JP2006063596A - Soil improving method - Google Patents

Soil improving method Download PDF

Info

Publication number
JP2006063596A
JP2006063596A JP2004246089A JP2004246089A JP2006063596A JP 2006063596 A JP2006063596 A JP 2006063596A JP 2004246089 A JP2004246089 A JP 2004246089A JP 2004246089 A JP2004246089 A JP 2004246089A JP 2006063596 A JP2006063596 A JP 2006063596A
Authority
JP
Japan
Prior art keywords
powder
fluid
feeding
ground
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004246089A
Other languages
Japanese (ja)
Other versions
JP4321715B2 (en
Inventor
Makoto Otsuka
誠 大塚
Toshihisa Taniguchi
利久 谷口
Minoru Yamamoto
実 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Construction Co Ltd filed Critical Fudo Construction Co Ltd
Priority to JP2004246089A priority Critical patent/JP4321715B2/en
Publication of JP2006063596A publication Critical patent/JP2006063596A/en
Application granted granted Critical
Publication of JP4321715B2 publication Critical patent/JP4321715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil improving method which is carried out under optimum improvement conditions for target ground, by switching an improving material to be fed to an agitating and mixing apparatus from particulate material to fluid substance and vice versa in mid-course, depending on soil character or ground properties. <P>SOLUTION: The soil improving method is carried out by employing an agitation shaft 19, agitation blades 20, and a material feeding apparatus for introducing the improving material into a feeding conduit arranged along the agitation shaft 19, so that the improving material discharged from a lower discharge port of the feeding conduit is mixed with in-situ soil. According to the method, the material feeding apparatus is comprised of a particulate material force-feeding plant 1 for feeding the particulate material by compressed air, a fluid substance force-feeding plant 2 for feeding fluid substance which is a mixture of the particulate material and water, and a transport passage 7 for selectively connecting the particulate material force-feeding plant 1 or the fluid substance force-feeding plant 2 to an upstream side of the feeding conduit via switching means. Then by taking into consideration the soil character in a ground depth direction, the particulate material of the particulate material force-feeding plant 1 is force-fed to a stratum B having a high water content via the switching means 8, 9 of the transport passage 7, whereas the fluid substance of the fluid substance force-feeding plant 2 is force-fed to a stratum A having a low water content via the switching means 8, 9 of the transport passage 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地盤中で改良材(セメント等の粉粒体か、セメントミルク等の流動物の何れか)を吐出し、攪拌軸の下側に設けられた攪拌翼により地盤中の原位置土と改良材とを混合処理して地盤を改良する地盤改良工法に関する。   The present invention discharges an improved material (either a granular material such as cement or a fluid such as cement milk) in the ground, and an in-situ soil in the ground by a stirring blade provided below the stirring shaft. The present invention relates to a ground improvement method for improving the ground by mixing and improving materials.

軟弱地盤改良工法では、攪拌軸及び該攪拌軸下側に付設された撹拌翼と、攪拌軸に沿って設けられた供給管路と、地表側に設けられて前記供給管路の上流側に改良材を導入する材料供給装置とを備え、攪拌軸の地中への貫入や引き抜き過程等で、前記供給管路の下側吐出口から吐出される改良材と原位置土とを混合処理するようにしている。この工法では、事前に施工現場の土をボーリングで採取し、目標改良強度に合わせて室内配合実験を行い、安全率等を考慮し、改良材として、セメント等の粉粒体、又は、セメントミルク等の流動物にするかを決めて、吐出量ないしは地盤配合量を設定している。また、この工法では、対象地盤の土質性状が高含水比の場合は粉粒体による施工を行い、低含水比の場合は流動物による施工を行っている。前者は、粉粒体が原位置土中に含まれる水と直接水和反応して硬化を促進するものである。従来工法には、特許文献1に例示されるように、含水比が地盤深さ方向に大きく変動しているような場合、水和反応が維持されるよう含水比の低い地層に対して加水して土質性状を調整することもある。  In the soft ground improvement method, a stirring shaft, a stirring blade attached to the lower side of the stirring shaft, a supply pipe line provided along the stirring shaft, and an upstream side of the supply pipe line improved on the ground surface side. A material supply device for introducing the material, and mixing the improved material discharged from the lower discharge port of the supply pipe with the in-situ soil in the process of penetration of the stirring shaft into the ground, extraction process, etc. I have to. In this method, soil at the construction site is collected in advance by boring, indoor blending experiments are performed according to the target improvement strength, safety factors are taken into consideration, and powders such as cement, or cement milk are used as improvement materials. The amount of discharge or the amount of ground mix is set. Moreover, in this construction method, when the soil property of the target ground has a high water content, the construction is performed with a granular material, and when the soil property is a low water content, the construction is performed with a fluid. In the former, powder particles are directly hydrated with water contained in the in situ soil to promote hardening. In the conventional construction method, as exemplified in Patent Document 1, when the water content ratio greatly fluctuates in the depth direction of the ground, water is added to the formation with a low water content ratio so that the hydration reaction is maintained. The soil properties may be adjusted.

特開平10−245898合公報Japanese Patent Laid-Open No. 10-245898

上記した地盤改良工法の施工設計では、対象地盤に対して粉粒体を用いるか、流動物を用いるかを決めて、その吐出量や配合量を算出している。ところが、土質性状は地盤深さ方向に含水比が大きく変化した互層となっていることも多いため、粉粒体だけを用いた改良、又は、流動物だけを用いた改良では次のような問題が生じている。
(a)粉粒体による改良では、含水比が低い地層に対して特許文献1のように部分的に加水処理すると施工効率が悪くなる。砂層では、貫入時にジャーミング現象が発生し、攪拌軸、攪拌翼の引抜きが困難になり易い。地盤のゆるい層では、粉粒体を圧送するための圧縮空気で周囲の地層を緩めたり、既存構造物に悪影響を与える虞がある。粘性土では流動物施工に比べて原位置土との混合性が悪く、いわゆるダマができ易い。貫入深度が深くなったり、硬質粘土層では、圧送用圧縮空気の回収、すなわち圧縮空気を地表側へ排出することが困難になり、それに起因して粉粒体を設計通り吐出できなくなる虞がある。
(b)流動物による改良では、混練用水分に起因して地表側への排土や排泥量が粉粒体施工に比べて多くなる。混練水は空気よりも土中に残留し易い。なお、セメントを硬化するに必要な水量は、一般にセメント重量の25%程度であり、残部は土中に拡散される。
In the construction design of the ground improvement method described above, it is determined whether to use a granular material or a fluid for the target ground, and the discharge amount and the blending amount are calculated. However, the soil properties are often alternating layers whose water content ratio has changed greatly in the depth direction of the ground, so the following problems cannot be solved with improvements using only granular materials or improvements using only fluids. Has occurred.
(A) In the improvement by a granular material, if it hydrolyzes partially like the patent document 1 with respect to the formation with a low water content ratio, construction efficiency will worsen. In the sand layer, a jamming phenomenon occurs at the time of penetration, and it is difficult to pull out the stirring shaft and the stirring blade. In the loose layer of the ground, there is a possibility that the surrounding ground layer may be loosened by compressed air for pumping the granular material or an existing structure may be adversely affected. Cohesive soil has poor mixing with in-situ soil compared to fluid construction, and so-called lumps are likely to occur. When the penetration depth is deep, or when the hard clay layer is used, it becomes difficult to collect compressed air for pumping, that is, to discharge the compressed air to the ground surface. .
(B) In the improvement by the fluid, the amount of soil and mud discharged to the surface is increased compared to the powder construction due to the moisture for kneading. Kneaded water tends to remain in the soil rather than air. The amount of water necessary to harden the cement is generally about 25% of the cement weight, and the remainder is diffused into the soil.

本発明の目的は、以上のような課題に対し、原位置土に吐出する改良材として、地盤深さ方向の土質性状に応じて粉粒体と流動物とを切り替えることにより、当該地盤に最適な改良条件を得られるようにすることにある。   The object of the present invention is to solve the above-mentioned problems, as an improved material to be discharged to the in-situ soil, by switching between powder and fluid according to the soil properties in the depth direction of the ground, optimal for the ground It is to make it possible to obtain various improvement conditions.

上記目的を達成するため本発明は、駆動機構で回転される攪拌軸及び該攪拌軸下側に設けられた撹拌翼と、前記攪拌軸に沿って設けられた供給管路と、地表側に設けられて前記供給管路の上流側に改良材を導入する材料供給装置とを備え、前記攪拌軸の地中への貫入や引き抜き過程等で、前記供給管路の下側吐出口より吐出される改良材と原位置土とを混合処理する地盤改良工法において、前記材料供給装置は、前記改良材として粉粒体を圧縮空気により供給可能な粉体圧送プラントと、前記改良材として粉粒体と水とを混合した流動物を供給可能な流動物圧送プラントと、前記供給配管の上流側に対し前記粉体圧送プラントと前記流動物圧送プラントとを切替手段を介し選択的に接続可能な輸送経路とを備え、地盤深さ方向の土質性状として、含水比が高い地層には前記粉体圧送プラントの粉粒体を、含水比が低い地層には前記流動物圧送プラントの流動物を前記輸送経路の切替手段を介し前記供給配管に圧送することを特徴としている。   To achieve the above object, the present invention provides a stirring shaft rotated by a driving mechanism, a stirring blade provided below the stirring shaft, a supply pipe provided along the stirring shaft, and a ground surface side. And a material supply device that introduces an improved material upstream of the supply pipe, and is discharged from a lower discharge port of the supply pipe in the process of penetration of the stirring shaft into the ground or a drawing process. In the ground improvement construction method in which the improvement material and the in-situ soil are mixed, the material supply device includes: a powder feeding plant capable of supplying powder as compressed material by compressed air as the improved material; and a granular material as the improved material. A fluid pressure feeding plant capable of supplying a fluid mixed with water, and a transportation route capable of selectively connecting the powder pressure feeding plant and the fluid pressure feeding plant to the upstream side of the supply pipe via a switching unit. With soil properties in the depth direction of the ground In addition, the granular material of the powder pumping plant is fed to the formation with a high water content ratio, and the fluid of the fluid pressure feeding plant is pumped to the supply pipe through the switching means of the transport route to the formation with a low water content ratio. It is characterized by.

以上の本発明工法において、施工設計では、例えば、事前調査等で把握された地盤深さ方向の含水比の変動に応じて、粉粒体を用いる地層A(高含水比の地層)と、流動物を用いる地層B(低含水比の地層)とが決められ、かつ、各地層A,Bに混入する粉粒体や流動物の吐出量(吐出総量と吐出流量等)が算出される。そして、実施工では、例えば、攪拌軸の貫入深さが検出センサにより計測されており、その計測値に基づいて、地層Aに粉粒物を吐出し、地層Aを通過する直前で輸送経路の切替手段を切り替え、地層Bに達したら流動物を吐出してそれぞれ原位置土と混合処理する。このような工法では、前記流動物から粉粒体に切り替えるとき、又は/及び、前記粉粒体から流動物に切り替えるときは、前記粉体圧送プラントの圧縮空気を圧送して前記輸送経路及び供給管路に残留したり付着しているものを除去してから切り替えること(請求項2)、前記流動物圧送プラントは、粉粒体と水とを混合して流動物を製造する流動物製造部を有し、前記流動物製造部が前記粉体圧送プラントから圧縮空気により送られてくる前記粉粒体を使用すると共に、前記粉粒体と水とを混合する前か、混合後に脱気すること(請求項3)が好ましい。   In the construction method of the present invention described above, in the construction design, for example, according to the change in the water content ratio in the depth direction of the ground as grasped in the preliminary survey, etc., the formation A using the granular material (the formation with a high water content ratio) and the flow A stratum B (a stratum having a low water content ratio) using animals is determined, and discharge amounts (total discharge amount and discharge flow rate, etc.) of the granular material and fluid mixed in the various strata A and B are calculated. In the construction work, for example, the penetration depth of the stirring shaft is measured by the detection sensor, and based on the measured value, the powder particles are discharged to the formation A and immediately before passing through the formation A. The switching means is switched, and when reaching the formation B, the fluid is discharged and mixed with the in situ soil. In such a construction method, when switching from the fluid to the granular material, and / or when switching from the granular material to the fluid, the compressed air of the powder pumping plant is pumped to supply the transport route and supply. Switching after removing what remains or adhering to the pipeline (Claim 2), the fluid pressure feeding plant is a fluid production unit that produces a fluid by mixing granular material and water. And the fluid production unit uses the granular material sent by compressed air from the powder pressure feeding plant, and deaerates before or after mixing the granular material and water. (Claim 3) is preferable.

以上の本発明工法にあっては次のような利点を具備できる。
・請求項1の発明では、地盤深さ方向の土質性状に応じて、輸送経路の切替手段により、低含水比の地層には粉粒体を吐出し、高含水比の地層には流動物を吐出することから、地盤性状に合致した最適な改良を実現でき、段落0004に挙げた問題を一掃できる。
・請求項2の発明では、輸送経路や供給管路に残っている残留物や付着物を粉粒圧送プラント側の圧縮空気を利用して除去することで、粉粒体及び流動物としての純度や物性を構成簡易に維持可能にし、同時に各部の目詰まりを未然に防止できる。
・請求項3の発明では、流動物圧送プラント側の流動物製造部で使用する粉粒体を粉体圧送プラント側より供給することで、粉粒体用の設備を共用化して設備を簡素化できる。
The above method of the present invention can have the following advantages.
In the invention of claim 1, according to the soil properties in the depth direction of the ground, the granular material is discharged to the formation with a low moisture content and the fluid is applied to the formation with a high moisture content by the switching means of the transportation route. By discharging, it is possible to realize an optimal improvement that matches the ground properties, and to eliminate the problems listed in paragraph 0004.
-In invention of Claim 2, the purity as a granular material and a fluid by removing the residue and adhering matter which remain in a transportation route or a supply pipeline using compressed air by the side of a granular pressure feed plant And the physical properties can be easily maintained, and at the same time, clogging of each part can be prevented.
-In the invention of claim 3, by supplying the powder and granular material used in the fluid production unit on the fluid pressure feeding plant side from the powder pressure feeding plant side, the equipment for powder particles is shared and the equipment is simplified. it can.

以下、本発明の最良の実施形態について図面を参照して説明する。なお、図1は本発明工法に使用する装置全体を示す模式構成図、図2と図3は本発明工法を実施するときの主な工程を示す模式作用図、図4は本発明工法を実施するときの細部手順例を示すフローチャートである。図5は粉体圧送プラントの粉体圧送機例を示し、図6と図7は流動物製造部の2つの具体例を示している。以下の説明では、地盤改良工法の構成、施工手順例を述べた後、各プラントの主要部の構造例を図5〜図7により言及する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments of the invention will be described with reference to the drawings. 1 is a schematic configuration diagram showing the entire apparatus used in the method of the present invention, FIGS. 2 and 3 are schematic operation diagrams showing main steps when the method of the present invention is carried out, and FIG. 4 is an example of carrying out the method of the present invention. It is a flowchart which shows the example of a detailed procedure when doing. FIG. 5 shows an example of a powder feeding machine of a powder feeding plant, and FIGS. 6 and 7 show two specific examples of the fluid production unit. In the following description, after describing the configuration of the ground improvement method and an example of the construction procedure, a structural example of the main part of each plant will be referred to with reference to FIGS.

(地盤改良工法)図1において、符号1は粉体圧送プラント、符号2は流動物圧送プラント、3は対象地盤の地表に設置された攪拌混合装置である。また、対象地盤は、事前の地質調査により地盤深さ方向の土質性状が詳細に把握され、地表側より所定深度までが含水比が低い超軟弱ないしは軟弱な地層Aと、それより深くなると含水比が高い比較的硬質な地層Bとからなる。なお、この形態において、粉粒体はセメントを想定しているが、これ以外でもよい。流動物はセメントと水を混合したセメントミルクを想定しているが、セメントミルクに類似するものであればよい。 (Ground improvement method) In FIG. 1, reference numeral 1 is a powder pumping plant, reference numeral 2 is a fluid pumping plant, and 3 is a stirring and mixing device installed on the surface of the target ground. In addition, the target soil has a detailed understanding of the soil properties in the depth direction by prior geological surveys, and the water content ratio is deeper than ultra-soft or soft strata A with a low water content ratio from the surface to the predetermined depth. It consists of a relatively hard formation B with a high height. In addition, in this form, although the granular material assumes cement, other than this may be sufficient. The fluid is assumed to be cement milk in which cement and water are mixed, but any fluid may be used as long as it is similar to cement milk.

ここで、粉体圧送プラント1は、セメントを貯留しているサイロ4と、圧縮空気を供給するコンプレッサ5と、粉体圧送機6とを少なくとも備えている。このうち、粉体圧送機6は、サイロ4からセメントを受け取ると共に、該セメントをコンプレッサ5で生成した圧縮空気に混合し、圧縮空気を輸送媒体としてセメントを圧送する。粉体圧送機6の出口は、輸送経路7及び輸送経路7内に付設された第1切替バルブ8及び第2切替バルブ9を介して攪拌混合装置3側の攪拌軸19内に沿って配置されている不図示の供給管路の上端側に切替え可能に接続している。また、コンプレッサ5の出口は、バイパス経路15及びバイパスバルブ16を介して輸送経路7に接続されている。バイパス流路15は、コンプレッサ5で生成した圧縮空気をパイパスバルブ16を介して輸送経路7内に直に圧送可能にして、輸送経路7、攪拌軸19内の供給管路、該供給管路の下端に設けられているノズル等の吐出口に残留したり付着しているセメントやセメントミルク等を系外へ排出し、例えば、切替え後における各部の目詰りを未然に防止可能にする。なお、実際には、コンプレッサ5で生成される圧縮空気は不図示のドライアーで加温可能になっており、前記残留物や付着物を排出するときは加熱された圧縮空気を生成して圧送するようになっている。   Here, the powder pumping plant 1 includes at least a silo 4 storing cement, a compressor 5 for supplying compressed air, and a powder pump 6. Among these, the powder pressure feeder 6 receives the cement from the silo 4, mixes the cement with the compressed air generated by the compressor 5, and pumps the cement using the compressed air as a transport medium. The outlet of the powder pressure feeder 6 is disposed along the agitation shaft 19 on the agitation and mixing device 3 side via the transport path 7 and the first switching valve 8 and the second switching valve 9 provided in the transport path 7. It is connected to the upper end side of a supply pipe (not shown) that can be switched. The outlet of the compressor 5 is connected to the transport path 7 via the bypass path 15 and the bypass valve 16. The bypass flow path 15 enables compressed air generated by the compressor 5 to be directly pumped into the transport path 7 via the bypass valve 16, so that the transport path 7, the supply pipe line in the stirring shaft 19, and the supply pipe line Cement, cement milk, or the like remaining or adhering to a discharge port such as a nozzle provided at the lower end is discharged out of the system, and for example, clogging of each part after switching can be prevented in advance. Actually, the compressed air generated by the compressor 5 can be heated by a dryer (not shown), and when the residue or deposits are discharged, the heated compressed air is generated and pumped. It is like that.

流動物圧送プラント2は、輸送経路7に設けられている第1切替バルブ8を介して切替可能に接続された流動物製造部であるミキサ10と、ミキサ10内に水を供給する水槽11と、ミキサ10内で所定配合比で混合した水−セメントのセメントミルクを輸送経路12から輸送経路7側へ供給するグラウトポンプ13とを少なくとも備えている。このうち、ミキサ10は、セメントと共に供給された粉体輸送用の圧縮空気を混合前又は混合後、集塵機14を介して大気側に排出するようになっている。輸送経路12の下流側は、第2切替バルブ9を介して輸送経路7の下流側に接続されて、該輸送経路7を介して前記した攪拌混合装置3側の攪拌軸19内に沿って配置されている供給管路の上端側に切替可能に接続している。なお、実際には、輸送経路12内の基端側とコンプレッサ5との間に圧縮空気を圧送する不図示の経路が設けられ、輸送経路12内の残留物や付着物を圧縮空気により排出可能となっている。   The fluid pressure feeding plant 2 includes a mixer 10 that is a fluid production unit that is switchably connected via a first switching valve 8 provided in the transport path 7, and a water tank 11 that supplies water into the mixer 10. And a grout pump 13 for supplying water-cement cement milk mixed in the mixer 10 at a predetermined mixing ratio from the transport path 12 to the transport path 7 side. Of these, the mixer 10 is configured to discharge the compressed air for transporting the powder supplied together with the cement to the atmosphere side through the dust collector 14 before or after mixing. The downstream side of the transport path 12 is connected to the downstream side of the transport path 7 via the second switching valve 9, and is arranged along the stirring shaft 19 on the stirring and mixing device 3 side via the transport path 7. It is connected to the upper end side of the supply pipeline that can be switched. In practice, a path (not shown) for compressing compressed air is provided between the base end side in the transport path 12 and the compressor 5, and residues and deposits in the transport path 12 can be discharged by the compressed air. It has become.

攪拌混合装置3は、キャタピラ走行式のベースマシン16と、ベースマシン16の先端に立設された起倒式の鉛直ガイド17と、ガイド17に沿って昇降可能な回転駆動機構である駆動ヘッド18と、駆動ヘッド18の下部に回転可能に垂設された攪拌軸19と、攪拌軸19の下端外周に突設された複数の攪拌翼20とを備え、前記輸送経路7の接続端は駆動ヘッド18に付設されているスイベルジョイント18aを介して攪拌軸19内の供給管路に連結され、該供給管路の下端に接続されて攪拌軸19の下端周囲や攪拌翼20側に付設されているノズル等の吐出口から、粉粒体であるセメント、又は、流動物であるセメントミルクを噴出する構成である。なお、駆動ヘッド18、攪拌軸19、攪拌翼20等は模式化しているが、これらは特許文献1と同じか類似している。   The stirring and mixing device 3 includes a caterpillar traveling type base machine 16, a tilting vertical guide 17 erected at the tip of the base machine 16, and a driving head 18 that is a rotary driving mechanism that can be moved up and down along the guide 17. And a stirring shaft 19 suspended rotatably below the drive head 18 and a plurality of stirring blades 20 projecting from the outer periphery of the lower end of the stirring shaft 19, the connecting end of the transport path 7 being the drive head 18 is connected to a supply pipe line in the stirring shaft 19 through a swivel joint 18a attached to 18 and connected to the lower end of the supply pipe line so as to be attached around the lower end of the stirring shaft 19 and on the stirring blade 20 side. This is a configuration in which cement that is powder or cement milk that is fluid is ejected from a discharge port such as a nozzle. The drive head 18, the stirring shaft 19, the stirring blade 20, and the like are schematically shown, but these are the same as or similar to those in Patent Document 1.

(施工手順例)次に、実施工時の手順について図2と図3及び図4のフローチャートを参照しながら説明する。まず、本形態では、前述したように、地表から所定深度までの層が含水率の大きな軟弱な地層A、その下が含水率の小さな比較的硬質の地層Bとなっている。また、地層Aでは粉粒体であるセメントを用いた地盤改良が、地層Bでは流動物であるセメントミルクを用いた地盤改良がそれぞれ最適なものと判断されている。なお、両地層A,Bの境界は必ずしも一定ではなく、場所によって多少の変動があるが、これの境界位置は、攪拌軸19の貫入深度用検出センサや、トルクセンサなどにより検出可能となっている。 (Example of construction procedure) Next, the construction procedure will be described with reference to the flowcharts of FIGS. First, in this embodiment, as described above, a layer from the ground surface to a predetermined depth is a soft formation A having a high moisture content, and a lower layer is a relatively hard formation B having a low moisture content. Moreover, it is judged that the ground improvement using the cement which is a granular material is the best in the formation A, and the ground improvement using cement milk which is a fluid is the optimum in the formation B. Note that the boundary between both strata A and B is not necessarily constant and varies somewhat depending on the location, but the boundary position can be detected by a detection sensor for penetration depth of the stirring shaft 19 or a torque sensor. Yes.

この実施工では、まず、図2(a)に示すように、前記各プラント1,2の稼働を停止している状態で、攪拌混合装置3を駆動して攪拌軸19を回転し、攪拌翼20により周囲を解しつつ貫入し、地盤改良深度まで到達したら貫入を停止し、アイドル回転を持続する(ステップST1〜6)。また、貫入までの間に、回転トルクが変化したらその変化位置を記録する(ステップST3,4)。この位置が両層A,Bの境界位置である。   In this implementation, first, as shown in FIG. 2 (a), in a state where the operations of the plants 1 and 2 are stopped, the stirring and mixing device 3 is driven to rotate the stirring shaft 19, and the stirring blade It penetrates while solving the surroundings by 20, and when it reaches the ground improvement depth, the penetration is stopped and the idle rotation is continued (steps ST1 to ST6). If the rotational torque changes before the penetration, the change position is recorded (steps ST3 and ST4). This position is the boundary position between both layers A and B.

すなわち、通常は、攪拌軸19の先端(最下段の攪拌翼20)が地層Aと地層Bの境界位置まで下降すると、貫入抵抗及び回転抵抗が高まり、これをトルクセンサにより検出し、かつこの検出値と、貫入深度検出センサの検出値が事前調査で判明した境界深度の変動範囲にほぼ収っていることで、境界位置に到達したことが判定され、その位置が記録される。なお、境界位置に到達する以前でも、地層A内に礫などが混在すると一時的にトルクが高まる場合がある。しかし、これは、境界深度の変動範囲内でないことにより無視される。   That is, normally, when the tip of the stirring shaft 19 (the lowermost stirring blade 20) descends to the boundary position between the formation A and the formation B, the penetration resistance and the rotational resistance increase, and this is detected by a torque sensor, and this detection When the value and the detection value of the penetration depth detection sensor are substantially within the boundary depth fluctuation range determined by the preliminary survey, it is determined that the boundary position has been reached, and the position is recorded. Even before reaching the boundary position, if gravel or the like is mixed in the formation A, the torque may temporarily increase. However, this is ignored because it is not within the boundary depth variation range.

そして、攪拌軸19がアイドル回転を継続している間、第1切替バルブ8を流動物製造プラント2の接続側に切替え、粉体圧送プラント1を稼働状態とすると共に、流動物製造プラント2を稼働状態とする(ステップST7〜9)。具体的には、サイロ4内のセメントを粉体圧送機6、第1切替バルブ8を介してミキサ10内に圧送すると共に、水槽11側より所定の水−セメント比となる水量をミキサ10内に供給する。ミキサ10はそれらセメントと水とを混練しセメントミルクを製造する。   While the stirring shaft 19 continues idling, the first switching valve 8 is switched to the connection side of the fluid production plant 2 to bring the powder pressure feeding plant 1 into an operating state, and the fluid production plant 2 The operating state is set (steps ST7 to ST9). Specifically, the cement in the silo 4 is pumped into the mixer 10 via the powder pump 6 and the first switching valve 8, and the amount of water having a predetermined water-cement ratio is set in the mixer 10 from the water tank 11 side. To supply. The mixer 10 kneads the cement and water to produce cement milk.

このようにして、セメントミルクが製造された後、第2切替バルブ9を切替えて流体輸送経路12を輸送経路7側に合流させ、同時にグラウトポンプ13を駆動する。これにより、ミキサ10で製造されたセメントミルクは、攪拌軸19内の供給配管を通ってノズル等の吐出口より噴射され、その状態から攪拌軸19を上昇させつつ回転を持続することにより、図2(b)に示すように、原位置土とセメントミルクとを混合したソイルセメント柱bが造成される(ステップST10〜12)。   Thus, after cement milk is manufactured, the 2nd switching valve 9 is switched, the fluid transport path 12 is made to join the transport path 7 side, and the grout pump 13 is driven simultaneously. Thereby, the cement milk produced by the mixer 10 is jetted from a discharge port such as a nozzle through a supply pipe in the stirring shaft 19, and continues to rotate while raising the stirring shaft 19 from that state. As shown in 2 (b), a soil cement column b in which the in-situ soil and cement milk are mixed is created (steps ST10 to ST12).

なお、供給されるセメントミルクは、水−セメント比及び時間当りの供給量(ポンプ13による吐出量)が事前調査により判明している地層Bの含水比や土質、粘度等に応じた値であり、かつ攪拌軸19の地盤引抜速度や攪拌翼20の回転速度に応じて算出される。   In addition, the supplied cement milk is a value according to the water content ratio, soil quality, viscosity, etc. of the formation B whose water-cement ratio and supply amount per hour (discharge amount by the pump 13) are known by the preliminary survey. In addition, it is calculated according to the ground drawing speed of the stirring shaft 19 and the rotation speed of the stirring blade 20.

攪拌軸19が先に記録されたトルク変化位置まで上昇すると、その位置に停止した状態でアイドル回転を持続し、プラント1,2の稼働を一時停止し、第1切替バルブ8と第2切替バルブ9とも通常の輸送経路7、つまり切替バルブ8はミキサ10側との間を閉じ、切替バルブ9は輸送経路12側との間を閉じとなるよう切替える(ステップST13〜16)。その後、バイパスバルブ16を切り替えて、バイパス流路15からコンプレッサ5の圧縮空気を輸送経路7内に直に噴出させ、輸送経路7や攪拌軸19内の供給管路等の管内に付着した残余のセメントミルクを吐出口から排出する。その後は、コンプレッサ5を一旦停止し、バイパスバルブ16を切り替えて、再度、駆動待機状態にする(ステップST17〜21)。なお、排出される付着や残余のセメントミルクは、ソイルセメント柱b内に添加されるが、その量は僅かなので、改良体に及す影響は無視できる。   When the stirring shaft 19 rises to the previously recorded torque change position, the idle rotation is continued while stopping at that position, the operations of the plants 1 and 2 are temporarily stopped, and the first switching valve 8 and the second switching valve are stopped. 9 is closed so that the normal transportation route 7, that is, the switching valve 8 is closed with the mixer 10 side, and the switching valve 9 is closed with the transportation route 12 side (steps ST13 to ST16). Thereafter, the bypass valve 16 is switched so that the compressed air of the compressor 5 is directly ejected from the bypass flow path 15 into the transport path 7, and the residual adhering to the pipe such as the transport path 7 and the supply pipe line in the stirring shaft 19. Cement milk is discharged from the outlet. After that, the compressor 5 is temporarily stopped, the bypass valve 16 is switched, and the drive standby state is set again (steps ST17 to ST21). In addition, although the adhesion | attachment discharged | emitted and the residual cement milk are added in the soil cement pillar b, since the quantity is slight, the influence which it has on an improvement body can be disregarded.

次いで、今度は流動物製造プラント2を停止状態とし、粉体圧送プラント1だけを稼働し、攪拌軸19を再び上昇させる(ステップST22,23)。すなわち、この過程では、サイロ4内のセメントが粉体圧送機6に定量移送され、かつ、コンプレッサ5側より粉体圧送機6内に導入される圧縮空気に同伴されて粉体圧送機6の出口から圧送され、輸送経路7及び攪拌軸19内の供給管路を通じて下端側の吐出口より噴出される。すると、噴射されたセメントは、攪拌翼20の作用により原位置土と混合されることで、図3(a)に示すように地層A内にソイルセメント柱aが造成される。このソイルセメント柱aは前記ソイルセメント柱bに連続して形成される。なお、以上の粉粒体であるセメントの時間当りの供給量は、例えば、事前調査により判明している地層Aの含水比と、攪拌軸19の地盤貫入速度や攪拌翼20の回転速度等を考慮して設定される。また、輸送媒体として噴射された圧縮空気は、攪拌軸19に沿って地表側に上昇し、地表側から大気に向けて放散排出される。   Next, this time, the fluid production plant 2 is stopped, only the powder pumping plant 1 is operated, and the stirring shaft 19 is raised again (steps ST22 and ST23). That is, in this process, the cement in the silo 4 is quantitatively transferred to the powder pump 6 and is accompanied by the compressed air introduced into the powder pump 6 from the compressor 5 side. It is pumped from the outlet and ejected from the discharge port on the lower end side through the supply path in the transport path 7 and the stirring shaft 19. Then, the injected cement is mixed with the in-situ soil by the action of the stirring blade 20, so that a soil cement column a is formed in the formation A as shown in FIG. The soil cement column a is formed continuously with the soil cement column b. In addition, the supply amount per hour of the cement which is the above granular material is, for example, the water content ratio of the formation A, the ground penetration speed of the stirring shaft 19, the rotational speed of the stirring blade 20, etc., which have been found by the preliminary survey. Set in consideration. Moreover, the compressed air injected as a transport medium rises to the surface side along the stirring shaft 19, and is diffused and discharged from the surface side toward the atmosphere.

以上のようにして、攪拌軸1が地表部まで引き上げられて、図3(b)に示すように、地層A内にソイルセメント柱aが造成されたら、プラント1の駆動停止、攪拌軸19の回転及び上昇を停止し、次いでステップ17〜21と同様の操作により輸送経路7や攪拌軸19内の供給管路等の管内に付着した残余のセメントを排出すれば、一回ないしは1本の地盤改良作業が完了する(ステップST22〜26)。造成後は、時間経過に応じて水和反応が進行して硬化し、上下に連続して一体化されたソイルセメント柱a,bが地盤中に造成されることになる。以後は、攪拌混合装置3を隣接工区に移動させた後、前記と同様な作業手順を繰返すことにより、地層A,Bにまたがって連続的に造成されたソイルセメント柱a,bの柱列が形成されることになる。   As described above, when the stirring shaft 1 is pulled up to the ground surface and the soil cement column a is formed in the formation A as shown in FIG. If the remaining cement adhering to the pipes such as the transport path 7 and the supply pipe line in the stirring shaft 19 is discharged by the same operation as Steps 17 to 21 after stopping the rotation and ascending, one or one ground The improvement work is completed (steps ST22 to ST26). After the formation, the hydration reaction proceeds and cures with time, and soil cement columns a and b that are continuously integrated in the vertical direction are formed in the ground. Thereafter, after the stirring and mixing device 3 is moved to the adjacent work area, the column of soil cement columns a and b continuously formed across the formations A and B is obtained by repeating the same operation procedure as described above. Will be formed.

なお、以上の形態では、比較的硬質な地層Bを突抜けて予め所定の改良深度まで攪拌軸19を貫入した後、これを引き上げつつセメントミルクによる地盤改良を行い、次いで、軟弱な地層Aでセメントによる地盤改良を行った。これは攪拌混合工法における一般的施工手順である。しかし、施工手順は例えば、セメント、又は、セメントミルクの地層内への噴射は攪拌軸19の貫入過程、或いは、貫入及び引き抜き過程で行うようにしてもよい。要は、図4の手順は一例に過ぎず本発明を制約するものではない。   In the above embodiment, the stirrer shaft 19 is penetrated through a relatively hard formation B to a predetermined improvement depth in advance, and then the ground is improved by cement milk while pulling it up, and then in the soft formation A The ground was improved with cement. This is a general construction procedure in the stirring and mixing method. However, in the construction procedure, for example, the injection of cement or cement milk into the formation may be performed in the penetration process of the stirring shaft 19 or in the penetration and extraction process. In short, the procedure of FIG. 4 is merely an example and does not limit the present invention.

(粉体圧送機)次に、前記粉体圧送プラント1に用いられる粉体圧送機6の詳細構造例を説明する。図5において、粉体圧送機6は、圧力容器32を有し、設置部Sに対し容器32の上部フランジ30を荷重計測手段としてのロードセル31を介して支持されている。容器32は、内部に配置された隔壁33を挟んでその上半部がセメントの受入容器部34、下半部が圧送用ポンプ室35となっている。そして、圧力容器32の上部には、セメント用サイロ4の供給ノズル4aに対向させたホッパ36が設けられている。また、圧力容器32の上部内側には、ホッパ36の供給口に対向し、内圧上昇により供給口を閉じる逆止弁37が配置されている。隔壁33は漏斗形をなしている。そして、隔壁33の中央に形成された開口部33aには圧力容器32の側面を貫通し、かつコンプレッサ5に接続されたL字形のノズル38が配置され、その先端をポンプ室35内に向けている。 (Powder Pump) Next, an example of the detailed structure of the powder pump 6 used in the powder pumping plant 1 will be described. In FIG. 5, the powder pressure feeder 6 has a pressure vessel 32, and the upper flange 30 of the vessel 32 is supported on the installation part S via a load cell 31 as load measuring means. The container 32 has a cement receiving container portion 34 in the upper half portion and a pumping pump chamber 35 in the lower half portion with a partition wall 33 arranged inside. A hopper 36 is provided above the pressure vessel 32 so as to face the supply nozzle 4 a of the cement silo 4. In addition, a check valve 37 is disposed inside the upper portion of the pressure vessel 32 so as to face the supply port of the hopper 36 and close the supply port when the internal pressure increases. The partition wall 33 has a funnel shape. An L-shaped nozzle 38 that penetrates the side surface of the pressure vessel 32 and is connected to the compressor 5 is disposed in the opening 33 a formed in the center of the partition wall 33, and its tip is directed into the pump chamber 35. Yes.

ポンプ室35内では、圧力容器32の下部に設けた軸受部39に軸受されたロータ軸40と、ロータ軸40周縁に一体化された複数のロータ41と、圧力容器32の下部にブラケット42を介して取付けられ、かつ傘歯車などの回転伝達機構43を介して前記ロータ軸40を回転駆動するためのモータ44を備えている。また、圧力容器32の一側下部にはポンプ室35の対応部を連通し、他端を前記した輸送経路7に接続した吐出管45が突出配置されている。吐出管45には、電磁バルブ46が設けられると共に、電磁バルブ46の手前側の管内に前記バイパス流路15の先端ノズル47が合流している。   In the pump chamber 35, a rotor shaft 40 supported by a bearing portion 39 provided at the lower portion of the pressure vessel 32, a plurality of rotors 41 integrated on the periphery of the rotor shaft 40, and a bracket 42 at the lower portion of the pressure vessel 32. And a motor 44 for rotationally driving the rotor shaft 40 via a rotation transmission mechanism 43 such as a bevel gear. In addition, a discharge pipe 45 that protrudes from one side lower portion of the pressure vessel 32 and communicates with a corresponding portion of the pump chamber 35 and has the other end connected to the transport path 7 is provided. The discharge pipe 45 is provided with an electromagnetic valve 46, and the tip nozzle 47 of the bypass flow path 15 joins the pipe on the near side of the electromagnetic valve 46.

以上において、粉体圧送機6の駆動時においては、電磁バルブ46を開き、前記コンプレッサ5を駆動してポンプ室35内に圧縮空気をノズル38を通じて吹き込むと共に、モータ44を駆動してロータ41を回転駆動することにより、上部の受入容器部34は負圧となり、逆止弁37が開き、供給ノズル4aからホッパ36内に導出されたセメントを内部に取り込み、隔壁33の開口部33aを通じてポンプ室35に順次セメントを入れ、圧縮空気を輸送媒体として吐出管45を通じて輸送経路7内に送り込む。この駆動中、ロードセル31により圧力容器32内の重量は常時計測され、サイロ4から供給されるセメントの重量が設定値に達した場合には、前記供給ノズル4aに設けた図示しない電磁バルブが閉じ、設定値を下回った場合には電磁バルブが開くことによってセメントの定量供給が可能となっており、セメントがポンプ室35を通じて輸送経路7内に定量供給される。粉体圧送機6の駆動停止時にはコンプレッサ5及びモータ44の駆動を停止し、電磁バルブ46を閉じれば、停止状態となる。   In the above, when the powder pressure feeder 6 is driven, the electromagnetic valve 46 is opened, the compressor 5 is driven, compressed air is blown into the pump chamber 35 through the nozzle 38, and the motor 44 is driven to move the rotor 41. By rotationally driving, the upper receiving container portion 34 becomes negative pressure, the check valve 37 is opened, the cement led out from the supply nozzle 4a into the hopper 36 is taken in, and the pump chamber is opened through the opening 33a of the partition wall 33. Cement is sequentially put into 35, and is sent into the transport path 7 through the discharge pipe 45 using compressed air as a transport medium. During this drive, the weight in the pressure vessel 32 is constantly measured by the load cell 31, and when the weight of cement supplied from the silo 4 reaches a set value, an electromagnetic valve (not shown) provided in the supply nozzle 4a is closed. When the value is lower than the set value, the quantity of cement can be supplied by opening the electromagnetic valve, and the quantity of cement is supplied into the transport path 7 through the pump chamber 35. When the driving of the powder pressure feeder 6 is stopped, the driving of the compressor 5 and the motor 44 is stopped, and the electromagnetic valve 46 is closed.

(流動物製造部)流動物製造プラント2は、粉体圧送プラント1からのセメントを受け、そのセメントと水とを練り混ぜるのであるが、その場合の構造例を、輸送媒体として用いられた圧縮空気の脱気処理と共に図6,7を用いて説明する。 (Fluid Manufacturing Department) The fluid manufacturing plant 2 receives the cement from the powder pumping plant 1 and kneads the cement and water. The structure example in this case is a compression used as a transport medium. This will be described with reference to FIGS.

図6の構造は大気開放型とした形態例である。この例では、粉体圧送プラント1から圧送されてくるセメントがミキサ50(図1のミキサ10に相当する)に導入される前に脱気処理される。すなわち、ミキサ50は、スクリュー式からなり、取入口に立設された脱気手段としての漏斗状のサイクロン51と、サイクロン51の上側周囲に接続された導入管52と、サイクロン51の上側中心に垂設された排気管53aと、排気管53aに接続された集塵機53と、集塵機53の吐出側に接続されたブロワ54とを備えている。   The structure shown in FIG. 6 is an example of a form that is open to the atmosphere. In this example, the cement pumped from the powder pumping plant 1 is deaerated before being introduced into the mixer 50 (corresponding to the mixer 10 in FIG. 1). That is, the mixer 50 is a screw type, and has a funnel-shaped cyclone 51 as a deaeration means standing at the intake, an introduction pipe 52 connected to the upper periphery of the cyclone 51, and an upper center of the cyclone 51. A suspended exhaust pipe 53 a, a dust collector 53 connected to the exhaust pipe 53 a, and a blower 54 connected to the discharge side of the dust collector 53 are provided.

そして、この構造では、粉粒体であるセメントが圧縮空気と共に導入管52からサイクロン51内に導入されると、サイクロン51内でサイクロン流を生じ、比重の重いセメントがサイクロン51内面に沿って螺旋を描きながら落下し、ミキサ50内に連続して導入される。また、圧縮空気は、サイクロン51内から排気管53aを通じて集塵機53側に導かれ、集塵機53の吐出側に接続されたブロワ54を通じて大気側に排出される。なお、ブロワ54の吸引力は粉体圧縮機6の吐出圧力とほぼ同等であり、これによって、セメントはミキサ50の直前で圧縮空気と分離される。但し、分離された圧縮空気中にはセメントが僅かに混在することもある。そのセメントは集塵機53内に配置されたフィルタ55により分離ないしは除去される。   In this structure, when cement, which is a granular material, is introduced into the cyclone 51 from the introduction pipe 52 together with the compressed air, a cyclone flow is generated in the cyclone 51, and the cement having a high specific gravity spirals along the inner surface of the cyclone 51. It is dropped while drawing and is continuously introduced into the mixer 50. Further, the compressed air is guided from the cyclone 51 to the dust collector 53 side through the exhaust pipe 53 a, and is discharged to the atmosphere side through the blower 54 connected to the discharge side of the dust collector 53. The suction force of the blower 54 is substantially equal to the discharge pressure of the powder compressor 6, whereby the cement is separated from the compressed air immediately before the mixer 50. However, a small amount of cement may be mixed in the separated compressed air. The cement is separated or removed by a filter 55 disposed in the dust collector 53.

また、この構造では、ミキサ50の入口側、つまりサイクロン51が接続される側には水槽11の水が配管及び水中ポンプ56を介して供給されるようになっている。該配管には、流量計57及び流量調整弁58等が設けられている。そして、水槽11内の水は、ポンプ56を介しミキサ50の入口側へ導入されるが、その際、連続して定量供給されるセメントに対し、適宜な水−セメント比となるよう、所定の水量ないしは流量にて導入されように流量計57及び流量調整弁58を介して制御される。ミキサ50は、導入されるセメントと水とをスクリューで練り混ぜてセメントミルクとして、ミキサ50の吐出端からポンプ13側溜め部に供給される。該溜め部内に収容されたセメントミルクは、ポンプ13を介して上記した輸送経路12側へ圧送されることになる。   Further, in this structure, the water in the water tank 11 is supplied to the inlet side of the mixer 50, that is, the side to which the cyclone 51 is connected via the pipe and the submersible pump 56. The pipe is provided with a flow meter 57, a flow rate adjustment valve 58, and the like. Then, the water in the water tank 11 is introduced to the inlet side of the mixer 50 via the pump 56. At this time, a predetermined water-cement ratio is set so as to have an appropriate water-cement ratio with respect to the cement that is continuously supplied in a fixed amount. The flow rate is controlled through a flow meter 57 and a flow rate adjustment valve 58 so as to be introduced by a water amount or a flow rate. The mixer 50 mixes the cement and water to be introduced with a screw to produce cement milk, which is supplied from the discharge end of the mixer 50 to the pump 13 side reservoir. The cement milk accommodated in the reservoir is pumped to the transport path 12 side via the pump 13.

図7の構造は閉鎖型とした形態例である。この例では、粉体圧送プラント1から圧送されてくるセメントが密閉型ミキサ60(図1のミキサ10に相当する)に導入され、水と練り混ぜられてセメントミルクに製造された後に脱気処理される。すなわち、密閉型ミキサ60は、容器本体に接続されているスターティックミキサ61を有し、スターティックミキサ61の一端側供給口から水が定量供給されると共に、粉体圧送プラント1から逆止弁62を介してセメントが供給され、スターティックミキサ61内で気液及び粉体混合されつつミキサ60内に吐出される。また、ミキサ60内は、縦配置の隔壁63により下側を除いて前後に区画されている。隔壁63の左側つまりスターティクミキサ61側の前空間部には、駆動モータ65により回転される攪拌手段66が設けられている。隔壁63の右側、つまり後空間部には空気分離手段が設けられている。そして、後空間部は、上部が集塵機64に接続され、下部が前記したポンプ13に接続されている。   The structure of FIG. 7 is an example of a closed type. In this example, the cement pumped from the powder pumping plant 1 is introduced into a closed mixer 60 (corresponding to the mixer 10 in FIG. 1), mixed with water and manufactured into cement milk, and then deaerated. Is done. That is, the hermetic mixer 60 has a starter mixer 61 connected to the container body, water is quantitatively supplied from one end side supply port of the starter mixer 61, and a check valve is supplied from the powder pumping plant 1. Cement is supplied via 62, and is discharged into the mixer 60 while being mixed with gas and liquid in the static mixer 61. Further, the inside of the mixer 60 is divided forward and backward by a vertically arranged partition wall 63 except for the lower side. On the left side of the partition wall 63, that is, in the front space on the static mixer 61 side, stirring means 66 that is rotated by a drive motor 65 is provided. Air separation means is provided on the right side of the partition wall 63, that is, on the rear space. The rear space portion has an upper portion connected to the dust collector 64 and a lower portion connected to the pump 13 described above.

そして、この構造では、スターティックミキサ61から供給されてくるセメントと水との混合物、つまりセメントミルクはミキサ60の前空間部側に導入されて攪拌手段66により更に攪拌混合される。隔壁63の下部側は開いており、この下開口部分からセメントミルクが後空間部内に導入される。該後空間部は溢流堰67によって更に二分され、攪拌混合された気泡混じりのセメントミルクが溢流堰67を越えるとき気泡が上昇してはじけ、そのはじけた空気が後空間部の上部から集塵機64を介して大気に放出される。また、溢流堰67から溢流したセメントミルクは、空気を分離したセメントミルクであり、このセメントミルクがポンプ13により上記した輸送経路12側へ圧送されることになる。なお、以上の各構造では、粉体圧送プラント1を流動物製造プラントのセメント供給源として共用できるため、プラントの重複がなく、設備を簡素化できる。   In this structure, the mixture of cement and water supplied from the static mixer 61, that is, cement milk, is introduced into the front space of the mixer 60 and further stirred and mixed by the stirring means 66. The lower side of the partition wall 63 is open, and cement milk is introduced into the rear space portion from the lower opening. The rear space is further divided into two parts by the overflow weir 67, and when the agitated and mixed bubble-mixed cement milk exceeds the overflow weir 67, the bubbles rise and repel, and the repelled air is discharged from the upper part of the rear space. 64 to the atmosphere. The cement milk overflowing from the overflow weir 67 is cement milk from which air has been separated, and this cement milk is pumped by the pump 13 toward the transport path 12 described above. In each of the above structures, the powder pumping plant 1 can be shared as a cement supply source of the fluid production plant, so that there is no duplication of plants and the equipment can be simplified.

なお、以上の実施形態は本発明を何ら制約するものではない。本発明は、請求項1で特定される技術要素を備えておればよく、細部は必要に応じて種々変更可能なものである。   In addition, the above embodiment does not restrict | limit this invention at all. The present invention may be provided with the technical elements specified in claim 1, and the details can be variously changed as necessary.

本発明工法を適用する場合の改良装置を含む全体構成を示す概略図である。It is the schematic which shows the whole structure containing the improvement apparatus in the case of applying this invention construction method. (a),(b)は施工手順を示す断面説明図である。(A), (b) is sectional explanatory drawing which shows a construction procedure. (a),(b)は図2に引続く施工手順を示す断面説明図である。(A), (b) is sectional explanatory drawing which shows the construction procedure following FIG. 上記施工手順の細部を示すフローチャートである。It is a flowchart which shows the detail of the said construction procedure. 本発明工法の粉体圧送プラント側の粉体圧送機例を示す断面図である。It is sectional drawing which shows the example of the powder pumping machine by the side of the powder pumping plant of this invention construction method. 本発明工法の流動物製造プラント側の構成例を示す模式図である。It is a schematic diagram which shows the structural example by the side of the fluid manufacturing plant of this invention construction method. 本発明工法の他の流動物製造プラント側の構成例を示す模式図である。It is a schematic diagram which shows the structural example by the side of the other fluid production plant of this invention construction method.

符号の説明Explanation of symbols

1…粉体圧送プラント
2…流動物製造プラント
3…攪拌混合装置(19は攪拌軸、20は攪拌翼)
5…コンプレッサ(空気圧縮機)
6…粉体圧送機
7,12…輸送経路
8,9…第1、第2切替バルブ(切替手段)
10,50,60…ミキサ(流動物製造部)
11…水槽
13…ポンプ
15…バイパス流路
16…バイパスバルブ(切替手段)

DESCRIPTION OF SYMBOLS 1 ... Powder pressure feeding plant 2 ... Fluid manufacturing plant 3 ... Stirring mixing apparatus (19 is a stirring shaft, 20 is a stirring blade)
5 ... Compressor (Air compressor)
6 ... powder feeder 7,12 ... transport route 8,9 ... first and second switching valves (switching means)
10, 50, 60 ... mixer (fluid production department)
DESCRIPTION OF SYMBOLS 11 ... Water tank 13 ... Pump 15 ... Bypass flow path 16 ... Bypass valve (switching means)

Claims (3)

駆動機構で回転される攪拌軸及び該攪拌軸下側に設けられた撹拌翼と、前記攪拌軸に沿って設けられた供給管路と、地表側に設けられて前記供給管路の上流側に改良材を導入する材料供給装置とを備え、前記攪拌軸の地中への貫入や引き抜き過程等で、前記供給管路の下側吐出口より吐出される改良材と原位置土とを混合処理する地盤改良工法において、
前記材料供給装置は、前記改良材として粉粒体を圧縮空気により供給可能な粉体圧送プラントと、前記改良材として粉粒体と水とを混合した流動物を供給可能な流動物圧送プラントと、前記供給配管の上流側に対し前記粉体圧送プラントと前記流動物圧送プラントとを切替手段を介し選択的に接続可能な輸送経路とを備え、
地盤深さ方向の土質性状として、含水比が高い地層には前記粉体圧送プラントの粉粒体を、含水比が低い地層には前記流動物圧送プラントの流動物を前記輸送経路の切替手段を介し前記供給配管に圧送することを特徴とする地盤改良工法。
An agitation shaft rotated by a drive mechanism, an agitation blade provided below the agitation shaft, a supply line provided along the agitation axis, and an upstream side of the supply line provided on the ground surface side A material supply device for introducing an improved material, and mixing the improved material discharged from the lower discharge port of the supply pipe with the in-situ soil in the process of penetrating and extracting the stirring shaft into the ground In the ground improvement method to
The material supply device includes: a powder pumping plant capable of supplying powder as compressed material with compressed air; and a fluid pumping plant capable of supplying a fluid obtained by mixing powder and water as the improver. A transport path capable of selectively connecting the powder pumping plant and the fluid pumping plant to the upstream side of the supply pipe via switching means,
As the soil properties in the depth direction of the ground, the granular material of the powder pumping plant is used for the formation with a high water content ratio, and the fluid of the fluid pumping plant is used for the formation with a low water content ratio. The ground improvement construction method characterized by pumping to the said supply piping through.
前記流動物から粉粒体に切り替えるとき、又は/及び、前記粉粒体から流動物に切り替えるときは、前記粉体圧送プラントの圧縮空気を圧送して前記輸送経路及び供給管路に残留したり付着しているものを除去してから切り替える請求項1に記載の地盤改良工法。   When switching from the fluid to powder or / and when switching from the powder to fluid, the compressed air of the powder pumping plant is pumped to remain in the transport path and supply pipeline The ground improvement construction method according to claim 1, which is switched after removing the attached material. 前記流動物圧送プラントは、粉粒体と水とを混合して流動物を製造する流動物製造部を有し、前記流動物製造部が前記粉体圧送プラントから圧縮空気により送られてくる前記粉粒体を使用すると共に、前記粉粒体と水とを混合する前か、混合後に脱気する請求項1又は2に記載の地盤改良工法。

The fluid pressure feeding plant has a fluid production unit for producing a fluid by mixing powder and water, and the fluid production unit is sent from the powder pressure feeding plant by compressed air. The ground improvement construction method according to claim 1 or 2, wherein the ground material is used and deaerated before or after mixing the powder material and water.

JP2004246089A 2004-08-26 2004-08-26 Ground improvement method Expired - Fee Related JP4321715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246089A JP4321715B2 (en) 2004-08-26 2004-08-26 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246089A JP4321715B2 (en) 2004-08-26 2004-08-26 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2006063596A true JP2006063596A (en) 2006-03-09
JP4321715B2 JP4321715B2 (en) 2009-08-26

Family

ID=36110318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246089A Expired - Fee Related JP4321715B2 (en) 2004-08-26 2004-08-26 Ground improvement method

Country Status (1)

Country Link
JP (1) JP4321715B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149480A (en) * 2011-01-21 2012-08-09 Mika Takagi Soil cement method
JP2017166135A (en) * 2016-03-14 2017-09-21 株式会社オーケーソイル Device and method for ground improvement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149480A (en) * 2011-01-21 2012-08-09 Mika Takagi Soil cement method
JP2017166135A (en) * 2016-03-14 2017-09-21 株式会社オーケーソイル Device and method for ground improvement

Also Published As

Publication number Publication date
JP4321715B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
EP1745840A1 (en) Apparatus and method for mixing a liquid material and a flowable powdery material to obtain a slurry
CN110409422B (en) Diaphragm wall construction method and diaphragm wall construction system
US20140262338A1 (en) Blender system with multiple stage pumps
KR101421173B1 (en) Drill Stirrer for the Hard Soil Layers
US20030202418A1 (en) Cementing apparatus and methods of using the same
CN101314244A (en) Vibration assisted mixer
KR101042622B1 (en) Apparatus for manufacturing mixed soil, and construction method thereof
CN104389576B (en) A kind of field apparatus and its method of work that fracturing process is laid for proppant earthworm cellular type
JP3399666B2 (en) Ground improvement method and ground improvement equipment used for it
JP4321715B2 (en) Ground improvement method
CN87105328A (en) Earthguard cover
CN115742018A (en) Integrated fluidized solidified soil preparation device
CN214089824U (en) Compaction grouting mechanism for preventing ground settlement after non-excavation horizontal drilling
CN105350518B (en) A kind of concrete spraying equipment
JPH07109727A (en) Deep mixing method of soil stabilization and device therefor
CN103485748A (en) Automatic sand mixing system and automatic sand mixing process for water-dry lime sand mixed artificial borehole wall sand protection
CN215518732U (en) Stirring pile adds husky construction system
JP2003074049A (en) Device and method for constructing solidified piles
JPS5930756B2 (en) How to prepare clay grout materials
JPH08260454A (en) Constructing method of muddy-water solidified wall
CN207888919U (en) A kind of novel concrete mud stirring conveying system
JP2531774B2 (en) Stabilizer manufacturing equipment
AU2012372948B2 (en) Method and arrangement for producing gravel columns
CN116905468A (en) Vehicle-mounted intelligent high-pressure jet grouting method for foundation treatment
JP6005455B2 (en) Method for constructing improved soil mixed with fiber and construction tube used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

R150 Certificate of patent or registration of utility model

Ref document number: 4321715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees