JP2006061852A - Method for recovering useful hydrocarbon from sludge - Google Patents

Method for recovering useful hydrocarbon from sludge Download PDF

Info

Publication number
JP2006061852A
JP2006061852A JP2004248151A JP2004248151A JP2006061852A JP 2006061852 A JP2006061852 A JP 2006061852A JP 2004248151 A JP2004248151 A JP 2004248151A JP 2004248151 A JP2004248151 A JP 2004248151A JP 2006061852 A JP2006061852 A JP 2006061852A
Authority
JP
Japan
Prior art keywords
sludge
catalyst
acetone
iron oxide
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004248151A
Other languages
Japanese (ja)
Other versions
JP4522193B2 (en
Inventor
Takao Masuda
隆夫 増田
Terufusa Tako
輝興 多湖
Tetsuya Yanase
哲也 柳瀬
Yuichi Ikeda
裕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2004248151A priority Critical patent/JP4522193B2/en
Publication of JP2006061852A publication Critical patent/JP2006061852A/en
Application granted granted Critical
Publication of JP4522193B2 publication Critical patent/JP4522193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering a useful hydrocarbon from sludge, by which the useful hydrocarbon such as acetone can be recovered efficiently from various kinds of sludge including digested sludge discharged from a sewage plant or the like by using a Zr-deposited iron oxide-based catalyst. <P>SOLUTION: This method comprises the steps of solubilizing various kinds of sludge including the digested sludge, cracking the solubilized sludge catalytically by the Zr-deposited iron oxide-based catalyst and recovering acetone-based ketones. The sludge is preferably solubilized in a water-saturated condition at 280-300°C. The iron oxide-based catalyst preferably contains Al (it is preferably a Zr-Fe-Al catalyst). When the Zr-Fe-Al catalyst is used, the sludge can continuously be cracked catalytically by a flow reactor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Zrを担持した鉄酸化物系触媒を利用して、下水処理場等から出る消化汚泥を始めとする各種汚泥からアセトン等の有用な炭化水素を効率良く回収することができる汚泥から有用炭化水素を回収する方法に関するものである。   The present invention uses an iron oxide-based catalyst supporting Zr, from sludge capable of efficiently recovering useful hydrocarbons such as acetone from various sludges including digested sludge from sewage treatment plants. The present invention relates to a method for recovering useful hydrocarbons.

現在、下水処理場等から出る汚泥は大量にあり、その量は下水道の普及により今後益々増加することが予想されている。この汚泥は大都市では主として焼却処理され、地方では主に埋設処理されているのが普通である。しかしながら、汚泥を焼却あるいは埋設処理するには多くのエネルギーや処理設備や人件費等を必要とするため多大な費用がかかるという問題点があった。   At present, there is a large amount of sludge from sewage treatment plants, and the amount is expected to increase more and more in the future due to the spread of sewerage. This sludge is usually incinerated in large cities and mainly buried in rural areas. However, incinerating or burying sludge requires a lot of energy, processing equipment, labor costs, and the like, and thus has a problem that it is very expensive.

一方、最近では資源の乏しい我が国において、汚泥のようなバイオマス廃棄物を、ただ単に浄化処理するにとどまらず、資源として再生し利用していく必要性が高まってきている。何故なら、従来の処理方法では燃焼ガスによる大気汚染や、CO発生による地球温暖化等の環境問題や、化石燃料の枯渇に伴うエネルギー問題があるからである。従って、バイオマスの一種である各種汚泥も適当な方法で処理することにより、アルコール等の有用化学品として再資源化することが要望されており、例えば特許文献1には有機性廃棄物を酸化鉄系触媒により分解し、アセトンなどの有用廃棄物を回収する方法が提案されている。しかし特許文献1の方法では有用廃棄物の収率が低くまた触媒寿命も短いなど、実用化するうえでの問題が多く残されていた。
特開2001−129405号公報
On the other hand, recently in Japan, where resources are scarce, there is an increasing need to recycle and use biomass waste such as sludge as a resource, not just purification. This is because conventional treatment methods have environmental problems such as air pollution due to combustion gas, global warming due to CO 2 generation, and energy problems accompanying depletion of fossil fuels. Accordingly, various sludges, which are a kind of biomass, are required to be recycled as useful chemicals such as alcohol by treating them with an appropriate method. For example, Patent Document 1 discloses that organic waste is converted to iron oxide. A method of decomposing with a system catalyst and recovering useful waste such as acetone has been proposed. However, the method of Patent Document 1 has many problems in practical use such as a low yield of useful waste and a short catalyst life.
JP 2001-129405 A

本発明は上記のような問題点を解決して、バイオマスの一種である消化汚泥を始めとする各種汚泥の再資源化を図り、下水処理場等から出る汚泥からアセトン等の有用な炭化水素を効率良く回収することができる消化汚泥から有用炭化水素を回収する方法を提供することを目的とするものである。また本発明のその他の目的は、触媒寿命の長期化を図り、実用性に優れた汚泥からの有用炭化水素回収方法を提供することである。   The present invention solves the above problems and aims to recycle various types of sludge including digested sludge which is a kind of biomass, and to use useful hydrocarbons such as acetone from sludge from sewage treatment plants. It is an object of the present invention to provide a method for recovering useful hydrocarbons from digested sludge that can be efficiently recovered. Another object of the present invention is to provide a method for recovering useful hydrocarbons from sludge having a long service life and excellent practicality.

上記課題を解決するためになされた本発明の汚泥から有用炭化水素を回収する方法は、消化汚泥を始めとする各種汚泥を可溶化後、Zrを担持した鉄酸化物系触媒により接触分解してアセトンを主体とするケトン類を回収することを特徴とするものである。
また、消化汚泥を始めとする各種汚泥は280〜300℃の水分飽和条件下で可溶化することができ、これを請求項2に係る発明とする。また、鉄酸化物系触媒としてAlを含有するものが好ましく、これを請求項3に係る発明とする。更に、Alを含有する鉄酸化物系触媒を用いる場合は、接触分解を流通式反応器により連続的に行うことができ、これを請求項4に係る発明とする。
The method for recovering useful hydrocarbons from the sludge of the present invention made in order to solve the above problems is to solubilize various sludges including digested sludge, and then catalytically decompose them with an iron oxide catalyst supporting Zr. It is characterized by recovering ketones mainly composed of acetone.
Moreover, various sludges including digested sludge can be solubilized under a water saturation condition of 280 to 300 ° C., and this is the invention according to claim 2. Moreover, what contains Al as an iron oxide catalyst is preferable, and this is the invention according to claim 3. Furthermore, when an iron oxide catalyst containing Al is used, catalytic cracking can be carried out continuously using a flow reactor, and this is the invention according to claim 4.

本発明の汚泥から有用炭化水素を回収する方法では、消化汚泥を始めとする各種汚泥を可溶化した可溶性有機物を、Zrを担持させた鉄酸化物系触媒を用いて接触分解することにより、可溶性有機物の酸化分解を加速させてアセトンを主体とするケトン類を発生させるとともに、アセトンに対しては不活性となって大量のアセトンを回収できる。特に鉄酸化物系触媒としてAlを含有させたものを使用すれば、触媒寿命を長期化することが可能となる。   In the method for recovering useful hydrocarbons from the sludge of the present invention, soluble organic matter solubilized various sludges including digested sludge is dissolved by catalytic cracking using an iron oxide catalyst supporting Zr. It accelerates the oxidative decomposition of organic matter to generate ketones mainly composed of acetone, and is inert to acetone and can recover a large amount of acetone. In particular, if an iron oxide catalyst containing Al is used, the catalyst life can be extended.

以下に、本発明の好ましい形態を示す。
本発明に係る汚泥から有用炭化水素を回収する方法では、消化汚泥を始めとする各種汚泥を可溶化した後、Zrを担持した鉄酸化物系触媒により接触分解してアセトンを主体とするケトン類を回収する。
本発明でいう消化汚泥を始めとする各種汚泥とは、家庭ゴミや生ゴミ等由来の廃棄物汚泥、畜産糞や投棄魚や食品加工残渣等の農林水産汚泥などの各種の汚泥をいう。
ここで汚泥を可溶化するのは、可溶性有機物として後述する鉄酸化物系触媒による接触分解を効率良く行うためである。通常、下水汚泥は含水率が98%以上と非常に高いので、汚泥に高分子凝集剤を加えてできた固形分を脱水機で機械的に圧力を加えて水分を減少させ、含水率が80%程度の脱水ケーキとし、この脱水ケーキを過酸化水素水などで酸化分解して可溶性有機物とするのである。
Below, the preferable form of this invention is shown.
In the method for recovering useful hydrocarbons from sludge according to the present invention, various sludges such as digested sludge are solubilized, and then catalytically decomposed with an iron oxide catalyst supporting Zr to make ketones mainly composed of acetone. Recover.
The various sludges such as digested sludge as used in the present invention refers to various sludges such as waste sludge derived from household garbage, raw garbage, etc., and agricultural, forestry and fisheries sludge such as livestock dung, dumped fish and food processing residues.
The reason why the sludge is solubilized here is to efficiently perform catalytic cracking with an iron oxide-based catalyst described later as a soluble organic substance. Normally, the sewage sludge has a very high water content of 98% or more. Therefore, the solid content obtained by adding the polymer flocculant to the sludge is mechanically pressurized with a dehydrator to reduce the water content, and the water content is 80%. % Dehydrated cake, and this dehydrated cake is oxidatively decomposed with a hydrogen peroxide solution or the like to form a soluble organic substance.

例えば、汚泥を亜臨界処理により可溶化し可溶性有機物とすることができる。具体的には、250〜300℃の水分飽和条件下で可溶化する。250℃未満では、十分に可溶化することが難しく、300℃より高い温度での処理は装置が大掛かりとなってコスト的に高くなるので、前記範囲が好ましい。
このような水熱可溶化により、以下のような生成液(可溶化液)が得られる。
全炭素:1.082 mol/L
全窒素:0.370 mol/L
Ca:0.0012 mol/L
P:0.0027 mol/L
For example, sludge can be solubilized by a subcritical process to form a soluble organic substance. Specifically, it is solubilized under a moisture saturation condition of 250 to 300 ° C. When the temperature is lower than 250 ° C., it is difficult to sufficiently solubilize, and the treatment at a temperature higher than 300 ° C. is expensive because the apparatus becomes large and the cost becomes high.
By such hydrothermal solubilization, the following production solution (solubilization solution) is obtained.
Total carbon: 1.082 mol / L
Total nitrogen: 0.370 mol / L
Ca: 0.0012 mol / L
P: 0.0027 mol / L

次いで、このようにして得られた可溶性有機物をZrを担持した鉄酸化物系触媒により接触分解してアセトンを主体とするケトン類を回収する。
Zrを担持した鉄酸化物系触媒としては、FeOに含浸法によりZrOを担持したZr/Fe触媒や、FeとAl塩を共沈させた後、含浸法によりZrOを担持したZr/Fe−Al触媒を用いることができる。更には、ZrOを高分散化させて共沈法によって得たZr−Fe触媒やZr−Fe−Al触媒を用いることもできる。本発明者は、このようなZrを担持した鉄酸化物系触媒は単なるFe触媒と異なり、液相系の反応温度領域においても十分な水分解能を発揮し、水から生成した活性酸素種がFe触媒上で可溶化有機物の酸化分解を促進するので、水熱条件下での可溶性有機物の接触分解に適した触媒となるとの知見に基き、本発明を完成するに至ったのである。
Next, the thus obtained soluble organic substance is catalytically decomposed with an iron oxide catalyst supporting Zr to recover ketones mainly composed of acetone.
The iron oxide based catalyst carrying Zr, Zr / Fe catalysts and carrying ZrO 2 by impregnation method FeO X, then co-precipitated Fe and Al salts, carrying ZrO 2 by impregnation Zr / An Fe—Al catalyst can be used. Furthermore, a Zr—Fe catalyst or a Zr—Fe—Al catalyst obtained by co-precipitation with highly dispersed ZrO 2 can also be used. The present inventor has found that such an iron oxide catalyst supporting Zr is different from a simple Fe catalyst and exhibits sufficient water resolution even in a liquid phase reaction temperature region, and the active oxygen species generated from water is Fe. Since the oxidative decomposition of the solubilized organic substance is promoted on the catalyst, the present invention has been completed based on the knowledge that it becomes a catalyst suitable for the catalytic decomposition of the soluble organic substance under hydrothermal conditions.

また、最終的にアセトンを主体とするケトン類を回収できるのは、以下の理由によるものと考える。
ZrO上で生成した活性酸素種がFeO表面(主反応場)へ移動して酸化分解を加速させると、可溶性有機物が酸化分解してアルコールや有機酸ができる。例えば、エステルであれば、加水分解でアルコールや有機酸ができる。
本発明者の研究によればFeOは脱COの活性を持つことがわかっており、そのため有機酸は脱COにより炭素数が一つ少ない有機物(炭化水素)になる。即ち、酸化分解によって先ずアルコールになる。また、アルコールは酸化してアルデヒドになり、炭素数の大きい分子は他の部位でも酸化分解を受けて随時低分子化する。例えば、炭素数3のものはプロピオンアルコール→プロピオンアルデヒドと順次酸化する。
一方、ギブスの自由エネルギーを計算すると、アルデヒドとケトンは平衡関係にあるため、プロピオンアルデヒド→アセトンは平衡関係にある。その平衡は、300℃で平衡定数はおおよそ60であり、アセトンに偏っている。つまり、プロピオンアルデヒドができたら、それはアセトンに変化する。また、一部のプロピオンアルデヒドは更に酸化されて有機酸となり、脱COを受けて低分子化し、エチルアルコールに変化する。
アセトンは酸化を受けにくいため、アセトンに対してZrO/FeO触媒は不活性になる。以上の理由によりZrを担持した鉄酸化物系触媒を用いてアセトンを高収率で回収できることとなる。
なお、入口(消化汚泥)から出口(アセトン)までのトータル収率を、消化汚泥を100として示すと下記のとおりである。
消化汚泥(100)→水熱可溶化出口(82)→濃縮出口(72)→ケトン化出口(61)
Further, the reason why the ketones mainly composed of acetone can be finally recovered is considered as follows.
When active oxygen species generated on ZrO 2 move to the FeO X surface (main reaction field) and accelerate oxidative decomposition, soluble organic substances are oxidized and decomposed to produce alcohols and organic acids. For example, in the case of an ester, an alcohol or an organic acid is produced by hydrolysis.
According to the inventor's research, it has been found that FeO X has the activity of de-CO 2 , so that the organic acid becomes an organic substance (hydrocarbon) having one less carbon number by de-CO 2 . That is, it becomes alcohol first by oxidative decomposition. In addition, alcohol oxidizes to aldehyde, and molecules with a large number of carbons undergo oxidative degradation at other sites and become low molecular as needed. For example, those having 3 carbon atoms are sequentially oxidized with propion alcohol → propionaldehyde.
On the other hand, when Gibbs free energy is calculated, since aldehyde and ketone are in an equilibrium relationship, propionaldehyde → acetone is in an equilibrium relationship. The equilibrium is 300 ° C., the equilibrium constant is approximately 60, and it is biased toward acetone. That is, once propionaldehyde is formed, it is converted to acetone. Further, some propionaldehyde is further oxidized to an organic acid, undergoes de-CO 2 to lower the molecular weight, and changes to ethyl alcohol.
Since acetone is less susceptible to oxidation, the ZrO 2 / FeO X catalyst becomes inactive with respect to acetone. For the above reasons, acetone can be recovered in a high yield using an iron oxide catalyst supporting Zr.
The total yield from the inlet (digested sludge) to the outlet (acetone) is shown as follows, where digested sludge is 100.
Digested sludge (100) → Hydrothermal solubilization outlet (82) → Concentration outlet (72) → Ketonization outlet (61)

触媒の安定性を調べるために、加速劣化試験として重質油の水蒸気分解を行った結果を図1に示す。この図1から明らかなように、反応→再生操作を繰り返すと、Zr/Fe触媒の活性は低下するが、Alを導入したZr/Fe−Al触媒は反応→再生操作を繰り返すことで活性向上が見られた。ただし、再生操作を行わずに反応を続けると活性が低下した。一方、Zrを高分散させてAlを導入したZr−Fe−Al触媒は、再生操作を行わずに反応を続けても初期活性が保たれていることが確認できた。
従って、共沈法で調整したZr−Fe触媒とZr−Fe−Al触媒が、活性と安定性に関して、消化汚泥の接触分解に適していることがわかった。
In order to investigate the stability of the catalyst, the result of steam cracking of heavy oil as an accelerated deterioration test is shown in FIG. As is apparent from FIG. 1, when the reaction → regeneration operation is repeated, the activity of the Zr / Fe catalyst decreases, but the activity of the Zr / Fe—Al catalyst into which Al is introduced is improved by repeating the reaction → regeneration operation. It was seen. However, the activity decreased when the reaction was continued without performing the regeneration operation. On the other hand, it was confirmed that the Zr—Fe—Al catalyst in which Zr was highly dispersed and Al was introduced maintained the initial activity even if the reaction was continued without performing the regeneration operation.
Therefore, it was found that the Zr—Fe catalyst and the Zr—Fe—Al catalyst prepared by the coprecipitation method are suitable for catalytic cracking of digested sludge with respect to activity and stability.

次に、Zr−Fe触媒を用いてバッチ式反応器で消化汚泥の分解試験を行った結果を図2に示す。Fe触媒を用いた場合に比べて多量のアセトンを主体とするケトン類が生成することが確認できた。即ち、Zrの水分解能によって消化汚泥がケトン類へ分解されることがわかった。
また、より熱安定性が高められたZr−Fe−Al触媒を用いて流通式反応器で消化汚泥の分解試験を行った結果を図2に示す。この場合も多量のアセトンを主体とするケトン類が生成することが確認でき、Zr−Fe−Al触媒を用いることにより、消化汚泥からアセトンを連続的に回収することが可能であることがわかった。
Next, FIG. 2 shows the results of a digestion sludge decomposition test performed in a batch reactor using a Zr—Fe catalyst. It was confirmed that ketones mainly composed of a large amount of acetone were produced as compared with the case where the Fe catalyst was used. That is, it was found that digested sludge was decomposed into ketones by the water resolution of Zr.
Moreover, the result of having performed the decomposition | disassembly test of digested sludge with the flow-type reactor using the Zr-Fe-Al catalyst whose heat stability was improved more is shown in FIG. Also in this case, it was confirmed that ketones mainly composed of a large amount of acetone were produced, and it was found that acetone can be continuously recovered from digested sludge by using a Zr-Fe-Al catalyst. .

以上の説明から明らかなように、本発明は消化汚泥を始めとする各種汚泥を可溶化した後、Zrを担持した鉄酸化物系触媒により接触分解することで、アセトンを主体とするケトン類を高収率で回収できることとなり、バイオマスの一種である汚泥の再資源化を図り、下水処理場等から出る汚泥からアセトン等の有用な炭化水素を効率良く回収することができることとなる。   As is clear from the above explanation, the present invention solubilizes various sludges including digested sludge, and then catalytically decomposes them with an iron oxide catalyst supporting Zr, whereby ketones mainly composed of acetone are obtained. Recovering sludge, which is a kind of biomass, is possible, and useful hydrocarbons such as acetone can be efficiently recovered from sludge from a sewage treatment plant.

重質油分解反応の経時変化を示すグラフである。It is a graph which shows a time-dependent change of heavy oil decomposition reaction. バイオマス廃液分解での生成物収率を示すグラフである。It is a graph which shows the product yield in biomass waste liquid decomposition | disassembly.

Claims (4)

消化汚泥を始めとする各種汚泥を可溶化した後、Zrを担持した鉄酸化物系触媒により接触分解してアセトンを主体とするケトン類を回収することを特徴とする汚泥から有用炭化水素を回収する方法。   Recover useful hydrocarbons from sludge, characterized by solubilizing various sludges including digested sludge and then catalytically decomposing them with an iron oxide catalyst supporting Zr to recover ketones mainly composed of acetone how to. 消化汚泥を始めとする各種汚泥を、280〜300℃の水分飽和条件下で可溶化する請求項1に記載の汚泥から有用炭化水素を回収する方法。   The method for recovering useful hydrocarbons from sludge according to claim 1, wherein various sludges including digested sludge are solubilized under a water saturation condition of 280 to 300 ° C. 鉄酸化物系触媒がAlを含有するものである請求項1または2に記載の汚泥から有用炭化水素を回収する方法。   The method for recovering useful hydrocarbons from sludge according to claim 1 or 2, wherein the iron oxide catalyst contains Al. 流通式反応器により連続的に接触分解を行う請求項3に記載の汚泥から有用炭化水素を回収する方法。
The method for recovering useful hydrocarbons from sludge according to claim 3, wherein the catalytic cracking is continuously carried out by a flow reactor.
JP2004248151A 2004-08-27 2004-08-27 Method for recovering useful hydrocarbons from sludge Active JP4522193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248151A JP4522193B2 (en) 2004-08-27 2004-08-27 Method for recovering useful hydrocarbons from sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248151A JP4522193B2 (en) 2004-08-27 2004-08-27 Method for recovering useful hydrocarbons from sludge

Publications (2)

Publication Number Publication Date
JP2006061852A true JP2006061852A (en) 2006-03-09
JP4522193B2 JP4522193B2 (en) 2010-08-11

Family

ID=36108773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248151A Active JP4522193B2 (en) 2004-08-27 2004-08-27 Method for recovering useful hydrocarbons from sludge

Country Status (1)

Country Link
JP (1) JP4522193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064652A1 (en) * 2008-12-03 2010-06-10 国立大学法人 北海道大学 Process for producing isobutylene from acetone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266389B (en) * 2018-09-28 2020-09-04 浙江科茂能源科技有限公司 Synchronous recombination system and method for catalytic cracking of oil sludge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201590A (en) * 1996-01-26 1997-08-05 Osaka Gas Co Ltd Simultaneous treatment of organic solid waste and liquid waste
JPH09201589A (en) * 1996-01-26 1997-08-05 Osaka Gas Co Ltd Treatment of water-containing waste
JP2000167598A (en) * 1998-12-02 2000-06-20 Hitachi Ltd Oxidation treatment apparatus using supercritical/ subcritical water
JP2001129405A (en) * 1999-08-25 2001-05-15 Ngk Insulators Ltd Iron oxide-based catalyst for decomposing organic waste, its manufacturing method and treating method of organic waste
JP2003126803A (en) * 2001-10-26 2003-05-07 Ngk Insulators Ltd Treatment method for nitrogen-containing organic waste
JP2003201486A (en) * 2001-09-21 2003-07-18 Univ Shizuoka Method for gasifying organic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201590A (en) * 1996-01-26 1997-08-05 Osaka Gas Co Ltd Simultaneous treatment of organic solid waste and liquid waste
JPH09201589A (en) * 1996-01-26 1997-08-05 Osaka Gas Co Ltd Treatment of water-containing waste
JP2000167598A (en) * 1998-12-02 2000-06-20 Hitachi Ltd Oxidation treatment apparatus using supercritical/ subcritical water
JP2001129405A (en) * 1999-08-25 2001-05-15 Ngk Insulators Ltd Iron oxide-based catalyst for decomposing organic waste, its manufacturing method and treating method of organic waste
JP2003201486A (en) * 2001-09-21 2003-07-18 Univ Shizuoka Method for gasifying organic material
JP2003126803A (en) * 2001-10-26 2003-05-07 Ngk Insulators Ltd Treatment method for nitrogen-containing organic waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064652A1 (en) * 2008-12-03 2010-06-10 国立大学法人 北海道大学 Process for producing isobutylene from acetone
JP5611813B2 (en) * 2008-12-03 2014-10-22 国立大学法人北海道大学 Method for producing isobutylene from acetone

Also Published As

Publication number Publication date
JP4522193B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
Su et al. Hydrogen production and heavy metal immobilization using hyperaccumulators in supercritical water gasification
Cao et al. Hydrogen production from supercritical water gasification of chicken manure
Djandja et al. From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review
Koottatep et al. Sludge stabilization and energy recovery by hydrothermal carbonization process
JP5891573B2 (en) Water treatment method, method for producing denitrification agent, and water treatment system
Yek et al. Production of value-added hydrochar from single-mode microwave hydrothermal carbonization of oil palm waste for de-chlorination of domestic water
JP4822800B2 (en) Methane fermentation treatment method for garbage or food residue
JP4522193B2 (en) Method for recovering useful hydrocarbons from sludge
Fumoto et al. Production of ketones from sewage sludge over zirconia-supporting iron oxide catalysts in a steam atmosphere
JP2004352756A (en) Method for producing fuel gas
CN116748285A (en) Method for treating hazardous waste of organic phosphate
KR101990885B1 (en) Method for preparation biomethane using organic material
Dudziak et al. Solar pyrolysis tars treatment using oxidation processes–Efficiency and toxicity analysis
JP3611292B2 (en) Wastewater treatment method
KR20220036823A (en) Solid fuel manufacturing method and solid fuel that reduce odor using hydrothermal carbonation reactio
JP2006187750A (en) Sulfate pitch treatment method
JP2530277B2 (en) Solid waste and wastewater treatment methods
Lentz et al. Thermochemical conversion: A prospective swine manure solution for North Carolina
JP2005021797A (en) Organic waste treatment method
JP2005152838A (en) Method and facility for treating organic waste compositely
Dung et al. Turning peroxymonosulfate activation into singlet oxygen-dominated pathway for ofloxacin degradation by co-doping N and S into durian peel-derived biochar
JP2002192175A (en) Method and apparatus for decomposing organic matter
Raju et al. Research Article Fluidized Immobilized Carbon Catalytic Oxidation Reactor for Treating Domestic Wastewater
CN115010220B (en) Electrode with phosphide synergistic hydroxide heterostructure and preparation method thereof
Prasad Raju et al. Fluidized immobilized carbon catalytic oxidation reactor for treating domestic wastewater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250