JP2006061835A - Micro-fluid chip device - Google Patents

Micro-fluid chip device Download PDF

Info

Publication number
JP2006061835A
JP2006061835A JP2004247688A JP2004247688A JP2006061835A JP 2006061835 A JP2006061835 A JP 2006061835A JP 2004247688 A JP2004247688 A JP 2004247688A JP 2004247688 A JP2004247688 A JP 2004247688A JP 2006061835 A JP2006061835 A JP 2006061835A
Authority
JP
Japan
Prior art keywords
microfluidic chip
stock solution
flow path
chip device
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004247688A
Other languages
Japanese (ja)
Other versions
JP4415795B2 (en
Inventor
Zen Ito
禅 伊東
Kiju Endo
喜重 遠藤
Akira Koide
晃 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2004247688A priority Critical patent/JP4415795B2/en
Publication of JP2006061835A publication Critical patent/JP2006061835A/en
Application granted granted Critical
Publication of JP4415795B2 publication Critical patent/JP4415795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro-fluid chip device which is easily manufactured with a simple constitution and easily permits temperature adjustment. <P>SOLUTION: The micro-fluid chip device is constituted so that a micro-fluid chip main body 10 has a pair of main surfaces opposed to each other and has a treating flow path 11 of micro cross-section on one main surface of them, wherein a cover body 30 with which the treating flow path is covered is disposed on the one main surface, at least two kinds of raw liquid are supplied from an edge side of the flow path and treated liquid having been subjected to the desired treatment with respect to the respective raw liquid is obtained from the other edge side of the treating flow path. In the micro-fluid chip main body 10, flow paths 14a, 14b for raw liquid which allows the respective raw water to individually flow are disposed on the other main surface side opposed to the one main surface, at the same time, a cover body 50 with which the respective flow paths for raw water are covered is disposed and a temperature adjusting means 90 for adjusting temperatures of the respective raw liquid flowing through the respective flow paths for the raw water is disposed on the cover body 50 with which the respective flow paths for the raw liquid are covered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一主面に微小断面の処理流路を持つマイクロ流体チップ本体が該主面に該処理流路を覆う蓋体を備え、該流路の一端側から少なくとも2種類の原液を供給し、該処理流路の他端側から該各原液について所望の処理が終了した処理済み液を得るマイクロ流体チップ装置に関する。   The present invention provides a microfluidic chip body having a processing channel with a minute cross section on one main surface, and a lid covering the processing channel on the main surface, and supplies at least two types of stock solutions from one end side of the channel In addition, the present invention relates to a microfluidic chip device that obtains a processed liquid in which a desired process has been completed for each stock solution from the other end side of the processing channel.

マイクロ流体チップ装置は、マイクロ流体チップ本体が数μmから数百μmの微小な流路を持ち、その流路内で液体の混合や反応などを行う装置で、マイクロ流体チップ本体が持つ微小流路内では液体のレイノルズ数は数百以下となり、従来の反応装置のような乱流支配ではなく、層流支配の世界となる。   A microfluidic chip device is a device in which a microfluidic chip main body has a minute flow path of several μm to several hundred μm, and performs mixing and reaction of liquid in the flow path. Within this, the Reynolds number of the liquid becomes several hundred or less, and it becomes a world of laminar flow control, not turbulent flow control like a conventional reactor.

この層流支配下での液体は慣性よりも粘性による影響を強く受けるので、高粘度液体の送液は困難となる。また流路内の液量が微小であるため高速な混合や反応が可能であるが、発熱反応などにより液温が急激に上昇し、高温で副生成物を生じて予定した処理済み液の収率が低下する問題もある。   Since the liquid under the laminar flow is more influenced by the viscosity than the inertia, it is difficult to feed the high viscosity liquid. In addition, the amount of liquid in the flow path is very small, so high-speed mixing and reaction are possible, but the temperature of the liquid rises rapidly due to exothermic reaction, etc. There is also a problem that the rate decreases.

この様な問題に対処するために、マイクロ流体チップ装置には温度調整機能が必要で、下記の特許文献1においては、マイクロ流体チップ本体の厚さ方向に蛇行した流路を設け、のマイクロ流体チップ本体の両主面から加熱や冷却をすることにより温度調整を図ることを提案している。   In order to cope with such a problem, the microfluidic chip device needs a temperature adjusting function. In the following Patent Document 1, a microfluidic device is provided with a flow path meandering in the thickness direction of the microfluidic chip body. It has been proposed to adjust the temperature by heating and cooling from both main surfaces of the chip body.

特開2004−130219号公報JP 2004-130219 A

上記従来技術では複数の薄板を積層して流路を形成する構造であるため、各薄板間の接合などに高度の技術を必要とする。また、マイクロ流体チップ本体の厚さ方向に温度分布(温度差)を設けるものであるため、温度設定が容易ではない問題がある。   Since the conventional technology has a structure in which a plurality of thin plates are stacked to form a flow path, a high level of technology is required for joining the thin plates. Moreover, since temperature distribution (temperature difference) is provided in the thickness direction of the microfluidic chip body, there is a problem that temperature setting is not easy.

それゆえ本発明の目的は、簡単な構成で製造が容易であり、温度調整も容易なマイクロ流体チップ装置を提供することにある。   Therefore, an object of the present invention is to provide a microfluidic chip device that can be easily manufactured with a simple structure and can be easily adjusted in temperature.

上記目的を達成する本発明の特徴とするところは、対向する1対の主面を有し、その一主面に微小断面の処理流路を持つマイクロ流体チップ本体が、該一主面に該処理流路を覆う蓋体を備え、該流路の一端側から少なくとも2種類の原液を供給し、該処理流路の他端側から該各原液について所望の処理が終了した処理済み液を得るマイクロ流体チップ装置において、該マイクロ流体チップ本体は該一主面に対向した他の主面側に該各原液を個別に流す原液用流路を設けるとともに該各原液用流路を覆う蓋体を設け、該各原液用流路を覆う蓋体に該各原液用流路を流れる各原液の温度を調整する温度調整手段を設けたことにある。   A feature of the present invention that achieves the above object is that a microfluidic chip body having a pair of opposing main surfaces and having a processing channel with a micro-section on one main surface is provided on the one main surface. A lid that covers the processing flow path is provided, and at least two types of stock solutions are supplied from one end of the flow path to obtain a processed liquid in which a desired process has been completed for each stock solution from the other end of the processing flow path. In the microfluidic chip device, the microfluidic chip main body is provided with a stock solution flow path for individually flowing the stock solution on the other main surface side facing the one main surface, and a lid covering the stock solution flow path. The temperature adjusting means for adjusting the temperature of each stock solution flowing through each stock solution flow path is provided on the lid that covers each stock solution flow path.

本発明によれば、簡単な構成で製造が容易で温度調整も容易なマイクロ流体チップ装置を得ることができる。   According to the present invention, it is possible to obtain a microfluidic chip device that has a simple configuration and is easy to manufacture and easy to adjust temperature.

以下、マイクロ流体チップ装置の一実施形態について説明する。   Hereinafter, an embodiment of the microfluidic chip device will be described.

以下、本発明マイクロ流体チップ装置の一実施形態として2種類の液体を混合するマイクロ流体チップ装置を図示し説明するが、本発明はこの実施形態により何ら限定されるものではない。   Hereinafter, a microfluidic chip device that mixes two kinds of liquids will be illustrated and described as an embodiment of the microfluidic chip device of the present invention, but the present invention is not limited to this embodiment.

図1はマイクロ流体チップ装置1の概略断面図で、10はマイクロ流体チップ本体、30はマイクロ流体チップ本体10の表面(一主面)を覆う蓋体、50はマイクロ流体チップ本体10の裏面(一主面に対向した他の主面)を覆う蓋体である。70は蓋体30に設けた温度調整手段、90は蓋体50に設けた温度調整手段である。   FIG. 1 is a schematic cross-sectional view of the microfluidic chip device 1, 10 is a microfluidic chip body, 30 is a lid that covers the surface (one main surface) of the microfluidic chip body 10, and 50 is the back surface of the microfluidic chip body 10 ( It is a lid that covers the other main surface facing one main surface. Reference numeral 70 denotes a temperature adjusting means provided on the lid 30, and 90 denotes a temperature adjusting means provided on the lid 50.

マイクロ流体チップ本体10の表面(一主面)には図1〜図3に示すようにY字状の処理流路11を有している。処理流路11は高さ200μmの突起12に囲まれて形成される。処理流路11は2個の原液流路部11a、11bと処理流路部11cと合流部11dから構成される。   A surface (one main surface) of the microfluidic chip body 10 has a Y-shaped processing flow path 11 as shown in FIGS. The processing flow path 11 is formed surrounded by a protrusion 12 having a height of 200 μm. The processing flow path 11 includes two stock solution flow path portions 11a and 11b, a processing flow path portion 11c, and a merging portion 11d.

マイクロ流体チップ10の裏面(他の主面)には図4に示すように略6角形の2個の原液用流路14a,14bを有している。各原液用流路14a,14bは高さ200μmの突起15a,15bに囲まれて形成される。処理流路11と各原液用流路14a,14bは、蓋体30,50で覆われて暗渠式の流路を構成している。   As shown in FIG. 4, the back surface (other main surface) of the microfluidic chip 10 has two substantially hexagonal stock solution channels 14a and 14b. Each of the stock solution channels 14a and 14b is formed surrounded by projections 15a and 15b having a height of 200 μm. The processing flow path 11 and the stock solution flow paths 14a and 14b are covered with lid bodies 30 and 50 to form a culvert type flow path.

処理流路11と各原液用流路14a,14bは処理流路11における各原液流路部11a、11bの先端部分(各図では合流部11dとは反対側となる上方の端部)でマイクロ流体チップ本体10の表裏面に貫通した開孔17a,17bで連通している。   The processing flow channel 11 and the stock solution flow channels 14a and 14b are microscopically formed at the tip portions of the stock solution flow channel portions 11a and 11b in the processing flow channel 11 (upper end portions opposite to the confluence portion 11d in each figure). The fluid chip body 10 communicates with the front and back surfaces of the fluid chips 10 through openings 17a and 17b.

各原液用流路14a,14bの開孔17a,17bとは反対側の端の部分(各図では下端部)において蓋体50の外面側(図1では右側)から各原液用流路14a,14bに連通する開孔51a,51bを設けてあり、開孔51a,51bには蓋体50の外面側に原液供給栓53a,53bを設けてある。   Each stock solution flow path 14a, from the outer surface side (right side in FIG. 1) of the end of each stock solution flow path 14a, 14b opposite to the openings 17a, 17b (the lower end in each figure). Openings 51 a and 51 b communicating with 14 b are provided, and the stock solution supply plugs 53 a and 53 b are provided on the outer surface side of the lid 50 in the openings 51 a and 51 b.

マイクロ流体チップ本体10には処理流路11の処理流路部11cの端部(各図では合流部11dとは反対側となる下端部)において裏面側(図1では右側)に貫通する開孔21を設けてあり、裏面側で高さ200μmの突起22に囲まれた開孔21の表面部は処理済み液排出口23となっている。   The microfluidic chip body 10 has an opening penetrating the back surface side (the right side in FIG. 1) at the end of the processing channel 11c of the processing channel 11 (the lower end opposite to the confluence 11d in each figure). 21 is provided, and the surface portion of the opening 21 surrounded by the protrusion 22 having a height of 200 μm on the back surface side is a treated liquid discharge port 23.

蓋体50には外面側からこの処理済み液排出口23に連通する開孔55を設けてあり、蓋体50には外面側には処理済み液を排出する処理済み液排出栓56を設けてある。   The lid 50 is provided with an opening 55 that communicates with the treated liquid discharge port 23 from the outer surface side. The lid 50 is provided with a treated liquid discharge plug 56 that discharges the treated liquid on the outer surface side. is there.

温度調整手段70,90は、シリコンラバーヒータやニクロム線などの電熱ヒータと冷媒流路をそれぞれ内蔵しており、電熱ヒータにはワイヤ71,91で電力を、冷媒流路には供給栓72,92から冷媒を供給することにより、マイクロ流体チップ本体10を流れる液体に対し−10℃〜80℃までの温度調整が可能で、電力や冷媒の供給量制御のためにマイクロ流体チップ本体10には開孔17a,17bの近傍に温度センサ100a,100bを設けて、原液の温度を確認している。なお、電力と冷媒の供給制御は本発明の主題ではないので、説明を省略する。   The temperature adjusting means 70 and 90 each include an electric heater such as a silicon rubber heater or a nichrome wire and a refrigerant flow path, and the electric heater is provided with electric power via wires 71 and 91, and the refrigerant flow path is provided with a supply plug 72, By supplying the refrigerant from 92, the temperature of the liquid flowing through the microfluidic chip body 10 can be adjusted from -10 ° C to 80 ° C. Temperature sensors 100a and 100b are provided in the vicinity of the openings 17a and 17b to check the temperature of the stock solution. In addition, since supply control of electric power and a refrigerant | coolant is not the theme of this invention, description is abbreviate | omitted.

マイクロ流体チップ本体10は厚さ4mmのステンレス鋼を用いたが、処理する液体の種類に応じて金属,ガラス,シリコン,樹脂などの数mm厚の板材を適宜に選択して使用する。部材の厚さは熱伝導の点からは薄い方が好ましく、両面への流路加工の容易さなどの点からは厚い方が好ましい。送液の条件,温度調整手段70,90の出力などにより適宜に厚さを決定する。   Although the microfluidic chip body 10 is made of stainless steel having a thickness of 4 mm, a plate material having a thickness of several mm such as metal, glass, silicon, or resin is appropriately selected and used depending on the type of liquid to be processed. The thickness of the member is preferably thin from the viewpoint of heat conduction, and thicker from the viewpoint of easy passage processing on both surfaces. The thickness is appropriately determined according to the condition of liquid feeding, the output of the temperature adjusting means 70 and 90, and the like.

蓋体30,50はマイクロ流体チップ本体10と同様にステンレス鋼を用いており、マイクロ流体チップ本体10と接触する面にはPTFE(フッ素樹脂)コーティングを施している。マイクロ流体チップ本体10と蓋体30,50は、10箇所のネジ穴にM3ネジを通して締結している。この時、マイクロ流体チップ本体10チップ上の突起12,15a,15b,22などが蓋体30,50のPTFE層に食い込み、液体が漏れないようシールしている。   The lids 30 and 50 are made of stainless steel in the same manner as the microfluidic chip main body 10, and the surface in contact with the microfluidic chip main body 10 is coated with PTFE (fluororesin). The microfluidic chip body 10 and the lids 30 and 50 are fastened through M3 screws in 10 screw holes. At this time, the protrusions 12, 15a, 15b, 22 and the like on the chip 10 of the microfluidic chip main body bite into the PTFE layer of the lids 30 and 50, and are sealed so that the liquid does not leak.

ネジを用いて締結する事により、溶接などの接合技術を組み立てに用いる必要がなくなり、容易にマイクロ流体チップを製作することができる。また、液体の処理を行い流路内が汚染された場合も、ネジを外して分解する事ができるため、微小流路の洗浄が容易である。   By fastening with screws, it is not necessary to use a joining technique such as welding for assembly, and a microfluidic chip can be easily manufactured. Further, even if the inside of the flow path is contaminated by liquid processing, the micro flow path can be easily cleaned because the screw can be removed and disassembled.

本実施形態では前記のようなシール方法を用いたが、この他にメタルシールやゴムなどの柔らかいパッキングを挟み込むなど他の方法を用いてシールしても良い。また温度調整手段70,90はクランプにより蓋体30,90に押し付けて密着させている。   In the present embodiment, the sealing method as described above is used, but other methods such as sandwiching a soft packing such as a metal seal or rubber may be used. Further, the temperature adjusting means 70 and 90 are pressed against the lid bodies 30 and 90 by a clamp and are brought into close contact with each other.

次に、マイクロ流体チップ装置1内での液体の状態について説明する。   Next, the state of the liquid in the microfluidic chip device 1 will be described.

ポンプなどの機器により送液された各液体は、蓋体50に設けられた原液供給栓53a,53bから開孔51a,51bを経て、マイクロ流体チップ本体10裏面の各原液用流路14a,14bへ移動する。ここで原液は、図5に示すように、マイクロ流体チップ本体10の厚さ方向に対して鉛直な方向に厚さ200μmの薄いシート状の流れとなる。   Each liquid sent by a device such as a pump passes through the openings 51a and 51b from the stock solution supply plugs 53a and 53b provided in the lid 50, and the respective stock solution channels 14a and 14b on the back surface of the microfluidic chip body 10. Move to. Here, as shown in FIG. 5, the stock solution becomes a thin sheet-like flow having a thickness of 200 μm in a direction perpendicular to the thickness direction of the microfluidic chip body 10.

この結果、原液はマイクロ流体チップ本体10裏面の蓋体50と広い面積で接触し、温度調整手段90までの熱伝導距離が極めて短いため温度調整手段90が指示する温度へと素早く変化する。   As a result, the stock solution comes into contact with the lid 50 on the back surface of the microfluidic chip body 10 over a wide area, and the heat conduction distance to the temperature adjusting means 90 is extremely short, so that the stock solution quickly changes to the temperature indicated by the temperature adjusting means 90.

これにより、原液が高粘度液体であれば、加熱して粘度は低下して、送液・混合・反応は容易になり、発熱反応を伴う液体であれば、反応に際して事前に液体の温度を下げて、副生成物の発生を阻止することが可能となる。この時、温度調整手段90の熱容量は送液液体のそれより十分に大きい事が好ましい。また、マイクロ流体チップ本体10や蓋体50などの材質は、熱伝導率の高いものであるとさらに好ましい。   As a result, if the stock solution is a high-viscosity liquid, the viscosity will be reduced by heating, and liquid feeding, mixing, and reaction will be easy.If the liquid is an exothermic reaction, the temperature of the liquid will be lowered in advance during the reaction. Thus, the generation of by-products can be prevented. At this time, the heat capacity of the temperature adjusting means 90 is preferably sufficiently larger than that of the liquid feeding liquid. Further, it is more preferable that the material of the microfluidic chip body 10 and the lid body 50 has a high thermal conductivity.

温度調整が終了した液体は、開孔17a,17bを経由してマイクロ流体チップ本体10表面の各原液流路部11a、11bへ移動する。その後、合流部11dに至り、処理流路部11cで各液体同士の混合や反応が行われる。   The liquid whose temperature has been adjusted moves to the stock solution flow path portions 11a and 11b on the surface of the microfluidic chip body 10 via the openings 17a and 17b. Then, it reaches the merging portion 11d, and the liquids are mixed and reacted in the processing flow path portion 11c.

処理流路11は流路高さがマイクロ流体チップ本体10裏面の各原液用流路14a,14bと同じ200μmとなっており、マイクロ流体チップ本体10表面にも温度調整手段70を取りつけてあり、処理流路11においても高い応答性を持った液体の温度調整が可能で、送液中の液温の変化や反応時の発熱・吸熱による液温の変化を抑えることができる。   The processing channel 11 has a channel height of 200 μm, which is the same as the stock solution channels 14 a and 14 b on the back surface of the microfluidic chip body 10, and the temperature adjusting means 70 is attached to the surface of the microfluidic chip body 10. Also in the processing flow path 11, it is possible to adjust the temperature of the liquid having high responsiveness, and it is possible to suppress the change in the liquid temperature during the liquid feeding and the change in the liquid temperature due to the heat generation and heat absorption during the reaction.

このことから、高粘度液体については、加熱することで粘度を低下させて送液に伴う圧力損失を抑え、発熱反応を伴う液体については、反応時に液体を冷却して余分な熱を取り除き生成物の収率を向上させることができる。   From this, for high-viscosity liquids, heating reduces the viscosity and suppresses the pressure loss that accompanies liquid delivery, and for liquids with exothermic reactions, the liquid is cooled during the reaction to remove excess heat and the product The yield of can be improved.

本実施形態では、単純なY字型処理流路を用い、流路の高さも200μmと定めたが、これらの形状及び寸法は処理流量、混合する液体種類などの要因により、適宜変更することができる。   In this embodiment, a simple Y-shaped processing channel is used and the height of the channel is set to 200 μm. However, these shapes and dimensions may be changed as appropriate depending on factors such as the processing flow rate and the type of liquid to be mixed. it can.

処理流路11において混合された液体は、マイクロ流体チップ本体10と蓋体50を連通する開孔21,55を通り処理済み液排出栓56から排出される。   The liquid mixed in the processing flow path 11 is discharged from the processed liquid discharge plug 56 through the openings 21 and 55 communicating with the microfluidic chip body 10 and the lid 50.

マイクロ流体チップ本体10の製作は、1枚の板状部材の両面に突起12,15a,15b,22などを形成するよう切削加工することで各流路11,14a,14b,23や開孔17a,17b,21を設けるだけであり、積層構造時に必要な複雑な接合技術などを用いる必要はなく、マイクロ流体チップ装置1を容易に製作することができる。   The microfluidic chip body 10 is manufactured by cutting each of the flow paths 11, 14 a, 14 b, 23 and the openings 17 a by forming the protrusions 12, 15 a, 15 b, 22, etc. on both surfaces of one plate-like member. , 17b, and 21 are provided, and it is not necessary to use a complicated joining technique or the like necessary for the laminated structure, and the microfluidic chip device 1 can be easily manufactured.

上記実施形態では、温度調整手段70,90に加熱手段と冷却手段を一体に組み込んだ例を示したが、加熱手段と冷却手段を設けた部材を分けて、冷却手段を設けた部材をマイクロ流体チップ本体10側に配置した構成のものとしても良い。   In the above-described embodiment, an example in which the heating means and the cooling means are integrally incorporated in the temperature adjusting means 70 and 90 has been described. However, the member provided with the heating means and the cooling means is divided into the microfluidic members. It is good also as a thing of the structure arrange | positioned at the chip | tip main body 10 side.

温度調整手段70,90は蓋体30,50を合体構成としたものでも良い。温度調整手段70は必要に応じて蓋体30に設けなくても良い。   The temperature adjusting means 70 and 90 may be a combination of the lid bodies 30 and 50. The temperature adjusting means 70 may not be provided on the lid 30 as necessary.

温度調整手段90は、各原液用流路14a,14bを流れる各原液をそれぞれの性状に合った温度とするように、各原液に対応させて分割されていても良い。   The temperature adjusting means 90 may be divided corresponding to each stock solution so that each stock solution flowing through each stock solution channel 14a, 14b has a temperature suitable for each property.

マイクロ流体チップ装置の概略断面図である。It is a schematic sectional drawing of a microfluidic chip device. 図1に示したマイクロ流体チップ装置におけるマイクロ流体チップ本体とその表裏面に設ける蓋体を示す斜視図である。It is a perspective view which shows the microfluidic chip main body in the microfluidic chip apparatus shown in FIG. 1, and the cover body provided in the front and back. 図1に示したマイクロ流体チップ装置におけるマイクロ流体チップ本体の表面を示す図である。It is a figure which shows the surface of the microfluidic chip main body in the microfluidic chip device shown in FIG. 図1に示したマイクロ流体チップ装置におけるマイクロ流体チップ本体の裏面を示す図である。It is a figure which shows the back surface of the microfluidic chip main body in the microfluidic chip device shown in FIG. 図1に示したマイクロ流体チップ装置におけるマイクロ流体チップ本体を液体が流れる状況を説明するための図である。It is a figure for demonstrating the condition where a liquid flows through the microfluidic chip main body in the microfluidic chip device shown in FIG.

符号の説明Explanation of symbols

1…マイクロ流体チップ装置
10…マイクロ流体チップ本体
11…処理流路
12,15a,15b,22…突起
14a,14b…原液用流路
17a,17b,21,51a,51b,55…開孔
53a,53b,56…栓
70,90…温度調整手段
1 ... Microfluidic chip device
10 ... Microfluidic chip body
11 ... Processing channel
12, 15a, 15b, 22 ... projections
14a, 14b ... Stock solution flow path
17a, 17b, 21, 51a, 51b, 55 ... opening
53a, 53b, 56 ... stopper
70, 90 ... temperature adjustment means

Claims (5)

対向する1対の主面を有し、その一主面に微小断面の処理流路を持つマイクロ流体チップ本体が、該一主面に該処理流路を覆う蓋体を備え、該流路の一端側から少なくとも2種類の原液を供給し、該処理流路の他端側から該各原液について所望の処理が終了した処理済み液を得るマイクロ流体チップ装置において、
該マイクロ流体チップ本体は該一主面に対向した他の主面側に該各原液を個別に流す原液用流路を設けるとともに該各原液用流路を覆う蓋体を設け、該各原液用流路を覆う蓋体に該各原液用流路を流れる各原液の温度を調整する温度調整手段を設けたことを特徴とするマイクロ流体チップ装置。
A microfluidic chip body having a pair of opposing main surfaces and having a processing channel with a micro-section on one main surface, the microfluidic chip body having a lid covering the processing channel on the one main surface, In a microfluidic chip device that supplies at least two types of stock solutions from one end side and obtains a processed solution in which a desired process has been completed for each stock solution from the other end side of the processing flow path.
The microfluidic chip main body is provided with a flow path for a stock solution for individually flowing the stock solution on the other main surface side opposite to the one main surface, and a cover for covering the flow path for the stock solution is provided. A microfluidic chip device, characterized in that a temperature adjusting means for adjusting the temperature of each stock solution flowing through each stock solution channel is provided on a lid that covers the flow channel.
請求項1に記載のマイクロ流体チップ装置において、
該温度調整手段は各原液を加熱する手段および冷却する手段の少なくとも1方であることを特徴とするマイクロ流体チップ装置。
The microfluidic chip device according to claim 1,
The microfluidic chip device characterized in that the temperature adjusting means is at least one of means for heating and cooling each stock solution.
請求項1に記載のマイクロ流体チップ装置において、
該マイクロ流体チップ本体は該処理流路の一端側において該処理流路と該マイクロ流体チップ本体における他の主面側の該各原液用流路を連通する開孔を備えていることを特徴とするマイクロ流体チップ装置。
The microfluidic chip device according to claim 1,
The microfluidic chip body includes an opening that communicates the processing channel with one of the main solution channels on the other main surface of the microfluidic chip body on one end side of the processing channel. A microfluidic chip device.
請求項1に記載のマイクロ流体チップ装置において、
該マイクロ流体チップ本体は該各原液用流路を流れる各原液の温度を検知する温度センサを備えていることを特徴とするマイクロ流体チップ装置。
The microfluidic chip device according to claim 1,
The microfluidic chip device is characterized in that the microfluidic chip body includes a temperature sensor that detects the temperature of each stock solution flowing through each stock solution channel.
請求項1に記載のマイクロ流体チップ装置において、
さらに、該処理流路を覆う蓋体に該処理流路を流れる処理中の液体の温度を調整する温度調整手段を設けたことを特徴とするマイクロ流体チップ装置。
The microfluidic chip device according to claim 1,
Further, a microfluidic chip device characterized in that a temperature adjusting means for adjusting the temperature of the liquid being processed flowing through the processing channel is provided on the lid body covering the processing channel.
JP2004247688A 2004-08-27 2004-08-27 Microfluidic chip device Expired - Fee Related JP4415795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247688A JP4415795B2 (en) 2004-08-27 2004-08-27 Microfluidic chip device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247688A JP4415795B2 (en) 2004-08-27 2004-08-27 Microfluidic chip device

Publications (2)

Publication Number Publication Date
JP2006061835A true JP2006061835A (en) 2006-03-09
JP4415795B2 JP4415795B2 (en) 2010-02-17

Family

ID=36108756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247688A Expired - Fee Related JP4415795B2 (en) 2004-08-27 2004-08-27 Microfluidic chip device

Country Status (1)

Country Link
JP (1) JP4415795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326474A (en) * 2005-05-25 2006-12-07 Photo Precision Kk Laminated chip
JP2016019935A (en) * 2014-07-14 2016-02-04 株式会社神戸製鋼所 Reactor, reaction apparatus, reaction method and reaction product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326474A (en) * 2005-05-25 2006-12-07 Photo Precision Kk Laminated chip
JP2016019935A (en) * 2014-07-14 2016-02-04 株式会社神戸製鋼所 Reactor, reaction apparatus, reaction method and reaction product

Also Published As

Publication number Publication date
JP4415795B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
RU2418630C2 (en) Multi-purpose flow module
JP6234959B2 (en) Microreactor system
EP0853490B1 (en) Micro-mixer
US9445526B2 (en) Modular jet impingement assemblies with passive and active flow control for electronics cooling
AU733101B2 (en) Apparatus for a fluid impingement thermal cycler
US7440684B2 (en) Method and apparatus for improved temperature control in microfluidic devices
US8450101B2 (en) Reaction chip, reaction method, temperature controlling unit for gene treating apparatus and gene treating apparatus
EP2708280B1 (en) Photoreaction micro reactor
CN109565921B (en) Plasma generating device and plasma irradiation method
EP2113558B1 (en) Microreactor
JP2008540992A (en) Variable plate heat exchanger
KR20100017806A (en) Microfluidic self-sustaining oscillating mixers and devices and methods utilizing same
RU2008129185A (en) LABORATORY DEVICE FOR OZONOLYSIS OF FLOW TYPE AND METHOD FOR IMPLEMENTING OZONOLYSIS REACTION
US20160369413A1 (en) Electrode arrangement for electrochemically treating a liquid
JP2006043617A (en) Microfluidic chip
KR101709386B1 (en) Method of operating microchannel reactor
JP2006351561A (en) Semiconductor cooling apparatus
JP2010005582A (en) Blocking prevention device of micro-channel and blocking prevention method
JP4415795B2 (en) Microfluidic chip device
EP1977821A2 (en) Micro fluid device
HU227586B1 (en) Method for forming sealed channel of microfluidical reactor and microfluidical reactor containing the same
JP2007196090A (en) Micro channel device and sending process of liquid
JP2008207086A (en) Microreactor
AU2005205032A1 (en) Method and device for mixing at least two fluids in a stirred tank microreactor
JP2006102650A (en) Micro-fluid apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees