JP2006059889A - Thin film, optical element having the same and film-forming method - Google Patents

Thin film, optical element having the same and film-forming method Download PDF

Info

Publication number
JP2006059889A
JP2006059889A JP2004237899A JP2004237899A JP2006059889A JP 2006059889 A JP2006059889 A JP 2006059889A JP 2004237899 A JP2004237899 A JP 2004237899A JP 2004237899 A JP2004237899 A JP 2004237899A JP 2006059889 A JP2006059889 A JP 2006059889A
Authority
JP
Japan
Prior art keywords
thin film
film
optical element
incident light
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004237899A
Other languages
Japanese (ja)
Other versions
JP2006059889A5 (en
JP4498060B2 (en
Inventor
Masakiyo Kato
正磨 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004237899A priority Critical patent/JP4498060B2/en
Publication of JP2006059889A publication Critical patent/JP2006059889A/en
Publication of JP2006059889A5 publication Critical patent/JP2006059889A5/ja
Application granted granted Critical
Publication of JP4498060B2 publication Critical patent/JP4498060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film where aberrations can be reduced, coping with a wide incident angle, while fully maintaining transmission performance, and to provide an optical element in which the thin film is formed on a surface. <P>SOLUTION: In the optical element, the thin film is formed on a reflecting face, on which incident light is reflected. In the optical element, thickness of the thin film is made smaller, as the incident angle of incident light on the reflection face becomes larger. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一般に光学素子等の基材表面に成膜された薄膜、及びその薄膜を有する光学素子に係り、特に、半導体露光装置に用いられるレンズ、ミラー等の光学素子表面に成膜された多層膜に関する。本発明は、広い入射角で光学素子に光(例えばEUV光)が入射する場合において、その収差低減を目的とする多層膜に好適である。   The present invention generally relates to a thin film formed on a surface of a substrate such as an optical element, and an optical element having the thin film, and more particularly to a film formed on the surface of an optical element such as a lens or a mirror used in a semiconductor exposure apparatus. The present invention relates to a multilayer film. The present invention is suitable for a multilayer film intended to reduce aberration when light (for example, EUV light) is incident on an optical element with a wide incident angle.

半導体技術分野は集積回路素子の微細化とともに急速な発展を遂げている。半導体技術は主にリソグラフィ技術とエッチング技術とから構成されるが、このうちリソグラフィ技術による微細化は露光波長の短波長化・開口数の増大・露光方式の変更によって達成される。近年では、露光波長を従来の紫外線の10分の1程度であるEUV波長(10〜15nm)とした投影リソグラフィ技術が開発されている。EUV波長領域では光は物質に強く吸収されるため、投影光学系に屈折光学系を用いることができず反射光学系が使用される。また反射面には反射率向上を目的とした多層膜が成膜されている。   The semiconductor technology field has been rapidly developed along with the miniaturization of integrated circuit elements. Semiconductor technology is mainly composed of lithography technology and etching technology. Of these, miniaturization by lithography technology is achieved by shortening the exposure wavelength, increasing the numerical aperture, and changing the exposure method. In recent years, a projection lithography technique has been developed in which the exposure wavelength is an EUV wavelength (10 to 15 nm), which is about one-tenth of conventional ultraviolet rays. In the EUV wavelength region, light is strongly absorbed by the substance, and therefore a refractive optical system cannot be used for the projection optical system, and a reflective optical system is used. A multilayer film for improving the reflectance is formed on the reflecting surface.

多層膜は実質的に周期構造になっており、ブラッグ条件:2dcosθ=mλ(d:周期長、θ:入射角、λ:露光波長)にしたがって反射率が向上するため、反射面の各点の入射角に対して最適な周期長が存在する。そこでEUV光の照射領域内で光の入射角度差が大きい反射面では反射位置によって周期長(すなわち膜厚)を変化させた傾斜膜が使用される。反射位置によって周期長が変化する膜を、傾斜をつけた膜、又は傾斜膜と呼ぶこととする。   The multilayer film has a substantially periodic structure, and the reflectivity is improved according to the Bragg condition: 2d cos θ = mλ (d: period length, θ: incident angle, λ: exposure wavelength). There is an optimum period length for the incident angle. Therefore, an inclined film whose period length (that is, film thickness) is changed depending on the reflection position is used on the reflection surface having a large incident angle difference of light within the EUV light irradiation region. A film whose period length varies depending on the reflection position is referred to as a tilted film or a tilted film.

多層膜によってEUV光の複素振幅反射率が変化するため、反射面でEUV光の反射率とともに反射位相も変化する。そのため最終的な光学系は薄膜を考慮して設計する必要がある。このときの回転対称な物体位置に対して同じ収差特性を持たせるため、膜厚の関数は光軸に対して回転対称であることが多い。ただし薄膜の回転対称軸を光軸から偏芯させる例も提案されている(例えば、特許文献1を参照。)。   Since the complex amplitude reflectance of the EUV light is changed by the multilayer film, the reflection phase is changed together with the reflectance of the EUV light on the reflection surface. Therefore, the final optical system needs to be designed in consideration of the thin film. In order to give the same aberration characteristic to the rotationally symmetric object position at this time, the film thickness function is often rotationally symmetric with respect to the optical axis. However, an example in which the rotationally symmetric axis of the thin film is decentered from the optical axis has also been proposed (see, for example, Patent Document 1).

薄膜を含めた投影光学系は透過率が大きく、透過率の均一性が高く、また波面収差が小さいことが求められる。しかし十分に収差が排除された投影光学系に反射率向上の目的で多層膜を成膜すると、光の反射位置が変化することと薄膜により反射位相が変化することから、全系の波面収差が劣化する。反射膜の膜厚分布は回転中心からの半径の多項式関数が使用されるが、薄膜を成膜したことによる波面収差の劣化を抑えるために、2次までの偶関数を使用することが多い。このように薄膜の傾斜が単純な関数で表せる場合、薄膜によって生じる収差は低次のものがほとんどである。それらは、ティルト成分とデフォーカス成分とを除くと低次の非点収差が主である。薄膜によって劣化した収差が低次である場合、光学系の面間隔補正のみである程度の収差補正が可能である。   A projection optical system including a thin film is required to have a high transmittance, a high uniformity of the transmittance, and a small wavefront aberration. However, when a multilayer film is formed on a projection optical system that sufficiently eliminates aberrations for the purpose of improving reflectivity, the reflection position of the light changes and the reflection phase changes due to the thin film. to degrade. The film thickness distribution of the reflection film uses a polynomial function of the radius from the center of rotation, but in order to suppress the deterioration of wavefront aberration due to the formation of the thin film, an even function up to the second order is often used. When the inclination of the thin film can be expressed by a simple function in this way, most of the aberrations generated by the thin film are low-order. They are mainly low-order astigmatism except for the tilt component and the defocus component. When the aberration deteriorated by the thin film is low order, a certain degree of aberration correction is possible only by correcting the surface distance of the optical system.

薄膜が成膜された投影光学系の設計収差を低減させるために、例えば、薄膜の設計パラメータと光学系の設計パラメータとを同時に最適化するという方法(方法1)が考えられる。しかし、この方法では最適化するパラメータの数が多くなってしまい、現実的ではない。これに対して面間隔のみの再設計は比較的容易に行える。それは再設計される面変化の移動量が小さく、各面の光線の入射角の変化を無視できる程度なので、面間隔の再設計は薄膜の設計とは独立に行えるためである。そのため、薄膜を考慮せずに光学系を設計した後に薄膜を設計するという方法(方法2)も有効となる。このとき発生した収差は投影光学系の面間隔のみの再設計で抑える。方法2は、元来設計が複雑な投影光学系は薄膜を成膜せずにできる限り収差を小さく設計し、薄膜を成膜したときに発生する収差は光学系を微調整(すなわち面間隔調整)するだけで補正する、という思想からきている。
米国特許出願公開第2003/0099034A1号明細書
In order to reduce the design aberration of the projection optical system on which the thin film is formed, for example, a method (method 1) of simultaneously optimizing the design parameter of the thin film and the design parameter of the optical system is conceivable. However, this method increases the number of parameters to be optimized and is not realistic. On the other hand, redesigning only the surface spacing is relatively easy. This is because the amount of movement of the redesigned surface change is small and the change in the incident angle of the light rays on each surface is negligible, so that the redesign of the surface spacing can be performed independently of the thin film design. Therefore, a method (method 2) of designing a thin film after designing an optical system without considering the thin film is also effective. Aberrations generated at this time are suppressed by redesigning only the surface interval of the projection optical system. Method 2 is designed so that the projection optical system, which is originally complicated in design, minimizes the aberration as much as possible without forming a thin film, and the aberration generated when the thin film is formed is finely adjusted (that is, the surface interval is adjusted). ) Comes from the idea of just correcting.
US Patent Application Publication No. 2003 / 099034A1

しかしながら、例えば図9に示すようなEUV投影光学系においては、光学系に配置された各ミラーの反射面の反射位置によって光の入射角が異なるため、各反射面上に成膜された薄膜に起因する位相差(ここでは収差と同義である。)が発生してしまう。薄膜の成膜により、波面収差の大半をティルト成分、デフォーカス成分、低次の非点収差が占めることとなるが、これらの中には光学系の面間隔を調整してもなお残存する成分が存在する。   However, in an EUV projection optical system as shown in FIG. 9, for example, the incident angle of light differs depending on the reflection position of the reflection surface of each mirror arranged in the optical system, so that the thin film formed on each reflection surface The resulting phase difference (here, synonymous with aberration) occurs. Thin film deposition causes most of the wavefront aberration to be tilted components, defocused components, and low-order astigmatism, but these components remain even after adjusting the surface spacing of the optical system. Exists.

本発明は上記の事情に鑑みて為されたもので、透過率性能を十分に維持しつつ広い入射角に対応して収差を低減することのできる薄膜、その薄膜が表面に成膜された光学素子を提供することを例示的目的とする。   The present invention has been made in view of the above circumstances, and is a thin film capable of reducing aberration corresponding to a wide incident angle while maintaining sufficient transmittance performance, and an optical film on which the thin film is formed. It is an exemplary object to provide a device.

上記の目的を達成するために、本発明の例示的側面としての光学素子は、入射光を反射する反射面に薄膜が成膜された光学素子であって、反射面における入射光の入射角が大きくなるにしたがって薄膜の膜厚が薄くなるように成膜されていることを特徴とする。   In order to achieve the above object, an optical element as an exemplary aspect of the present invention is an optical element in which a thin film is formed on a reflective surface that reflects incident light, and an incident angle of incident light on the reflective surface is The film is formed such that the thickness of the thin film becomes thinner as the thickness increases.

本発明の他の例示的側面としての光学素子は、入射光を反射する反射面に薄膜が成膜された光学素子であって、反射面の中央部分に相当する薄膜の膜厚が中央部分から離れた周辺部分に相当する薄膜の膜厚よりも厚く成膜されていることを特徴とする。   An optical element as another exemplary aspect of the present invention is an optical element in which a thin film is formed on a reflective surface that reflects incident light, and the thickness of the thin film corresponding to the central portion of the reflective surface is from the central portion. It is characterized by being formed thicker than the thickness of the thin film corresponding to the distant peripheral portion.

上記の光学素子において、膜厚が、反射面における光軸を中心として回転対称となるような分布に成膜されていてもよい。反射面に対する入射光の入射角が4°以上15°以下であってもよい。薄膜が多層膜であってもよい。その多層膜が、シリコン層及びモリブデン層からなる2層を繰り返し積層して構成されていてもよい。その 繰り返し数が40であってもよい。   In the above optical element, the film thickness may be formed in a distribution that is rotationally symmetric about the optical axis on the reflecting surface. The incident angle of the incident light with respect to the reflecting surface may be 4 ° or more and 15 ° or less. The thin film may be a multilayer film. The multilayer film may be configured by repeatedly stacking two layers including a silicon layer and a molybdenum layer. The number of repetitions may be 40.

本発明のさらに他の例示的側面としての露光装置は、光源からの光でレチクルを照明する照明光学系と、レチクルのパターンを基板上に投影する投影光学系とを備えた露光装置であって、照明光学系又は投影光学系の少なくともいずれか一方が上記の光学素子を有することを特徴とする。   An exposure apparatus according to still another exemplary aspect of the present invention is an exposure apparatus that includes an illumination optical system that illuminates a reticle with light from a light source, and a projection optical system that projects a reticle pattern onto a substrate. At least one of the illumination optical system and the projection optical system has the optical element described above.

本発明のさらに他の例示的側面としてのデバイス製造方法は、上記の露光装置によって基板を露光する工程と、露光された基板に所定のプロセスを行う工程とを有することを特徴とする。   A device manufacturing method according to still another exemplary aspect of the present invention includes a step of exposing a substrate by the exposure apparatus described above, and a step of performing a predetermined process on the exposed substrate.

本発明のさらに他の例示的側面としての薄膜は、入射光を反射する反射光学素子の反射面に成膜された薄膜であって、反射面における入射光の入射角が大きくなるにしたがって薄膜の膜厚が薄くなるように成膜されていることを特徴とする。   According to still another exemplary aspect of the present invention, a thin film is a thin film formed on a reflective surface of a reflective optical element that reflects incident light, and the thin film is formed as the incident angle of incident light on the reflective surface increases. The film is formed so as to be thin.

本発明のさらに他の例示的側面としての薄膜は、入射光を反射する反射光学素子の反射面に成膜された薄膜であって、反射面の中央部分の膜厚が中央部分から離れた周辺部分の膜厚よりも厚く形成されていることを特徴とする。   According to still another exemplary aspect of the present invention, a thin film is a thin film formed on a reflective surface of a reflective optical element that reflects incident light, and a peripheral portion in which the film thickness of the central portion of the reflective surface is away from the central portion. It is characterized by being formed thicker than the film thickness of the part.

本発明のさらに他の例示的側面としての成膜方法は、入射光を反射する反射光学素子の反射面に薄膜を成膜する成膜方法であって、反射面における入射光の入射角が大きくなるにしたがって薄膜の膜厚が薄くなるように成膜することを特徴とする。   A film forming method as still another exemplary aspect of the present invention is a film forming method in which a thin film is formed on a reflective surface of a reflective optical element that reflects incident light, and an incident angle of incident light on the reflective surface is large. The film is formed so that the thickness of the thin film becomes thinner as the time goes.

本発明のさらに他の例示的側面としての成膜方法は、入射光を反射する反射光学素子の反射面に薄膜を成膜する成膜方法であって、反射面の中央部分の膜厚が中央部分から離れた周辺部分の膜厚よりも厚くなるように成膜することを特徴とする。   A film forming method as still another exemplary aspect of the present invention is a film forming method in which a thin film is formed on a reflective surface of a reflective optical element that reflects incident light, and the film thickness of the central portion of the reflective surface is the center. The film is formed so as to be thicker than the film thickness in the peripheral part away from the part.

本発明の他の目的及び更なる特徴は、以下、添付図面を参照して説明される実施形態により明らかにされるであろう。   Other objects and further features of the present invention will be made clear by embodiments described below with reference to the accompanying drawings.

本発明によれば、ミラー等の光学素子の反射面上に形成する薄膜の厚さをコントロールすることにより、その反射面であえて収差を発生させて他の反射面で生じる収差をキャンセルさせることができるので、光学系全体として波面収差を低減することができる。また薄膜を光軸に対して回転対称な分布を持つように構成することにより、収差の回転対称性を保持することが可能となる。   According to the present invention, by controlling the thickness of a thin film formed on the reflection surface of an optical element such as a mirror, an aberration can be generated on the reflection surface to cancel the aberration generated on another reflection surface. Therefore, wavefront aberration can be reduced as a whole optical system. Further, by configuring the thin film to have a rotationally symmetric distribution with respect to the optical axis, it is possible to maintain the rotational symmetry of aberration.

[実施の形態1]
本発明の実施の形態1に係る薄膜が成膜された光学素子について、図面を用いて説明する。図1は、本発明の実施の形態1に係る薄膜を模式的に示す断面図である。図1に示すように、光学素子表面に多層膜を成膜することにより、光線の反射位置変化による位相変化が生じる。その位相変化は、図中の光路長L1(図中太線部分)、光路長L2(図中二重線部分)、入射角φ、周期長d、周期数nを用いて以下の式(1)により表される。ここではある1点の反射位置における多層膜の周期長は深さ方向に対して全層一定であるとしている。また周期数nは定数である。
[Embodiment 1]
An optical element on which a thin film according to Embodiment 1 of the present invention is formed will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing a thin film according to Embodiment 1 of the present invention. As shown in FIG. 1, by forming a multilayer film on the optical element surface, a phase change occurs due to a change in the reflection position of the light beam. The phase change is expressed by the following equation (1) using the optical path length L1 (thick line portion in the figure), the optical path length L2 (double line portion in the figure), the incident angle φ, the period length d, and the number of periods n in the figure. Is represented by Here, the periodic length of the multilayer film at one reflection position is assumed to be constant for all layers in the depth direction. The number of periods n is a constant.

また異なる画角からの光線は同一の反射位置に対して異なる入射角を有するが、入射角φは同一の反射位置に入射する光線の平均の入射角で定義した。薄膜による位相変化は、式(1)に基づいて生じるものと薄膜そのものに起因するものとを合計したものであるが、その大半は式(1)に基づく成分が占めている。   Light rays from different angles of view have different incident angles with respect to the same reflection position, but the incident angle φ is defined as an average incident angle of light rays incident on the same reflection position. The phase change due to the thin film is the sum of the one that occurs based on the formula (1) and the one that originates from the thin film itself, but most of the component is occupied by the component based on the formula (1).

式(1)からわかるように、入射角を大きくする(φを90°に近づける)につれてCOSφの値は小さくなる。したがって、式(1)に係る位相変化を一定に維持するためには、反射位置における入射角が大きくなるほど周期長と周期数との積nd(以下、周期積ndという。)を大きくする必要がある。すなわち図2に示すように、光学素子の周辺部分の薄膜の厚さを中央部分の薄膜の厚さよりも厚くする必要がある。   As can be seen from Equation (1), the value of COSφ decreases as the incident angle increases (φ approaches 90 °). Therefore, in order to keep the phase change according to the equation (1) constant, it is necessary to increase the product nd of the periodic length and the number of periods (hereinafter referred to as the periodic product nd) as the incident angle at the reflection position increases. is there. That is, as shown in FIG. 2, it is necessary to make the thickness of the thin film in the peripheral portion of the optical element larger than the thickness of the thin film in the central portion.

ここで上記した入射角と周期積ndとの関係が逆になるようにした。すなわち、図3に示すように光学素子の周辺部分の薄膜の厚さを中央部分の薄膜の厚さよりも薄くし、あえて位相が変化するようにした。図3に示すような薄膜を有する面をEUV投影光学系に含めることにより、全系の収差をより小さくすることが可能となる。この薄膜による効果が大きい面は以下の面である。   Here, the relationship between the incident angle and the periodic product nd is reversed. That is, as shown in FIG. 3, the thickness of the thin film in the peripheral portion of the optical element is made thinner than the thickness of the thin film in the central portion so that the phase is changed. By including a surface having a thin film as shown in FIG. 3 in the EUV projection optical system, the aberration of the entire system can be further reduced. The surface where the effect by this thin film is large is the following surface.

本発明においては入射角と周期積ndとの関係を特定付けて効果を発揮させるので、光軸に回転対称な傾斜膜を想定した場合は同半径上で入射角が異なってしまうような面では最適な周期積を特定しにくい。同半径上で光の入射角があまり変わらない面とは、光の照射領域が光軸を含まない面である(例えば、図4においては、光の照射領域が光軸Oを含まない反射面M1,M3,M4がこれに相当する。)。そのため本発明は光の照射領域が光軸を含まない面に適用した方が効果が大きい。   In the present invention, the relationship between the incident angle and the periodic product nd is specified and the effect is exerted. Therefore, when assuming a rotationally symmetric inclined film on the optical axis, the incident angle is different on the same radius. It is difficult to specify the optimal periodic product. The surface on which the incident angle of light does not change so much on the same radius is a surface in which the light irradiation region does not include the optical axis (for example, in FIG. 4, the light irradiation region does not include the optical axis O. M1, M3, and M4 correspond to this.) Therefore, the present invention is more effective when applied to a surface where the light irradiation region does not include the optical axis.

同時に面内で入射角幅もある程度大きい方が効果が高い。図10はある入射角と入射角幅に対してティルトをPV(Peak to Valley、すなわち最大値と最小値との差。)0.6λ発生させようとしたときに、反射面における入射光の入射角が大きくなるにしたがって薄膜の膜厚が薄くなる領域(斜線領域)を示している。例えば反射面における入射光の入射角が25°以下で構成される投影光学系では入射角幅が4°以上の面に本発明を使用すべきであることがわかる。   At the same time, it is more effective that the incident angle width is somewhat larger in the plane. FIG. 10 shows the incidence of incident light on the reflection surface when an attempt is made to generate a tilt of PV (Peak to Valley, that is, the difference between the maximum value and the minimum value) 0.6λ for a certain incident angle and incident angle width. A region (shaded region) in which the film thickness decreases as the corner increases is shown. For example, it is understood that the present invention should be used on a surface having an incident angle width of 4 ° or more in a projection optical system configured with an incident angle of incident light on the reflecting surface of 25 ° or less.

本発明に係る薄膜は光学系全系の収差を低減させることを目的としている。一方、この薄膜をEUV投影光学系の反射面に成膜した場合、その本来の目的はEUV光の反射率を向上させることにある。したがって、EUV光の反射性能に敏感な反射面では薄膜の設計自由度が小さく、そのような反射面には本発明に係る薄膜を適用しにくい。   The thin film according to the present invention aims to reduce the aberration of the entire optical system. On the other hand, when this thin film is formed on the reflective surface of the EUV projection optical system, its original purpose is to improve the reflectance of EUV light. Therefore, a reflective surface sensitive to EUV light reflection performance has a small degree of freedom in designing a thin film, and it is difficult to apply the thin film according to the present invention to such a reflective surface.

具体的には、光の入射角が大きい反射位置では一般的に反射率が小さいので、その反射率を向上させるために薄膜の周期長の自由度が小さくなっている。本発明に係る薄膜は、周期積ndの自由度の範囲で収差を発生させなければならず、収差低減の効果を発揮しにくくなっている。したがって、本発明に係る薄膜を適用する面は入射角が15°を超えないような面が好ましい。   Specifically, since the reflectance is generally small at the reflection position where the incident angle of light is large, the degree of freedom of the cycle length of the thin film is reduced in order to improve the reflectance. The thin film according to the present invention must generate an aberration within the range of the degree of freedom of the periodic product nd, and is difficult to exhibit the effect of reducing the aberration. Therefore, the surface to which the thin film according to the present invention is applied is preferably a surface whose incident angle does not exceed 15 °.

[実施例]
本発明に係る薄膜をEUV投影光学系に適用した場合の効果について説明する。本実施例では全系の波面収差のうちティルト成分を低減させた例について説明する。EUV投影光学系に開口数NA=0.28、縮小比4:1のものを採用する。図4にこの実施例に係るEUV投影光学系1の光路図を示す。EUV投影光学系1に用いられる光学素子(ミラー)の各光学面(反射面)に勾配を持った多層膜を成膜する。多層膜は厚さ4.07nmのシリコン(Si)層と厚さ2.84nmのモリブデン(Mo)層とによって構成され、この2層を1組として40組(40周期)積層されている。周期長分布は光軸を中心とする回転対称な分布になっていて、光軸からの半径の関数として2次以下の多項式で構成される。
[Example]
The effect when the thin film according to the present invention is applied to an EUV projection optical system will be described. In this embodiment, an example in which the tilt component is reduced among the wavefront aberrations of the entire system will be described. An EUV projection optical system having a numerical aperture NA = 0.28 and a reduction ratio of 4: 1 is adopted. FIG. 4 shows an optical path diagram of the EUV projection optical system 1 according to this embodiment. A multilayer film having a gradient is formed on each optical surface (reflection surface) of an optical element (mirror) used in the EUV projection optical system 1. The multilayer film is composed of a 4.07 nm thick silicon (Si) layer and a 2.84 nm thick molybdenum (Mo) layer, and the two layers are stacked as 40 sets (40 cycles). The periodic length distribution is a rotationally symmetric distribution with the optical axis as the center, and is composed of a second-order polynomial as a function of the radius from the optical axis.

表1は、本実施例において使用するEUV投影光学系1の各設計値を示した表である。表中のA〜Jは非球面係数を表し、式(2)によって非球面を定義する。   Table 1 is a table showing design values of the EUV projection optical system 1 used in the present embodiment. A to J in the table represent aspheric coefficients, and the aspheric surface is defined by equation (2).

表2は、本実施例で使用した薄膜の各設計値(第1例)を示した表である。表中のC0〜C2は傾斜膜の膜厚分布の形を表す係数であり、式(3)によって傾斜膜の膜厚分布を表す。   Table 2 is a table showing each design value (first example) of the thin film used in this example. C0 to C2 in the table are coefficients representing the shape of the film thickness distribution of the gradient film, and the film thickness distribution of the gradient film is represented by equation (3).

第1例は、第1の反射面(M1)に本発明に係る薄膜を適用した例である。表3は、各反射面で収差が小さくなるように設計された薄膜の設計値(第2例)を示した表である。第2例は、参考のために例示したものであり、反射面には本発明に係る薄膜を適用していない。   The first example is an example in which the thin film according to the present invention is applied to the first reflecting surface (M1). Table 3 is a table showing design values (second example) of thin films designed so that aberrations are reduced on each reflecting surface. The second example is illustrated for reference, and the thin film according to the present invention is not applied to the reflective surface.

本実施例では、所定の等しい周期長の膜が周期数だけ積層した多層膜を考えている。そのため周期長の比率と膜厚の比率とは等しい。図5に第1の反射面(M1)の光軸からの半径と半径に対する膜厚(周期長)の分布と入射角分布との関係を示した。   In this embodiment, a multilayer film is considered in which films having a predetermined equal period length are stacked by the number of periods. Therefore, the period length ratio and the film thickness ratio are equal. FIG. 5 shows the relationship between the radius from the optical axis of the first reflecting surface (M1), the distribution of film thickness (period length) with respect to the radius, and the incident angle distribution.

表4は、本発明に係る薄膜が奏する効果を第1例と第2例とを比較して示した表である。表4は、各反射面で発生する収差のうちティルト成分を表している。表中の値の単位はλ(13.5nm)であり、1波長の長さ13.5nmに対し、どの程度の比率で収差が発生するかを示している。本発明に係る薄膜を第1の反射面(M1)に適用したことにより、第1の反射面(M1)のティルト成分が全系の収差を小さくするように発生していることがわかる。また表5は、第1例、第2例における光学系の性能(波面収差、透過率の平均値、透過率分布)を示した表である。本発明によって上記の効果を奏するに伴って、光学系や薄膜の設計、成膜、作成に制約を与えることがないことがわかる。   Table 4 is a table showing the effects of the thin film according to the present invention compared to the first example and the second example. Table 4 shows a tilt component among aberrations generated on each reflecting surface. The unit of the values in the table is λ (13.5 nm), and it indicates how much aberration occurs with respect to the length of one wavelength of 13.5 nm. It can be seen that by applying the thin film according to the present invention to the first reflecting surface (M1), the tilt component of the first reflecting surface (M1) is generated so as to reduce the aberration of the entire system. Table 5 is a table showing the optical system performance (wavefront aberration, average value of transmittance, transmittance distribution) in the first example and the second example. It can be seen that there are no restrictions on the design, film formation, and creation of the optical system and thin film as the above effects are achieved by the present invention.

[実施の形態2]
図6は、本発明の実施の形態2に係る露光装置を概略的に示した図である。この露光装置Sは、露光原版としてのレチクル51上の回路パターンを被処理体としてのウエハ52上に露光するためのものである。この露光装置Sは、例えばEUV光源53からの光をレチクル(マスク)51上に導く照明光学系54、レチクル51上の回路パターン像をウエハ52上に投影する投影光学系55を有して構成される。
[Embodiment 2]
FIG. 6 is a view schematically showing an exposure apparatus according to Embodiment 2 of the present invention. The exposure apparatus S is for exposing a circuit pattern on a reticle 51 serving as an exposure original onto a wafer 52 serving as an object to be processed. The exposure apparatus S includes an illumination optical system 54 that guides light from an EUV light source 53 onto a reticle (mask) 51 and a projection optical system 55 that projects a circuit pattern image on the reticle 51 onto a wafer 52, for example. Is done.

照明光学系54は光学素子としてのミラー54a,54bを有している。投影光学系55も光学素子としてのミラー55a,55bを有している。これらのミラー54a,54b,55a,55bには、上述の実施の形態1に係る薄膜が成膜されている。したがって、ミラーの収差が低減し、露光装置Sは高精度に露光を行うことができる。   The illumination optical system 54 has mirrors 54a and 54b as optical elements. The projection optical system 55 also has mirrors 55a and 55b as optical elements. On these mirrors 54a, 54b, 55a, 55b, the thin film according to the first embodiment is formed. Therefore, the aberration of the mirror is reduced, and the exposure apparatus S can perform exposure with high accuracy.

[実施の形態3]
次に、図7及び図8を参照して、上述の露光装置Sを利用したデバイスの製造方法の実施例を説明する。図7は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ101(回路設計)ではデバイスの回路設計を行う。ステップ102(レチクル製作)では、設計した回路パターンを形成したレチクルを製作する。ステップ103(ウエハ製造)ではシリコンなどの材料を用いてウエハ(基板)を製造する。ステップ104(ウエハプロセス)は前工程と呼ばれ、レチクルとウエハを用いてリソグラフィ技術によってウエハ上に実際の回路を形成する。ステップ105(組み立て)は後工程と呼ばれ、ステップ104によって作成されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ106(検査)では、ステップ105で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ107)される。
[Embodiment 3]
Next, with reference to FIGS. 7 and 8, an embodiment of a device manufacturing method using the above-described exposure apparatus S will be described. FIG. 7 is a flowchart for explaining how to fabricate devices (ie, semiconductor chips such as IC and LSI, LCDs, CCDs, and the like). Here, the manufacture of a semiconductor chip will be described as an example. In step 101 (circuit design), a device circuit is designed. In step 102 (reticle fabrication), a reticle on which the designed circuit pattern is formed is fabricated. In step 103 (wafer manufacture), a wafer (substrate) is manufactured using a material such as silicon. Step 104 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the reticle and wafer. Step 105 (assembly) is called a post-process, and is a process for forming a semiconductor chip using the wafer created in step 104, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). . In step 106 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device created in step 105 are performed. Through these steps, the semiconductor device is completed and shipped (step 107).

図8は、ステップ104のウエハプロセスの詳細なフローチャートである。ステップ111(酸化)ではウエハの表面を酸化させる。ステップ112(CVD)では、ウエハの表面に絶縁膜を形成する。ステップ113(電極形成)では、ウエハ上に電極を蒸着などによって形成する。ステップ114(イオン打ち込み)ではウエハにイオンを打ち込む。ステップ115(レジスト処理)ではウエハに感光剤を塗布する。ステップ116(露光)では、露光装置Sによってレチクルの回路パターンをウエハに露光する。ステップ117(現像)では、露光したウエハを現像する。ステップ118(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ119(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウエハ上に多重に回路パターンが形成される。本実施の形態の製造方法によれば従来よりも高品位かつ高集積度のデバイスを低コストに製造することができる。   FIG. 8 is a detailed flowchart of the wafer process in Step 104. In step 111 (oxidation), the wafer surface is oxidized. In step 112 (CVD), an insulating film is formed on the surface of the wafer. In step 113 (electrode formation), an electrode is formed on the wafer by vapor deposition or the like. In step 114 (ion implantation), ions are implanted into the wafer. In step 115 (resist process), a photosensitive agent is applied to the wafer. Step 116 (exposure) uses the exposure apparatus S to expose a reticle circuit pattern onto the wafer. In step 117 (development), the exposed wafer is developed. In step 118 (etching), portions other than the developed resist image are removed. In step 119 (resist stripping), the resist that has become unnecessary after the etching is removed. By repeatedly performing these steps, multiple circuit patterns are formed on the wafer. According to the manufacturing method of the present embodiment, it is possible to manufacture a device with higher quality and higher integration than conventional devices at low cost.

以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these, A various deformation | transformation and change are possible within the range of the summary.

本発明の実施の形態1に係る薄膜を模式的に示す断面図である。It is sectional drawing which shows typically the thin film which concerns on Embodiment 1 of this invention. 光学素子の周辺部の薄膜の厚さを中心部の薄膜の厚さよりも厚くした様子を説明する断面図である。It is sectional drawing explaining a mode that the thickness of the thin film of the peripheral part of an optical element was made thicker than the thickness of the thin film of a center part. 光学素子の周辺部の薄膜の厚さを中心部の薄膜の厚さよりも薄くした様子を説明する断面図である。It is sectional drawing explaining a mode that the thickness of the thin film of the peripheral part of an optical element was made thinner than the thickness of the thin film of a center part. 本発明の実施例に係るEUV投影光学系の光路図である。It is an optical path figure of the EUV projection optical system which concerns on the Example of this invention. 図4に示すEUV投影光学系の第1の反射面の光軸からの半径と半径に対する膜厚(周期長)の分布と入射角分布との関係を示すグラフである。5 is a graph showing the relationship between the radius from the optical axis of the first reflecting surface of the EUV projection optical system shown in FIG. 4, the distribution of the film thickness (period length) with respect to the radius, and the incident angle distribution. 本発明の実施の形態2に係る露光装置の概略構成図である。It is a schematic block diagram of the exposure apparatus which concerns on Embodiment 2 of this invention. 図6に示す露光装置によるデバイス製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the device manufacturing method by the exposure apparatus shown in FIG. 図7に示すステップ104の詳細なフローチャートである。It is a detailed flowchart of step 104 shown in FIG. 従来のEUV投影光学系の光路図である。It is an optical path figure of the conventional EUV projection optical system. PV0.6λのティルトを発生させようとした場合に、反射面における入射光の入射角が大きくなるにしたがって薄膜の膜厚が薄くなる領域を示すグラフである。6 is a graph showing a region where the thickness of the thin film becomes thinner as the incident angle of incident light on the reflecting surface increases when an attempt is made to generate a PV0.6λ tilt.

符号の説明Explanation of symbols

S:露光装置
1:EUV投影光学系
M1〜M6:反射面
L1,L2:光路長
51:レチクル
52:ウエハ(被処理体)
53:EUV光源
54:照明光学系
54a,54b:ミラー
55:投影光学系
55a,55b:ミラー
S: exposure apparatus 1: EUV projection optical systems M1 to M6: reflecting surfaces L1, L2: optical path length 51: reticle 52: wafer (object to be processed)
53: EUV light source 54: illumination optical system 54a, 54b: mirror 55: projection optical system 55a, 55b: mirror

Claims (13)

入射光を反射する反射面に薄膜が成膜された光学素子であって、
前記反射面における前記入射光の入射角が大きくなるにしたがって前記薄膜の膜厚が薄くなるように成膜されていることを特徴とする光学素子。
An optical element in which a thin film is formed on a reflecting surface that reflects incident light,
The optical element is formed such that the film thickness of the thin film decreases as the incident angle of the incident light on the reflecting surface increases.
入射光を反射する反射面に薄膜が成膜された光学素子であって、
前記反射面の中央部分に相当する薄膜の膜厚が該中央部分から離れた周辺部分に相当する薄膜の膜厚よりも厚く成膜されていることを特徴とする光学素子。
An optical element in which a thin film is formed on a reflecting surface that reflects incident light,
An optical element, wherein a thin film corresponding to a central portion of the reflecting surface is formed thicker than a thin film corresponding to a peripheral portion away from the central portion.
前記膜厚が、前記反射面における光軸を中心として回転対称となるような分布に成膜されていることを特徴とする請求項1又は請求項2に記載の光学素子。   3. The optical element according to claim 1, wherein the film thickness is formed in a distribution that is rotationally symmetric about the optical axis of the reflecting surface. 4. 前記反射面に対する前記入射光の入射角が4°以上15°以下であることを特徴とする請求項1又は請求項2に記載の光学素子。   The optical element according to claim 1, wherein an incident angle of the incident light with respect to the reflecting surface is 4 ° or more and 15 ° or less. 前記薄膜が多層膜であることを特徴とする請求項1又は請求項2に記載の光学素子。   The optical element according to claim 1, wherein the thin film is a multilayer film. 前記多層膜が、シリコン層及びモリブデン層からなる2層を繰り返し積層して構成されていることを特徴とする請求項5に記載の光学素子。   6. The optical element according to claim 5, wherein the multilayer film is configured by repeatedly laminating two layers including a silicon layer and a molybdenum layer. 前記繰り返し数が40であることを特徴とする請求項6に記載の光学素子。   The optical element according to claim 6, wherein the number of repetitions is 40. 光源からの光でレチクルを照明する照明光学系と、
前記レチクルのパターンを基板上に投影する投影光学系とを備えた露光装置であって、
前記照明光学系又は前記投影光学系の少なくともいずれか一方が請求項1から請求項7のうちいずれか1項に記載の光学素子を有することを特徴とする露光装置。
An illumination optical system that illuminates the reticle with light from a light source;
An exposure apparatus comprising: a projection optical system that projects the reticle pattern onto a substrate;
An exposure apparatus, wherein at least one of the illumination optical system and the projection optical system includes the optical element according to any one of claims 1 to 7.
請求項8に記載の露光装置によって基板を露光する工程と、
露光された前記基板に所定のプロセスを行う工程とを有するデバイスの製造方法。
Exposing the substrate with the exposure apparatus according to claim 8;
And a step of performing a predetermined process on the exposed substrate.
入射光を反射する反射光学素子の反射面に成膜された薄膜であって、
前記反射面における前記入射光の入射角が大きくなるにしたがって前記薄膜の膜厚が薄くなるように成膜されていることを特徴とする薄膜。
A thin film formed on a reflective surface of a reflective optical element that reflects incident light,
A thin film, characterized in that the thin film is formed so that the film thickness of the thin film decreases as the incident angle of the incident light on the reflecting surface increases.
入射光を反射する反射光学素子の反射面に成膜された薄膜であって、
前記反射面の中央部分の膜厚が該中央部分から離れた周辺部分の膜厚よりも厚く形成されていることを特徴とする薄膜。
A thin film formed on a reflective surface of a reflective optical element that reflects incident light,
A thin film characterized in that a film thickness of a central part of the reflecting surface is formed thicker than a film thickness of a peripheral part away from the central part.
入射光を反射する反射光学素子の反射面に薄膜を成膜する成膜方法であって、
前記反射面における前記入射光の入射角が大きくなるにしたがって前記薄膜の膜厚が薄くなるように成膜することを特徴とする成膜方法。
A film forming method for forming a thin film on a reflective surface of a reflective optical element that reflects incident light,
The film forming method is characterized in that the film is formed such that the film thickness of the thin film becomes thinner as the incident angle of the incident light on the reflecting surface increases.
入射光を反射する反射光学素子の反射面に薄膜を成膜する成膜方法であって、
前記反射面の中央部分の膜厚が該中央部分から離れた周辺部分の膜厚よりも厚くなるように成膜することを特徴とする成膜方法。


A film forming method for forming a thin film on a reflective surface of a reflective optical element that reflects incident light,
A film forming method comprising forming a film so that a film thickness of a central part of the reflecting surface is larger than a film thickness of a peripheral part away from the central part.


JP2004237899A 2004-08-18 2004-08-18 Projection optical system, exposure apparatus, and optical element manufacturing method Expired - Fee Related JP4498060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237899A JP4498060B2 (en) 2004-08-18 2004-08-18 Projection optical system, exposure apparatus, and optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237899A JP4498060B2 (en) 2004-08-18 2004-08-18 Projection optical system, exposure apparatus, and optical element manufacturing method

Publications (3)

Publication Number Publication Date
JP2006059889A true JP2006059889A (en) 2006-03-02
JP2006059889A5 JP2006059889A5 (en) 2007-09-27
JP4498060B2 JP4498060B2 (en) 2010-07-07

Family

ID=36107130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237899A Expired - Fee Related JP4498060B2 (en) 2004-08-18 2004-08-18 Projection optical system, exposure apparatus, and optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP4498060B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930771A1 (en) * 2006-12-04 2008-06-11 Carl Zeiss SMT AG Projection objectives having mirror elements with reflective coatings
JP2010199503A (en) * 2009-02-27 2010-09-09 Nikon Corp Optical element, exposure apparatus, and device manufacturing method
JP2013157636A (en) * 2013-05-07 2013-08-15 Carl Zeiss Smt Gmbh Projection objective having mirror elements with reflective coatings
US8902406B2 (en) 2009-11-26 2014-12-02 Carl Zeiss Smt Gmbh Projection objective
US9013678B2 (en) 2007-08-20 2015-04-21 Carl Zeiss Smt Gmbh Projection objective having mirror elements with reflective coatings
JPWO2013146488A1 (en) * 2012-03-28 2015-12-10 Hoya株式会社 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146000A (en) * 1988-11-28 1990-06-05 Nikon Corp Manufacture of reflecting mirror with mutilayered membrane
JP2002162566A (en) * 2000-11-27 2002-06-07 Nikon Corp Method for designing optical system, the optical system and projection aligner
JP2003077805A (en) * 2001-09-03 2003-03-14 Nikon Corp Optical system manufacturing method and euv aligner
JP2003177319A (en) * 2001-08-01 2003-06-27 Carl Zeiss Semiconductor Manufacturing Technologies Ag Reflective projection lens for euv-photolithography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146000A (en) * 1988-11-28 1990-06-05 Nikon Corp Manufacture of reflecting mirror with mutilayered membrane
JP2002162566A (en) * 2000-11-27 2002-06-07 Nikon Corp Method for designing optical system, the optical system and projection aligner
JP2003177319A (en) * 2001-08-01 2003-06-27 Carl Zeiss Semiconductor Manufacturing Technologies Ag Reflective projection lens for euv-photolithography
JP2003077805A (en) * 2001-09-03 2003-03-14 Nikon Corp Optical system manufacturing method and euv aligner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930771A1 (en) * 2006-12-04 2008-06-11 Carl Zeiss SMT AG Projection objectives having mirror elements with reflective coatings
EP1930772A1 (en) * 2006-12-04 2008-06-11 Carl Zeiss SMT AG Projection objectives having mirror elements with reflective coatings
JP2008203820A (en) * 2006-12-04 2008-09-04 Carl Zeiss Smt Ag Projection objective having mirror element with reflective coating
US8194230B2 (en) 2006-12-04 2012-06-05 Carl Zeiss Smt Gmbh Projection objectives having mirror elements with reflective coatings
JP2014041379A (en) * 2006-12-04 2014-03-06 Carl Zeiss Smt Gmbh Projection objective having mirror element with reflective coating
KR20150043279A (en) * 2006-12-04 2015-04-22 칼 짜이스 에스엠티 게엠베하 Optical system and a projection-exposure system
KR101630122B1 (en) * 2006-12-04 2016-06-21 칼 짜이스 에스엠티 게엠베하 Optical system and a projection-exposure system
US9013678B2 (en) 2007-08-20 2015-04-21 Carl Zeiss Smt Gmbh Projection objective having mirror elements with reflective coatings
JP2010199503A (en) * 2009-02-27 2010-09-09 Nikon Corp Optical element, exposure apparatus, and device manufacturing method
US8902406B2 (en) 2009-11-26 2014-12-02 Carl Zeiss Smt Gmbh Projection objective
JPWO2013146488A1 (en) * 2012-03-28 2015-12-10 Hoya株式会社 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask
JP2013157636A (en) * 2013-05-07 2013-08-15 Carl Zeiss Smt Gmbh Projection objective having mirror elements with reflective coatings

Also Published As

Publication number Publication date
JP4498060B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
CN106489188B (en) Extreme ultraviolet mask blank production system with thin absorber and manufacturing system thereof
US5641593A (en) Lithographic mask and exposure apparatus using the same
JP2020064307A (en) Planarized extreme ultraviolet lithography blank with absorber and manufacturing system therefor
KR100877639B1 (en) Multilayer mirror, evaluation method, exposure apparatus, and device manufacturing method
US7511888B2 (en) Projection optical system, exposure apparatus, device manufacturing method, and device manufactured by using the same
US7476471B2 (en) Method for correcting mask pattern, exposure mask, and mask producing method
JP4968589B2 (en) Substrate processing method, photomask manufacturing method and photomask, and device manufacturing method
JP2001237174A (en) Reflection-type exposure mask
JP2005191381A (en) Exposure method and system thereof
JP2007133102A (en) Optical element having reflection preventing film, and exposure apparatus having the same
TWI239033B (en) Adjustment method and apparatus of optical system, and exposure apparatus
JP2009010232A (en) Optical device, exposure device, and device manufacturing method
US7628497B2 (en) Mirror unit, method of producing the same, and exposure apparatus and method using the mirror unit
JP2002246299A (en) Reflecting type exposure mask, its manufacturing method and semiconductor element
JP2008270564A (en) Exposure apparatus, and device manufacturing method
JP3679736B2 (en) Exposure apparatus, exposure method, device manufacturing method, and device
JP2000206321A (en) Diffraction optical element, optical system equipped with diffraction optical element, manufacture of diffraction optical element, exposure device including optical system equipped with diffraction optical element and manufacture of device by using exposure device
JP2007201306A (en) Reflective reticle and its manufacturing method
JP4498060B2 (en) Projection optical system, exposure apparatus, and optical element manufacturing method
JP2009010131A (en) Exposing apparatus and production method of device
US7737420B2 (en) Pixelated modulation of illumination pupil image
JP4498059B2 (en) Optical element, exposure apparatus and film forming method
JP3958261B2 (en) Optical system adjustment method
JP4415523B2 (en) Multilayer reflector, method for manufacturing the same, X-ray exposure apparatus, method for manufacturing semiconductor device, and X-ray optical system
US20090325081A1 (en) Exposure mask and manufacturing method of a semiconductor using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees