JP2006064211A - Heat transfer pipe for evaporator and its manufacturing method - Google Patents

Heat transfer pipe for evaporator and its manufacturing method Download PDF

Info

Publication number
JP2006064211A
JP2006064211A JP2004244743A JP2004244743A JP2006064211A JP 2006064211 A JP2006064211 A JP 2006064211A JP 2004244743 A JP2004244743 A JP 2004244743A JP 2004244743 A JP2004244743 A JP 2004244743A JP 2006064211 A JP2006064211 A JP 2006064211A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
evaporator
refrigerant
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004244743A
Other languages
Japanese (ja)
Inventor
Soubu Ri
相武 李
Hiroharu Ogawa
弘晴 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2004244743A priority Critical patent/JP2006064211A/en
Publication of JP2006064211A publication Critical patent/JP2006064211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer pipe for an evaporator and its manufacturing method, superior in evaporating performance even when carbon dioxide is used as a refrigerant. <P>SOLUTION: A pipe material is manufactured by hot extruding a billet composed of copper or copper alloy. The pipe material is rolled by placing a mandrel in the pipe and allowing a roll to be rotated and brought into contact with an outer face of the pipe. Then, a floating plug is placed inside of the pipe, and the pipe material after rolling process is radially reduced by using radial reduction dies. Then drawing process is performed two or more times without using the floating plug, here, a sectional reduction rate of the pipe material in the first drawing process is 5-30% to achieve average surface roughness in the circumferential direction of a pipe inner surface of 0.2-20 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は冷媒として二酸化炭素を使用する熱交換器の蒸発器用伝熱管及びその製造方法に関し、特に、冷凍機油の含有量が0.5質量%以下である二酸化炭素を使用する蒸発器用伝熱管及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a heat exchanger tube for an evaporator of a heat exchanger that uses carbon dioxide as a refrigerant and a method for producing the same, and in particular, a heat exchanger tube for an evaporator that uses carbon dioxide having a refrigeration oil content of 0.5% by mass or less. It relates to the manufacturing method.

従来、空調機、カーエアコン、冷蔵庫、冷凍機、給湯器及び自動販売機等に設けられている熱交換器にはフロン系の溶媒が使用されていたが、フロン系の溶媒は地球温暖化への影響が懸念されており、近時、毒性及び可燃性がなく安全で、安価で、更に環境への付加が小さい二酸化炭素等の自然冷媒が注目されている。下記表1にフロン系冷媒(R22、R134a、R410A)及び二酸化炭素(CO)の物性値を示す。なお、下記表1に示す各物性値は飽和温度を0℃としたときの値である。 Conventionally, chlorofluorocarbon solvents have been used for heat exchangers installed in air conditioners, car air conditioners, refrigerators, refrigerators, water heaters, vending machines, etc. Recently, natural refrigerants such as carbon dioxide, which are safe, inexpensive, non-toxic and flammable, and have little addition to the environment, are attracting attention. Table 1 below shows physical property values of the fluorocarbon refrigerants (R22, R134a, R410A) and carbon dioxide (CO 2 ). In addition, each physical property value shown in the following Table 1 is a value when the saturation temperature is 0 ° C.

Figure 2006064211
Figure 2006064211

上記表1に示すように、二酸化炭素は、熱特性に大きく影響を与える液定圧比熱及び液熱伝導率が高く、フロン系冷媒(R22、R134a、R410A)よりも伝熱性能が優れている。また、二酸化炭素は、表面張力が小さいため、フロン系冷媒よりも気泡が発生しやすく、核沸騰が促進されるため、冷媒として二酸化炭素を使用すると、フロン系冷媒を使用した場合に比べて伝熱性能が向上する。更に、二酸化炭素はフロン系冷媒よりも液粘性率及び密度が小さいため、圧力損失が小さい。更にまた、二酸化炭素には、蒸気密度及び潜熱が大きく、単位排除容積あたりの冷凍効果がフロン系冷媒よりも大きいという特徴がある。   As shown in Table 1 above, carbon dioxide has a high liquid constant pressure specific heat and liquid thermal conductivity that greatly affect the thermal characteristics, and has better heat transfer performance than CFC-based refrigerants (R22, R134a, R410A). Also, since carbon dioxide has a low surface tension, bubbles are more likely to be generated than chlorofluorocarbon refrigerants, and nucleate boiling is promoted. Therefore, when carbon dioxide is used as the refrigerant, it is transmitted compared to the case where chlorofluorocarbon refrigerant is used. Thermal performance is improved. Furthermore, since carbon dioxide has a smaller liquid viscosity and density than a chlorofluorocarbon refrigerant, the pressure loss is small. Furthermore, carbon dioxide has a feature that the vapor density and latent heat are large, and the refrigeration effect per unit excluded volume is larger than that of the fluorocarbon refrigerant.

一方、二酸化炭素には、冷房及び暖房の単純サイクルにおける理論性能が低いという問題点がある。このため、冷媒として二酸化炭素を使用する場合は、冷媒が流通する伝熱管に高い伝熱性能が求められるが、従来、二酸化炭素を冷媒として使用した熱交換器の蒸発器用伝熱管には、熱伝達率が低い平滑管が使用されていたため、大きな蒸発性能を得るためには、蒸発器を大きくしなければならなかった(例えば、特許文献1 段落0003及び0004参照)。このような蒸発器用伝熱管の蒸発性能を向上させる方法としては、内面に溝を形成して伝熱面積を拡大する方法があり(例えば、特許文献2及び3参照)、特許文献1に記載の蒸発器においては、管内壁に管の長手方向に延びる複数個の突起部を設けた伝熱管を使用することにより、伝熱管の熱伝達率を高めて、蒸発器の小型化を図っている。   On the other hand, carbon dioxide has a problem of low theoretical performance in a simple cycle of cooling and heating. For this reason, when carbon dioxide is used as the refrigerant, high heat transfer performance is required for the heat transfer pipe through which the refrigerant flows. Conventionally, heat transfer pipes for evaporators of heat exchangers using carbon dioxide as the refrigerant are Since a smooth tube having a low transmission rate was used, the evaporator had to be enlarged in order to obtain a large evaporation performance (see, for example, paragraphs 0003 and 0004 of Patent Document 1). As a method of improving the evaporation performance of such a heat transfer tube for an evaporator, there is a method of forming a groove on the inner surface to expand the heat transfer area (see, for example, Patent Documents 2 and 3). In the evaporator, the heat transfer rate of the heat transfer tube is increased by using a heat transfer tube provided with a plurality of protrusions extending in the longitudinal direction of the tube on the inner wall of the tube, thereby reducing the size of the evaporator.

特開2003−343942号公報JP 2003-343492 A 特許第2524983号公報Japanese Patent No. 2524983 特開平4−18231号公報JP-A-4-18231

しかしながら、前述の従来の技術には以下に示す問題点がある。即ち、二酸化炭素を冷媒として使用した場合、熱交換器の蒸発器における蒸発性能には、核沸騰が大きく影響するため、特許文献1乃至3のように伝熱管の内面に溝を形成して伝熱面積を拡大しても、十分な効果が得られないという問題点がある。また、二酸化炭素を冷媒に使用すると、伝熱管内の圧力が高くなるため、フロン系冷媒を使用する場合よりも伝熱管の厚さを厚くしなければならない。このため、伝熱管の内面に溝を形成する場合は、その溝深さが制限されるという問題点もある。   However, the conventional techniques described above have the following problems. That is, when carbon dioxide is used as the refrigerant, nucleate boiling greatly affects the evaporation performance of the evaporator of the heat exchanger. Therefore, as in Patent Documents 1 to 3, a groove is formed on the inner surface of the heat transfer tube. Even if the thermal area is enlarged, there is a problem that a sufficient effect cannot be obtained. Moreover, since the pressure in a heat exchanger tube will become high when carbon dioxide is used for a refrigerant | coolant, it is necessary to make the thickness of a heat exchanger tube thicker than the case where a fluorocarbon refrigerant is used. For this reason, when forming a groove | channel in the inner surface of a heat exchanger tube, there also exists a problem that the groove depth is restrict | limited.

本発明はかかる問題点に鑑みてなされたものであって、冷媒として二酸化炭素を使用する場合においても蒸発性能が優れた蒸発器用伝熱管及びその製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an evaporator heat transfer tube having excellent evaporation performance even when carbon dioxide is used as a refrigerant, and a method for manufacturing the same.

本願第1発明に係る蒸発器用伝熱管は、冷凍機油の含有量が0.5質量%以下である二酸化炭素を冷媒として使用する熱交換器の蒸発器用伝熱管であって、内面の管周方向における平均表面粗さが0.2乃至20μmであることを特徴とする。   The heat transfer tube for an evaporator according to the first invention of the present application is a heat transfer tube for an evaporator of a heat exchanger that uses carbon dioxide having a refrigerating machine oil content of 0.5% by mass or less as a refrigerant, and the inner circumferential direction of the tube The average surface roughness at is from 0.2 to 20 μm.

本発明においては、内面の管周方向における平均表面粗さを0.2乃至20μmでとしているため、管内表面に形成されたキャビティにより核沸騰が促進され、CO冷媒を使用した場合においても、優れた伝熱性能が得られる。 In the present invention, since the average surface roughness in the tube circumferential direction of the inner surface is 0.2 to 20 μm, nucleate boiling is promoted by the cavity formed on the inner surface of the tube, and even when CO 2 refrigerant is used, Excellent heat transfer performance can be obtained.

また、前記平均表面粗さは、0.4乃至15μmであることが好ましい。これにより、伝熱性能をより向上させることができる。更に、この蒸発器用伝熱管は、例えば、銅又は銅合金により形成することができる。   The average surface roughness is preferably 0.4 to 15 μm. Thereby, heat-transfer performance can be improved more. Further, the evaporator heat transfer tube can be formed of, for example, copper or a copper alloy.

本願第2発明に係る蒸発器用伝熱管の製造方法は、冷凍機油の含有量が0.5質量%以下である二酸化炭素を冷媒として使用する熱交換器の蒸発器用伝熱管の製造方法であって、銅又は銅合金からなる素管をフローティングプラグ及び縮径ダイスを使用して縮径加工する工程と、前記縮径加工した素管をフローティングプラグを使用せずに2回以上空引き加工する工程と、を有し、1回の空引き加工における前記素管の断面減少率が5乃至30%であることを特徴とする。   The method for manufacturing a heat exchanger tube for an evaporator according to the second invention of the present application is a method for manufacturing a heat exchanger tube for an evaporator of a heat exchanger that uses carbon dioxide having a refrigerating machine oil content of 0.5 mass% or less as a refrigerant. , A step of reducing the diameter of a raw tube made of copper or a copper alloy using a floating plug and a diameter reducing die, and a step of emptying the diameter-reduced element pipe twice or more without using a floating plug The cross-sectional reduction rate of the raw tube in one empty drawing process is 5 to 30%.

本発明においては、縮径ダイスのみを使用して断面減少率が5乃至30%である引き抜き加工を2回以上おこなっているため、内面の管周方向における平均表面粗さが0.2乃至20μmとなり、伝熱性能が優れた伝熱管が得られる。   In the present invention, since the drawing process with a cross-sectional reduction rate of 5 to 30% is performed twice or more using only a reduced diameter die, the average surface roughness in the pipe circumferential direction of the inner surface is 0.2 to 20 μm. Thus, a heat transfer tube with excellent heat transfer performance is obtained.

本発明によれば、従来の平滑管よりも管内面の管周方向における平均表面粗さを粗くすることによって、管内表面に形成されたキャビティの状態を最適化しているため、冷媒であるCOの核沸騰が促進され、優れた伝熱性能が得られる。 According to the present invention, by roughening the average surface roughness in the circumferential direction of the pipe of the pipe surface than the conventional smooth tube, because it optimizes the state of the cavity formed in the tube surface, CO 2 is a refrigerant Nucleate boiling is promoted, and excellent heat transfer performance is obtained.

以下、本発明の実施形態に係る蒸発器用伝熱管について、添付の図面を参照して具体的に説明する。本実施形態の伝熱管は、銅又は銅合金等の金属材料からなる平滑管であり、内面の管周方向における平均表面粗さRaが0.2乃至20μmになっている。そして、この伝熱管は、冷凍機油の含有量が0.5質量%以下である二酸化炭素(CO)を冷媒として使用する熱交換器の蒸発器に組み込まれる。また、本実施形態の伝熱管の外径は例えば4乃至7mmであり、肉厚は例えば0.3乃至1.0mmであり、その外面には例えばフィン又は突起が形成されている。 Hereinafter, an evaporator heat transfer tube according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. The heat transfer tube of the present embodiment is a smooth tube made of a metal material such as copper or copper alloy, and has an average surface roughness Ra in the tube circumferential direction of the inner surface of 0.2 to 20 μm. Then, the heat transfer tube is incorporated carbon dioxide content of the refrigerating machine oil is not more than 0.5 mass% (CO 2) to the evaporator of the heat exchanger to be used as a refrigerant. The outer diameter of the heat transfer tube of this embodiment is, for example, 4 to 7 mm, the thickness is, for example, 0.3 to 1.0 mm, and fins or protrusions are formed on the outer surface, for example.

以下、本実施形態の蒸発器用伝熱管における数値限定理由について説明する。   Hereinafter, the reason for the numerical limitation in the heat transfer tube for an evaporator of the present embodiment will be described.

内面の管周方向における平均表面粗さRa:0.2乃至20μm
伝熱管内を流通する冷媒が沸騰する際は、管内面に存在する微細な窪み(以下、キャビティという)から気泡が発生し、一般に、このキャビティが発泡核となって沸騰が起こると考えられている。二酸化炭素を冷媒として使用する場合、このような核沸騰が蒸発器用伝熱管における蒸発特性に大きく影響するため、核沸騰が起こりやすくすることにより、伝熱管における蒸発性能を向上することができる。
Average surface roughness Ra in the pipe circumferential direction of the inner surface: 0.2 to 20 μm
When the refrigerant circulating in the heat transfer tube boils, bubbles are generated from fine depressions (hereinafter referred to as cavities) on the inner surface of the tube. Yes. When carbon dioxide is used as a refrigerant, such nucleate boiling greatly affects the evaporation characteristics of the evaporator heat transfer tube. Therefore, the evaporation performance of the heat transfer tube can be improved by facilitating nucleate boiling.

但し、伝熱管内面の平均表面粗さRaが0.2μm未満であると、管表面における冷媒の濡れ性が低下し、核沸騰が促進されない。一方、管内面の平均表面粗さ(Ra)が20μmを超えると、キャビティの開口部が広がり、即ちキャビティがオープン構造となり、気泡が発生し難くなる。よって、本実施形態の伝熱管においては、内面の管周方向における平均表面粗さRaを0.2乃至20μmとする。なお、内面の管周方向における平均表面粗さRaは、0.4乃至15μmとすることがより好ましい。これにより、管内を流通する冷媒の核沸騰がより促進され、伝熱管の蒸発特性が大幅に向上する。   However, if the average surface roughness Ra of the inner surface of the heat transfer tube is less than 0.2 μm, the wettability of the refrigerant on the tube surface is reduced and nucleate boiling is not promoted. On the other hand, when the average surface roughness (Ra) of the inner surface of the tube exceeds 20 μm, the opening of the cavity widens, that is, the cavity has an open structure, and bubbles are hardly generated. Therefore, in the heat transfer tube of this embodiment, the average surface roughness Ra in the tube circumferential direction of the inner surface is set to 0.2 to 20 μm. The average surface roughness Ra in the tube circumferential direction of the inner surface is more preferably 0.4 to 15 μm. Thereby, the nucleate boiling of the refrigerant | coolant which distribute | circulates the inside of a pipe | tube is further accelerated | stimulated, and the evaporation characteristic of a heat exchanger tube is improved significantly.

CO 冷媒中の冷凍機油含有量:0.5質量%以下
通常、伝熱管内を流通するCO冷媒中には、ポリアルキレングリコール系油等の冷凍機油が含まれている。この冷凍機油は、圧縮機用の潤滑剤であり、ベアリング及びシリンダ等の可動部の潤滑性を向上させると共に、摩擦により発生する熱を吸収することにより可動部を冷却して、圧縮機を良好に稼働させるものである。しかしながら、CO冷媒中の冷凍機油含有量が0.5質量%を超えると、伝熱管内面の管周方向における平均表面粗さ(Ra)を0.2乃至20μmにしても、伝熱性能が大幅に低下する。よって、本実施形態の伝熱管内に流通させるCO冷媒における冷凍機油含有量は、0.5質量%以下とする。
Refrigerating machine oil content in the CO 2 refrigerant: 0.5% by mass or less Usually, the refrigerating machine oil such as polyalkylene glycol oil is contained in the CO 2 refrigerant circulating in the heat transfer tube. This refrigerating machine oil is a lubricant for compressors, improves the lubricity of moving parts such as bearings and cylinders, and cools moving parts by absorbing heat generated by friction, making the compressor better It is intended to operate. However, if the refrigeration oil content in the CO 2 refrigerant exceeds 0.5 mass%, the heat transfer performance is improved even if the average surface roughness (Ra) in the tube circumferential direction of the inner surface of the heat transfer tube is 0.2 to 20 μm. Decrease significantly. Therefore, the refrigerating machine oil content in the CO 2 refrigerant to be circulated in the heat transfer tube of the present embodiment is 0.5% by mass or less.

次に、本実施形態の蒸発器用伝熱管の製造方法について説明する。先ず、銅又は銅合金からなり、例えば直径が300mmであるビレットを熱間押出加工することにより、例えば、外径が100mm、肉厚が10mmである素管を作製する。次に、押出加工により得られた素管内にマンドレルを配置すると共に、管外面にロールを転接させて、例えば、管の外径が40mm、肉厚が2乃至4mmになるように圧延加工する。引き続き、圧延加工後の管に抽伸加工を施す。具体的には、管内部にフローティングプラグを配置した状態で、管の外径よりも小径のダイス孔から管を引抜き、例えば、管の外径を15mm、肉厚を2mmとする。その後、フローティングプラグを使用せず、ダイスのみを使用して引抜き加工(以下、空引きという)して、例えば、外径が7mm、肉厚が1mmの平滑管とする。   Next, the manufacturing method of the heat exchanger tube for evaporators of this embodiment is demonstrated. First, a billet made of copper or a copper alloy and having a diameter of, for example, 300 mm is hot-extruded to produce an element tube having an outer diameter of 100 mm and a wall thickness of 10 mm, for example. Next, a mandrel is placed in the raw tube obtained by extrusion, and a roll is rolled on the outer surface of the tube, for example, rolled so that the outer diameter of the tube is 40 mm and the wall thickness is 2 to 4 mm. . Subsequently, the drawn pipe is subjected to a drawing process. Specifically, in a state where the floating plug is arranged inside the tube, the tube is pulled out from a die hole having a diameter smaller than the outer diameter of the tube, for example, the outer diameter of the tube is set to 15 mm and the wall thickness is set to 2 mm. Then, without using a floating plug, a drawing process (hereinafter referred to as empty drawing) is performed using only a die, for example, to obtain a smooth tube having an outer diameter of 7 mm and a wall thickness of 1 mm.

本実施形態の蒸発器用伝熱管の製造方法においては、1回の空引き加工における断面減少率Re(=空引き前の断面積/空引き後の断面積)を5乃至30%とし、この空引き加工を少なくとも2回行う。これにより、管内面の表面粗さが粗くなるため、管周方向における平均表面粗さを0.2乃至20μmにすることができる。但し、1回の空引き加工における断面減少率Reが5%未満であると、生産性が低下すると共に、フローティングプラグを使用していないため、加工時に振動(ビビレ)が発生して品質が低下する。一方、断面減少率Reが30%を超えると、急激に縮径されるため、外径と肉厚との比率及び調質(機械的性質)によっては、まくれ込みが発生する場合がある。なお、まくれ込みとは、管の一部が陥没し、その陥没部の両側の部分が相互に近づく方向にまくれ込んだ状態を示す。   In the method of manufacturing an evaporator heat transfer tube of the present embodiment, the cross-section reduction rate Re (= the cross-sectional area before emptying / the cross-sectional area after emptying) in one empty drawing is set to 5 to 30%. The drawing process is performed at least twice. Thereby, since the surface roughness of the inner surface of the tube becomes rough, the average surface roughness in the tube circumferential direction can be set to 0.2 to 20 μm. However, if the cross-section reduction rate Re in a single blanking process is less than 5%, the productivity is reduced and the floating plug is not used. To do. On the other hand, when the cross-section reduction rate Re exceeds 30%, the diameter is rapidly reduced, and therefore, depending on the ratio between the outer diameter and the wall thickness and the tempering (mechanical properties), there is a case where turning-up occurs. Note that “turn-up” refers to a state in which a part of the tube is depressed and the portions on both sides of the depressed portion are turned toward each other.

本実施形態の蒸発器用伝熱管の製造方法においては、断面減少率Reが5乃至30%である空引き加工を2回以上行って、管内表面の粗さを粗くしているため、管周方向における平均表面粗さを0.2乃至20μmにすることができる。その結果、従来の平滑管に比べて、伝熱管の性能を向上させることができる。   In the method for manufacturing an evaporator heat transfer tube according to the present embodiment, the inner surface of the pipe is roughened by performing the emptying process with a cross-section reduction rate Re of 5 to 30% twice or more, so that the pipe circumferential direction The average surface roughness can be 0.2 to 20 μm. As a result, the performance of the heat transfer tube can be improved as compared with the conventional smooth tube.

次に、上述の如く構成された本実施形態の蒸発器用伝熱管の動作について説明する。本実施形態の蒸発器用伝熱管は、空調機、冷蔵庫、給湯器、冷凍機及び自動販売機等の熱交換器の蒸発器に組み込まれる。そして、伝熱管の内部に、冷凍機油の含有量が0.5質量%以下であるCO冷媒を、例えば、給湯器及び空調機の場合は3乃至5MPaの圧力で、低温冷凍機の場合は3MPa以下の圧力で流通させる。このとき、COは蒸発器に組み込まれた伝熱管内において、沸騰して気化する。これにより、伝熱管から熱が奪われ、更に伝熱管の周囲の空気が冷却される。 Next, the operation of the evaporator heat transfer tube of the present embodiment configured as described above will be described. The heat exchanger tube for an evaporator according to the present embodiment is incorporated in an evaporator of a heat exchanger such as an air conditioner, a refrigerator, a water heater, a refrigerator, and a vending machine. And inside the heat transfer tube, a CO 2 refrigerant having a refrigeration oil content of 0.5% by mass or less, for example, at a pressure of 3 to 5 MPa in the case of a water heater and an air conditioner, It distribute | circulates at the pressure of 3 Mpa or less. At this time, CO 2 boils and vaporizes in a heat transfer tube incorporated in the evaporator. As a result, heat is removed from the heat transfer tube, and the air around the heat transfer tube is further cooled.

本実施形態の蒸発器用伝熱管は、管内面の管周方向における平均表面粗さRaを0.2乃至20μmにしているため、冷凍機油の含有量が0.5質量%以下であるCO冷媒を使用する熱交換器の蒸発器に組み込んだ場合においても、管内表面に形成されたキャビティにより核沸騰が促進されるため、優れた伝熱性能が得られる。 Evaporator heat exchanger tube of the present embodiment, since the average surface roughness Ra in the circumferential direction of the pipe of the inner surface to 0.2 to 20 [mu] m, CO 2 refrigerant amount of the refrigerating machine oil is not more than 0.5 mass% Even when incorporated in an evaporator of a heat exchanger that uses nuclei, nucleate boiling is promoted by the cavities formed on the inner surface of the tube, so that excellent heat transfer performance can be obtained.

以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。先ず、本発明の実施例1の蒸発器用伝熱管として、JIS H3300 C1220で規定されている銅管を、マンドレル及びロールにより圧延加工した後、フローティングプラグ及びダイスにより抽伸加工し、更にプラグ引き後に空引き加工を2回行い、外径が6.00mm、肉厚が0.60mmである平滑管を作製した。その際の空引き加工条件を下記表2に示す。   Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. First, as a heat transfer tube for an evaporator according to Example 1 of the present invention, a copper tube specified in JIS H3300 C1220 is rolled with a mandrel and a roll, then drawn with a floating plug and a die, and then is emptied after drawing the plug. Drawing was performed twice to produce a smooth tube having an outer diameter of 6.00 mm and a wall thickness of 0.60 mm. Table 2 shows the blanking conditions at that time.

Figure 2006064211
Figure 2006064211

また、本発明の比較例1の蒸発器用伝熱管として、JIS H3300 C1220で規定されている銅管を、マンドレル及びロールにより圧延加工した後、フローティングプラグ及びダイスにより抽伸加工して、外径が6.00mm、肉厚が0.60mmである平滑管を作製した。   In addition, as a heat transfer tube for an evaporator according to Comparative Example 1 of the present invention, a copper tube defined in JIS H3300 C1220 is rolled with a mandrel and a roll, and then drawn with a floating plug and a die so that the outer diameter is 6 A smooth tube having a thickness of 0.000 mm and a wall thickness of 0.60 mm was produced.

次に、前述の実施例1及び比較例1の伝熱管の内面のSEM(Scanning Electron Microscope:走査型電子顕微鏡)観察を行った。図1(a)は実施例1の伝熱管の内面を示すSEM写真(倍率:250倍)であり、図1(b)は比較例1の伝熱管の内面を示すSEM写真(倍率:250倍)である。図1(a)及び図1(b)に示すように、プラグ引きを行った後で空引き加工を2回行った実施例1の伝熱管は、空引き加工を行わずにプラグ引きにより仕上げた比較例1の伝熱管よりも、表面が荒れていた。そこで、これらの伝熱管の内面の管周方向における平均表面粗さRaを測定したところ、実施例1の伝熱管が0.5μm、比較例1の伝熱管が0.08μmであった。図2は実施例1の伝熱管の内面の管周方向における表面粗さの測定結果を示す図である。   Next, SEM (Scanning Electron Microscope) observation of the inner surface of the heat transfer tube of Example 1 and Comparative Example 1 was performed. 1A is an SEM photograph (magnification: 250 times) showing the inner surface of the heat transfer tube of Example 1, and FIG. 1B is an SEM photograph (magnification: 250 times) showing the inner surface of the heat transfer tube of Comparative Example 1. ). As shown in FIGS. 1 (a) and 1 (b), the heat transfer tube of Example 1 that was subjected to empty drawing twice after plug drawing was finished by plug drawing without empty drawing. The surface was rougher than the heat transfer tube of Comparative Example 1. Therefore, when the average surface roughness Ra in the tube circumferential direction of the inner surface of these heat transfer tubes was measured, the heat transfer tube of Example 1 was 0.5 μm, and the heat transfer tube of Comparative Example 1 was 0.08 μm. FIG. 2 is a diagram showing the measurement results of the surface roughness in the tube circumferential direction of the inner surface of the heat transfer tube of Example 1.

次に、実施例1及び比較例1の伝熱管の熱伝達率及び圧力損失を測定し、その伝熱性能について評価した。図3は熱伝達率及び圧力損失の測定に使用した装置の構成を示す図であり、図4はその蒸発器の構成を示す図である。図3に示すように、本実施例で使用した測定装置には、CO冷媒を圧縮することにより高温にする圧縮機2と、凝縮器であるガス冷却器4と、CO冷媒を膨張させて低温にする膨張弁7と、試験部である蒸発器1が設けられている。この蒸発器1の出入口には、夫々、CO冷媒を加熱する予熱機8及び過熱器9が設けられている。また、圧縮機2の出口には、冷媒中の冷凍機油を分離するオイルセパレータ3aが設けられており、更に、圧縮機2の入口及びガス冷却器4の出口には、夫々冷媒の脈動をなくすアキュームレータ5a及び5bが設けられている。 Next, the heat transfer coefficient and pressure loss of the heat transfer tubes of Example 1 and Comparative Example 1 were measured, and the heat transfer performance was evaluated. FIG. 3 is a diagram showing a configuration of an apparatus used for measurement of heat transfer coefficient and pressure loss, and FIG. 4 is a diagram showing a configuration of the evaporator. As shown in FIG. 3, the measuring apparatus used in this embodiment includes a compressor 2 to a high temperature by compressing a CO 2 refrigerant, the gas cooler 4 is a condenser, expands the CO 2 refrigerant An expansion valve 7 for lowering the temperature and an evaporator 1 as a test part are provided. A preheater 8 and a superheater 9 for heating the CO 2 refrigerant are respectively provided at the entrance and exit of the evaporator 1. An oil separator 3a that separates refrigeration oil in the refrigerant is provided at the outlet of the compressor 2, and further, pulsation of the refrigerant is eliminated at the inlet of the compressor 2 and the outlet of the gas cooler 4, respectively. Accumulator 5a and 5b are provided.

本実施例においては、圧縮器2用の冷凍機油としてポリアルキレングリコール系油を使用した。そして、蒸発器1の出口に設けたオイルセパレータ3bによってCO冷媒中の冷凍機油を分離し、この分離した冷凍機油をオイル冷却器10で冷却した後、オイルポンプ11及び流量計12を経由して再度CO冷媒中に添加することにより、蒸発器1の直前の部分における冷媒中の冷凍機油含有量が0.1質量%になるよう調節した。なお、CO冷媒中の冷凍機油含有量は、予熱器8の直前のサンプリングポート14においてCO冷媒を採取し、精密化学天秤によりその質量を測定することにより求めた。また、蒸発器1に熱源水を供給している間は、ガス冷却器4及びオイル冷却器10に冷却水を供給した。更に、予熱器8及び過熱器9には、直流電流を供給した。 In this example, polyalkylene glycol oil was used as the refrigerating machine oil for the compressor 2. Then, the refrigeration oil in the CO 2 refrigerant is separated by the oil separator 3 b provided at the outlet of the evaporator 1, and the separated refrigeration oil is cooled by the oil cooler 10, and then passes through the oil pump 11 and the flow meter 12. Then, by adding again to the CO 2 refrigerant, the refrigerant oil content in the refrigerant immediately before the evaporator 1 was adjusted to 0.1 mass%. Incidentally, the refrigerating machine oil content of CO 2 in the refrigerant, the CO 2 refrigerant is collected in the sampling port 14 immediately before the preheater 8, was determined by measuring its mass by a precision analytical balance. Further, while supplying heat source water to the evaporator 1, cooling water was supplied to the gas cooler 4 and the oil cooler 10. Further, a direct current was supplied to the preheater 8 and the superheater 9.

また、本実施例においては、ガス冷却器4と膨張弁7との間に、精度が±0.4%のマイクロモーション型質量流量計6を設け、この流量計6により冷媒の流量を測定した。また、蒸発器1と過熱器9との間、オイルセパレータ3bとコンプレッサー2との間、コンプレッサー2とガス冷却器4との間、ガス冷却器4とアキュームレータ5bとの間、流量計6と膨張弁7との間には、夫々冷媒混合室18a乃至18eが設けられている。そして、冷媒の温度及び圧力は、夫々、冷媒混合室18a乃至18e内に備えられた直径が0.5mmクロメル−アルメル被覆熱電対19a乃至19e及び精度が0.02MPaの圧力変換器20a乃至20eにより測定した。その際、熱電対19a乃至19eは、予め誤差が±0.05K以内になるように校正した。   In this embodiment, a micro motion type mass flow meter 6 with an accuracy of ± 0.4% is provided between the gas cooler 4 and the expansion valve 7, and the flow rate of the refrigerant is measured by the flow meter 6. . Further, between the evaporator 1 and the superheater 9, between the oil separator 3b and the compressor 2, between the compressor 2 and the gas cooler 4, between the gas cooler 4 and the accumulator 5b, and the flow meter 6 and expansion. Refrigerant mixing chambers 18a to 18e are provided between the valves 7 respectively. The temperature and pressure of the refrigerant are respectively determined by the 0.5 mm chromel-alumel-coated thermocouples 19a to 19e and the pressure transducers 20a to 20e having an accuracy of 0.02 MPa provided in the refrigerant mixing chambers 18a to 18e. It was measured. At that time, the thermocouples 19a to 19e were calibrated in advance so that the error was within ± 0.05K.

更に、図4に示すように、蒸発器1には、直径が18mmで、内径が12mmの外管の内部に、実施例1又は比較例1の伝熱管が配置された3本の二重管15a乃至15cが、直列に接続されている。なお、これらの二重管15a乃至15cは、長さが0.688mであり、有効熱伝達長さが0.5mである。そして、実施例1又は比較例1の伝熱管の内部にはCO冷媒を流通させ、これらの伝熱管と外管との間には冷却水を流通させた。その際、CO冷媒の流通方向と冷却水の流通方向とが相互に逆になるようにした。 Furthermore, as shown in FIG. 4, the evaporator 1 has three double tubes in which the heat transfer tubes of Example 1 or Comparative Example 1 are arranged inside an outer tube having a diameter of 18 mm and an inner diameter of 12 mm. 15a to 15c are connected in series. These double tubes 15a to 15c have a length of 0.688 m and an effective heat transfer length of 0.5 m. Then, the inside of the heat transfer tube of Example 1 or Comparative Example 1 was circulated CO 2 refrigerant, and between these heat exchanger tubes and the outer pipe is circulated cooling water. At that time, the flow direction of the CO 2 refrigerant and the flow direction of the cooling water were made opposite to each other.

この蒸発器1には、熱源13が設けられており、冷却水の流量は、この熱源13内に設けられた精度が±0.5%のギア式流量計により測定した。また、二重管15a乃至15cの両端部には、夫々熱源水混合室16a乃至16fが設けられており、冷却水の温度は、この熱源水混合室16a乃至16fに設置された外径が2.0mmの抵抗温度計により測定した。その際、各抵抗温度計は、誤差が±0.02K以内になるように校正した。更に、二重管15a乃至15c間の圧力差は、精度が±0.25%の差圧変換器17a乃至17dにより測定した。更にまた、各伝熱管の外壁の温度は、外径が0.1mmの銅線及びコンスタンタン線により形成されている銅−コンスタンタン熱電対を、伝熱管の外面の上下左右に配置して測定した。その際、これらの熱電対は、誤差が±0.05K以内になるように校正した。   The evaporator 1 is provided with a heat source 13, and the flow rate of the cooling water was measured with a gear type flow meter with an accuracy of ± 0.5% provided in the heat source 13. Further, heat source water mixing chambers 16a to 16f are provided at both ends of the double pipes 15a to 15c, respectively, and the temperature of the cooling water is 2 outside diameters installed in the heat source water mixing chambers 16a to 16f. Measured with a resistance thermometer of 0 mm. At that time, each resistance thermometer was calibrated so that the error was within ± 0.02K. Furthermore, the pressure difference between the double tubes 15a to 15c was measured by differential pressure transducers 17a to 17d with an accuracy of ± 0.25%. Furthermore, the temperature of the outer wall of each heat transfer tube was measured by placing copper-constantan thermocouples formed of a copper wire and a constantan wire having an outer diameter of 0.1 mm on the top, bottom, left and right of the outer surface of the heat transfer tube. At that time, these thermocouples were calibrated so that the error was within ± 0.05K.

各伝熱管の内壁の温度Twiは、下記数式1から求めた。 The temperature T wi of the inner wall of each heat transfer tube was determined from the following formula 1.

Figure 2006064211
Figure 2006064211

なお、上記数式1におけるTwoは伝熱管の外壁の温度であり、λは伝熱管の熱伝導率であり、dwi及びdwoは夫々伝熱管の内径及び外径であり、Qは二重管15a乃至15cの熱伝導率であり、Δzは二重管15a乃至15cの有効熱伝達長さである。 In the above formula 1, T wo is the temperature of the outer wall of the heat transfer tube, λ w is the heat conductivity of the heat transfer tube, d wi and d wo are the inner diameter and outer diameter of the heat transfer tube, respectively, and Q is 2 The thermal conductivity of the heavy pipes 15a to 15c, and Δz is the effective heat transfer length of the double pipes 15a to 15c.

また、冷媒の流量は10乃至40kg/時間の間で変化させ、試験部の入口における圧力は3乃至5MPaになるように調節した。更にまた、全熱収支、即ち、冷却水による熱量の増加と冷媒による熱量の損失との比は5%未満とした。更にまた、二酸化炭素の熱力学的性質及び移送性能は、REFPROP Ver.7.0(M. O. McLinden、外2名,2002,Peskin AP,NIST thermodynamic properties of refrigerants and refrigerant mixtures database (REFPROP),Ver.7.0)を使用して計算した。   Further, the flow rate of the refrigerant was changed between 10 and 40 kg / hour, and the pressure at the inlet of the test part was adjusted to be 3 to 5 MPa. Furthermore, the total heat balance, that is, the ratio of the increase in the amount of heat due to the cooling water and the loss of the amount of heat due to the refrigerant was less than 5%. Furthermore, the thermodynamic properties and transport performance of carbon dioxide are reported in REFPROP Ver. 7.0 (M. O. McLinden, 2 others, 2002, Peskin AP, NIST thermodynamic properties of reactants and refrigerant mixtures database (REFPROP), Ver. 7.0) was used for calculation.

更に、伝熱管の局所熱伝達率αは、下記数式2から求めた。   Further, the local heat transfer coefficient α of the heat transfer tube was obtained from the following formula 2.

Figure 2006064211
Figure 2006064211

ここで、上記数式2におけるTは二重管15a乃至15cにおける標準圧力時のCO冷媒の温度である。また、qは二重管15a乃至15cにおける熱流束であり、下記数式3により求められる。 Here, T b in the above equation 2 is the temperature of the CO 2 refrigerant during normal pressure in double tube 15a to 15c. Further, q is a heat flux in the double tubes 15a to 15c, and is obtained by the following mathematical formula 3.

Figure 2006064211
Figure 2006064211

なお、上記数式2により求められる局所熱伝達率αの不確実性は10%未満であり、上記数式3により求められる熱流束qの不確実性は6%未満である。   Note that the uncertainty of the local heat transfer coefficient α obtained by Equation 2 is less than 10%, and the uncertainty of the heat flux q obtained by Equation 3 is less than 6%.

図5は横軸に乾き度をとり、縦軸に熱伝達率をとって、実施例及び比較例の伝熱管の性能を示すグラフ図である。図6は横軸に乾き度をとり、縦軸に圧力損失をとって、実施例及び比較例の伝熱管の性能を示すグラフ図である。なお、図5及び図6に示す値は、冷媒入口圧力Pinを4MPa、冷媒流速Grを362kg/m秒としたときの値であり、乾き度は、全質量流量に対する気相質量流量の比である。図5及び図6に示すように、実施例1の伝熱管は、圧力損失は比較例1の伝熱管と同等で、熱伝達率は比較例1の伝熱管よりも高くなっていた。 FIG. 5 is a graph showing the performance of the heat transfer tubes of the examples and comparative examples, with the horizontal axis representing the dryness and the vertical axis representing the heat transfer coefficient. FIG. 6 is a graph showing the performance of the heat transfer tubes of the example and the comparative example, with the horizontal axis representing the dryness and the vertical axis representing the pressure loss. Note that values shown in FIGS. 5 and 6, 4 MPa refrigerant inlet pressure P in, is a value when the refrigerant flow rate Gr and 362 kg / m 2 sec, the dryness is the gas phase mass flow rate to the total mass flow rate Is the ratio. As shown in FIGS. 5 and 6, the heat transfer tube of Example 1 had the same pressure loss as the heat transfer tube of Comparative Example 1, and the heat transfer coefficient was higher than that of the heat transfer tube of Comparative Example 1.

次に、実施例1の伝熱管を使用し、CO冷媒中の冷凍機油含有量を変えて、上述の方法で伝熱性能を評価した。図7は横軸にCO冷媒中の冷凍機油量をとり、縦軸に性能低下率をとって、冷凍機油含有量と伝熱性能との関係を示すグラフ図である。図7に示すように、実施例1の伝熱管は、CO冷媒における冷凍機油含有量が0.5質量%場合は、伝熱性能低下を抑制することができた。 Next, using the heat transfer tube of Example 1, the refrigerating machine oil content in the CO 2 refrigerant was changed, and the heat transfer performance was evaluated by the method described above. FIG. 7 is a graph showing the relationship between the refrigerating machine oil content and the heat transfer performance, with the horizontal axis representing the amount of refrigerating machine oil in the CO 2 refrigerant and the vertical axis representing the performance reduction rate. As shown in FIG. 7, the heat transfer tube of Example 1 was able to suppress a decrease in heat transfer performance when the refrigeration oil content in the CO 2 refrigerant was 0.5 mass%.

次に、管内面の平均表面粗さRaが異なる複数の伝熱管を作製し、上述の方法で伝熱性能を評価した。図8は横軸に伝熱管内面の管周方向における平均表面粗さRaをとり、縦軸に熱伝達率をとって、管内面の平均表面粗さRaと伝熱性能との関係を示すグラフ図である。図8に示すように、管内面の管周方向における表面粗さRaが0.2乃至20μmの伝熱管では、優れ伝熱性能が得られた。   Next, a plurality of heat transfer tubes having different average surface roughness Ra on the inner surface of the tube were produced, and the heat transfer performance was evaluated by the method described above. FIG. 8 is a graph showing the relationship between the average surface roughness Ra of the pipe inner surface and the heat transfer performance, with the horizontal axis representing the average surface roughness Ra in the pipe circumferential direction of the heat transfer pipe inner surface and the vertical axis representing the heat transfer coefficient. FIG. As shown in FIG. 8, excellent heat transfer performance was obtained with a heat transfer tube having a surface roughness Ra of 0.2 to 20 μm in the tube circumferential direction on the inner surface of the tube.

(a)は実施例1の伝熱管の内面を示すSEM写真(倍率:250倍)であり、(b)は比較例1の伝熱管の内面を示すSEM写真(倍率:250倍)である。(A) is the SEM photograph (magnification: 250 times) which shows the inner surface of the heat exchanger tube of Example 1, (b) is the SEM photograph (magnification: 250 times) which shows the inner surface of the heat exchanger tube of the comparative example 1. 実施例1の伝熱管の内面の管周方向における表面粗さを示す図である。It is a figure which shows the surface roughness in the pipe peripheral direction of the inner surface of the heat exchanger tube of Example 1. FIG. 熱伝達率及び圧力損失の測定に使用した装置の構成を示す図である。It is a figure which shows the structure of the apparatus used for the measurement of a heat transfer rate and a pressure loss. 図3に示す測定装置の蒸発器の構成を示す図である。It is a figure which shows the structure of the evaporator of the measuring apparatus shown in FIG. 横軸に乾き度をとり、縦軸に熱伝達率をとって、実施例及び比較例の伝熱管の性能を示すグラフ図である。It is a graph which shows the performance of the heat exchanger tube of an Example and a comparative example, taking a dryness on a horizontal axis and taking a heat transfer coefficient on a vertical axis | shaft. 横軸に乾き度をとり、縦軸に圧力損失をとって、実施例及び比較例の伝熱管の性能を示すグラフ図である。It is a graph which shows the performance of the heat exchanger tube of an Example and a comparative example, taking a dryness on a horizontal axis and taking pressure loss on a vertical axis | shaft. 横軸にCO冷媒中の冷凍機油量をとり、縦軸に性能低下率をとって、冷凍機油含有量と伝熱性能との関係を示すグラフ図である。The horizontal axis represents the refrigerating machine oil of CO 2 refrigerant, and the vertical axis represents the performance degradation rate is a graph showing the relationship between the refrigerating machine oil content and the heat transfer performance. 横軸に伝熱管内面の管周方向における平均表面粗さをとり、縦軸に熱伝達率をとって、管内面の平均表面粗さと伝熱性能との関係を示すグラフ図である。It is a graph which shows the relationship between the average surface roughness of a pipe inner surface, and heat transfer performance, taking the average surface roughness in the pipe peripheral direction of a heat transfer pipe inner surface on a horizontal axis, and taking a heat transfer coefficient on a vertical axis | shaft.

符号の説明Explanation of symbols

1;蒸発器
2;圧縮機
3a、3b;オイルセパレータ
4;ガス冷却器
5a、5b;アキュームレータ
6、12;流量計
7;膨張弁
8;予熱器
9;過熱器
10;オイル冷却器
11;オイルポンプ
13;熱源
14;サンプリングポート
15a〜15c;二重管
16a〜16f;熱源水混合室
17a〜17d;差圧変換器
18a〜18f;冷媒混合室
19a〜19f;熱電対
20a〜20f;圧力変換器
DESCRIPTION OF SYMBOLS 1; Evaporator 2; Compressor 3a, 3b; Oil separator 4; Gas cooler 5a, 5b; Accumulator 6, 12; Flowmeter 7; Expansion valve 8; Preheater 9; Superheater 10; Oil cooler 11; Pump 13; Heat source 14; Sampling ports 15a to 15c; Double pipes 16a to 16f; Heat source water mixing chamber 17a to 17d; Differential pressure converter 18a to 18f; Refrigerant mixing chamber 19a to 19f; Thermocouple 20a to 20f; vessel

Claims (4)

冷凍機油の含有量が0.5質量%以下である二酸化炭素を冷媒として使用する熱交換器の蒸発器用伝熱管であって、内面の管周方向における平均表面粗さが0.2乃至20μmであることを特徴とする蒸発器用伝熱管。 A heat exchanger tube for an evaporator of a heat exchanger that uses carbon dioxide having a refrigerating machine oil content of 0.5% by mass or less as a refrigerant, and the average surface roughness in the tube circumferential direction of the inner surface is 0.2 to 20 μm A heat transfer tube for an evaporator characterized by being. 前記平均表面粗さが0.4乃至15μmであることを特徴とする請求項1に記載の蒸発器用伝熱管。 The heat transfer tube for an evaporator according to claim 1, wherein the average surface roughness is 0.4 to 15 µm. 銅又は銅合金により形成されていることを特徴とする請求項1又は2に記載の蒸発器用伝熱管。 The heat transfer tube for an evaporator according to claim 1 or 2, wherein the heat transfer tube is made of copper or a copper alloy. 冷凍機油の含有量が0.5質量%以下である二酸化炭素を冷媒として使用する熱交換器の蒸発器用伝熱管の製造方法であって、銅又は銅合金からなる素管をフローティングプラグ及び縮径ダイスを使用して縮径加工する工程と、前記縮径加工した素管をフローティングプラグを使用せずに2回以上空引き加工する工程と、を有し、1回の空引き加工における前記素管の断面減少率が5乃至30%であることを特徴とする蒸発器用伝熱管の製造方法。 A method of manufacturing a heat exchanger tube for an evaporator of a heat exchanger using carbon dioxide having a refrigerating machine oil content of 0.5% by mass or less as a refrigerant, wherein a raw tube made of copper or a copper alloy has a floating plug and a reduced diameter A process for reducing the diameter using a die, and a process for emptying the reduced diameter pipe at least twice without using a floating plug. A method of manufacturing a heat transfer tube for an evaporator, wherein the cross-sectional reduction rate of the tube is 5 to 30%.
JP2004244743A 2004-08-25 2004-08-25 Heat transfer pipe for evaporator and its manufacturing method Pending JP2006064211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244743A JP2006064211A (en) 2004-08-25 2004-08-25 Heat transfer pipe for evaporator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244743A JP2006064211A (en) 2004-08-25 2004-08-25 Heat transfer pipe for evaporator and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006064211A true JP2006064211A (en) 2006-03-09

Family

ID=36110853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244743A Pending JP2006064211A (en) 2004-08-25 2004-08-25 Heat transfer pipe for evaporator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006064211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001882A1 (en) * 2010-06-28 2012-01-05 住友金属工業株式会社 Heat transfer tube for steam generator and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244595A (en) * 1991-01-28 1992-09-01 Mitsubishi Heavy Ind Ltd Plate type heat exchanger
JP2001082815A (en) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp Refrigeration airconditioning cycle device
JP2004044747A (en) * 2002-07-15 2004-02-12 Denso Corp Branching pipe and method for manufacture the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244595A (en) * 1991-01-28 1992-09-01 Mitsubishi Heavy Ind Ltd Plate type heat exchanger
JP2001082815A (en) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp Refrigeration airconditioning cycle device
JP2004044747A (en) * 2002-07-15 2004-02-12 Denso Corp Branching pipe and method for manufacture the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001882A1 (en) * 2010-06-28 2012-01-05 住友金属工業株式会社 Heat transfer tube for steam generator and method for producing same
CN102985783A (en) * 2010-06-28 2013-03-20 新日铁住金株式会社 Heat transfer tube for steam generator and method for producing same
JP5378522B2 (en) * 2010-06-28 2013-12-25 新日鐵住金株式会社 Manufacturing method of heat transfer tube for steam generator
KR101503612B1 (en) * 2010-06-28 2015-03-18 신닛테츠스미킨 카부시키카이샤 Heat transfer tube for steam generator and method for producing same
CN102985783B (en) * 2010-06-28 2015-09-16 新日铁住金株式会社 Heat transfer tube for steam generator and manufacture method thereof
US10488038B2 (en) 2010-06-28 2019-11-26 Nippon Steel Corporation Method for producing a heat transfer tube for steam generator using drawing, solution heat treatment, and straightening

Similar Documents

Publication Publication Date Title
Pettersen et al. Development of compact heat exchangers for CO2 air-conditioning systems
US5054548A (en) High performance heat transfer surface for high pressure refrigerants
EP1162412A1 (en) Refrigerating device
JP2008215733A (en) Fin and tube type heat exchanger
KR20040036874A (en) Refrigerating cycle device
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
Ebisu et al. Experimental study on evaporation and condensation heat transfer enhancement for R-407C using herringbone heat transfer tube
Mastrullo et al. Flow boiling of carbon dioxide: Heat transfer for smooth and enhanced geometries and effect of oil. state of the art review
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
Chen et al. Simulation of a vapour-compression refrigeration cycles using HFC134a and CFC12
Kim et al. Evaporation heat transfer and pressure drop of low GWP R-404A alternative refrigerants in a multiport tube
JP4119836B2 (en) Internal grooved heat transfer tube
JP4386813B2 (en) Heat transfer tube with inner groove for evaporator
JP2007271220A (en) Heat transfer tube with inner groove for gas cooler
JP2009243722A (en) Internally grooved pipe
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2006064211A (en) Heat transfer pipe for evaporator and its manufacturing method
Mahdi et al. In Tube Condensation: Changing the Pressure Drop into a Temperature Difference for a Wire-on-Tube Heat Exchanger.
Kaji et al. The Effect of Inner Grooved Tubes on the Heat Transfer Performace of Air-Cooled Heat Exchangers of Co2 Heat Pump System
JP2003021473A (en) Heat exchanger for circulating refrigerater system having non-azeotropic refrigerant
CN107003081A (en) Heat exchanger and the refrigerating circulatory device with the heat exchanger
JP2010096372A (en) Internal heat exchanger for carbon dioxide refrigerant
JP5566001B2 (en) Internally grooved heat transfer tube for gas coolers using carbon dioxide refrigerant
JP2012122692A (en) Heat transfer tube with grooved inner surface
JP2009228929A (en) Internally-grooved heat transfer pipe for evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A02