JP2006061885A - Deodorizing adsorbent - Google Patents

Deodorizing adsorbent Download PDF

Info

Publication number
JP2006061885A
JP2006061885A JP2004250435A JP2004250435A JP2006061885A JP 2006061885 A JP2006061885 A JP 2006061885A JP 2004250435 A JP2004250435 A JP 2004250435A JP 2004250435 A JP2004250435 A JP 2004250435A JP 2006061885 A JP2006061885 A JP 2006061885A
Authority
JP
Japan
Prior art keywords
iron
deodorizing
bromine
methyl sulfide
deodorizing adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004250435A
Other languages
Japanese (ja)
Other versions
JP4728614B2 (en
Inventor
Yasuhiro Shimizu
康弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2004250435A priority Critical patent/JP4728614B2/en
Publication of JP2006061885A publication Critical patent/JP2006061885A/en
Application granted granted Critical
Publication of JP4728614B2 publication Critical patent/JP4728614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deodorizing adsorbent which can be safely manufactured and has excellent removal performance for amphoteric sulfur type gas. <P>SOLUTION: The deodorizing adsorbent contains porous carriers carrying iron and bromine. In the deodorizing adsorbent, preferably iron and bromine are carried in Fe:Br atomic ratio of 0.33:1 to 0.71:1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、脱臭吸着剤に関するものである。   The present invention relates to a deodorizing adsorbent.

従来、下水、し尿、焼却場等のプラント設備等から発生する複合臭気を脱臭するために、それぞれの臭気に対応した薬剤を添着させた活性炭が用いられている。   Conventionally, in order to deodorize complex odors generated from plant facilities such as sewage, human waste, and incineration plants, activated carbon to which chemicals corresponding to the respective odors are attached is used.

例えば、特許文献1及び特許文献2には、活性炭の品質を均一にし、硫化ジメチル、二硫化ジメチルを満足できる程度まで除去可能にすることを目的として、不純物の含量が規定範囲内にあり、かつ臭素の含量が3質量%以上である臭素添着活性炭が開示されている。   For example, in Patent Document 1 and Patent Document 2, the content of impurities is within a specified range for the purpose of making the quality of activated carbon uniform and removing dimethyl sulfide and dimethyl disulfide to a satisfactory level, and A bromine-impregnated activated carbon having a bromine content of 3% by mass or more is disclosed.

しかしながら、上記特許文献1及び特許文献2に記載されている臭素添着活性炭は、硫化メチル等の両性硫黄系ガスに対する除去性能が十分とは言えなかった。また、このような臭素添着活性炭は、製造の際に臭素ガス、液体臭素、あるいは、臭素水を用いることから、安全性にも問題があった。
特開平11−33397号公報 特開平11−128737号公報
However, the bromine-impregnated activated carbon described in Patent Document 1 and Patent Document 2 cannot be said to have sufficient removal performance for amphoteric sulfur-based gases such as methyl sulfide. In addition, such bromine-impregnated activated carbon has a problem in safety because bromine gas, liquid bromine, or bromine water is used in the production.
JP 11-33397 A Japanese Patent Laid-Open No. 11-128737

本発明は、安全に製造でき、かつ両性硫黄系ガスに対する優れた除去性能を有する脱臭吸着剤を提供することを目的とするものである。   An object of the present invention is to provide a deodorizing adsorbent that can be produced safely and has excellent removal performance for amphoteric sulfur-based gases.

本発明に係る脱臭吸着剤は、鉄及び臭素を担持する多孔質担体を含むことを特徴とするものである。   The deodorizing adsorbent according to the present invention includes a porous carrier supporting iron and bromine.

本発明によれば、安全に製造でき、かつ両性硫黄系ガスに対する優れた除去性能を有する脱臭吸着剤を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deodorizing adsorption agent which can be manufactured safely and has the outstanding removal performance with respect to amphoteric sulfur type gas can be provided.

前述した特許文献1には、不純物として活性炭中に含まれる鉄は、臭素添着活性炭の吸着性能を低下させることから、その含有量を0.3質量%以下に規定することが記載されている。しかしながら、本発明者らが鋭意研究した結果、臭素と共に鉄を多孔質体の表面に担持させることにより、脱臭吸着剤の両性硫黄系ガスに対する吸着性能を向上させることができるという知見を得た。本発明はこの知見に基づくものである。   Patent Document 1 described above describes that iron contained in activated carbon as an impurity reduces the adsorption performance of bromine-impregnated activated carbon, so that the content is regulated to 0.3% by mass or less. However, as a result of intensive studies by the present inventors, it was found that the adsorption performance of the deodorizing adsorbent with respect to the amphoteric sulfur gas can be improved by supporting iron together with bromine on the surface of the porous body. The present invention is based on this finding.

以下、本発明に係る脱臭吸着剤の種々の実施形態を説明する。   Hereinafter, various embodiments of the deodorizing adsorbent according to the present invention will be described.

本発明に係る脱臭吸着剤は、鉄および臭素を担持する多孔質担体を含むことを特徴とするものである。   The deodorizing adsorbent according to the present invention includes a porous carrier supporting iron and bromine.

鉄は酸化触媒的な作用を有することから、臭素と共に鉄を多孔質担体表面に担持させることにより、硫化メチル、二硫化メチルなどの両性硫黄系ガスの除去性能を向上させることができるものと考えられる。   Since iron has an oxidation catalytic action, it is thought that the removal performance of amphoteric sulfur gases such as methyl sulfide and methyl disulfide can be improved by supporting iron together with bromine on the surface of the porous carrier. It is done.

鉄及び臭素は、少なくとも一部が鉄臭化物の形態で前記多孔質担体に担持されていることが好ましく、全てが鉄臭化物(FeBr2)の形態にあることが特に好ましい。 It is preferable that at least a part of iron and bromine is supported on the porous support in the form of iron bromide, and it is particularly preferable that all of them are in the form of iron bromide (FeBr 2 ).

鉄臭化物は、両性硫黄系ガスを化学吸着により除去する効果を有し、特に、下水のにおいの主な原因である硫化メチルに対する除去性能を向上させる効果を有する。鉄及び臭素の少なくとも一部を鉄臭化物の形態で担持させることにより、多孔質担体の物理吸着に加え、鉄、臭素及び鉄臭化物の化学吸着によって、臭気成分、特に硫化メチル等の両性硫黄系ガスに対する脱臭吸着剤の除去性能を向上させることができる。   Iron bromide has the effect of removing amphoteric sulfur gas by chemisorption, and in particular has the effect of improving the removal performance for methyl sulfide, which is the main cause of sewage odor. By supporting at least a part of iron and bromine in the form of iron bromide, in addition to the physical adsorption of the porous carrier, the chemisorption of iron, bromine and iron bromide will cause odorous components, in particular amphoteric sulfur gases such as methyl sulfide. It is possible to improve the removal performance of the deodorizing adsorbent.

鉄臭化物は、鉄化合物と臭素化合物とを多孔質担体に吸着させ、多孔質担体上で反応させて得ることもできる。なお、臭化鉄は比較的高価であることから、鉄化合物及び臭素化合物から得られる鉄臭化物を担持させることが好ましい。   The iron bromide can also be obtained by adsorbing an iron compound and a bromine compound on a porous carrier and reacting them on the porous carrier. Since iron bromide is relatively expensive, it is preferable to carry iron bromide obtained from an iron compound and a bromine compound.

多孔質担体の材質は特に限定されるものではないが、例えば、ゼオライト、活性炭等を挙げることができる。特に、種々の臭気成分に対する吸着能に優れることから、多孔質担体には活性炭を用いることが好ましい。   The material of the porous carrier is not particularly limited, and examples thereof include zeolite and activated carbon. In particular, it is preferable to use activated carbon for the porous carrier because of its excellent ability to adsorb various odor components.

鉄の担持量と臭素の担持量との比率は、Fe:Brが原子比で0.33:1〜0.7:1の範囲にあることが好ましい。FeとBrの原子比が前記範囲から外れると、硫化メチル等の両性硫黄系ガスに対する脱臭吸着剤の除去性能が低下する傾向がある。鉄の担持量と臭素の担持量との比率のさらに好ましい範囲は、Fe:Brが原子比で0.4:1〜0.6:1である。FeとBrの原子比をこの範囲にすると、硫化メチルの除去性能をさらに向上させることができる。   The ratio of the iron loading and bromine loading is preferably such that Fe: Br is in the range of 0.33: 1 to 0.7: 1 by atomic ratio. When the atomic ratio of Fe and Br is out of the above range, the removal performance of the deodorizing adsorbent with respect to amphoteric sulfur gases such as methyl sulfide tends to be lowered. A more preferable range of the ratio between the iron loading and the bromine loading is such that Fe: Br is 0.4: 1 to 0.6: 1 in atomic ratio. When the atomic ratio of Fe and Br is within this range, the removal performance of methyl sulfide can be further improved.

脱臭吸着剤における鉄の担持量は、0.8〜3.8質量%の範囲にあることが好ましい。鉄の担持量が、0.8質量%未満であると、硫化メチル等の両性硫黄系ガスに対する除去性能が十分に得られない恐れがある。一方、鉄の担持量が3.8質量%を超えると、多孔質担体の細孔が閉塞され、臭気成分を十分に吸着できなくなる傾向がある。鉄の担持量のさらに好ましい範囲は、2〜3質量%である。鉄の担持量がこの範囲内にある場合に、種々の臭気成分に対する脱臭吸着剤の除去性能を最も良好にすることができる。   The iron loading in the deodorizing adsorbent is preferably in the range of 0.8 to 3.8% by mass. If the amount of iron supported is less than 0.8% by mass, there is a risk that sufficient removal performance for amphoteric sulfur gases such as methyl sulfide may not be obtained. On the other hand, if the amount of iron supported exceeds 3.8% by mass, the pores of the porous carrier are blocked, and there is a tendency that odor components cannot be sufficiently adsorbed. A more preferable range of the iron loading is 2 to 3% by mass. When the iron loading is within this range, the removal performance of the deodorizing adsorbent for various odor components can be made the best.

前記多孔質担体は、さらに無機酸を担持することが好ましい。これは、鉄及び臭素を担持させることによる両性硫黄系ガスに対する除去性能の向上効果は、酸性条件下で特に良好に発揮されるためである。   It is preferable that the porous carrier further supports an inorganic acid. This is because the effect of improving the removal performance for the amphoteric sulfur-based gas by supporting iron and bromine is exhibited particularly well under acidic conditions.

無機酸としては、硫酸、塩酸等を挙げることができる。   Examples of inorganic acids include sulfuric acid and hydrochloric acid.

無機酸の担持量は、多孔質担体100重量部に対して2〜20重量部の範囲にあることが好ましい。無機酸の担持量がこの範囲内にあるときに、硫化メチルに対する脱臭吸着剤の除去性能が最も良好になる。   The amount of the inorganic acid supported is preferably in the range of 2 to 20 parts by weight with respect to 100 parts by weight of the porous carrier. When the supported amount of inorganic acid is within this range, the deodorizing adsorbent removal performance for methyl sulfide is the best.

かかる脱臭吸着剤は、例えば以下に説明する吸水担持法を用いて製造することができる。   Such a deodorizing adsorbent can be produced using, for example, a water absorption support method described below.

臭素化合物、鉄化合物、及び、必要に応じて無機酸を水に溶解し、この水溶液に10℃〜40℃で多孔質担体を浸漬する。これにより、各化合物の実質的に全量を多孔質担体に分散性高く吸着させることができる。吸着後、担体を取り出し、例えば80℃〜120℃の温度で乾燥する。吸着された臭素化合物及び鉄化合物のうちの少なくとも一部は、多孔質担体上で反応し、鉄臭化物を形成する。この吸水担持法を用いることにより、鉄及び臭素を多孔質担体に高分散に担持させることができると共に、鉄臭化物を多孔質担体に高分散に担持させることができ、得られる脱臭吸着剤の除去性能及び耐久性を向上させることができる。   A bromine compound, an iron compound and, if necessary, an inorganic acid are dissolved in water, and the porous carrier is immersed in this aqueous solution at 10 ° C to 40 ° C. Thereby, substantially the entire amount of each compound can be adsorbed on the porous carrier with high dispersibility. After adsorption, the carrier is taken out and dried at a temperature of, for example, 80 ° C to 120 ° C. At least some of the adsorbed bromine compound and iron compound react on the porous support to form iron bromide. By using this water absorption loading method, iron and bromine can be supported on a porous carrier in a highly dispersed manner, and iron bromide can be supported on a porous carrier in a highly dispersed manner, and the resulting deodorizing adsorbent can be removed. Performance and durability can be improved.

臭素化合物としては、臭化水素、臭化アンモニウム等を挙げることができる。   Examples of the bromine compound include hydrogen bromide and ammonium bromide.

鉄化合物としては、塩化第二鉄、硫酸鉄、塩化第一鉄等を挙げることができる。   Examples of the iron compound include ferric chloride, iron sulfate, and ferrous chloride.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

[実施例]
以下、本発明に係る脱臭吸着剤を実施例により説明する。
[Example]
Hereinafter, the deodorizing adsorbent according to the present invention will be described with reference to examples.

(実施例1及び比較例1〜3)
<脱臭吸着剤の製造>
(実施例1)
ベンゼン吸着量が31質量%以上になるように賦活を進めたヤシ殻活性炭を用意し、これを塩酸で処理することにより不純物を除去して清浄化し、活性化したものを多孔質担体として用いた。
(Example 1 and Comparative Examples 1-3)
<Manufacture of deodorizing adsorbent>
Example 1
A coconut shell activated carbon whose activation was advanced so that the amount of benzene adsorbed was 31% by mass or more was prepared, and this was treated with hydrochloric acid to remove impurities to be purified, and the activated product was used as a porous carrier. .

この多孔質担体100重量部を、臭素化合物として臭化水素11重量部、鉄化合物として塩化第二鉄9.9重量部、及び、無機酸として硫酸7重量部を水に溶解することにより調製した水溶液に浸漬し、吸水担持を行った。その後、100℃で5時間乾燥させて脱臭吸着剤を得た。   100 parts by weight of this porous carrier was prepared by dissolving 11 parts by weight of hydrogen bromide as a bromine compound, 9.9 parts by weight of ferric chloride as an iron compound, and 7 parts by weight of sulfuric acid as an inorganic acid. It was immersed in an aqueous solution to carry water. Then, it was made to dry at 100 degreeC for 5 hours, and the deodorizing adsorption agent was obtained.

このようにして得られた脱臭吸着剤の水浸pHを以下に説明するように測定した。その結果を表1に示す。   The water immersion pH of the deodorized adsorbent thus obtained was measured as described below. The results are shown in Table 1.

水浸pHは、100ccの水中に3gの試料を浸漬し、5分間煮沸し、冷却した後の水のpHを測定したものであり、その測定法はJIS規格に規定された方法に準ずる。   The immersion pH is obtained by immersing a 3 g sample in 100 cc of water, boiling it for 5 minutes, and measuring the pH of the water after cooling, and the measurement method conforms to the method defined in JIS standards.

また、得られた脱臭吸着剤のBr含有量、Fe含有量及びNa含有量を、試料を十分に乾燥させた後、微粉砕し、市販の蛍光X線分析装置(PW1480)を用いて測定した。その結果を表1に併記する。   Further, the Br content, Fe content and Na content of the obtained deodorizing adsorbent were measured using a commercially available fluorescent X-ray analyzer (PW1480) after the sample was sufficiently dried and then finely pulverized. . The results are also shown in Table 1.

(比較例1)
臭化ナトリウム11重量部、及び、硫酸7重量部を水に溶解することにより調製した水溶液を用いて吸水担持を行ったこと以外は、実施例1と同様にして脱臭吸着剤を得た。
(Comparative Example 1)
A deodorizing adsorbent was obtained in the same manner as in Example 1 except that water absorption was carried out using an aqueous solution prepared by dissolving 11 parts by weight of sodium bromide and 7 parts by weight of sulfuric acid in water.

(比較例2)
臭化水素11重量部、及び、硫酸7重量部を水に溶解することにより調製した水溶液を用いて吸水担持を行ったこと以外は、実施例1と同様にして脱臭吸着剤を得た。
(Comparative Example 2)
A deodorizing adsorbent was obtained in the same manner as in Example 1 except that water absorption was carried out using an aqueous solution prepared by dissolving 11 parts by weight of hydrogen bromide and 7 parts by weight of sulfuric acid in water.

(比較例3)
三角フラスコにおいて、臭化カリウム13.4g、及び、臭素酸カリウム(KBrO3)3.77gを純水1Lに溶解した。この水溶液253.6mLに硫酸3.35gを反応させて臭素ガス(Br2)を発生させ、この臭素ガスを、実施例1と同様な多孔質担体約30mLを充填したガラスカラムに導入した。このようにして、多孔質担体に臭素を担持させることにより比較例3の脱臭吸着剤を得た。
(Comparative Example 3)
In an Erlenmeyer flask, 13.4 g of potassium bromide and 3.77 g of potassium bromate (KBrO 3 ) were dissolved in 1 L of pure water. This aqueous solution 253.6 mL was reacted with 3.35 g of sulfuric acid to generate bromine gas (Br 2 ), and this bromine gas was introduced into a glass column packed with about 30 mL of the same porous carrier as in Example 1. Thus, the deodorizing adsorption agent of the comparative example 3 was obtained by carrying | supporting a bromine on a porous support | carrier.

得られた比較例1〜3の脱臭吸着剤についても、実施例1と同様にして水浸pH、Br含有量、Fe含有量及びNa含有量を測定した。その結果を表1に示す。

Figure 2006061885
For the deodorized adsorbents of Comparative Examples 1 to 3 obtained, the water immersion pH, Br content, Fe content and Na content were measured in the same manner as in Example 1. The results are shown in Table 1.
Figure 2006061885

<評価方法>
得られた実施例1及び比較例1〜3の脱臭吸着剤のサンプルを各6mLずつ採取し、それぞれ30mmφガラスカラムに充填した。これらのガラスカラムに、硫化メチルを10ppm含み、かつ湿度を80%に調整した空気ガスを温度25℃で、5L/分の流速で60分間通過させた。LV(線速度)は、0.12m/秒とし、SV(空間速度)は、50000/時間とした。このときの所定時間経過時の入りガス及び出口ガスに含まれる硫化メチルの濃度をそれぞれ測定した。濃度測定には以下の装置を用い、ガスクロマトグラフィー(GC)により行った。
<Evaluation method>
6 mL of each sample of the obtained deodorizing adsorbents of Example 1 and Comparative Examples 1 to 3 was collected and packed in a 30 mmφ glass column. An air gas containing 10 ppm of methyl sulfide and adjusted to a humidity of 80% was passed through these glass columns at a temperature of 25 ° C. and a flow rate of 5 L / min for 60 minutes. The LV (linear velocity) was 0.12 m / second, and the SV (space velocity) was 50000 / hour. At this time, the concentrations of methyl sulfide contained in the inlet gas and the outlet gas when the predetermined time had elapsed were measured. The concentration was measured by gas chromatography (GC) using the following apparatus.

GC装置:島津製GC−8Ap(FPD)
カラム:β,β’−ODPN25% Chromosorb 60〜80メッシュ、内径3.0mmφ×3000mm ガラスパックドカラム
温度:注入口/検出器;150℃、カラム;70℃
得られた濃度より、下記(1)式に従って各経過時間ごとの硫化メチルの浄化率を算出した。
GC device: Shimadzu GC-8Ap (FPD)
Column: β, β′-ODPN 25% Chromosorb 60-80 mesh, inner diameter 3.0 mmφ × 3000 mm Glass packed column Temperature: inlet / detector; 150 ° C., column; 70 ° C.
From the obtained concentration, the purification rate of methyl sulfide for each elapsed time was calculated according to the following formula (1).

CL={(C0−C)/C0}×100 …(1)
CL;浄化率(%)
0;入りガス濃度(ppm)
C;出口ガス濃度(ppm)
得られた結果を図1に示す。図1において、縦軸は、硫化メチルの浄化率(%)を示し、横軸は、経過時間(分)を示す。
CL = {(C 0 −C) / C 0 } × 100 (1)
CL: Purification rate (%)
C 0 ; Concentration of incoming gas (ppm)
C: outlet gas concentration (ppm)
The obtained results are shown in FIG. In FIG. 1, the vertical axis represents the purification rate (%) of methyl sulfide, and the horizontal axis represents the elapsed time (minutes).

図1から明らかなように、鉄及び臭素を担持する多孔質担体を含む実施例1の脱臭吸着剤は、臭素のみを担持する比較例3の脱臭吸着剤に比較して硫化メチル浄化率が高く、耐久性にも優れていた。これは、鉄が酸化触媒的な作用を有するため、また、吸水担持という簡便な方法で鉄臭化物を多孔質担体上に高分散に担持させることができたためと考えられる。また、比較例3の脱臭吸着剤は、多孔質担体に臭素ガスを担持させることにより得られるのに対して、実施例1の脱臭吸着剤は、製造時に、臭素ガス、液体臭素及び臭素水を使用する必要がないことから、安全性に優れるという効果も有する。   As is apparent from FIG. 1, the deodorizing adsorbent of Example 1 including the porous carrier supporting iron and bromine has a higher methyl sulfide purification rate than the deodorizing adsorbent of Comparative Example 3 supporting only bromine. Also, the durability was excellent. This is probably because iron has an oxidation catalytic action and iron bromide can be supported in a highly dispersed manner on the porous support by a simple method of supporting water absorption. The deodorizing adsorbent of Comparative Example 3 is obtained by supporting bromine gas on a porous carrier, whereas the deodorizing adsorbent of Example 1 contains bromine gas, liquid bromine and bromine water at the time of production. Since it is not necessary to use, it has the effect of being excellent in safety.

さらに実施例1の脱臭吸着剤は、臭化ナトリウムを担持させた比較例1の脱臭吸着剤、及び、臭化水素を担持させた比較例2の脱臭吸着剤に比較しても、硫化メチル浄化率が高く、耐久性にも優れていた。   Further, the deodorizing adsorbent of Example 1 is a methyl sulfide purifying agent as compared with the deodorizing adsorbent of Comparative Example 1 supporting sodium bromide and the deodorizing adsorbent of Comparative Example 2 supporting hydrogen bromide. The rate was high and the durability was excellent.

(実施例2〜8及び比較例4〜10)
(実施例2〜8)
実施例1と同様な多孔質担体100重量部を、臭化水素、塩化第二鉄及び硫酸を水に溶解することにより調製した水溶液に浸漬して吸水担持を行い、その後、100℃で5時間乾燥させて脱臭吸着剤を得た。このとき、塩化第二鉄の添加量は9.9重量部とし、硫酸の添加量は7重量部とし、臭化水素の添加量は13〜38重量部の範囲で変化させて実施例2〜8の脱臭吸着剤とした。
(Examples 2-8 and Comparative Examples 4-10)
(Examples 2 to 8)
100 parts by weight of the same porous carrier as in Example 1 was immersed in an aqueous solution prepared by dissolving hydrogen bromide, ferric chloride and sulfuric acid in water to carry water absorption, and then at 100 ° C. for 5 hours. The deodorized adsorbent was obtained by drying. At this time, the addition amount of ferric chloride was 9.9 parts by weight, the addition amount of sulfuric acid was 7 parts by weight, and the addition amount of hydrogen bromide was changed in the range of 13 to 38 parts by weight. 8 deodorizing adsorbent.

(比較例4〜10)
塩化第二鉄を添加しなかったこと以外は、実施例2〜8と同様にして比較例4〜10の脱臭吸着剤を得た。このとき、実施例2と比較例4、実施例3と比較例5、実施例4と比較例6、実施例5と比較例7、実施例6と比較例8、実施例7と比較例9、実施例8と比較例10は、それぞれ臭化水素の添加量を同量とした。
(Comparative Examples 4 to 10)
The deodorizing adsorbents of Comparative Examples 4 to 10 were obtained in the same manner as in Examples 2 to 8 except that ferric chloride was not added. At this time, Example 2 and Comparative Example 4, Example 3 and Comparative Example 5, Example 4 and Comparative Example 6, Example 5 and Comparative Example 7, Example 6 and Comparative Example 8, Example 7 and Comparative Example 9 In Example 8 and Comparative Example 10, the same amount of hydrogen bromide was added.

得られた実施例2〜8及び比較例4〜10の脱臭吸着剤について、実施例1と同様にして水浸pH、Br含有量及びFe含有量を測定した。その結果を表2に示す。さらに、得られたBr含有量及びFe含有量から、Fe/Br原子比を求めた。その結果を表1に併記する。ここで、Fe/Br原子比とは、Br原子の数を1とおいたときのFe原子の数を示すものである。   About the obtained deodorizing adsorption agent of Examples 2-8 and Comparative Examples 4-10, it carried out similarly to Example 1, and measured water immersion pH, Br content, and Fe content. The results are shown in Table 2. Furthermore, Fe / Br atomic ratio was calculated | required from the obtained Br content and Fe content. The results are also shown in Table 1. Here, the Fe / Br atomic ratio indicates the number of Fe atoms when the number of Br atoms is 1.

得られた実施例2〜8及び比較例4〜10の脱臭吸着剤を用いて、実施例1と同様にして硫化メチル浄化率の評価を行った。60分経過時の硫化メチル浄化率の結果を表2に示す。また、この硫化メチル浄化率とFe/Br原子比及びBr含有量との関係を図2に示す。図2において、縦軸は、硫化メチル浄化率(%)を示し、下側の横軸は、Fe/Br原子比を示し、上側の横軸は、Br含有量(質量%)を示す。

Figure 2006061885
Using the deodorized adsorbents of Examples 2 to 8 and Comparative Examples 4 to 10 obtained, the methyl sulfide purification rate was evaluated in the same manner as in Example 1. Table 2 shows the results of the methyl sulfide purification rate after 60 minutes. FIG. 2 shows the relationship between the methyl sulfide purification rate, the Fe / Br atomic ratio, and the Br content. In FIG. 2, the vertical axis represents the methyl sulfide purification rate (%), the lower horizontal axis represents the Fe / Br atomic ratio, and the upper horizontal axis represents the Br content (% by mass).
Figure 2006061885

表2及び図2から明らかなように、鉄及び臭素を担持する多孔質担体を含む実施例2〜8の脱臭吸着剤は、Fe/Br原子比がいかなる範囲にあっても、鉄を担持しない比較例4〜10の脱臭吸着剤に比較して硫化メチル浄化率が高く、硫化メチル除去性能に優れていた。   As is apparent from Table 2 and FIG. 2, the deodorizing adsorbents of Examples 2 to 8 including the porous support supporting iron and bromine do not support iron regardless of the Fe / Br atomic ratio. Compared with the deodorizing adsorbents of Comparative Examples 4 to 10, the methyl sulfide purification rate was high, and the methyl sulfide removal performance was excellent.

また、得られた実施例2及び比較例4の脱臭吸着剤の硫化メチル浄化率より、下記(2)式に従って実施例2の脱臭吸着剤の硫化メチル除去性能の向上率を算出した。   Moreover, the improvement rate of the methyl sulfide removal performance of the deodorizing adsorbent of Example 2 was calculated from the methyl sulfide purification rate of the obtained deodorizing adsorbent of Example 2 and Comparative Example 4 according to the following formula (2).

CLup={(CLe−CLc)/CLe}×100 …(2)
CLup;実施例2の脱臭吸着剤の硫化メチル除去性能の向上率(%)
CLe;実施例2の脱臭吸着剤の硫化メチル浄化率(%)
CLc;比較例4の脱臭吸着剤の硫化メチル浄化率(%)
実施例3〜8の脱臭吸着剤についても同様に、同量の臭化水素を添加して得られた比較例5〜10の脱臭吸着剤に対する性能向上率を算出した。この結果を図3に示す。図3において、縦軸は、硫化メチル除去性能の向上率(%)を示し、横軸は、Fe/Br原子比を示す。
CL up = {(CL e −CL c ) / CL e } × 100 (2)
CL up : Improvement rate (%) of methyl sulfide removal performance of the deodorizing adsorbent of Example 2
CL e ; methyl sulfide purification rate (%) of the deodorizing adsorbent of Example 2
CL c ; methyl sulfide purification rate (%) of the deodorizing adsorbent of Comparative Example 4
Similarly, for the deodorizing adsorbents of Examples 3 to 8, the performance improvement rate for the deodorizing adsorbents of Comparative Examples 5 to 10 obtained by adding the same amount of hydrogen bromide was calculated. The result is shown in FIG. In FIG. 3, the vertical axis represents the improvement rate (%) of the methyl sulfide removal performance, and the horizontal axis represents the Fe / Br atomic ratio.

表2及び図3から明らかなように、鉄の担持量と臭素の担持量との割合が、原子比(Fe:Br)で0.33:1〜0.7:1の範囲にある実施例2〜6の脱臭吸着剤は、性能向上率が5.0%以上と高く、原子比が前記範囲から外れる実施例7,8の脱臭吸着剤に比較して優れた硫化メチル浄化率の向上効果が得られた。また、原子比が0.4:1〜0.6:1の範囲にある実施例4,5は、原子比が前記範囲から外れる実施例2,3,6の脱臭吸着剤に比較して性能向上率がさらに高かった。さらに、Fe:Brが原子比でほぼ0.5:1にあるときに性能向上率が最も高くなることが確認できた。   As is clear from Table 2 and FIG. 3, the ratio of the amount of iron loaded to the amount of bromine loaded is in the range of 0.33: 1 to 0.7: 1 in terms of atomic ratio (Fe: Br). The deodorizing adsorbents 2 to 6 have a high performance improvement rate of 5.0% or more, and the improvement effect of the methyl sulfide purification rate superior to the deodorizing adsorbents of Examples 7 and 8 in which the atomic ratio is out of the above range. was gotten. In addition, Examples 4 and 5 having an atomic ratio in the range of 0.4: 1 to 0.6: 1 have performance compared to the deodorizing adsorbents of Examples 2, 3, and 6 in which the atomic ratio is out of the range. The improvement rate was even higher. Furthermore, it was confirmed that the performance improvement rate was the highest when Fe: Br was approximately 0.5: 1 by atomic ratio.

(実施例9〜11及び比較例2)
(実施例9)
臭化水素11重量部、塩化第二鉄19.8重量部、及び、硫酸7重量部を水に溶解することにより調製した水溶液を用いて吸水担持を行ったこと以外は、実施例1と同様にして脱臭吸着剤を得た。
(Examples 9 to 11 and Comparative Example 2)
Example 9
Except that water absorption was carried out using an aqueous solution prepared by dissolving 11 parts by weight of hydrogen bromide, 19.8 parts by weight of ferric chloride and 7 parts by weight of sulfuric acid in water, the same as in Example 1. Thus, a deodorizing adsorbent was obtained.

(実施例10)
臭化水素11重量部、塩化第二鉄12.6重量部、及び、硫酸7重量部を水に溶解することにより調製した水溶液を用いて吸水担持を行ったこと以外は、実施例1と同様にして脱臭吸着剤を得た。
(Example 10)
Except that water absorption was carried out using an aqueous solution prepared by dissolving 11 parts by weight of hydrogen bromide, 12.6 parts by weight of ferric chloride and 7 parts by weight of sulfuric acid in water, the same as in Example 1. Thus, a deodorizing adsorbent was obtained.

(実施例11)
臭化水素11重量部、塩化第二鉄8.0重量部、及び、硫酸7重量部を水に溶解することにより調製した水溶液を用いて吸水担持を行ったこと以外は、実施例1と同様にして脱臭吸着剤を得た。
(Example 11)
Except that water absorption was carried out using an aqueous solution prepared by dissolving 11 parts by weight of hydrogen bromide, 8.0 parts by weight of ferric chloride, and 7 parts by weight of sulfuric acid in water, the same as in Example 1. Thus, a deodorizing adsorbent was obtained.

得られた実施例9〜11の脱臭吸着剤についても、実施例1と同様にして水浸pH、Br含有量及びFe含有量を測定した。その結果を表3に示す。さらに、得られたBr含有量及びFe含有量から、Fe/Br原子比を求めた。その結果を表3に併記する。   For the obtained deodorized adsorbents of Examples 9 to 11, water immersion pH, Br content and Fe content were measured in the same manner as in Example 1. The results are shown in Table 3. Furthermore, Fe / Br atomic ratio was calculated | required from the obtained Br content and Fe content. The results are also shown in Table 3.

得られた実施例9〜11、及び、前述の比較例2の脱臭吸着剤を用いて、実施例1と同様にして硫化メチル浄化率の評価を行った。60分経過時の硫化メチル浄化率の結果を表3に示す。また、この硫化メチル浄化率とFe担持量(Fe含有量)との関係を図4に示す。図4において、縦軸は、硫化メチル浄化率(%)を示し、横軸は、Fe担持量(質量%)を示す。

Figure 2006061885
Using the obtained deodorizing adsorbents of Examples 9 to 11 and Comparative Example 2 described above, the methyl sulfide purification rate was evaluated in the same manner as in Example 1. Table 3 shows the results of the methyl sulfide purification rate after 60 minutes. FIG. 4 shows the relationship between the methyl sulfide purification rate and the Fe loading (Fe content). In FIG. 4, the vertical axis represents the methyl sulfide purification rate (%), and the horizontal axis represents the Fe loading (mass%).
Figure 2006061885

表3から明らかなように、鉄及び臭素を担持する多孔質担体を含む実施例9〜11の脱臭吸着剤は、鉄を担持しない比較例2の脱臭吸着剤に比較して硫化メチル浄化率が高く、硫化メチル除去性能に優れていた。また、鉄の担持量が、0.8〜3.8質量%の範囲にある実施例10,11の脱臭吸着剤は、鉄の担持量が前記範囲を外れる実施例9の脱臭吸着剤に比較して硫化メチル浄化率が高かった。図4から明らかなように、鉄の担持量が、0.8〜3.8質量%の範囲にあるときに、60%以上の硫化メチル浄化率が得られ、2〜3質量%の範囲にあるときに、65%を超える硫化メチル浄化率が得られることを確認できた。   As apparent from Table 3, the deodorizing adsorbents of Examples 9 to 11 including the porous carrier supporting iron and bromine have a methyl sulfide purification rate as compared with the deodorizing adsorbent of Comparative Example 2 not supporting iron. High methyl sulfide removal performance. Moreover, the deodorizing adsorbents of Examples 10 and 11 in which the iron loading is in the range of 0.8 to 3.8% by mass are compared with the deodorizing adsorbing agent of Example 9 in which the iron loading is outside the above range. The methyl sulfide purification rate was high. As apparent from FIG. 4, when the iron loading is in the range of 0.8 to 3.8% by mass, a methyl sulfide purification rate of 60% or more is obtained, and in the range of 2 to 3% by mass. In some cases, it was confirmed that a purification rate of methyl sulfide exceeding 65% was obtained.

(実施例1,12,13及び比較例2)
(実施例12)
臭化水素11重量部、硫酸鉄9.5重量部、及び、硫酸7重量部を水に溶解することにより調製した水溶液を用いて吸水担持を行ったこと以外には、実施例1と同様にして脱臭吸着剤を得た。
(Examples 1, 12, 13 and Comparative Example 2)
(Example 12)
Except that water absorption was carried out using an aqueous solution prepared by dissolving 11 parts by weight of hydrogen bromide, 9.5 parts by weight of iron sulfate, and 7 parts by weight of sulfuric acid in water, the same manner as in Example 1 was performed. Thus, a deodorizing adsorbent was obtained.

(実施例13)
臭化鉄9.8重量部、及び、硫酸7重量部を水に溶解することにより調製した水溶液を用いて吸水担持を行ったこと以外には、実施例1と同様にして脱臭吸着剤を得た。
(Example 13)
A deodorized adsorbent was obtained in the same manner as in Example 1 except that water absorption was carried out using an aqueous solution prepared by dissolving 9.8 parts by weight of iron bromide and 7 parts by weight of sulfuric acid in water. It was.

得られた実施例12,13の脱臭吸着剤についても、実施例1と同様にして水浸pH、Br含有量及びFe含有量を測定した。その結果を表4に示す。

Figure 2006061885
For the obtained deodorized adsorbents of Examples 12 and 13, the water immersion pH, Br content and Fe content were measured in the same manner as in Example 1. The results are shown in Table 4.
Figure 2006061885

得られた実施例12,13、前述の実施例1、及び、前述の比較例2の脱臭吸着剤を用いて、実施例1と同様にして硫化メチルの浄化率の評価を行った。60分経過時の硫化メチル浄化率の結果を図5に示す。   Using the deodorized adsorbents obtained in Examples 12 and 13, Example 1 described above, and Comparative Example 2 described above, the purification rate of methyl sulfide was evaluated in the same manner as Example 1. The result of the methyl sulfide purification rate after 60 minutes is shown in FIG.

図5から明らかなように、種々異なる化合物を用いて得られた鉄臭化物または臭化鉄を担持する実施例1,12,13の脱臭吸着剤は、鉄臭化物及び臭化鉄を担持しない比較例2の脱臭吸着剤に比較して硫化メチル浄化率が高かった。また、臭化水素及び塩化第二鉄を用いた実施例1の脱臭吸着剤は、臭化鉄を直接担持した実施例13の脱臭吸着剤に比較して硫化メチル浄化率が高く、硫化メチル除去性能に優れていた。   As is apparent from FIG. 5, the deodorizing adsorbents of Examples 1, 12, and 13 carrying iron bromide or iron bromide obtained using different compounds are comparative examples not carrying iron bromide and iron bromide. The methyl sulfide purification rate was higher than that of No. 2 deodorizing adsorbent. In addition, the deodorizing adsorbent of Example 1 using hydrogen bromide and ferric chloride has a higher methyl sulfide purification rate than the deodorizing adsorbent of Example 13 directly supporting iron bromide, and removes methyl sulfide. Excellent performance.

実施例1及び比較例1〜3の脱臭吸着剤の経過時間に対する硫化メチルの浄化率の変化を示す特性線図。The characteristic line figure which shows the change of the purification rate of methyl sulfide with respect to the elapsed time of the deodorizing adsorption agent of Example 1 and Comparative Examples 1-3. Fe/Br原子比及びBr含有量と硫化メチル浄化率との関係を示す特性線図。The characteristic diagram which shows the relationship between Fe / Br atomic ratio and Br content, and a methyl sulfide purification rate. Fe/Br原子比と硫化メチル浄化性能の向上率との関係を示す特性線図。The characteristic diagram which shows the relationship between Fe / Br atomic ratio and the improvement rate of methyl sulfide purification performance. 鉄の担持量と硫化メチル浄化率との関係を示す特性線図。The characteristic line figure which shows the relationship between the iron load and methyl sulfide purification rate. 実施例1,12,13及び比較例2の脱臭吸着剤の硫化メチル浄化率を示す棒グラフ図。The bar graph which shows the methyl sulfide purification | cleaning rate of the deodorizing adsorption agent of Example 1, 12, 13 and the comparative example 2. FIG.

Claims (6)

鉄及び臭素を担持する多孔質担体を含むことを特徴とする脱臭吸着剤。   A deodorizing adsorbent comprising a porous carrier supporting iron and bromine. 前記鉄と前記臭素とが、Fe:Br原子比0.33:1〜0.7:1で担持されていることを特徴とする請求項1記載の脱臭吸着剤。   The deodorizing adsorbent according to claim 1, wherein the iron and the bromine are supported at an Fe: Br atomic ratio of 0.33: 1 to 0.7: 1. 前記鉄が、0.8〜3.8質量%の割合で担持されていることを特徴とする請求項1または2記載の脱臭吸着剤。   The deodorizing adsorbent according to claim 1 or 2, wherein the iron is supported at a ratio of 0.8 to 3.8% by mass. 前記鉄及び前記臭素は、少なくとも一部が鉄臭化物の形態で前記多孔質担体に担持されていることを特徴とする請求項1ないし3のうちのいずれか1項記載の脱臭吸着剤。   The deodorizing adsorbent according to any one of claims 1 to 3, wherein at least a part of the iron and the bromine is supported on the porous carrier in the form of iron bromide. 前記鉄臭化物は、鉄化合物と臭素化合物とを前記多孔質担体に吸着させ、前記多孔質担体上で反応させて得られたものであることを特徴とする請求項4記載の脱臭吸着剤。   The deodorizing adsorbent according to claim 4, wherein the iron bromide is obtained by adsorbing an iron compound and a bromine compound on the porous carrier and reacting them on the porous carrier. 前記多孔質担体が、さらに無機酸を担持することを特徴とする請求項1ないし5のうちのいずれか1項記載の脱臭吸着剤。   The deodorizing adsorbent according to any one of claims 1 to 5, wherein the porous carrier further supports an inorganic acid.
JP2004250435A 2004-08-30 2004-08-30 Deodorizing adsorbent and deodorizing method Expired - Fee Related JP4728614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250435A JP4728614B2 (en) 2004-08-30 2004-08-30 Deodorizing adsorbent and deodorizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250435A JP4728614B2 (en) 2004-08-30 2004-08-30 Deodorizing adsorbent and deodorizing method

Publications (2)

Publication Number Publication Date
JP2006061885A true JP2006061885A (en) 2006-03-09
JP4728614B2 JP4728614B2 (en) 2011-07-20

Family

ID=36108803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250435A Expired - Fee Related JP4728614B2 (en) 2004-08-30 2004-08-30 Deodorizing adsorbent and deodorizing method

Country Status (1)

Country Link
JP (1) JP4728614B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011281A (en) * 2010-06-29 2012-01-19 Cataler Corp Combined odor deodorant
JP2012011282A (en) * 2010-06-29 2012-01-19 Cataler Corp Sulfur based odor deodorant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133764A (en) * 1974-09-04 1976-03-23 Hitachi Ltd
JPS5551422A (en) * 1978-10-11 1980-04-15 Takeda Chem Ind Ltd Deodorization
JPS565133A (en) * 1979-06-25 1981-01-20 Toyo Soda Mfg Co Ltd Preparation of removing agent for sulfureous malodorant substance
JPS5799334A (en) * 1980-12-05 1982-06-21 Takeda Chem Ind Ltd Activated carbon for deodorization and removal of offensive odor component
JPH0275319A (en) * 1987-09-07 1990-03-15 Soc Natl Elf Aquitaine <Snea> Method for performing absorbing or desorbing reaction between gas and solid
JPH1133397A (en) * 1997-07-25 1999-02-09 Takeda Chem Ind Ltd Bromine affixed active carbon
JP2001129392A (en) * 1999-11-08 2001-05-15 Takeda Chem Ind Ltd Adsorbent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133764A (en) * 1974-09-04 1976-03-23 Hitachi Ltd
JPS5551422A (en) * 1978-10-11 1980-04-15 Takeda Chem Ind Ltd Deodorization
JPS565133A (en) * 1979-06-25 1981-01-20 Toyo Soda Mfg Co Ltd Preparation of removing agent for sulfureous malodorant substance
JPS5799334A (en) * 1980-12-05 1982-06-21 Takeda Chem Ind Ltd Activated carbon for deodorization and removal of offensive odor component
JPH0275319A (en) * 1987-09-07 1990-03-15 Soc Natl Elf Aquitaine <Snea> Method for performing absorbing or desorbing reaction between gas and solid
JPH1133397A (en) * 1997-07-25 1999-02-09 Takeda Chem Ind Ltd Bromine affixed active carbon
JP2001129392A (en) * 1999-11-08 2001-05-15 Takeda Chem Ind Ltd Adsorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012011281A (en) * 2010-06-29 2012-01-19 Cataler Corp Combined odor deodorant
JP2012011282A (en) * 2010-06-29 2012-01-19 Cataler Corp Sulfur based odor deodorant

Also Published As

Publication number Publication date
JP4728614B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US3876393A (en) Method and article for removing mercury from gases contaminated therewith
US4215096A (en) Removal of acidic contaminants from gas streams by caustic impregnated activated carbon
US4273751A (en) Removal of acidica contaminants from gas streams by caustic impregnated activated carbon
JP4554004B2 (en) Lower aldehyde adsorbent
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JP3766771B2 (en) Adsorbent
JP4728614B2 (en) Deodorizing adsorbent and deodorizing method
JP2006272078A (en) Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JP3830234B2 (en) Bromine impregnated activated carbon
JP4778695B2 (en) Deodorizing adsorbent
JP4278495B2 (en) Compound odor deodorant
JP6512855B2 (en) Composition for supporting iodine, deodorant prepared using the composition, method for producing the same, and method for deodorizing using the same
JP2003070893A (en) Adsorbent
JPH09262273A (en) Adsorbing remover of sulfur compound
JP5441836B2 (en) Compound odor deodorant
JP5872186B2 (en) Production method of radioactive metal adsorbent and adsorption method of radioactive metal
JP2009247978A (en) Adsorbent for lower aldehydes
JP5069838B2 (en) Method for producing activated carbon for deodorizer and activated carbon for deodorizer
JP2009279522A (en) Oxide catalyst and method for preparing oxide catalyst, as well as deodorant and deodorizing filter
JP2007237169A (en) Adsorbent for treating liquid phase and its manufacturing method
JP4606013B2 (en) Compound odor deodorant
JP5528234B2 (en) Sulfur odor deodorant
JPS62114632A (en) Adsorbent for mercury contained in gas
JP2001276198A (en) Deodorant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees