JP2006063275A - Method for repairing oven wall of coke oven carbonization chamber - Google Patents

Method for repairing oven wall of coke oven carbonization chamber Download PDF

Info

Publication number
JP2006063275A
JP2006063275A JP2004250380A JP2004250380A JP2006063275A JP 2006063275 A JP2006063275 A JP 2006063275A JP 2004250380 A JP2004250380 A JP 2004250380A JP 2004250380 A JP2004250380 A JP 2004250380A JP 2006063275 A JP2006063275 A JP 2006063275A
Authority
JP
Japan
Prior art keywords
layer
furnace wall
spraying
damaged part
carbonization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004250380A
Other languages
Japanese (ja)
Other versions
JP4473681B2 (en
Inventor
Toshihiko Noguchi
敏彦 野口
Masatoshi Goto
正敏 後藤
Hidetoshi Terajima
英俊 寺島
Atsushi Nakajima
淳 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004250380A priority Critical patent/JP4473681B2/en
Publication of JP2006063275A publication Critical patent/JP2006063275A/en
Application granted granted Critical
Publication of JP4473681B2 publication Critical patent/JP4473681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate operation for carrying out thermal spraying and shorten repairing time in thermal spraying by dividing the damaged part of oven wall of a coke oven carbonization chamber into a plurality of layers and improve workability by making preparation of moving speed patterns of a thermal spraying nozzle which are separately different in divided each layer unnecessary. <P>SOLUTION: In the method for carrying out thermal spraying repair by dividing the damaged part of oven wall of a coke oven carbonization chamber into a plurality of layers in damaged depth direction and successively blowing a thermal spraying material from the lower layer, thermal spraying layer thickness of the divided each layer is determined according to damaged depth of the oven wall damaged part and the each layer is constituted to continue from one end side of the oven wall damaged part to other end and further, layer numbers for dividing the damaged part of the oven wall in the depth direction are determined according to depth of the deepest part of damaged part of the oven wall and layer thickness of each layer is determined so that the moving speed patterns of the thermal spraying nozzle in the divided each layer are equivalent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コークス炉の炭化室炉壁を溶射補修する方法に関するものである。   The present invention relates to a method for spraying and repairing a carbonization chamber furnace wall of a coke oven.

コークス炉に於ける炭化室の炉壁は耐火物レンガ(以下、単に耐火物という)で構成されている。この耐火物に、例えば目地切れ、亀裂、欠損等の損傷が生じると、発生したコークス炉ガスが炭化室から燃焼室へ流入して不完全燃焼を生じたり、熱分解カーボンの炉壁への付着の増大、あるいは乾留したコークスの炉壁損傷部(以下、単に損傷部と称す)への食い込みによる押し詰まりの問題が生じる。このため、従来からこの炉壁損傷部に溶射材料を吹付けて溶射補修する方法が行われている。   The furnace wall of the coking chamber in the coke oven is composed of refractory bricks (hereinafter simply referred to as refractory). If this refractory is damaged, for example, by joints, cracks, or defects, the coke oven gas generated will flow from the carbonization chamber into the combustion chamber and cause incomplete combustion, or adhesion of pyrolytic carbon to the furnace wall There is a problem of clogging due to an increase in the amount of cracking or the clogging of the carbonized coke into the damaged part of the furnace wall (hereinafter simply referred to as the damaged part). For this reason, a method of spraying repairing by spraying a sprayed material on the damaged part of the furnace wall has been conventionally performed.

その例として特許文献1には、炭化室の炉壁損傷部を溶射補修するに際し、該損傷部の損傷深さが深い場合には該損傷部を複数層に区分し、最も深い位置の下層から順次溶射補修を行って埋め戻す方法が記載されている。
特開平7−126635号公報
As an example, Patent Document 1 discloses that when repairing a damaged part of a furnace wall in a carbonization chamber by thermal spraying, if the damaged part has a deep damage depth, the damaged part is divided into a plurality of layers, A method of performing thermal spray repair and refilling is described.
JP 7-126635 A

しかしながら上記方法にいおては、例えば図4に示す様に、炉壁3の損傷部2の内部に大きな凹凸部を有する際、その損傷部2の一端側Yから他端側Zの範囲において、該損傷部2の深さ方向に3層に区分して溶射ノズル1で溶射材料を吹付けて補修する場合、先ず最下層の位置11〜13を各々溶射し、次にその上層の位置14,15 を各々溶射した後、最後に最上層位置16を溶射するものである。   However, in the above method, for example, as shown in FIG. 4, when there is a large uneven portion inside the damaged portion 2 of the furnace wall 3, in the range from one end Y to the other end Z of the damaged portion 2. When repairing by spraying the spray material with the spray nozzle 1 by dividing into three layers in the depth direction of the damaged portion 2, first the positions 11 to 13 of the lowermost layer are sprayed first, and then the position 14 of the upper layer is sprayed. , 15 are sprayed, and finally the uppermost layer position 16 is sprayed.

この位置11〜16の中で、11から12、12から13、14から15に移る際、必ず、一旦吹付ノズル1からの溶射材料吹付けを中断し、次の位置(12,13,15)の吹付開始点に溶射ノズル1をセットして、再度溶射材料の吹付けを開始しなければならず、煩雑な作業を伴うと共に、溶射補修に要する時間が長くなって炭化室の炉壁が冷却され、スポーリングが発生して健全箇所の耐火物をも損傷する恐れがあった。
また、その区分した各位置11〜16の深ささに応じて前記溶射ノズル1の移動速度パターンを各々作成しなければならない事から、作業性も好ましいものではなかった。尚、符号5は仕上面を示す。
When moving from 11 to 12, 12 to 13, or 14 to 15 in these positions 11 to 16, the spraying material spraying from the spray nozzle 1 is always interrupted to the next position (12, 13, 15). The spraying nozzle 1 must be set at the spraying start point, and spraying of the sprayed material must be started again. This involves a complicated operation and the time required for repairing the spraying is increased and the furnace wall of the carbonization chamber is cooled. As a result, spalling may occur and damage the refractory in a healthy place.
Moreover, since the moving speed pattern of the thermal spray nozzle 1 has to be created according to the divided depths of the respective positions 11 to 16, the workability is not preferable. Reference numeral 5 denotes a finished surface.

本発明は、損傷部を複数層に区分して溶射するに際して、損傷部内に凹凸に沿って連続的に溶射補修することにより、溶射の中断を抑制して溶射作業を容易にし、溶射補修時間の短縮化を図り、また前記区分した各層で別々に異なる溶射ノズルの移動速度パターンを作成することを不要として、更なる作業性の向上を図ることを課題とするものである。   In the present invention, when spraying the damaged part into a plurality of layers, the thermal spraying is continuously repaired along the unevenness in the damaged part, thereby suppressing the interruption of the thermal spraying and facilitating the thermal spraying work. It is an object of the present invention to shorten the length and to further improve the workability by making it unnecessary to create different spray nozzle moving speed patterns for each of the divided layers.

本発明は上記課題を解決する為になされたもので、以下の構成を要旨とする。
(1)コークス炉炭化室の炉壁損傷部の損傷深さ方向に複数層に区分し、その下層から順次溶射材料を吹付けて溶射補修を行う方法において、前記区分する各層の溶射層厚を前記炉壁損傷部の損傷深さに応じて決定し、かつ前記各層は前記炉壁損傷部の一端側から他端側まで連続させることを特徴とするコークス炉炭化室の炉壁補修方法。
(2)前記炉壁損傷部を深さ方向に区分する層数を該炉壁損傷部の最深部の深さに応じて決定することを特徴とする前記(1)記載のコークス炉炭化室の炉壁補修方法。
(3)前記区分した各層での溶射ノズルの移動速度パターンが同等になるように該各層の層厚を決定することを特徴とする前記(1)または(2)記載のコークス炉炭化室の炉壁補修方法。
(4)前記区分した各層の層厚を、溶射の際に生じるリバウンドロス量を加味して決定することを特徴とする前記(1)〜(3)のいずれかに記載のコークス炉炭化室の炉壁補修方法。
(5)前記溶射ノズルの移動速度を10〜60mm/Sの範囲内とすることを特徴とする前記(1)〜(4)のいずれかに記載のコークス炉炭化室の炉壁補修方法。
The present invention has been made to solve the above-described problems, and has the following configuration.
(1) In the method of performing spraying repair by spraying spraying material sequentially from the lower layer in the damage depth direction of the damaged part of the furnace wall in the coke oven carbonization chamber, the sprayed layer thickness of each of the divided layers is A method of repairing a furnace wall in a coke oven carbonization chamber, which is determined according to a damage depth of the furnace wall damaged part, and wherein each layer is continued from one end side to the other end side of the furnace wall damaged part.
(2) The coke oven carbonization chamber according to (1), wherein the number of layers dividing the furnace wall damaged part in the depth direction is determined according to the depth of the deepest part of the furnace wall damaged part. Furnace wall repair method.
(3) The coke oven carbonization chamber furnace according to (1) or (2), wherein the layer thickness of each layer is determined so that the moving velocity patterns of the spray nozzles in each of the divided layers are equal. Wall repair method.
(4) The thickness of each of the divided layers is determined in consideration of the amount of rebound loss that occurs during thermal spraying. The coke oven carbonization chamber according to any one of (1) to (3), Furnace wall repair method.
(5) The furnace wall repair method for a coke oven carbonization chamber according to any one of (1) to (4), wherein a moving speed of the thermal spray nozzle is in a range of 10 to 60 mm / S.

本発明によれば、炉壁損傷部内に凹凸が有っても、区分した各層が少なくとも一端側から他端側まで連続しているので、溶射ノズルで連続的に溶射補修することが可能となり、溶射補修時間の短縮化を図れ、補修時における炭化室炉壁の冷却が抑制され、健全箇所の耐火物をも損傷することを防止できる。更に、前記区分した各層での溶射ノズルの移動速度パターンが同等になるように該各層の層厚を決定することにより、層別に溶射ノズルの移動速度パターンを作成する必要もないので、作業性を一層向上できる。   According to the present invention, even if there is unevenness in the furnace wall damaged part, since each segmented layer is continuous from at least one end side to the other end side, it becomes possible to continuously spray spray repair with a spray nozzle, Thermal spray repair time can be shortened, cooling of the carbonization chamber furnace wall at the time of repair can be suppressed, and damage to the refractory in a healthy place can be prevented. Furthermore, by determining the layer thickness of each layer so that the movement speed patterns of the spray nozzles in each of the divided layers are equal, it is not necessary to create a movement speed pattern of the spray nozzles for each layer. It can be further improved.

本発明の一実施形態に係る炭化室の炉壁補修方法は、炭化室の炉壁を構成する耐火物に発生した損傷部、特に、図4に示すように内部に大きな凹凸がある損傷部2を連続的に溶射補修するものである。
この損傷部2を複数層に区分して溶射補修する際に効率的に仕上面5の位置までの補修を完了するために、前記従来例の様に、図4の位置11から12、12から13、14から15に移るときに、溶射ノズル1からの溶射材料の吹付けを中断し、次の位置(12,13,15)の吹付開始点に吹付ノズル1をセットして、再度溶射を開始するのではなく、少なくとも11(又は14)で溶射を開始し、13(又は15)が終わるまで溶射を停止しない様にする必要がある。 また、好ましくは11で溶射を開始し、16が終わるまで溶射を停止しない様にする事である。
The furnace wall repair method for a carbonization chamber according to an embodiment of the present invention is a damaged part generated in a refractory constituting the furnace wall of the carbonization chamber, in particular, a damaged part 2 having large irregularities inside as shown in FIG. Is continuously repaired by thermal spraying.
In order to efficiently complete the repair up to the position of the finished surface 5 when the damaged portion 2 is divided into a plurality of layers and repaired by thermal spraying, the positions 11 to 12 and 12 in FIG. When moving from 13, 14 to 15, spraying of the spray material from the spray nozzle 1 is interrupted, and the spray nozzle 1 is set at the spray start point of the next position (12, 13, 15) and spraying is performed again. Instead of starting, it is necessary to start spraying at least 11 (or 14) and not stop until 13 (or 15) is over. Also, it is preferable to start the spraying at 11 and not stop the spraying until the end of 16.

その目的を達成するために本発明者等は種々実験検討した結果、図1に示す様に、炉壁3の損傷部2の一端側Yから他端側Zの範囲において、内部の凹凸に応じ、即ち、損傷深さに応じて1層当たりの溶射層厚を調整する(損傷深さが深い場合には1層の溶射厚さを厚く、損傷深さが浅い場合には1層の溶射厚さを薄くする)事により、少なくとも一端側Yから他端側Zに至るまで各層とも連続して溶射補修が可能になり、しかも、仕上面5も平坦にすることが可能である事が判明した。   As a result of various experiments and examinations by the present inventors to achieve the object, as shown in FIG. 1, in accordance with the internal irregularities in the range from one end Y to the other end Z of the damaged portion 2 of the furnace wall 3. That is, the sprayed layer thickness per layer is adjusted in accordance with the damage depth (if the damage depth is deep, one layer is thickened, and if the damage depth is shallow, one layer is sprayed) It was found that the thermal spraying repair can be continuously performed on each layer from at least one end Y to the other end Z, and the finished surface 5 can also be flattened. .

また、区分する層数は、補修対象領域の最深部の深さに応じて決定する事が好ましい。即ち、溶射層厚を厚くするには溶射ノズルの移動速度を遅くし、溶射層厚を薄くするには溶射ノズルの移動速度を速くすれば良い(溶射材料の供給量を一定とする)。
しかし、広範囲を溶射する場合には、図2に示す様に、溶射ノズルの移動軌跡4は直線でジグザク状になることから、溶射ノズル1の移動速度が遅過ぎると、補修面において溶射した溶射材料の広がり(溶射により図5に示す様な山状に付着した溶射材料Nの裾野の幅W)が極端に広くなって、裾野同士が重なって平滑な仕上面5が得られなくなる。このため、仕上面5に平坦度に悪影響を与えない範囲の移動速度で得られる溶射層厚を確保可能な様に、補修対象領域の最深部の深さを基にして層数を決定する事が好ましい。
また、溶射材料を溶射した際に、該溶射材料が補修面に付着せずに飛散する現象(リバンドロス)が生じ、そのリバンドロス量が溶射距離で異なる場合には、このリバンドロス量を加味して層数を決定する。
The number of layers to be divided is preferably determined according to the depth of the deepest portion of the repair target region. That is, to increase the thickness of the thermal spray layer, the moving speed of the thermal spray nozzle can be reduced, and to reduce the thickness of the thermal spray layer, the speed of movement of the thermal spray nozzle can be increased (the supply amount of the thermal spray material is constant).
However, when spraying over a wide area, as shown in FIG. 2, the spraying nozzle movement trajectory 4 is straight and zigzag, so if the spraying nozzle 1 moves too slowly, the spraying sprayed on the repair surface. The spread of the material (the width W of the bottom of the thermal spray material N adhering in a mountain shape as shown in FIG. 5 by spraying) becomes extremely wide, and the bottoms overlap each other, so that a smooth finished surface 5 cannot be obtained. For this reason, the number of layers should be determined based on the depth of the deepest part of the repair target region so that the sprayed layer thickness obtained at a moving speed within a range that does not adversely affect the flatness of the finished surface 5 can be secured. Is preferred.
In addition, when a thermal spray material is sprayed, a phenomenon occurs in which the thermal spray material scatters without adhering to the repair surface (reband loss). If the reband loss amount differs depending on the spray distance, Determine the number.

更に、移動速度パターンの決定の作業性を簡素化するには、前記溶射ノズルの移動速度パターンが各層で同等になるような層厚にする。つまり、損傷部の大きさは損傷状況に応じて種々様々であるが、大きい場合には1m2 程度あり、そして、溶射ノズルの移動軌跡4は図2に示す様にジグザク状のパターンであることから、各層当たりの溶射ノズルの移動距離の総延長は50〜70mに達する場合もある。更に、前記の様に損傷深さも種々様々であり、これに対応して溶射ノズルの移動を調整しなければならない。
これらのことから、層別に前記溶射ノズルの移動速度パターンを設定するのではなく、各層とも同一の移動速度パターンにすることで、速度設定の作業性を良好にすることが可能となり好ましい。
Furthermore, in order to simplify the workability of determining the moving speed pattern, the layer thickness is set so that the moving speed pattern of the thermal spray nozzle is equal in each layer. That is, the size of the damaged portion varies depending on the damage state, but if it is large, it is about 1 m 2 , and the spray nozzle movement locus 4 is a zigzag pattern as shown in FIG. Therefore, the total extension of the moving distance of the thermal spray nozzle per layer may reach 50 to 70 m. Furthermore, as described above, the damage depth varies, and the movement of the thermal spray nozzle must be adjusted accordingly.
For these reasons, it is preferable not to set the movement speed pattern of the thermal spray nozzle for each layer but to make the speed setting workability good by making the same movement speed pattern for each layer.

そのためには、ラバー溶射(溶射材料を溶融した状態で補修面に吹付る溶射方式)の様に溶射距離が異なっても同じ溶射層厚が得られる場合には、損傷部の損傷深さに応じて各層とも均等な層厚として、各層とも同じ層厚パターンにすればよい。   For that purpose, if the same sprayed layer thickness is obtained even if the spraying distance is different, as in the case of rubber spraying (spraying method in which the sprayed material is melted and sprayed onto the repaired surface), depending on the damage depth of the damaged part Thus, each layer may have the same layer thickness pattern so that each layer has the same layer thickness.

一方、テルミット溶射(テルミット反応を利用した溶射)の様に、溶射距離により溶射材料の前記リバンドロス量が異なって、1回の溶射により形成される溶射層厚が異なる場合、即ち図3に示す様に、溶射距離が長くなればなるほどリバンドロス量が多くなり、形成される溶射層厚が薄くなる場合には、溶射距離に起因するリバンドロス量を加味して各層A〜Dの層厚を決める。具体的には、前記損傷部2の最深部の深さHM 、溶射ノズル1の許容最低移動速度Vmin 、前記溶射ノズル1の溶射能力Q、図3に示す様に溶射距離に基づいて決まるリバンドロス量を基にして最下層Aの溶射厚Taを求める。 On the other hand, as in the case of thermite spraying (spraying using thermite reaction), the reband loss amount of the sprayed material differs depending on the spraying distance, and the thickness of the sprayed layer formed by one spraying, that is, as shown in FIG. In addition, as the spraying distance becomes longer, the reband loss amount increases, and when the formed sprayed layer thickness becomes thinner, the layer thicknesses of the respective layers A to D are determined in consideration of the reband loss amount resulting from the spraying distance. Specifically, the depth H M of the deepest portion of the damage portion 2, the allowable minimum movement speed Vmin of the spray nozzle 1, the spraying ability of the spray nozzle 1 Q, Ribandorosu determined based on the spraying distance as shown in FIG. 3 The sprayed thickness Ta of the lowermost layer A is obtained based on the amount.

次に、2層目Bの溶射厚Tbであるが、これは、溶射距離が最下層Aの溶射厚Ta分短くなっている事から、この短くなった溶射距離(HM −Ta)に対応するリバンドロス量を求て、この求めたリバンドロス量により前記最下層Aと同様にして2層目Bの層厚を求める。この様に、順次短くなる溶射距離に応じてリバンドロス量を変更して各層厚Tc、Td、…を逐次求める。 Next, a thermal spray thickness Tb of the second layer B, which, from that spray distance is in spraying thickness Ta content short of the bottom layer A, corresponding to the shortened thermal spray distance (H M -Ta) The amount of reband loss to be obtained is obtained, and the layer thickness of the second layer B is obtained from the obtained reband loss amount in the same manner as the lowermost layer A. In this way, the layer thicknesses Tc, Td,... Are sequentially obtained by changing the reband loss amount in accordance with the spraying distance that is sequentially shortened.

そして、最下層A〜最上層D迄の厚さの和(Ta+Tb+Tc+Td)が最深部の深さHM と等しくなる迄、溶射ノズル1の移動速度Vを変えて繰り返しシミレーションして、層数(4層)とその各層の厚さTa〜Tdを決定する。
また、最深部以外の位置においては、この層数を基にして前記同様にして各層の層厚を求める。この求める各位置のピッチは、損傷深さが5〜20mm(更に好ましくは10〜15mm)変化する範囲内の距離とすることが好ましい。
Then, until the sum of the thicknesses of up lowermost A~ uppermost D (Ta + Tb + Tc + Td) is equal to the depth H M of the deepest portion, and assimilation repeatedly while changing the moving speed V of the spray nozzle 1, the number of layers ( 4 layers) and the thicknesses Ta to Td of the respective layers are determined.
At positions other than the deepest portion, the layer thickness of each layer is obtained in the same manner as described above based on the number of layers. The pitch of each position to be obtained is preferably a distance within a range in which the damage depth changes by 5 to 20 mm (more preferably 10 to 15 mm).

溶射ノズル1で溶射した溶射材料は、溶射面においては図5に示す様な山状に盛上がるが、溶射ノズル1の移動速度が10mm/S未満になると、盛上り高さRに比較して裾野の幅Wが極端に広くなり、逆に60mm/S超となると、溶射速度が速すぎて裾野の幅Wが極端に狭くなることから、裾野の幅Wの差がさほど大きくならない範囲である10〜60mm/Sの範囲において、損傷深さに応じて溶射ノズル1の移動速度の調整をすることが好ましい。   The thermal spray material sprayed by the thermal spray nozzle 1 rises in a mountain shape as shown in FIG. 5 on the thermal spray surface, but when the moving speed of the thermal spray nozzle 1 is less than 10 mm / S, the base is higher than the rise height R. If the width W of the skirt is extremely wide, and conversely exceeds 60 mm / S, the spraying speed is too high and the width W of the skirt becomes extremely narrow. Therefore, the difference in the width W of the skirt is not so large. In the range of ˜60 mm / S, it is preferable to adjust the moving speed of the thermal spray nozzle 1 according to the damage depth.

また、図2の図面下側のEから開始し、実線上を矢印方向にジグザグで上側に向かって溶射し、そして図面上端のFに達すると、そのFから前記実線間のGを経由して点線上を矢印方向にジグザグで図面下側のJに向かって溶射し、更にJに達すると、Kを経由して再度実線上を前記矢印とは逆方向にジグザグで上側に向かって溶射し、これを繰り返して最下層Aから最上層Dまで、溶射を中断することなく連続的に行って補修を完了する事が好ましい。   2 starts from E on the lower side of the drawing, sprays in a zigzag upward direction on the solid line in the direction of the arrow, and reaches F at the upper end of the drawing via F between the solid lines. Spray on the dotted line in the direction of the arrow in a zigzag direction toward J on the lower side of the drawing, and when reaching J further, spray on the solid line again in the direction opposite to the arrow on the solid line again via K, It is preferable that the repair is completed by repeating this process continuously from the lowermost layer A to the uppermost layer D without interrupting the thermal spraying.

本発明の実施例を図1〜図3を参照して説明する。
本実施例は、表1に示す成分を有するテルミット溶射材料を、溶射能力が40kg/時の溶射ノズル1を使用して、該溶射ノズル1を溶射最終仕上面5(健全炉壁面レベル)から溶射距離HO (本例では80mm)離して移動しつつ、コークス炉炭化室の炉壁3の損傷部2を補修するものである。
An embodiment of the present invention will be described with reference to FIGS.
In this example, a thermite spray material having the components shown in Table 1 was sprayed from the final spray finish surface 5 (health furnace wall surface level) using a spray nozzle 1 having a spraying capacity of 40 kg / hour. The damaged part 2 of the furnace wall 3 of the coke oven carbonization chamber is repaired while moving away by a distance H O (80 mm in this example).

Figure 2006063275
Figure 2006063275

先ず、補修対象となる炭化室にレーザー距離計を装入して、該レーザー距離計で炉壁損傷部2を測定し、その測定値を処理して図2の示す様な等高線を用いた3次元座標図を求める。そして、この3次元座標図から損傷部2の各座標位置の損傷深さ及び最深部の深さHM (この場合は40mm)を読みとる。 First, a laser distance meter was inserted into the carbonization chamber to be repaired, the furnace wall damaged part 2 was measured with the laser distance meter, the measured value was processed, and a contour line as shown in FIG. 2 was used. Obtain a dimensional coordinate diagram. Then, reading the depth H M damage depth and the deepest portion of each coordinate position of the damaged portion 2 from the three-dimensional coordinate diagram (in this case 40 mm).

次に、区分する溶射層数と各層厚を決定する。
これは、前記損傷深さ、溶射ノズル1の許容最低移動速度Vmin 、前記溶射ノズル1の溶射能力Q及び図3に示す様に溶射距離HO に対応するリバンドロス量によって決まる。
先ず、最下層Aにおいては、溶射距離HO が120mm(=80mm+40mm)であることから、これを基にしてリバンドロス量を求め、このリバンドロス量と溶射ノズル1の許容最低移動速度(この例では20mm/S)、前記溶射ノズル1の溶射能力(40kg/時)を基にして、最下層Aの層厚Taを決定する。
Next, the number of sprayed layers to be divided and the thickness of each layer are determined.
This is determined by the damage depth, the allowable minimum moving speed Vmin of the thermal spray nozzle 1, the thermal spraying capability Q of the thermal spray nozzle 1, and the reband loss amount corresponding to the thermal spray distance HO as shown in FIG.
First, in the lowermost layer A, since the spray distance H O is 120 mm (= 80 mm + 40 mm), the reband loss amount is obtained based on this, and the reband loss amount and the allowable minimum moving speed of the spray nozzle 1 (in this example, 20 mm). / S), the layer thickness Ta of the lowermost layer A is determined based on the spraying capability (40 kg / hour) of the spray nozzle 1.

更に、その上の層Bの層厚Tbを決定する。これは、溶射距離が最下層Aの厚さTa分短く(120mm−最下層厚Ta)なるために、この溶射距離に対応したリバンドロス量を求めて層Bの厚みTbを上記同様にして決定する。この様にして更にその上の層C、Dの厚みTc、Tdを順次決定する。これは、各層厚の和が40mm、又はそれ以上になる迄で行う(ここでは4層とする)。   Further, the layer thickness Tb of the layer B thereon is determined. This is because the spraying distance is shortened by the thickness Ta of the lowermost layer A (120 mm−lowermost layer thickness Ta), and the reband loss amount corresponding to this spraying distance is obtained to determine the thickness Tb of the layer B in the same manner as described above. . In this way, the thicknesses Tc and Td of the layers C and D thereon are sequentially determined. This is performed until the sum of the thicknesses of the respective layers reaches 40 mm or more (here, four layers).

そして、最下層A〜最上層D迄の厚さの和(Ta+Tb+Tc+Td)が40mmであれば、そのまま、層数が4層で、各層の層厚はTa、Tb、Tc、Tdになるが、40mmでない場合には、各層厚の和が40mmになる迄、溶射ノズル1の移動速度を変えて (前記許容最低移動速度より速くして)繰り返しシミレーションして、各層の厚さ及び層数、溶射ノズル1の移動速度を決定する。   If the sum of thicknesses from the lowermost layer A to the uppermost layer (Ta + Tb + Tc + Td) is 40 mm, the number of layers is as it is, and the layer thicknesses of Ta, Tb, Tc, and Td are 40 mm. If not, change the moving speed of the thermal spray nozzle 1 until the sum of the thicknesses of each layer reaches 40 mm (by making it faster than the allowable minimum moving speed), and repeatedly simulate the thickness, number of layers, and thermal spraying. The moving speed of the nozzle 1 is determined.

次に、最深部以外の場所における層厚を決定する。つまり、最深部以外の場所の損傷深さ、前記層数、リバンドロス量を基にして、前記区分した4層における各々の層厚及び溶射ノズル1の移動速度を決定する。
即ち、前記最深部で求めた溶射ノズル1の移動速度を基準として、順次該移動速度を速くし、4層の各溶射厚さの和がその位置の深さになるまで繰り返しシミレーションして、各層の厚さと溶射ノズル1の移動速度を決定する。
Next, the layer thickness at a place other than the deepest part is determined. That is, the thickness of each of the divided four layers and the moving speed of the thermal spray nozzle 1 are determined based on the damage depth at a place other than the deepest portion, the number of layers, and the amount of reband loss.
That is, based on the moving speed of the thermal spray nozzle 1 obtained at the deepest part, the moving speed is sequentially increased, and repeatedly simulated until the sum of the sprayed thicknesses of the four layers reaches the depth of the position, The thickness of each layer and the moving speed of the spray nozzle 1 are determined.

尚、最深部以外の場所における層厚及び溶射ノズル1の移動速度を求める間隔は、損傷深さが15mm変化した都度の距離とした。つまり、図1の速度X1の範囲を損傷深さが15mm以下、速度X2の範囲を損傷深さが15mm超〜30mm、速度X3の範囲を損傷深さが30mm超とした。   In addition, the space | interval which calculates | requires the layer thickness in the places other than the deepest part and the moving speed of the thermal spray nozzle 1 was made into the distance whenever the damage depth changed 15 mm. That is, the damage depth is 15 mm or less in the range of the speed X1 in FIG. 1, the damage depth is in the range of 15 mm to 30 mm, and the damage depth is in the range of the speed X3 is more than 30 mm.

この様にして求めた結果を表2に示す。
表2から判る様に、層数は4層(A〜D)で、層厚はA層が6mm、B層が8mm、C層が11mm、D層が14mmとなり、各層共にY端側からZ端側まで連続した層に区分できた。そして、この4層の溶射ノズル1の移動速度X1〜X3は各々、X1=40mm/s、X2=30mm/s、X3=15mm/sで溶射した。
その結果、最終仕上面5の凹凸は±5mmで、健全炉壁面との段差は0〜−10mmと良好な補修仕上面を得る事が出来、溶射作業も0.75時間で完了し、炭化室の炉壁温度の低下も抑制できた。
The results obtained in this way are shown in Table 2.
As can be seen from Table 2, the number of layers is 4 (A to D), the layer thickness is 6 mm for the A layer, 8 mm for the B layer, 11 mm for the C layer, and 14 mm for the D layer. It was able to be divided into continuous layers to the end side. The four layers of spray nozzles 1 were sprayed at a moving speed X1 to X3 of X1 = 40 mm / s, X2 = 30 mm / s, and X3 = 15 mm / s, respectively.
As a result, the unevenness of the final finished surface 5 is ± 5 mm, and the step with the sound furnace wall surface is 0-10 mm, and a good repaired finished surface can be obtained, and the spraying operation is completed in 0.75 hours, and the carbonization chamber The decrease in the furnace wall temperature was also suppressed.

Figure 2006063275
Figure 2006063275

本発明の一実施の形態に係る損傷部に於ける補修状態を示す図であり、図2の矢印方向断面図。It is a figure which shows the repair state in the damaged part which concerns on one embodiment of this invention, and is arrow sectional drawing of FIG. 損傷部の損傷深さを等高線を用いて示すと共に、その損傷部を補修する際の溶射ノズルの移動軌跡を示した平面図。The top view which showed the movement locus | trajectory of the thermal spray nozzle at the time of repairing the damaged part while showing the damage depth of a damaged part using a contour line. 溶射距離とリバウンドロス割合の関係を示す図。The figure which shows the relationship between a thermal spray distance and a rebound loss ratio. 従来の溶射補修順番を示す図。The figure which shows the conventional spraying repair order. 溶射した溶射材料の補修面への付着状態を示す図。The figure which shows the adhesion state to the repair surface of the thermal spraying material sprayed.

符号の説明Explanation of symbols

1:溶射ノズル 2:損傷部 3:炉壁
4:溶射ノズル1の移動軌跡 5:溶射仕上面
11〜16:溶射位置
A〜D:溶射層
E〜G,J,K:溶射軌跡
H :溶射ノズルと損傷部の距離
M :損傷部の最深部深さ HO :溶射距離
N :溶射材料 R :溶射材料の盛上り高さ
W :溶射材料の裾野の幅 Ta〜Td:溶射厚
X1〜X3,Xn:溶射ノズル移動速度
Y :損傷部の一端
Z :損傷部の他端
1: Thermal spray nozzle 2: Damaged part 3: Furnace wall 4: Trajectory of thermal spray nozzle 1 5: Thermal spray finish
11-16: spraying position to D: sprayed layer E to G, J, K: thermal spray trajectory H: distance of the spray nozzle and the lesion H M: deepest depth H O lesion: spraying distance N: spray material R: Swelling height of sprayed material W: Width of bottom of sprayed material Ta-Td: Sprayed thickness X1-X3, Xn: Spray nozzle moving speed Y: One end of damaged part Z: Other end of damaged part

Claims (5)

コークス炉炭化室の炉壁損傷部の損傷深さ方向に複数層に区分し、その下層から順次溶射材料を吹付けて溶射補修を行う方法において、前記区分する各層の溶射層厚を前記炉壁損傷部の損傷深さに応じて決定し、かつ前記各層は前記炉壁損傷部の一端側から他端側まで連続させることを特徴とするコークス炉炭化室の炉壁補修方法。 In the method of performing spraying repair by spraying sprayed material sequentially from the lower layer in the damage depth direction of the damaged part of the furnace wall of the coke oven carbonization chamber, the sprayed wall thickness of each of the divided layers is the furnace wall A method for repairing a furnace wall in a coke oven carbonization chamber, wherein the layer is determined in accordance with a damage depth of the damaged part, and each layer is continued from one end side to the other end side of the furnace wall damaged part. 前記炉壁損傷部を深さ方向に区分する層数を該炉壁損傷部の最深部の深さに応じて決定することを特徴とする請求項1記載のコークス炉炭化室の炉壁補修方法。 2. The method of repairing a coke oven coking chamber furnace wall according to claim 1, wherein the number of layers dividing the furnace wall damaged portion in the depth direction is determined according to the depth of the deepest portion of the furnace wall damaged portion. . 前記区分した各層での溶射ノズルの移動速度パターンが同等になるように該各層の層厚を決定することを特徴とする請求項1または2記載のコークス炉炭化室の炉壁補修方法。 3. The method of repairing a furnace wall in a coke oven carbonization chamber according to claim 1 or 2, wherein the layer thickness of each layer is determined so that the moving velocity patterns of the spray nozzles in each of the divided layers are equal. 前記区分した各層の層厚を、溶射の際に生じるリバウンドロス量を加味して決定することを特徴とする請求項1〜3のいずれかに記載のコークス炉炭化室の炉壁補修方法。 The method for repairing a furnace wall in a coke oven carbonization chamber according to any one of claims 1 to 3, wherein the thickness of each of the divided layers is determined in consideration of the amount of rebound loss that occurs during spraying. 前記溶射ノズルの移動速度を10〜60mm/Sの範囲内とすることを特徴とする請求項1〜4のいずれかに記載のコークス炉炭化室の炉壁補修方法。
The method for repairing a furnace wall in a coke oven carbonization chamber according to any one of claims 1 to 4, wherein a moving speed of the thermal spray nozzle is in a range of 10 to 60 mm / S.
JP2004250380A 2004-08-30 2004-08-30 Coke oven carbonization chamber repair method Expired - Lifetime JP4473681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250380A JP4473681B2 (en) 2004-08-30 2004-08-30 Coke oven carbonization chamber repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250380A JP4473681B2 (en) 2004-08-30 2004-08-30 Coke oven carbonization chamber repair method

Publications (2)

Publication Number Publication Date
JP2006063275A true JP2006063275A (en) 2006-03-09
JP4473681B2 JP4473681B2 (en) 2010-06-02

Family

ID=36110034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250380A Expired - Lifetime JP4473681B2 (en) 2004-08-30 2004-08-30 Coke oven carbonization chamber repair method

Country Status (1)

Country Link
JP (1) JP4473681B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262106A (en) * 2006-03-27 2007-10-11 Nippon Steel Corp Method for repairing furnace wall of coking chamber of coke oven
JP2007297444A (en) * 2006-04-28 2007-11-15 Jfe Steel Kk Apparatus and method for repairing coke oven wall
WO2009147983A1 (en) * 2008-06-04 2009-12-10 新日本製鐵株式会社 Flame spraying repair equipment, and flame spraying repair method of coke oven
JP2013064083A (en) * 2011-09-20 2013-04-11 Nippon Steel & Sumitomo Metal Corp Method for repairing oven wall of coke oven carbonization chamber
JP2015143393A (en) * 2013-12-25 2015-08-06 Jfeスチール株式会社 Thermal spray repair method for furnace wall
JP2022165865A (en) * 2021-04-20 2022-11-01 Jfeスチール株式会社 Repair system and repair method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179980A (en) * 1984-09-25 1986-04-23 住友金属工業株式会社 Method of repairing kiln wall of kiln
JPH07126635A (en) * 1993-10-29 1995-05-16 Kawasaki Steel Corp Method for mending furnace wall of coke oven
JPH07126637A (en) * 1993-10-29 1995-05-16 Kawasaki Steel Corp Mending of furnace wall of coke oven and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179980A (en) * 1984-09-25 1986-04-23 住友金属工業株式会社 Method of repairing kiln wall of kiln
JPH07126635A (en) * 1993-10-29 1995-05-16 Kawasaki Steel Corp Method for mending furnace wall of coke oven
JPH07126637A (en) * 1993-10-29 1995-05-16 Kawasaki Steel Corp Mending of furnace wall of coke oven and apparatus therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262106A (en) * 2006-03-27 2007-10-11 Nippon Steel Corp Method for repairing furnace wall of coking chamber of coke oven
JP2007297444A (en) * 2006-04-28 2007-11-15 Jfe Steel Kk Apparatus and method for repairing coke oven wall
WO2009147983A1 (en) * 2008-06-04 2009-12-10 新日本製鐵株式会社 Flame spraying repair equipment, and flame spraying repair method of coke oven
CN101983226A (en) * 2008-06-04 2011-03-02 新日本制铁株式会社 Flame spraying repair equipment, and flame spraying repair method of coke oven
JP5315341B2 (en) * 2008-06-04 2013-10-16 新日鐵住金株式会社 Thermal spray repair device and thermal spray repair method for coke oven
JP2013064083A (en) * 2011-09-20 2013-04-11 Nippon Steel & Sumitomo Metal Corp Method for repairing oven wall of coke oven carbonization chamber
JP2015143393A (en) * 2013-12-25 2015-08-06 Jfeスチール株式会社 Thermal spray repair method for furnace wall
JP2022165865A (en) * 2021-04-20 2022-11-01 Jfeスチール株式会社 Repair system and repair method
JP7447860B2 (en) 2021-04-20 2024-03-12 Jfeスチール株式会社 Repair system and method

Also Published As

Publication number Publication date
JP4473681B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4473681B2 (en) Coke oven carbonization chamber repair method
TWI436860B (en) Setting method of shot peening process condition
CN106435073A (en) Blast furnace liner overall pouring construction method for replacing spraying materials and refractory bricks
JP2019184225A (en) Furnace construction method
CN111974990A (en) Method for repairing defects of overlapping positions of adjacent subareas formed by selective laser melting
JP2005526948A (en) How to repair the protective lining of an industrial reaction or transport container
JPWO2010041429A1 (en) Method and apparatus for repairing wall surface near the bottom of coke oven carbonization chamber
JP5668654B2 (en) Coke oven carbonization chamber repair method
KR20220073775A (en) Adaptive Paths for Additive Manufacturing with Laser Sources
JP4283692B2 (en) How to repair the furnace wall in the carbonization chamber
JP2024034936A (en) V-shaped groove defect repairing method
JP5991478B2 (en) Coke oven partial transshipment repair method
JP5346150B2 (en) How to repair fireproof walls
JP2019123839A (en) Thermal spray repairing method of coke oven
US3850704A (en) Scarfing
JP7472890B2 (en) Repair management method and repair management system
JP4123975B2 (en) Coke oven wall repair method
JP7447861B2 (en) Repair system and method
CN210030594U (en) Independently-replaceable expansion joint brick structure of four-nozzle gasification furnace
KOBAYASHI et al. Development of Repair Apparatus for Coking Chamber Walls of Coke Ovens
JP7447860B2 (en) Repair system and method
JP2006056993A (en) Smoothening of material repaired by thermal spraying
JPH05106972A (en) Spraying and building method of structure
JPH0585828B2 (en)
JP5140025B2 (en) Method of spraying coating material on tundish

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4473681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350