and charging device using the same | |
JP4366167B2 (en) | Charging member, process cartridge, and image forming apparatus | |
JP2003207993A (en) | Charging member, image forming device, electrostatic charging method and process cartridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080131 |