JP2006064223A - Cold/hot heat radiating panel and its manufacturing method - Google Patents

Cold/hot heat radiating panel and its manufacturing method Download PDF

Info

Publication number
JP2006064223A
JP2006064223A JP2004245458A JP2004245458A JP2006064223A JP 2006064223 A JP2006064223 A JP 2006064223A JP 2004245458 A JP2004245458 A JP 2004245458A JP 2004245458 A JP2004245458 A JP 2004245458A JP 2006064223 A JP2006064223 A JP 2006064223A
Authority
JP
Japan
Prior art keywords
heat
filler
panel
cooling heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004245458A
Other languages
Japanese (ja)
Inventor
Hitoshi Seki
均 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kagaku Sanshi Corp
Original Assignee
Mitsubishi Kagaku Sanshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kagaku Sanshi Corp filed Critical Mitsubishi Kagaku Sanshi Corp
Priority to JP2004245458A priority Critical patent/JP2006064223A/en
Publication of JP2006064223A publication Critical patent/JP2006064223A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Floor Finish (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold/hot heat radiating panel having high surface cold/hot heat radiating efficiency, effectively saving energy, and being inexpensively and quickly manufactured. <P>SOLUTION: This cold/hot heat radiating panel comprises a base material 11, a groove 12 formed on a surface of the base material 11, a cold/hot heat radiating tube 13 mounted in the groove 12 for circulating a heat medium, and a surface material 14 placed on the surface of the base material 11. A filling material 10 is filled in a void part at least at a surface material side, in the groove 12. The filling material is attached to a face at a base material side, of the surface material 14, and the surface material 14 is brought into contact with a surface of the base material 11 and pressed to fill the filling material 10 to the void part of at least the surface material side to manufacture the cold/hot heat radiating panel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、住宅等の室内を冷房又は暖房するために、床、壁、天井等に設置される放冷熱パネル及びその製造方法に関する。詳しくは、床等に設置した際、室内側に効率よく放冷熱し、室外への放冷熱を極力抑えることにより、省エネルギーを実現できる放冷熱パネルと、この放冷熱パネルを効率的に製造する方法に関する。   The present invention relates to a cooling heat panel installed on a floor, a wall, a ceiling, and the like for cooling or heating a room such as a house and a method for manufacturing the same. Specifically, when installed on the floor, etc., a cooling heat panel that can efficiently save energy by efficiently cooling to the indoor side and suppressing the cooling heat to the outside as much as possible, and a method for efficiently manufacturing this cooling heat panel About.

床暖房は、その快適性とコストパフォーマンスから、住宅の室内を暖房する設備として広く普及している。なかでも、熱源機で加熱した温水を、床下に設置した温水マットなどの放熱パネルとの間で循環させる、温水式床暖房が多く採用されている。最近では、新築住宅への組み込みだけではなく、既築住宅をリフォームする際に、既存の床上に設置することで簡単に床暖房ができるタイプの放熱パネルも提案されている。また、このようなパネルを壁や天井に敷設し、温水の代わりに冷水を流すかたちでの冷房設備も提案されている。   Floor heating is widely used as a facility for heating the interior of a house because of its comfort and cost performance. Of these, hot water type floor heating, in which hot water heated by a heat source machine is circulated between a heat radiating panel such as a hot water mat installed under the floor, is often used. Recently, not only the incorporation into a new house, but also a heat radiation panel that can be easily heated by installing it on an existing floor when renovating an existing house has been proposed. In addition, a cooling system has been proposed in which such a panel is laid on a wall or ceiling, and cold water is allowed to flow instead of hot water.

放冷熱パネルの一般的な構造としては、図4(a),(b)((a)図は断面図、(b)図は(a)図の溝部の拡大図である。)に示す如く、発泡ポリスチレンや合板などの基材11の表面に溝12が形成され、熱媒としての温水や冷水を流す放冷熱管13がこの溝12内に設けられ、更にこの基材11の表面に表面材14が接着材15で貼り付けられたものがある。放冷熱管13としては、架橋ポリエチレン管などの樹脂管或いは銅管などの金属管が用いられる。基材11表面の表面材14は、放冷熱管13を固定するとともに、放冷熱管13からの放冷熱をパネル内で均質化させる役割を果たす。この表面材14としては、アルミ箔などが使用される。   4 (a) and 4 (b) (FIG. 4 (a) is a cross-sectional view, and FIG. 4 (b) is an enlarged view of a groove portion in FIG. 4 (a)). Further, a groove 12 is formed on the surface of the base material 11 such as polystyrene foam or plywood, and a cooling heat pipe 13 through which hot water or cold water as a heat medium flows is provided in the groove 12. There is one in which the material 14 is attached with an adhesive material 15. As the cooling heat pipe 13, a resin pipe such as a crosslinked polyethylene pipe or a metal pipe such as a copper pipe is used. The surface material 14 on the surface of the substrate 11 serves to fix the cool heat heat tube 13 and to homogenize the cool heat from the cool heat heat tube 13 within the panel. An aluminum foil or the like is used as the surface material 14.

床暖房を例にとると、エネルギー効率の面から、放冷熱パネルは、室内側である上面方向にのみ放熱がなされることが望まれる。しかし、実際には、放冷熱パネルは薄い面状の構造体であるため、パネルの上面のみならず、床下である下面方向にも放熱してしまい、この分が放熱ロスとして、エネルギー効率を落とす原因となる。即ち、放冷熱管13と表面材14とは、放冷熱管13の上部においてその長さ方向に線状に接触するのみであり、放冷熱管13から表面材14への熱伝導経路が狭いために、図4のような従来の放冷熱パネルでは、十分な表面側への放冷熱効率を得ることができない。   Taking floor heating as an example, from the viewpoint of energy efficiency, it is desired that the cool heat panel is radiated only in the upper surface direction, which is the indoor side. However, in fact, since the cooling heat panel is a thin planar structure, heat is radiated not only to the upper surface of the panel but also to the lower surface, which is under the floor. Cause. That is, the heat-cooling heat tube 13 and the surface material 14 are only in linear contact with each other in the length direction at the top of the heat-cooling heat tube 13 and the heat conduction path from the heat-cooling heat tube 13 to the surface material 14 is narrow. In addition, the conventional cooling heat panel as shown in FIG. 4 cannot obtain a sufficient cooling heat efficiency toward the surface.

省エネルギーの観点からは、上面への放熱効率をできるだけ高めることが好ましい。財団法人ベターリビングの優良住宅部品認定基準のうち、「暖・冷房システム/床暖房ユニット BLS HS/B−6−8」においても、床暖房放熱器の床上への放熱量は、基礎基準で60%以上、推奨選択基準で80%以上、と規定されており、重要視されている。   From the viewpoint of energy saving, it is preferable to increase the heat dissipation efficiency to the upper surface as much as possible. Among the Better Living Foundation excellent housing part certification standards, even in “Warming / Cooling System / Floor Heating Unit BLS HS / B-6-8”, the amount of heat dissipated on the floor of the floor heating radiator is 60% of the basic standard As described above, the recommended selection criterion is defined as 80% or more, which is regarded as important.

従来、放冷熱パネルの表面側への放冷熱効率を改善するために、次のような提案がなされている。   Conventionally, the following proposals have been made in order to improve the cooling heat efficiency to the surface side of the cooling heat panel.

例えば、特開平2−8458号公報には、図5に示すように、放冷熱管13と基材11の溝12との隙間に、アルミニウムなど熱伝導率の高い箔を逆Ω字状の断面形状に加工した伝熱箔17を挿入することが提案されている。この放冷熱パネルでは、断面逆Ω字状の伝熱箔17により、放冷熱管13の下側への熱の放散を防止し、上面への放冷熱効率を高める。しかし、この伝熱箔17は、放冷熱管13の直管部にしか適用できず、曲管部への設置は困難であるため、放冷熱パネル全面の放冷熱効率を高めることはできない。また、伝熱箔を断面逆Ω字状という複雑な形状に加工し、基材11の溝12に挿入する工程が必要となるため、組み立て工数・手間が増えるとともに、伝熱箔17の分だけコストも高くなり、結果として放冷熱パネルは高価なものとなってしまう。   For example, in Japanese Patent Application Laid-Open No. 2-8458, as shown in FIG. 5, a foil having a high thermal conductivity such as aluminum is provided in a reverse Ω-shaped cross section in the gap between the cooling heat tube 13 and the groove 12 of the base material 11. It has been proposed to insert a heat transfer foil 17 processed into a shape. In this cool heat heat panel, the heat transfer foil 17 having a reverse Ω-shaped cross section prevents heat from being diffused to the lower side of the cool heat heat pipe 13 and increases the heat cool efficiency to the upper surface. However, this heat transfer foil 17 can be applied only to the straight tube portion of the cool heat heat tube 13, and it is difficult to install the heat transfer foil 17 on the bent tube portion. Moreover, since the process of processing the heat transfer foil into a complicated shape having an inverted Ω-shaped cross section and inserting the heat transfer foil into the groove 12 of the base material 11 is required, the number of assembling steps and labor are increased, and the heat transfer foil 17 is required. The cost also increases, and as a result, the cooling heat panel becomes expensive.

また、特開2003−287234号公報には、図6に示すように、放冷熱管13の全長に渡って、熱伝導性の高い金属よりなる伝熱箔18によってその外周を被覆したものを基材11の溝12内に設置することが提案されている。この放冷熱パネルは、放冷熱管13の外周を被覆する伝熱箔18によって、放冷熱管13の下側に放散していた熱を表面材14側へと導き、上面への放冷熱効率を高めるものである。この技術は、放冷熱パネルの直管部・曲管部を問わずに適用できる点においては図5に示すものよりも優れているが、図4に示す従来の放冷熱パネルと同様に、伝熱箔18と表面材14との伝熱経路が、放冷熱管13直上の両者の線状の接触部に限られ、この部分がボトルネックとなってしまっているために、十分に熱を上面に導くことができず、その効果には限界がある。また、放冷熱管13に伝熱箔18を巻き付ける工程・手間が増えるとともに、伝熱箔13の分だけコストも高くなり、結果として放冷熱パネルは高価なものとなってしまう。
特開平2−8458号公報 特開2003−287234号公報
Japanese Patent Laid-Open No. 2003-287234 is based on a structure in which the outer periphery is covered with a heat transfer foil 18 made of a metal having a high thermal conductivity over the entire length of the cooling heat pipe 13, as shown in FIG. It has been proposed to install in the groove 12 of the material 11. This cool heat heat panel guides the heat dissipated below the cool heat heat pipe 13 to the surface material 14 side by the heat transfer foil 18 covering the outer periphery of the cool heat heat pipe 13, thereby improving the heat discharge heat efficiency to the upper surface. It is something to enhance. This technology is superior to that shown in FIG. 5 in that it can be applied regardless of the straight pipe portion or the curved pipe portion of the cooling heat panel, but, like the conventional cooling heat panel shown in FIG. The heat transfer path between the heat foil 18 and the surface material 14 is limited to the linear contact portion directly above the cooling heat pipe 13, and this portion becomes a bottleneck. The effect is limited. In addition, the process and labor for winding the heat transfer foil 18 around the cool heat heat pipe 13 are increased, and the cost is increased by the heat transfer foil 13. As a result, the cool heat heat panel becomes expensive.
Japanese Patent Laid-Open No. 2-8458 JP 2003-287234 A

このように、従来の技術は、いずれも、コスト、組み立て時の作業性、製造効率に難がある上に、放冷熱効率向上効果にも限界があり、結果としてその普及を妨げている。   As described above, each of the conventional techniques has difficulty in cost, workability at the time of assembly, and production efficiency, and also has a limit in the effect of improving the cooling heat efficiency.

本発明は上記従来の問題点を解決し、表面側への放冷熱効率が高く、省エネルギー化に有効な放冷熱パネルであって、安価に簡便かつ迅速に製造することができる放冷熱パネルを提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a cooling heat panel that has high cooling heat efficiency on the surface side and is effective for energy saving, and can be manufactured easily and quickly at low cost. The purpose is to do.

本発明(請求項1)の放冷熱パネルは、基材と、該基材の表面に設けられた溝と、該溝内に配置された熱媒流通用の放冷熱管と、該基材表面に配置された表面材とを備えてなる放冷熱パネルにおいて、該溝内の少なくとも表面材側の空隙部に充填材が充填されていることを特徴とする。   The cooling heat panel of the present invention (Claim 1) includes a substrate, a groove provided on the surface of the substrate, a cooling heat pipe for circulating a heat medium disposed in the groove, and the surface of the substrate. In the cooling heat panel comprising the surface material disposed on the surface, at least a space on the surface material side in the groove is filled with a filler.

請求項2の放冷熱パネルは、請求項1において、該充填材の熱伝導率が0.1W/mK以上であることを特徴とする。   The cool heat panel according to claim 2 is characterized in that, in claim 1, the thermal conductivity of the filler is 0.1 W / mK or more.

請求項3の放冷熱パネルは、請求項1又は2において、該充填材が、熱可塑性樹脂又は熱硬化性樹脂に金属及び無機物から選ばれるフィラーを混入させたものであることを特徴とする。   A cooling heat panel according to a third aspect is characterized in that, in the first or second aspect, the filler is obtained by mixing a filler selected from a metal and an inorganic material into a thermoplastic resin or a thermosetting resin.

本発明(請求項4)の放冷熱パネルの製造方法は、基材表面の溝内に放冷熱管を配置した後、該基材表面に表面材を貼り付けることにより請求項1ないし3のいずれか1項に記載の放冷熱パネルを製造する方法であって、該表面材の基材側の面に前記充填材を付着させておき、この表面材を基材表面に当接して加圧することにより、少なくとも前記表面材側の空隙部に該充填材を充填することを特徴とする。   The method for manufacturing a cooling heat panel according to the present invention (Claim 4) is the method according to any one of Claims 1 to 3, wherein a cooling material is disposed in a groove on the surface of the base material, and then a surface material is attached to the surface of the base material. A method for producing a cooling heat panel according to claim 1, wherein the filler is attached to a surface of the surface material on the base material side, and the surface material is brought into contact with the surface of the base material and pressed. Thus, the filler is filled at least in the gap on the surface material side.

本発明の放冷熱パネルは、基材に設けられた溝内の少なくとも表面材側の空隙部に充填材が充填されているため、放冷熱管と表面材とが充填材を介して広い面積で接触した、いわばフィン付平板構造となる。これにより、放冷熱管と表面材とが線状に接触していた従来の放冷熱パネルと比較して、放冷熱管から表面材への熱伝導の経路を大幅に拡大することができるため、表面側への放冷熱効率が高められる。このため、室内側にのみ効率よく放冷熱し、反対面側への放冷熱を極力抑えることにより、放冷熱パネルの省エネルギー化を実現することができる。しかも、充填材は、放冷熱管の直管部、曲管部を問わず、すべての部位に設けることができるため、放冷熱パネルの全面に渡って表面側への放冷熱効率を高めることができる。   In the cooling heat panel of the present invention, since the filler is filled in at least the gap on the surface material side in the groove provided in the base material, the cooling heat tube and the surface material have a wide area through the filling material. It comes into contact with a so-called flat plate structure with fins. As a result, the heat conduction path from the cooling heat tube to the surface material can be greatly expanded as compared to the conventional cooling heat panel in which the cooling heat tube and the surface material are in linear contact with each other. Cooling heat efficiency to the surface side is improved. For this reason, it is possible to realize energy saving of the cooling heat panel by efficiently cooling to the indoor side only and suppressing the cooling heat to the opposite side as much as possible. In addition, since the filler can be provided in all parts regardless of the straight tube portion or the bent tube portion of the heat-releasing heat tube, the heat-releasing heat efficiency to the surface side can be improved over the entire surface of the heat-releasing heat panel. it can.

しかも、本発明の放冷熱パネルは、本発明の放冷熱パネルの製造方法により、予め充填材を付着させた表面材を基材表面に当接して加圧することにより、充填材充填のための煩雑な作業を必要とすることなく、容易かつ効率的に、安価に製造することができる。   In addition, the cooling heat panel of the present invention is a complicated method for filling the filler by pressing the surface material to which the filler has been attached in advance against the surface of the substrate by the manufacturing method of the cooling heat panel of the present invention. Therefore, it can be manufactured easily and efficiently at a low cost without requiring a complicated operation.

以下、図面を参照して本発明の放冷熱パネル及びその製造方法の実施の形態を詳細に説明する。   Embodiments of a cooling heat panel and a method for manufacturing the same according to the present invention will be described below in detail with reference to the drawings.

なお、本発明の放冷熱パネルは、冷房、暖房の両方に適用が可能なものであり、従って、本発明に係る放冷熱管には、熱媒として温水等の加熱媒体又は冷水等の冷却媒体が流通される。また、本発明の放冷熱パネルは床冷暖房に限らず、壁冷暖房、天井冷暖房等、各所の面冷暖房用途に適用される。   The cooling heat panel according to the present invention can be applied to both cooling and heating. Therefore, the cooling heat pipe according to the present invention includes a heating medium such as warm water or a cooling medium such as cold water as a heating medium. Is distributed. In addition, the cooling / heating panel of the present invention is not limited to floor cooling / heating, but is applied to surface cooling / heating applications in various places such as wall cooling / heating and ceiling cooling / heating.

図1〜3は本発明の放冷熱パネルの実施の形態を示す基材の溝部分の拡大断面図である。本発明の放冷熱パネルは、基材の溝内の少なくとも表面材側の空隙部に充填材が充填されていること以外は従来の放冷熱パネルと同様の構成とされており、その全体構成は図4(a)に示す如く、基材11の表面に設けられた溝12内に熱媒流通用の放冷熱管13が配置され、表面に表面材14が接着材15により貼り合わされた構成とされている。   1 to 3 are enlarged cross-sectional views of a groove portion of a substrate showing an embodiment of a cooling heat panel according to the present invention. The cooling heat panel of the present invention has the same configuration as that of a conventional cooling heat panel except that at least a gap on the surface material side in the groove of the base material is filled with a filler. As shown in FIG. 4 (a), a structure in which a cooling heat pipe 13 for circulating a heat medium is disposed in a groove 12 provided on the surface of a base material 11, and a surface material 14 is bonded to the surface by an adhesive material 15. Has been.

図1の放冷熱パネルは、基材11の溝12内の空隙部全体に充填材10が充填されている。   In the cooling heat panel of FIG. 1, the entire space in the groove 12 of the substrate 11 is filled with the filler 10.

また、図2の放冷熱パネルは、基材11の溝12内の表面材側の空隙部にのみ充填材10が充填されている。   2 is filled with the filler 10 only in the gap on the surface material side in the groove 12 of the substrate 11.

図3の放冷熱パネルは、図1の断面円形の放冷熱管に代えて、断面長円形の放冷熱管13Aが設けられたものであり、基材11Aには、この放冷熱管13Aの形状に倣う溝12Aが形成されている。   The cooling heat panel of FIG. 3 is provided with a cooling heat tube 13A having an oval cross section instead of the circular cooling heat tube of FIG. 1, and the base material 11A has a shape of the cooling heat tube 13A. A groove 12A is formed to follow the above.

充填材10としては、放冷熱管13,13Aと表面材14との間の熱伝導経路の役割を担うことから、熱伝導率が高い材料であることが望ましく、熱伝導率0.1W/mK以上、中でも0.6W/mK以上、特に1W/mK以上であることが好ましい。充填材10の熱伝導率は高ければ高いほど好ましいが、後述するような工業的に利用可能な充填材において、熱伝導率の上限は通常6W/mK以下程度である。   As the filler 10, since it plays a role of a heat conduction path between the cool heat tubes 13 and 13A and the surface material 14, a material having high heat conductivity is desirable, and a heat conductivity of 0.1 W / mK. Above all, it is preferably 0.6 W / mK or more, particularly 1 W / mK or more. The higher the thermal conductivity of the filler 10, the better. However, in the filler that can be used industrially as described later, the upper limit of the thermal conductivity is usually about 6 W / mK or less.

図4に示すように、溝12内の空隙部に充填材が設けられていない場合、空気の熱伝導率0.02W/mKが伝熱の上限である。さらに放冷熱管と空気、空気と表面材の間での熱伝達も大きな熱抵抗となる。よって、本発明に従って、この部分に充填材10を充填することにより、放冷熱管13,13Aと表面材14との間の熱伝導のし易さは、一桁以上改善されることになる。   As shown in FIG. 4, when no filler is provided in the gap in the groove 12, the thermal conductivity of air is 0.02 W / mK, which is the upper limit of heat transfer. Furthermore, the heat transfer between the cooling heat tube and the air and between the air and the surface material also becomes a large heat resistance. Therefore, according to the present invention, by filling this portion with the filler 10, the ease of heat conduction between the cooling heat tubes 13, 13A and the surface material 14 is improved by one digit or more.

充填材10の材質としては、本発明の趣旨に沿うものであれば、特に制限はないが、コストや組み立て作業の容易さも考慮すると、EVA(エチレン−酢酸ビニル共重合樹脂)、ポリアミド樹脂などの熱可塑性樹脂、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂、或いはこれらの樹脂を主体とするものが好ましい。これらの樹脂の熱伝導率は0.1〜0.4W/mK程度であるため、充填材として十分な熱伝導の改善効果を得ることができる。これらの樹脂は1種を単独で用いても良く、2種以上を混合して用いても良い。   The material of the filler 10 is not particularly limited as long as it conforms to the gist of the present invention, but considering cost and ease of assembly work, EVA (ethylene-vinyl acetate copolymer resin), polyamide resin, etc. Thermosetting resins such as thermoplastic resins, epoxy resins and urethane resins, or those mainly composed of these resins are preferred. Since the thermal conductivity of these resins is about 0.1 to 0.4 W / mK, an effect of improving thermal conductivity sufficient as a filler can be obtained. These resins may be used alone or in combination of two or more.

また、これらの樹脂に、黒鉛、窒化アルミニウム、炭化珪素等の無機物や銅、アルミニウム等の金属(合金を含む)などの熱伝導率の高い粒子や繊維をフィラーとして混入させることにより、充填材の熱伝導率をさらに一桁高いレベルまで高めることができる。前述の如く、充填材の熱伝導率は高ければ高いほどよく、充填材の熱伝導率はフィラーの含有比率を増すことにより高めることが可能であるが、フィラー比率があまりに高いと、均一にフィラーを分散させることが難しくなり、充填材がもろくなりやすい。このため、充填材中のフィラー含有比率は、所望の熱伝導率と充填材の脆性等のかねあいで適宜設定すればよいが、通常は、下限値として、3重量%以上、好ましくは5重量%以上、更に好ましくは8重量%以上であり、上限値としては、50重量%以下、好ましくは40重量%以下程度である。このようなフィラー含有比率により、充填材の熱伝導率を6W/mK程度まで高めることができるが、通常は4W/mK程度以下の熱伝導率となるようなフィラー含有比率とすることが好ましい。   In addition, by mixing these resins with fillers such as particles and fibers having high thermal conductivity such as inorganic substances such as graphite, aluminum nitride, silicon carbide, and metals (including alloys) such as copper and aluminum, The thermal conductivity can be increased to an order of magnitude higher. As described above, the higher the thermal conductivity of the filler, the better, and the thermal conductivity of the filler can be increased by increasing the filler content. However, if the filler ratio is too high, the filler is uniformly filled. Is difficult to disperse and the filler tends to be brittle. For this reason, the filler content ratio in the filler may be set as appropriate depending on the desired thermal conductivity and the brittleness of the filler, etc., but usually the lower limit is 3% by weight or more, preferably 5% by weight. More preferably, it is 8% by weight or more, and the upper limit is about 50% by weight or less, preferably about 40% by weight or less. With such a filler content ratio, the thermal conductivity of the filler can be increased to about 6 W / mK, but it is usually preferable that the filler content ratio is such that the thermal conductivity is about 4 W / mK or less.

なお、フィラーの大きさは過度に大きいと均一分散が困難となり、過度に小さいと樹脂への配合時の取り扱い性が悪くなるため、粒状のフィラーであれば平均粒径で0.01〜10μm程度、繊維状のフィラーであれば、平均繊維長0.1〜100μmで平均繊維径0.01〜10nm程度のものが好ましい。フィラーの形状は粒状、繊維状の他、フレーク状、その他の異形形状であっても良い。このようなフィラーは1種を単独で用いても良く、2種以上を併用しても良い。   If the filler size is excessively large, uniform dispersion becomes difficult. If the filler size is excessively small, the handleability at the time of blending with the resin is deteriorated. Therefore, if the filler is granular, the average particle size is about 0.01 to 10 μm. In the case of a fibrous filler, those having an average fiber length of 0.1 to 100 μm and an average fiber diameter of about 0.01 to 10 nm are preferable. The shape of the filler may be granular, fibrous, flaky, or other irregular shapes. Such a filler may be used individually by 1 type, and may use 2 or more types together.

また、充填材は、このようなフィラーの他、更なる熱伝導率の向上、溝内への充填効率の向上、フィラーの均一分散性の向上、取り扱い性の向上、耐久性の向上、その他の性能向上の目的で、充填材としての本来の特性を損なわない範囲において、増粘剤、顔料、着色材、酸化防止剤、滑剤等を含んでいても良い。   In addition to such fillers, the filler can further improve thermal conductivity, improve the filling efficiency into the grooves, improve the uniform dispersibility of the filler, improve the handleability, improve the durability, etc. For the purpose of improving the performance, a thickener, a pigment, a coloring material, an antioxidant, a lubricant, and the like may be included as long as the original properties as a filler are not impaired.

本発明において、充填材10は、基材11の溝12内の少なくとも表面材14側の空隙部に充填されていれば良い。従って、必ずしも図1に示す如く、空隙部の全体を埋めるように充填材10を充填する必要はなく、図2に示す如く、溝12内の表面材14側の空隙部、即ち、溝12内の放冷熱管13の上面側のみを被覆するように設けられていてもよい。   In the present invention, the filler 10 only needs to be filled in at least the gap on the surface material 14 side in the groove 12 of the substrate 11. Therefore, it is not always necessary to fill the filler 10 so as to fill the entire gap as shown in FIG. 1, but as shown in FIG. 2, the gap on the surface material 14 side in the groove 12, that is, in the groove 12 It may be provided so as to cover only the upper surface side of the cooling heat tube 13.

ただし、図1に示す如く、放冷熱管13の下面側をも被覆するように、溝12内の空隙部全体に充填材10を充填した場合には、放冷熱管13からパネル裏面側へ伝わる熱をパネル表面側に誘導することで、表面への放冷熱効率をより一層高めることができる。   However, as shown in FIG. 1, when the entire space in the groove 12 is filled with the filler 10 so as to cover the lower surface side of the cool heat heat tube 13, the heat is transferred from the cool heat heat tube 13 to the back side of the panel. By inducing heat to the panel surface side, the cooling heat efficiency to the surface can be further enhanced.

図2に示す如く、溝12内の表面材14側の空隙部にのみ充填材10を充填する場合、その充填材量としては、放冷熱管13のパネル厚み方向の高さ(図2のa。円管状の放冷熱管であれば外径に相当する。)に対して、充填材10の充填深さ(図2のb)が1/3以上(即ちb≧1/3×a)、特に1/2以上(即ち、b≧1/2×a)となるように充填することが好ましい。この充填材充填深さが過度に少ないと、本発明による表面側への放冷熱効率の向上効果を十分に得ることができない。特に、放冷熱パネルを厚さ方向に透視した場合の溝12の幅が放冷熱管13の幅と同等であり、溝12の深さが放冷熱管13のパネル厚み方向の高さと同等である場合、溝12内に配置された放冷熱管13と表面材14との間に形成される空隙部の70体積%以上、特に100%が充填材10で埋められていることが好ましい。   As shown in FIG. 2, when the filler 10 is filled only in the space on the surface material 14 side in the groove 12, the amount of the filler is the height in the panel thickness direction of the cooling heat tube 13 (a in FIG. 2). 2), the filling depth of the filler 10 (b in FIG. 2) is 1/3 or more (that is, b ≧ 1/3 × a). In particular, it is preferable to fill so as to satisfy ½ or more (that is, b ≧ ½ × a). If the filler filling depth is excessively small, the effect of improving the cooling heat efficiency toward the surface side according to the present invention cannot be obtained sufficiently. In particular, the width of the groove 12 when the cool heat heat panel is seen through in the thickness direction is equal to the width of the cool heat heat tube 13, and the depth of the groove 12 is equal to the height of the cool heat heat tube 13 in the panel thickness direction. In this case, it is preferable that 70% by volume or more, particularly 100%, of the gap formed between the cool heat heat tube 13 disposed in the groove 12 and the surface material 14 is filled with the filler 10.

本発明の放冷熱パネルにおいて、充填材以外の放熱パネルの構成部材としては、従来と同様のものが使用できる。   In the cooling heat panel of the present invention, the same components as those of the conventional heat dissipation panel other than the filler can be used.

放冷熱管13,13Aに通す加熱媒体としては、温水、水蒸気、加熱オイル、あるいはエチレングリコール系水溶液、プロピレングリコール系水溶液などの不凍液などが挙げられるが、好ましくは温水である。一方、冷却媒体としては、通常冷水が用いられる。   Examples of the heating medium that passes through the cooling heat tubes 13 and 13A include warm water, water vapor, heated oil, or antifreeze such as an ethylene glycol aqueous solution or a propylene glycol aqueous solution, and preferably hot water. On the other hand, cold water is usually used as the cooling medium.

放冷熱管13,13Aには、通常可撓性チューブが使用され、具体的には架橋ポリエチレン管、ポリブテン管などの樹脂管、銅管、鋼管などの金属管のいずれを用いても良い。このうち、金属管は樹脂管に比べて高熱伝導率であるものの重量が重く、加工性、発錆等の問題があり、また、コストも高くなるため、放冷熱パネルの用途に応じて適宜使用される。   As the cooling heat tubes 13 and 13A, a flexible tube is usually used, and specifically, a resin tube such as a crosslinked polyethylene tube or a polybutene tube, or a metal tube such as a copper tube or a steel tube may be used. Among these, metal pipes have higher thermal conductivity than resin pipes, but they are heavy, have problems such as workability and rusting, and increase costs, so they are used appropriately depending on the application of the cooling heat panel. Is done.

放冷熱管の断面(長さ方向に直交する方向の断面)形状には特に制限はなく、一般的には図1に示すような円形とされるが、図3に示すように長円形状ないし楕円形状とすることにより、放冷熱管と表面材との接触面積を増すことができ、表面側への放冷熱効率をさらに高めることができる。   There is no particular limitation on the cross-sectional shape (cross-section in the direction orthogonal to the length direction) of the heat-releasing heat tube, and it is generally circular as shown in FIG. By adopting an elliptical shape, the contact area between the cool heat heat tube and the surface material can be increased, and the cool heat efficiency to the surface side can be further increased.

放冷熱管13,13Aの寸法は、放冷熱パネルの施工対象や流通させる熱媒の種類や温度によって変更できるものであるが、放冷熱管の肉厚は通常1.0mm以上、1.5mm以下程度であり、そのパネル厚み方向の高さは通常4mm以上、9mm以下程度である。   The dimensions of the cooling heat tubes 13 and 13A can be changed depending on the construction object of the cooling heat panel and the kind and temperature of the heat medium to be circulated, but the wall thickness of the cooling heat tubes is usually 1.0 mm or more and 1.5 mm or less. The height in the panel thickness direction is usually about 4 mm or more and 9 mm or less.

基材11,11Aの材質は特に限定されないが、通常、断熱性に富んだ発泡合成樹脂製のものが好ましく、発泡合成樹脂製の板状体、具体的には、硬質ポリウレタン発泡体、硬質ポリエチレン発泡体、硬質ポリプロピレン発泡体、ポリスチレン発泡体、硬質ポリ塩化ビニル発泡体、ポリメチルメタクリレート発泡体、ポリカーボネート発泡体、ポリフェニレンオキサイド発泡体、ポリスチレンとポリエチレン混合物の発泡体などが挙げられる。中でも、硬質ポリウレタン発泡体、ポリスチレン発泡体などが好適である。基材11,11Aを構成するこれらの板状体の厚さは10〜50mmの範囲内で選ぶのが好ましい。   Although the material of the base materials 11 and 11A is not particularly limited, a material made of a foamed synthetic resin having a high heat insulating property is usually preferable. A plate-like body made of a foamed synthetic resin, specifically, a rigid polyurethane foam, a rigid polyethylene Examples include foams, rigid polypropylene foams, polystyrene foams, rigid polyvinyl chloride foams, polymethyl methacrylate foams, polycarbonate foams, polyphenylene oxide foams, foams of polystyrene and polyethylene mixtures. Of these, rigid polyurethane foam, polystyrene foam and the like are suitable. The thicknesses of these plate-like bodies constituting the base materials 11 and 11A are preferably selected within a range of 10 to 50 mm.

基材11,11Aの表面の放冷熱管13,13Aを埋設するための溝12,12Aの開口部の幅は、放冷熱管13,13Aの外径(放冷熱管13Aにあっては、そのパネル面方向の幅)と同じ寸法、又はこれより僅かに大きくするのが好ましい。溝12,12Aは、その延在方向に直交する断面形状がU字形状となるように形成すると、放冷熱管13、13Aを埋設する際に都合が良い。溝12,12Aの深さは、充填材10の充填量によっても異なるが、放冷熱管13,13Aのパネル厚み方向の高さと同等か若干深くすることが好ましい。即ち、図1に示す如く、放冷熱管13の全周を被覆するように充填材10を設ける場合には、放冷熱管13のパネル厚み方向の高さよりも溝12の深さを0.05〜0.3mm程度深くし、また、図2に示す如く、充填材10を放冷熱管13の表面材14側の外周のみを被覆するように設ける場合には、溝12の深さは放冷熱管13のパネル厚み方向の高さと同等とし、放冷熱管13上端部を直接又は接着材15を介して表面材14と接触させることが好ましい。   The width of the opening of the grooves 12 and 12A for embedding the cooling heat tubes 13 and 13A on the surfaces of the base materials 11 and 11A is the outer diameter of the cooling heat tubes 13 and 13A (in the cooling heat tube 13A, The same dimension as the width in the panel surface direction) or slightly larger than this is preferable. If the grooves 12 and 12A are formed so that the cross-sectional shape orthogonal to the extending direction is U-shaped, it is convenient when embedding the heat-releasing heat tubes 13 and 13A. The depth of the grooves 12 and 12A varies depending on the filling amount of the filler 10, but is preferably equal to or slightly deeper than the height of the cooling heat tubes 13 and 13A in the panel thickness direction. That is, as shown in FIG. 1, when the filler 10 is provided so as to cover the entire periphery of the cooling heat tube 13, the depth of the groove 12 is set to 0.05 than the height of the cooling heat tube 13 in the panel thickness direction. When the filling material 10 is provided so as to cover only the outer periphery on the surface material 14 side of the cooling heat tube 13 as shown in FIG. 2, the depth of the groove 12 is the cooling heat. It is preferable that the tube 13 has the same height as that of the panel in the thickness direction, and the upper end portion of the cool heat heat tube 13 is brought into contact with the surface material 14 directly or through an adhesive 15.

表面材14としては、熱伝導率の高い金属箔を用いることにより、放冷熱パネルの均一放冷熱性を高めることができる。金属箔の種類としては、アルミニウム箔、錫箔、ステンレススチール箔、銅箔などが挙げられる。中でも、製造の難易、コストなどの観点からアルミニウム箔が好適である。金属箔の厚さは、薄すぎると強度が十分でなく、厚すぎると製品が重くなるばかりでなく、コストがかさむので、通常10μm以上50μm以下の範囲で選ぶのが好ましい。   By using a metal foil having a high thermal conductivity as the surface material 14, the uniform cooling heat property of the cooling heat panel can be enhanced. Examples of the metal foil include aluminum foil, tin foil, stainless steel foil, and copper foil. Among these, aluminum foil is preferable from the viewpoints of manufacturing difficulty and cost. If the thickness of the metal foil is too thin, the strength is not sufficient. If the thickness is too thick, the product becomes heavy and the cost is increased. Therefore, it is usually preferable to select the thickness within the range of 10 μm to 50 μm.

また、表面材14は、樹脂シートや、紙などの安価な素材よりなるものであっても良く、金属箔と樹脂シートとを複合化させた積層シートであってもよい。金属箔と樹脂シートとの複合シートの場合、放冷熱管側に熱伝導率の高い金属箔を当接させ、樹脂シートを表面仕上げ層側に配置するのが、仕上げ材の貼り直しや更新性の点で好ましい。樹脂シートとしては、ポリエチレンテレフタレートや、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリスチレン、アクリロニトリルブタジエンスチレン共重合体等のスチレン系樹脂などの熱可塑性樹脂シートが挙げられる。樹脂シートの厚さは、単層で使用するか、複合化して使用するかによっても異なるが、通常5μm以上、好ましくは10μm以上で、通常500μm以下、好ましくは300μm以下である。   Further, the surface material 14 may be made of an inexpensive material such as a resin sheet or paper, or may be a laminated sheet in which a metal foil and a resin sheet are combined. In the case of a composite sheet of metal foil and resin sheet, the metal sheet with high thermal conductivity is brought into contact with the cooling heat tube side, and the resin sheet is arranged on the surface finishing layer side, so that the refinishing and renewability of the finishing material is possible. This is preferable. Examples of the resin sheet include thermoplastic resin sheets such as polyethylene terephthalate, olefin resins such as polyethylene and polypropylene, and styrene resins such as polystyrene and acrylonitrile butadiene styrene copolymer. The thickness of the resin sheet varies depending on whether it is used as a single layer or combined, but is usually 5 μm or more, preferably 10 μm or more, and usually 500 μm or less, preferably 300 μm or less.

表面材14と基材11,11Aとの間の接着材15としては、アクリル系樹脂等の粘着剤を用いても良く、EVA(エチレン−酢酸ビニル共重合樹脂)、ポリアミド樹脂等のホットメルト型の接着剤を用いても良く、また、エポキシ樹脂、ウレタン樹脂等の硬化型の接着剤を用いても良い。   As the adhesive 15 between the surface material 14 and the base materials 11 and 11A, an adhesive such as an acrylic resin may be used, and a hot melt type such as EVA (ethylene-vinyl acetate copolymer resin) or polyamide resin. Or a curable adhesive such as an epoxy resin or a urethane resin may be used.

本発明の放冷熱パネルの製造に当たり、充填材の充填方法としては、その材質、充填量等によって、各種の方法が考えられるが、例えば、放冷熱管を基材の溝内に設置する工程の前後で、熱可塑性樹脂であれば加熱して流動性をもたせた状態で、また、熱硬化性樹脂であれば、硬化前の液体或いは若干の流動性を有する柔軟な未硬化状態で、溝内に注入し、その後、表面材で基材表面を覆う方法であれば、従来技術と比べて、過度にコストや作業の手間をかけずに放冷熱パネルの製造が可能である。   In the manufacture of the cooling heat panel of the present invention, as a filling method of the filler, various methods are conceivable depending on the material, filling amount, etc., for example, in the step of installing the cooling heat tube in the groove of the substrate. Before and after, if it is a thermoplastic resin, it is heated and given fluidity, and if it is a thermosetting resin, it is in a liquid before curing or in a flexible uncured state with some fluidity in the groove. Then, if it is a method of covering the surface of the base material with a surface material, it is possible to manufacture a cooling heat panel without excessively costly and labor-intensive as compared with the prior art.

また、表面材の裏面(基材当接面側)に充填材を塗布するなどして付着させておき、放冷熱管を溝内に設置した基材に貼り付け、加圧する方法であれば、表面材裏面から放冷熱管と溝との間の隙間に充填材が流入して隙間を埋めるとともに、充填材が表面材と基材との間の接着剤の役割も果たし、コスト・生産効率ともに優れた生産方法となる。   Moreover, if it is the method of making it adhere by applying a filler etc. to the back surface (base material contact surface side) of a surface material, sticking to a base material installed in a groove, and applying pressure, The filler flows into the gap between the cooling tube and the groove from the back of the surface material to fill the gap, and the filler also acts as an adhesive between the surface material and the base material. An excellent production method.

通常の場合、放冷熱パネルの表面材の上には更に耐水層や意匠層を有する表面仕上げ材を両面接着テープ等により貼着して使用に供される。   In normal cases, a surface finish material having a water-resistant layer and a design layer is further adhered to the surface material of the heat-release panel by using a double-sided adhesive tape or the like.

なお、本発明の放冷熱パネルの製造方法としては、上記方法に限定されるものではなく、また、本発明の放冷熱パネルは必ずしも製造工場で完成させる必要もない。例えば、各構成部材を独立した状態で施工現場に持ち込み、現場で組み立てながら施工する方法を採ることもできる。   In addition, as a manufacturing method of the natural cooling heat panel of this invention, it is not limited to the said method, Moreover, the natural cooling heat panel of this invention does not necessarily need to be completed in a manufacturing factory. For example, it is possible to adopt a method in which each component is brought into the construction site in an independent state and constructed while being assembled on the site.

本発明の放冷熱パネルは、床、壁、天井等、住宅等の建築物の各所の面冷暖房用途に適用され、その高い表面側への放冷熱効率により、省エネルギー化を図ることができる。   The cooling heat panel of the present invention is applied to the surface cooling and heating application in various places of buildings such as floors, walls, ceilings, etc., and energy saving can be achieved due to the high cooling heat efficiency toward the surface side.

本発明の放冷熱パネルの実施の形態を示す溝部の断面図である。It is sectional drawing of the groove part which shows embodiment of the natural heat panel of this invention. 本発明の放冷熱パネルの他の実施の形態を示す溝部の断面図である。It is sectional drawing of the groove part which shows other embodiment of the natural cooling heat panel of this invention. 本発明の放冷熱パネルの別の実施の形態を示す溝部の断面図である。It is sectional drawing of the groove part which shows another embodiment of the natural heat panel of this invention. (a)図は従来の放冷熱パネルを示す断面図であり、(b)図はこの放冷熱パネルの溝部の拡大断面図である。(A) The figure is sectional drawing which shows the conventional cool-down heat panel, (b) Figure is an expanded sectional view of the groove part of this cool-down heat panel. 従来の放冷熱パネルを示す溝部の断面図である。It is sectional drawing of the groove part which shows the conventional cooling heat panel. 従来の放冷熱パネルを示す溝部の断面図である。It is sectional drawing of the groove part which shows the conventional cooling heat panel.

符号の説明Explanation of symbols

10 充填材
11,11A 基材
12,12A 溝
13,13A 放冷熱管
14 表面材
15 接着材
DESCRIPTION OF SYMBOLS 10 Filling material 11, 11A Base material 12, 12A Groove 13, 13A Cooling heat tube 14 Surface material 15 Adhesive material

Claims (4)

基材と、該基材の表面に設けられた溝と、該溝内に配置された熱媒流通用の放冷熱管と、該基材表面に配置された表面材とを備えてなる放冷熱パネルにおいて、
該溝内の少なくとも表面材側の空隙部に充填材が充填されていることを特徴とする放冷熱パネル。
Cooling heat comprising a base material, a groove provided on the surface of the base material, a heat-cooling heat pipe disposed in the groove, and a surface material disposed on the surface of the base material In the panel,
A cooling heat panel, wherein a filler is filled in at least a gap on the surface material side in the groove.
請求項1において、該充填材の熱伝導率が0.1W/mK以上であることを特徴とする放冷熱パネル。   2. The cool heat panel according to claim 1, wherein the thermal conductivity of the filler is 0.1 W / mK or more. 請求項1又は2において、該充填材が、熱可塑性樹脂又は熱硬化性樹脂に金属及び無機物から選ばれるフィラーを混入させたものであることを特徴とする放冷熱パネル。   3. The cooling heat panel according to claim 1 or 2, wherein the filler is obtained by mixing a thermoplastic resin or a thermosetting resin with a filler selected from a metal and an inorganic material. 基材表面の溝内に放冷熱管を配置した後、該基材表面に表面材を貼り付けることにより請求項1ないし3のいずれか1項に記載の放冷熱パネルを製造する方法であって、該表面材の基材側の面に前記充填材を付着させておき、この表面材を基材表面に当接して加圧することにより、少なくとも前記表面材側の空隙部に該充填材を充填することを特徴とする放冷熱パネルの製造方法。   It is a method of manufacturing the cooling heat panel of any one of Claims 1 thru | or 3 by sticking a surface material on this base-material surface, after arrange | positioning a cooling-heat tube in the groove | channel on the base-material surface. The filler is attached to the surface of the surface material on the base material side, and the surface material is brought into contact with the surface of the base material and pressurized to fill at least the void on the surface material side. A method for producing a cooling heat panel.
JP2004245458A 2004-08-25 2004-08-25 Cold/hot heat radiating panel and its manufacturing method Pending JP2006064223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245458A JP2006064223A (en) 2004-08-25 2004-08-25 Cold/hot heat radiating panel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245458A JP2006064223A (en) 2004-08-25 2004-08-25 Cold/hot heat radiating panel and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006064223A true JP2006064223A (en) 2006-03-09

Family

ID=36110861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245458A Pending JP2006064223A (en) 2004-08-25 2004-08-25 Cold/hot heat radiating panel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006064223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170000047U (en) * 2016-01-28 2017-01-03 이희곤 Hot water panel with enhanced heat-releasing property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170000047U (en) * 2016-01-28 2017-01-03 이희곤 Hot water panel with enhanced heat-releasing property
KR200484577Y1 (en) * 2016-01-28 2017-09-26 이희곤 Hot water panel with enhanced heat-releasing property

Similar Documents

Publication Publication Date Title
US20090101306A1 (en) Heat Exchanger System
CN203349354U (en) Heat exchanger and heat exchanger paneling device
KR20150058364A (en) Heat-conducting plate, especially for cooling or heating a building
JP4803120B2 (en) Heating and cooling panel
US9404665B1 (en) Radiant panel system having increased efficiency
JP5301121B2 (en) Synthetic resin pipe for radiant cooling and heating, and panel for radiant cooling and heating
JP2006064222A (en) Cold/hot heat radiating panel
JP2006064223A (en) Cold/hot heat radiating panel and its manufacturing method
JP5305333B2 (en) Air conditioning panel
JP2014062672A (en) Radiation panel for cooling/heating operation
JP2006118828A (en) Cold heat radiation panel
JP2016044841A (en) Fin and tube type heat exchanger and manufacturing method thereof
JP2007309609A (en) Radiation panel for radiation type air conditioning
CN106989462B (en) Ceiling radiation plate and ceiling heating/refrigerating system
JP2006250526A (en) Floor heating radiator
JP2008014579A (en) Floor heating panel
JP6213017B2 (en) Heat-dissipating panel for non-living room
CN212481435U (en) Water floor heating heat dissipation structure
JP2004061060A (en) Heat radiation pipe and heat radiator
JP4593033B2 (en) Heating panel
JP2008309398A (en) Partitioning material and heating/cooling system
JP4319441B2 (en) Fluid branch fixture
WO2020110321A1 (en) Sound-proofing heat-dissipating material, device having sound-proofing heat-dissipating material, and production method for sound-proofing heat-dissipating material
JP2004353976A (en) Thin floor heating radiator
JP2014037943A (en) Radiation panel for cooling and heating and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070709

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080423

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A02 Decision of refusal

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A02