JP2006059671A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2006059671A
JP2006059671A JP2004240474A JP2004240474A JP2006059671A JP 2006059671 A JP2006059671 A JP 2006059671A JP 2004240474 A JP2004240474 A JP 2004240474A JP 2004240474 A JP2004240474 A JP 2004240474A JP 2006059671 A JP2006059671 A JP 2006059671A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
lead
negative electrode
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004240474A
Other languages
Japanese (ja)
Other versions
JP4599940B2 (en
Inventor
Koichi Yonemura
浩一 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004240474A priority Critical patent/JP4599940B2/en
Publication of JP2006059671A publication Critical patent/JP2006059671A/en
Application granted granted Critical
Publication of JP4599940B2 publication Critical patent/JP4599940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery suppressing internal short circuit caused by curving of an electrode plate generating in the lead-acid battery housing expand electrode plates in a bag-shaped polyethylene separator, enhancing productivity, and lengthening life. <P>SOLUTION: The lead-acid battery uses positive plates 601 and negative plates 602 in which a positive plate surface and a negative plate surface are curved so as to project in the opposite direction to the pressing in direction of a cutting blade in cutting work of the expand electrode plates, and the curved directions of the positive plates and the negative plates constituting an electrode plate group are made the same. Preferably, the positive plate is manufactured in such a way that an active material is filled in an over-paste state, and the cutting blade is pressed into one surface from the over-paste surface of the electrode plate and cut so that the electrode plate is made thicker than an expand grid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池に用いる格子体として、主に鋳造格子とエキスパンド格子体が知られている。鋳造格子はブックモールドタイプの格子鋳型や、ドラム状の連続鋳造鋳型に溶融鉛を注入し、冷却凝固させることにより得る。エキスパンド格子体は、長尺状の鉛もしくは鉛合金シートに千鳥状に形成したスリットを網目状に展開して得るものである。   As a lattice used for a lead storage battery, a cast lattice and an expanded lattice are mainly known. The cast lattice is obtained by injecting molten lead into a book mold type lattice mold or a drum-shaped continuous cast mold and cooling and solidifying it. The expanded lattice body is obtained by developing slits formed in a staggered pattern on a long lead or lead alloy sheet in a mesh shape.

鋳造格子体は格子鋳型中での溶融鉛の湯流れを確保し、格子骨切れ等の欠陥が生じないよう、格子厚みをある程度まで厚く確保する必要がある。その厚みの下限値は、格子合金組成によっても異なるが、工程不良率等を勘案した場合、おおよそ1.5mmが実用上の限界である。したがって、この鋳造格子を用いて極板を製造する場合、その厚みを約1.5mm未満とすることは極めて困難である。   It is necessary for the cast lattice body to secure a molten lead flow in the lattice mold and to ensure that the lattice thickness is as thick as possible so that defects such as lattice fractures do not occur. The lower limit of the thickness varies depending on the lattice alloy composition, but the practical limit is approximately 1.5 mm when considering the process defect rate and the like. Therefore, when manufacturing an electrode plate using this cast grid, it is extremely difficult to make the thickness less than about 1.5 mm.

一方、エキスパンド格子体の厚みは、材料となる鉛合金シート厚み、スリット間の間隙寸法(切り幅)、エキスパンド網目の整厚ローラーの間隙によって調整可能であり、厚みが1.5mm以下の薄型格子体も、生産性よく作成できるという利点がある。したがって、高出力が求められる、始動用鉛蓄電池では、このような薄型のエキスパンド格子体が広く用いられている。   On the other hand, the thickness of the expanded lattice body can be adjusted by the thickness of the lead alloy sheet used as the material, the gap dimension (cut width) between the slits, and the gap between the thickening rollers of the expanded mesh, and a thin lattice having a thickness of 1.5 mm or less. The body also has the advantage that it can be created with good productivity. Therefore, such a thin expanded lattice body is widely used in start lead-acid batteries that require high output.

エキスパンド格子体の製造工程は、図1に示したように、鉛合金シート101の中央部に無地部102を残して、両側部に千鳥状にスリット103を形成する。スリット103を鉛合金シート101の幅方向に展開して、エキスパンド網目104を形成し、長尺状のエキスパンド格子体107を得る。エキスパンド網目104は格子骨105と格子骨105間を接続する結節部106で構成される。   As shown in FIG. 1, the expanded lattice manufacturing process forms a staggered slit 103 on both sides, leaving the plain portion 102 at the center of the lead alloy sheet 101. The slit 103 is developed in the width direction of the lead alloy sheet 101 to form an expanded mesh 104 to obtain a long expanded lattice 107. The expanded mesh 104 includes a lattice bone 105 and a knot portion 106 that connects the lattice bone 105.

エキスパンド網目104にはうねり、波うちが発生しているため、長尺状のエキスパンド格子体107を所定の間隙を有した整厚ローラー対(図示せず)を通過させ、格子体の厚みを整える。その後、エキスパンド網目104に活物質109を充填し、長尺状極板110とする。また、活物質脱落を防止するため、必要に応じ、ペースト紙(図示せず)を長尺状極板110に貼り付ける。その後、長尺状極板110を所定長さに切断するとともに、無地部102を加工して極板耳111を形成し、単一の極板112とする。その際、極板耳に反りが発生する場合があり、例えば特許文献1には、極板耳の反りを矯正する装置が示されている。
特開平5−205731号公報
Since the expanded mesh 104 has undulations and waves, the elongate expanded lattice 107 is passed through a pair of thickness adjusting rollers (not shown) having a predetermined gap to adjust the thickness of the lattice. . Thereafter, the expanded mesh 104 is filled with the active material 109 to obtain a long electrode plate 110. In order to prevent the active material from falling off, paste paper (not shown) is attached to the long electrode plate 110 as necessary. Thereafter, the long electrode plate 110 is cut into a predetermined length, and the uncoated portion 102 is processed to form the electrode plate ear 111 to form a single electrode plate 112. At that time, the electrode plate ear may be warped. For example, Patent Document 1 discloses an apparatus for correcting the electrode plate ear warp.
JP-A-5-205731

長尺状極板110を切断して単一の極板112に加工する際、切断加工方法によっては、上記した極板耳の反りに加えて、極板112に湾曲が発生するものがある。特に図2に示したように、長尺状極板110をアンビル201上に位置させ、刃先角(α)を有した切断刃202を一方向からアンビル201に向けて長尺状極板110に圧入し、切断する場合がある。このような場合、図3に示したように、極板112が切断刃202の圧入方向と反対方向に凸状に湾曲する場合が殆どであった。極板湾曲が発生した場合、特許文献1に示された棒状ローラーに極板を通過させたとしても、湾曲を除去することは極めて困難である。また、極板にダメージを与えない程度の加圧力で整厚プレスを行っても、極板112が弾性変形するのみで、整厚プレスを解いた時点で、もとの湾曲した状態に復元してしまう。さらに整厚プレスの圧力を上げた場合、エキスパンド格子体が塑性変形し、所定の極板厚みが得られなかったり、活物質ペーストの密度や水分含有量が変動し、電池容量や寿命特性といった特性にばらつきが発生したり、所定の特性値が得られないという問題が生じていた。したがって、一旦湾曲したエキスパンド極板の湾曲を矯正することは極めて困難であった。   When the long electrode plate 110 is cut into a single electrode plate 112, the electrode plate 112 may bend in addition to the above-described warpage of the electrode plate depending on the cutting method. In particular, as shown in FIG. 2, the long electrode plate 110 is positioned on the anvil 201, and the cutting blade 202 having the cutting edge angle (α) is directed to the long electrode plate 110 from one direction toward the anvil 201. It may be pressed and cut. In such a case, as shown in FIG. 3, the electrode plate 112 is curved in a convex shape in a direction opposite to the press-fitting direction of the cutting blade 202 in most cases. When the electrode plate is curved, it is very difficult to remove the curve even if the electrode plate is passed through the rod-shaped roller disclosed in Patent Document 1. In addition, even if the thickness adjusting press is performed at a pressure that does not damage the electrode plate, the electrode plate 112 is only elastically deformed, and when the thickness adjusting press is released, it is restored to the original curved state. End up. Furthermore, when the pressure of the thickening press is increased, the expanded lattice body is plastically deformed, and the predetermined electrode plate thickness cannot be obtained, the density and moisture content of the active material paste fluctuate, characteristics such as battery capacity and life characteristics There has been a problem in that variations have occurred and predetermined characteristic values cannot be obtained. Therefore, it has been extremely difficult to correct the curvature of the expanded electrode plate once curved.

一方、図4に示した、プレス切断加工のように、ダイ401上に長尺状極板110を配置し、パンチ402により打ち抜き、切断する方法がある。このような方法では、打ち抜いた極板112を下方に落下させるため、特に、極板112が薄型である場合には、容易に変形してしまうという問題がある。   On the other hand, there is a method in which a long electrode plate 110 is disposed on a die 401 and punched and cut by a punch 402 as in the press cutting process shown in FIG. In such a method, since the punched electrode plate 112 is dropped downward, there is a problem that the electrode plate 112 is easily deformed particularly when the electrode plate 112 is thin.

図2に示したアンビル201に向けて切断刃202を長尺状極板110を圧入して切断加工する方法は、図5に示したように、アンビル503を円周上に配置したアンビルローラー501と切断刃504を配置した切断刃ローラー502を用い、これらのローラー対間に長尺状極板110を通過させることにより、比較的容易に、生産性よくエキスパンド極板を切断加工できる。   As shown in FIG. 5, an anvil roller 501 in which an anvil 503 is arranged on the circumference is used as a method of press-fitting the long pole plate 110 with a cutting blade 202 toward the anvil 201 shown in FIG. By using the cutting blade roller 502 on which the cutting blade 504 is disposed and passing the elongated electrode plate 110 between these roller pairs, the expanded electrode plate can be cut with relative ease and high productivity.

しかしながら、図3に示したような、湾曲が生じた極板を用いて鉛蓄電池を製造した場合、内部短絡により短寿命となる課題があった。特に、エキスパンド格子体を用いた極板の切断面301には切断された格子骨105の先端が露出しており、格子骨105の先端がセパレータを貫通し、内部短絡となる頻度も高くなる。   However, when a lead storage battery is manufactured using a curved electrode plate as shown in FIG. 3, there is a problem that a short life is caused by an internal short circuit. In particular, the end of the cut lattice bone 105 is exposed on the cut surface 301 of the electrode plate using the expanded lattice body, and the tip of the lattice bone 105 penetrates the separator, and the frequency of internal short-circuiting increases.

このようなセパレータの貫通とこれによる内部短絡は、極板を袋状ポリエチレンセパレータに収納した場合に顕著に発生する課題である。   Such a penetration of the separator and an internal short circuit due to this penetration are problems that occur remarkably when the electrode plate is stored in a bag-like polyethylene separator.

また、長尺状のエキスパンド格子体107に活物質109を充填する際、その充填量によっては、エキスパンド格子体107の厚みを超えて充填された活物質、いわゆるオーバーペーストが発生する場合がある。特に正極において、このオーバーペーストが発生した極板面(以降、オーバーペースト面という)からもう一方の極板面に向けて切断刃を圧入する場合、電池の使用中に湾曲量が増大し、内部短絡を発生させるという課題があった。   In addition, when the active material 109 is filled in the long expanded lattice 107, an active material filled so as to exceed the thickness of the expanded lattice 107, so-called over paste, may be generated. In particular, in the positive electrode, when a cutting blade is press-fitted from the electrode plate surface where this over paste is generated (hereinafter referred to as the over paste surface) to the other electrode plate surface, the amount of bending increases during use of the battery. There was a problem of causing a short circuit.

本発明は、上記したような、エキスパンド極板を用いた鉛蓄電池において発生する、極板湾曲による電池内部短絡を抑制し、生産性が高く、長寿命の鉛蓄電池を提供するものである。   The present invention provides a lead-acid battery with high productivity and long life by suppressing the internal short circuit of the battery due to the curvature of the electrode, which occurs in the lead-acid battery using the expanded electrode plate as described above.

前記した課題を解決するために、本発明の請求項1に係る発明は、長尺状の鉛もしくは鉛合金シートの幅方向中央部に無地部を残して両側部を幅方向にエキスパンド展開して得た長尺状エキスパンド格子体に活物質を充填して長尺状極板とし、この長尺状極板の一方の面から切断刃を圧入して、この長尺状極板を所定長さに切断して得た正極板および負極板を備え、これら正極板および負極板のいずれか一方の極板を袋状のポリエチレンセパレータに収納し、他方の極板とともに積層してなる極板群を備えた鉛蓄電池であって、前記正極板面および前記負極板面が前記切断刃の圧入方向と逆方向に凸状に湾曲してなり、前記極板群を構成する前記正極板および前記負極板の湾曲方向を同一方向としたことを特徴とする鉛蓄電池を示すものである。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention expands both side portions in the width direction while leaving a plain portion in the width direction center portion of the long lead or lead alloy sheet. The obtained long expanded grid is filled with an active material to form a long electrode plate, and a cutting blade is press-fitted from one surface of the long electrode plate so that the long electrode plate has a predetermined length. A positive electrode plate and a negative electrode plate obtained by cutting the electrode plate, storing a positive electrode plate and a negative electrode plate in a bag-like polyethylene separator, and laminating together with the other electrode plate; The positive electrode plate and the negative electrode plate constituting the electrode plate group, wherein the positive electrode plate surface and the negative electrode plate surface are curved in a convex shape in a direction opposite to the press-fitting direction of the cutting blade. It shows a lead storage battery characterized by having the same bending direction .

また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池であって、かつ正極板において、前記活物質はエキスパンド格子体厚みを超えてオーバーペーストで充填され、正極板のオーバーペースト面を凸面として湾曲していることを特徴とする鉛蓄電池。   The invention according to claim 2 of the present invention is the lead-acid battery according to claim 1, and in the positive electrode plate, the active material is filled with an over paste exceeding the thickness of the expanded lattice, and the over paste of the positive electrode plate A lead-acid battery characterized in that the surface is curved with a convex surface.

さらに、本発明の請求項3に係る発明は、請求項1もしくは請求項2の鉛蓄電池において、前記正極板および前記負極板の凸状に湾曲した面を上方として仮想平面上に載置し、この仮想平面からの前記凸状の頂点までの距離(H)から前記正極板および負極板のそれぞれの厚み(t)を差し引いた値(H−t)を湾曲量(D)としたときに、前記正極板および負極板幅(W)に対する湾曲量(D)の比率(D/W)を0.007以上としたことを特徴とするものである。   Furthermore, the invention according to claim 3 of the present invention is the lead storage battery according to claim 1 or 2, wherein the positively curved surface of the positive electrode plate and the negative electrode plate are placed on a virtual plane with the convex surface as an upper side, When a value (Ht) obtained by subtracting the thickness (t) of each of the positive electrode plate and the negative electrode plate from the distance (H) from the virtual plane to the convex apex is defined as an amount of curvature (D), The ratio (D / W) of the bending amount (D) to the positive electrode plate and negative electrode plate width (W) is 0.007 or more.

上記した、本発明の構成によれば、エキスパンド極板を用いた鉛蓄電池において発生する、極板湾曲による電池内部短絡を抑制し、生産性が高く、高信頼性の鉛蓄電池を提供することができる。   According to the above-described configuration of the present invention, it is possible to suppress a battery internal short circuit due to electrode plate bending, which occurs in a lead storage battery using an expanded electrode plate, and to provide a highly productive and highly reliable lead storage battery. it can.

以降、図面を用いて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の鉛蓄電池に用いるエキスパンド格子体は、すでに図1に示したように、鉛合金シート101の中央部に無地部102を残して、両側部に千鳥状にスリット103を形成する。スリット103を鉛合金シート101の幅方向に展開して、エキスパンド網目104を形成し、長尺状のエキスパンド格子体107を得る。エキスパンド網目104は格子骨105と格子骨105間を接続する結節部106で構成される。   As shown in FIG. 1, the expanded lattice used in the lead storage battery of the present invention forms the slits 103 in a staggered manner on both sides, leaving the plain portion 102 at the center of the lead alloy sheet 101. The slit 103 is developed in the width direction of the lead alloy sheet 101 to form an expanded mesh 104 to obtain a long expanded lattice 107. The expanded mesh 104 includes a lattice bone 105 and a knot portion 106 that connects the lattice bone 105.

エキスパンド網目104にはうねり、波うちが発生している場合があるため、必要に応じて、長尺状のエキスパンド格子体107を所定の間隙を有した整厚ローラー対(図示せず)間を通過させ、格子体の厚みを整える。その後、エキスパンド網目104に活物質109を充填し、長尺状極板110とする。また、活物質脱落を防止するため、必要に応じ、ペースト紙(図示せず)を長尺状極板110に貼り付ける。   Since there may be undulations and waviness in the expanded mesh 104, the elongated expanded lattice 107 is interposed between a pair of thickness adjusting rollers (not shown) having a predetermined gap as necessary. Pass through and adjust the thickness of the grid. Thereafter, the expanded mesh 104 is filled with the active material 109 to obtain a long electrode plate 110. In order to prevent the active material from falling off, paste paper (not shown) is attached to the long electrode plate 110 as necessary.

次に、図2に示したように、長尺状極板110をアンビル201上に位置させ、刃先角(α)を有した切断刃202を一方向からアンビル201に向けて長尺状極板110に圧入することにより、長尺状極板110を単一の極板112に切断加工する。この状態で極板112には図3に示したような、切断刃202の圧入方向と反対方向に凸状の湾曲が生じる。   Next, as shown in FIG. 2, the long electrode plate 110 is positioned on the anvil 201, and the cutting blade 202 having a cutting edge angle (α) is directed from one direction toward the anvil 201, and the long electrode plate The long electrode plate 110 is cut into a single electrode plate 112 by press-fitting into the electrode 110. In this state, the electrode plate 112 is convexly curved in the direction opposite to the press-fitting direction of the cutting blade 202 as shown in FIG.

単一の極板112への切断加工が行われた後に、これら極板112を熟成乾燥して未化成極板を作成する。なお、正極、負極の区分は長尺状のエキスパンド格子体107に充填する活物質109に応じて区分されることは言うまでもない。また、格子合金組成も正極・負極、それぞれに必要な諸特性に応じて選択すればよい。例えば、正極では耐食性が要求されるため、1.0〜2.0wt%程度のSn、0.05〜0.08wt%程度のCaを含むPb−Ca−Sn合金を用いることができる。一方、負極では正極で求められるような耐食性は重要視されないため、Pbよりも高価なSnの含有量を低下させたPb−Ca−Sn合金を用いることができる。   After cutting into a single electrode plate 112, these electrode plates 112 are aged and dried to produce an unformed electrode plate. Needless to say, the positive electrode and the negative electrode are classified according to the active material 109 filled in the long expanded lattice 107. Further, the lattice alloy composition may be selected according to various characteristics required for the positive electrode and the negative electrode. For example, since corrosion resistance is required for the positive electrode, a Pb—Ca—Sn alloy containing about 1.0 to 2.0 wt% of Sn and about 0.05 to 0.08 wt% of Ca can be used. On the other hand, since the corrosion resistance required for the positive electrode is not considered important for the negative electrode, a Pb—Ca—Sn alloy in which the content of Sn, which is more expensive than Pb, is reduced can be used.

上記で得た未化成の正極板601(極板112において、活物質として正極活物質を充填したもの)と負極板602(極板112において、活物質として負極活物質を充填したもの)とをポリエチレンの袋状セパレータ603を介して積層して極板群600を構成する。そして、この極板群を用いて定法に従い、鉛蓄電池を組み立てることにより、本発明の鉛蓄電池を得ることができる。本発明では、図6に示したように、極板群600を構成する正極板601と負極板602の湾曲方向を同一方向とする。湾曲方向を同一方向とすることにより、正極板601および負極板602の両側部に露出した格子骨の先端でセパレータを破損することを防止し、これによる電池内部短絡の発生を抑制できる。   The unformed positive electrode plate 601 (the electrode plate 112 filled with a positive electrode active material as an active material) and the negative electrode plate 602 (the electrode plate 112 filled with a negative electrode active material as an active material) obtained above. The electrode plate group 600 is formed by laminating via a polyethylene bag-like separator 603. And the lead storage battery of this invention can be obtained by assembling a lead storage battery according to a regular method using this electrode group. In the present invention, as shown in FIG. 6, the bending directions of the positive electrode plate 601 and the negative electrode plate 602 constituting the electrode plate group 600 are the same direction. By making the bending direction the same direction, it is possible to prevent the separator from being damaged at the tips of the lattice bones exposed on the both sides of the positive electrode plate 601 and the negative electrode plate 602, and to suppress the occurrence of a battery internal short circuit.

特に、正極板601もしくは負極板602のいずれか一方をポリエチレンの袋状セパレータ603で収納した構成を用いる場合、格子骨の先端でセパレータを破損する頻度はより高くなるため、このような、袋状セパレータに極板を収納する鉛蓄電池に、顕著な効果を得ることができる。   In particular, when using a configuration in which one of the positive electrode plate 601 and the negative electrode plate 602 is accommodated by a polyethylene bag-like separator 603, the frequency of damaging the separator at the tip of the lattice bone becomes higher. A remarkable effect can be obtained in the lead storage battery in which the electrode plate is accommodated in the separator.

また、正極板601において、図7に示したように、正極活物質604はエキスパンド格子体605の厚みを超えてオーバーペーストで充填され、正極板601のオーバーペースト面601aを凸面として湾曲している場合、電池の使用中に発生する正極活物質の体積変化により、湾曲量が増大し、内部短絡の発生頻度は高くなる。このようなオーバーペースト面が湾曲の凸面に対応する場合においても、本発明を適用することにより、電池内部短絡を抑制することができる。なお、正極板601のオーバーペースト面601aから切断刃202を圧入した場合、オーバーペースト面601aが湾曲の凸面となる。   Also, in the positive electrode plate 601, as shown in FIG. 7, the positive electrode active material 604 is filled with over paste beyond the thickness of the expanded lattice 605, and is curved with the over paste surface 601a of the positive electrode plate 601 as a convex surface. In this case, the amount of bending increases due to the volume change of the positive electrode active material that occurs during use of the battery, and the frequency of occurrence of internal short circuits increases. Even when such an overpaste surface corresponds to a curved convex surface, by applying the present invention, a battery internal short circuit can be suppressed. When the cutting blade 202 is press-fitted from the overpaste surface 601a of the positive electrode plate 601, the overpaste surface 601a becomes a curved convex surface.

なお、極板の湾曲量と内部短絡の発生頻度との関係から、湾曲量が一定値を超える場合、すなわち、図8に示したように、正極板601および負極板602の凸状に湾曲した面を上方として仮想平面A上に載置し、この仮想平面Aからの前記凸状の頂点Bまでの距離(H)から正極板および負極板のそれぞれの厚み(t)を差し引いた値(H−t)を湾曲量(D)としたときに、前記正極板および負極板幅(W)に対する湾曲量(D)の比率(D/W)を0.007以上の場合に、本発明の構成を用いることが好ましい。比率(D/W)が0.007以上の場合、セパレータの破損とこれによる内部短絡の頻度が急増するためである。   From the relationship between the amount of bending of the electrode plate and the frequency of occurrence of internal short circuit, when the amount of bending exceeds a certain value, that is, as shown in FIG. 8, the positive electrode plate 601 and the negative electrode plate 602 are bent in a convex shape. The surface is placed on the virtual plane A, and the value (H) obtained by subtracting the thickness (t) of each of the positive electrode plate and the negative electrode plate from the distance (H) from the virtual plane A to the convex apex B. The configuration of the present invention when the ratio (D / W) of the bending amount (D) to the positive electrode plate and negative electrode plate width (W) is 0.007 or more, where -t) is the bending amount (D). Is preferably used. This is because when the ratio (D / W) is 0.007 or more, the frequency of breakage of the separator and the internal short circuit due to the breakage increases rapidly.

以下、本発明による電池と比較例による電池を作成し、寿命試験を行った。   Hereafter, the battery by this invention and the battery by a comparative example were created, and the lifetime test was done.

1)正極板
Pb−0.06wt%Ca−1.6wt%Sn合金の圧延鉛合金シートを実施形態で記載したように、エキスパンド加工を行い、正極活物質ペーストを充填し、長尺状の極板を作成した。その後、図2に示したように、切断刃を長尺状の極板に圧入して切断加工し、熟成乾燥を経て、未化成の正極板とした。なお、ここで、エキスパンド格子体の厚みを1.3mmとした。また、活物質充填後の極板厚みをエキスパンド格子体厚みと同一とした正極板Aと、活物質充填後の極板厚みを1.5mmとすることによって、オーバーペースト厚みを0.2mmとした正極板Bを作成した。なお、正極板A、正極板Bともに、極板幅(W)に対する湾曲量の比率(D/W)は0.002〜0.050であった。また、正極板Bはオーバーペースト面側から切断刃を圧入することによって、図7に示したような、オーバーペースト面側が凸状に湾曲した正極板とした。
1) As described in the embodiment, the rolled lead alloy sheet of the positive electrode plate Pb-0.06 wt% Ca-1.6 wt% Sn alloy is expanded, filled with the positive electrode active material paste, and the long electrode A board was created. Then, as shown in FIG. 2, the cutting blade was press-fitted into a long electrode plate, cut and processed, and after aging and drying, an unformed positive electrode plate was obtained. Here, the thickness of the expanded lattice was 1.3 mm. Also, the positive electrode plate A having the same thickness as the expanded lattice body after filling the active material and the thickness of the electrode plate after filling the active material was set to 1.5 mm, thereby setting the over paste thickness to 0.2 mm. A positive electrode plate B was prepared. In both the positive electrode plate A and the positive electrode plate B, the ratio of the bending amount to the electrode plate width (W) (D / W) was 0.002 to 0.050. Moreover, the positive electrode plate B was a positive electrode plate with the over paste surface side curved in a convex shape as shown in FIG. 7 by press-fitting a cutting blade from the over paste surface side.

2)負極板
Pb−0.06wt%Ca−0.3wt%Sn合金の圧延鉛合金シートを実施形態で記載したように、エキスパンド加工を行い、負極活物質ペーストを充填し、長尺状の極板を作成した。その後、図2に示したように、切断刃を長尺状の極板に圧入して切断加工し、熟成乾燥を経て、未化成の正極板とした。なお、ここで、エキスパンド格子体の厚みを1.0mmとした。活物質充填後の極板厚みはエキスパンド格子体厚みと同一とした。この負極板の湾曲量の比率(D/W)は0.002〜0.050であった。
2) The negative electrode plate Pb-0.06 wt% Ca-0.3 wt% Sn alloy rolled lead alloy sheet was expanded as described in the embodiment, filled with the negative electrode active material paste, and the long electrode A board was created. Then, as shown in FIG. 2, the cutting blade was press-fitted into a long electrode plate, cut and processed, and after aging and drying, an unformed positive electrode plate was obtained. Here, the thickness of the expanded lattice was 1.0 mm. The electrode plate thickness after filling the active material was the same as the expanded lattice thickness. The curvature ratio (D / W) of this negative electrode plate was 0.002 to 0.050.

上記の正極板5枚と負極板5枚を用いて図9に示す構成で始動用鉛蓄電池(12V48Ah)を作成した。本発明例の電池は図6に示すように、極板群600を構成する正極板601と負極板602の湾曲方向を同一とした。比較例の電池は図10に示すように、極板群700を構成する正極板601と負極板602の湾曲方向を同一としない構成とした。なお、セパレータとして、ポリエチレンの袋状セパレータ603を用い、この袋状セパレータ603中に負極板602を収納した構成とした。   A starting lead-acid battery (12V48Ah) was prepared with the configuration shown in FIG. 9 using the above five positive electrode plates and five negative electrode plates. As shown in FIG. 6, the battery of the example of the present invention has the same bending direction of the positive electrode plate 601 and the negative electrode plate 602 constituting the electrode plate group 600. As shown in FIG. 10, the battery of the comparative example has a configuration in which the positive electrode plate 601 and the negative electrode plate 602 constituting the electrode plate group 700 do not have the same bending direction. A polyethylene bag-shaped separator 603 was used as the separator, and the negative electrode plate 602 was accommodated in the bag-shaped separator 603.

図9に示した本発明例の電池および比較例の電池について75℃気相中で軽負荷寿命試験を行った。寿命試験条件は以下の通りである。   The light load life test was conducted in the gas phase of 75 ° C. for the battery of the present invention and the battery of the comparative example shown in FIG. The life test conditions are as follows.

1)放電 25A×4分
2)充電 14.8V(最大電流25A)×10分
3)判定放電 356A×30秒
上記1)2)の充放電サイクルの480サイクル毎に3)の判定放電を行い、判定放電時の放電終止電圧が7.2Vに低下した時点を寿命とした。これら本発明例および比較例の寿命試験結果を図9に示す。なお、寿命試験結果は本発明例の電池A1の寿命サイクル数を100としたときの百分率で示した。
1) Discharge 25A x 4 minutes
2) Charging 14.8V (maximum current 25A) x 10 minutes
3) Judgment discharge 356A × 30 seconds The judgment discharge of 3) was performed every 480 cycles of the charge / discharge cycle of 1) 2) above, and the point of time when the discharge end voltage at the judgment discharge dropped to 7.2V was regarded as the life. The life test results of these inventive examples and comparative examples are shown in FIG. In addition, the life test result was shown by the percentage when the life cycle number of the battery A1 of the present invention example is 100.

図9に示した結果から、本発明例の電池は比較例の電池よりも優れた寿命特性を有していることがわかる。なお、寿命試験終了後の電池を分解調査したところ、比較例の電池は袋状セパレータの正極板側部と負極板側部で挟まれた部分で線状の亀裂が生じ、この部分で内部短絡が発生していた。一方、本発明例による電池は、袋状セパレータの破損はなく、正極格子体の腐食と正極活物質の軟化脱落で寿命に到っていた。   From the results shown in FIG. 9, it can be seen that the battery of the example of the present invention has a life characteristic superior to that of the battery of the comparative example. In addition, when the battery after the end of the life test was disassembled and inspected, the battery of the comparative example had a linear crack at the portion sandwiched between the positive electrode side and the negative electrode side of the bag-like separator, and an internal short circuit occurred at this part. Had occurred. On the other hand, the battery according to the example of the present invention had no damage to the bag-like separator, and reached the end of its life due to corrosion of the positive electrode lattice and softening and dropping of the positive electrode active material.

さらに、比較例の電池において、正極板Bを用いた電池は他の電池に比較して寿命が低下する傾向にあった。また、これらの電池D1、電池D2、電池D3および電池D4は寿命試験終了後の正極板の湾曲量が増大しており、より早期にセパレータが破損し、内部短絡に到ったと考えられる。一方、正極板Bを用いた本発明例の電池B1、電池B2、電池B3および電池B4は極めて良好な寿命特性を有し、正極板Aを用いた本発明例の電池 よりも優れた寿命特性を示した。これは、本発明例の電池では内部短絡が抑制されたため、正極活物質量がより多い正極板Bを用いた電池B1、電池B2、電池B3および電池B4 の方が正極板Aを用いた電池A1、電池A2、電池A3および電池A4よりも、正極活物質量に対する放電深度が浅くなり、寿命特性上、有利に作用したと考えられる。   Furthermore, in the battery of the comparative example, the battery using the positive electrode plate B tended to have a shorter life than other batteries. In addition, the batteries D1, B2, D3, and D4 have an increased amount of bending of the positive electrode plate after the end of the life test, and it is considered that the separator was damaged earlier and reached an internal short circuit. On the other hand, the battery B1, the battery B2, the battery B3, and the battery B4 of the example of the present invention using the positive electrode plate B have extremely good life characteristics and are superior to the battery of the example of the present invention that uses the positive electrode plate A. showed that. This is because the internal short circuit was suppressed in the battery of the example of the present invention, so that the battery B1, the battery B2, the battery B3, and the battery B4 using the positive electrode plate B with a larger amount of the positive electrode active material used the positive electrode plate A. It is considered that the depth of discharge with respect to the amount of the positive electrode active material is shallower than that of A1, battery A2, battery A3, and battery A4.

さらに、図9に示した結果から、比較例の電池に関して、湾曲量の比率(D/W)が0.007以上の領域で急激に寿命低下する傾向にあることがわかる。一方、本発明例の電池では比率(D/W)が0.007以上の領域においても優れた寿命特性を有していた。したがって、本発明の構成は特に、比率(D/W)が0.007以上である極板に適用することにより、相対的により顕著な効果を得ることができる。   Furthermore, it can be seen from the results shown in FIG. 9 that regarding the battery of the comparative example, the life tends to be abruptly reduced in the region where the curvature ratio (D / W) is 0.007 or more. On the other hand, the battery of the present invention example had excellent life characteristics even in the region where the ratio (D / W) was 0.007 or more. Therefore, the structure of the present invention can obtain a relatively more remarkable effect particularly when applied to an electrode plate having a ratio (D / W) of 0.007 or more.

本発明は、湾曲が発生しやすい、薄型のエキスパンド格子体を用いた鉛蓄電池の内部短絡による短寿命を抑制できることから、高出力を要求されることにより、薄型の極板を用いる始動用の鉛蓄電池に特に好適である。   Since the present invention can suppress a short life due to internal short-circuiting of a lead storage battery using a thin expanded grid, which is likely to bend, lead for starting using a thin electrode plate is required because of high output. It is particularly suitable for a storage battery.

エキスパンド加工工程を示す図Diagram showing the expansion process 極板の切断加工工程を示す図Diagram showing the electrode plate cutting process 極板の湾曲状態を示す図Diagram showing the curved state of the electrode plate 極板の切断加工工程を示す図Diagram showing the electrode plate cutting process 極板の切断加工工程を示す図Diagram showing the electrode plate cutting process 本発明の鉛蓄電池の極板群断面を示す図The figure which shows the electrode plate group cross section of the lead acid battery of this invention 正極板断面を示す図Figure showing a cross section of the positive electrode plate 正極板(負極板)の湾曲状態を示す図The figure which shows the curved state of a positive electrode plate (negative electrode plate) 本発明例および比較例の電池構成および寿命試験結果を示す図The figure which shows the battery structure of a present invention example and a comparative example, and a lifetime test result 比較例の鉛蓄電池の極板群断面を示す図The figure which shows the electrode plate group cross section of the lead acid battery of a comparative example

符号の説明Explanation of symbols

101 鉛合金シート
102 無地部
103 スリット
104 エキスパンド網目
105 格子骨
106 結節部
107 (長尺状の)エキスパンド格子体
109 活物質
110 長尺状極板
111 極板耳
112 極板
201 アンビル
202 切断刃
301 切断面
401 ダイ
402 パンチ
501 アンビルローラー
502 切断刃ローラー
503 アンビル
504 切断刃
600 極板群
601 正極板
601a オーバーペースト面
602 負極板
603 袋状セパレータ
604 正極活物質
605 エキスパンド格子体
700 極板群
A 仮想平面
B 頂点
DESCRIPTION OF SYMBOLS 101 Lead alloy sheet 102 Plain part 103 Slit 104 Expanded mesh 105 Lattice bone 106 Nodal part 107 (Long form) expanded lattice body 109 Active material 110 Elongate electrode plate 111 Electrode plate ear 112 Electrode plate 201 Anvil 202 Cutting blade 301 Cutting surface 401 Die 402 Punch 501 Anvil roller 502 Cutting blade roller 503 Anvil 504 Cutting blade 600 Electrode plate group 601 Positive electrode plate 601a Over paste surface 602 Negative electrode plate 603 Bag-like separator 604 Positive electrode active material 605 Expanded grid body 700 Electrode plate group A Virtual Plane B apex

Claims (3)

長尺状の鉛もしくは鉛合金シートの幅方向中央部に無地部を残して両側部を幅方向にエキスパンド展開して得た長尺状エキスパンド格子体に活物質を充填して長尺状極板とし、
この長尺状極板の一方の面から切断刃を圧入して、この長尺状極板を所定長さに切断して得た正極板および負極板を備え、
これら正極板および負極板のいずれか一方の極板を袋状のポリエチレンセパレータに収納し、他方の極板とともに積層してなる極板群を備えた鉛蓄電池であって、
前記正極板面および前記負極板面が前記切断刃の圧入方向と逆方向に凸状に湾曲してなり、
前記極板群を構成する前記正極板および前記負極板の湾曲方向を同一方向としたことを特徴とする鉛蓄電池。
A long electrode plate with an active material filled in a long expanded lattice obtained by expanding both sides of the long lead or lead alloy sheet in the width direction, leaving a plain portion in the width direction center. age,
A positive electrode plate and a negative electrode plate obtained by press-fitting a cutting blade from one surface of the long electrode plate and cutting the long electrode plate into a predetermined length,
A lead storage battery comprising an electrode plate group in which one of the positive electrode plate and the negative electrode plate is housed in a bag-like polyethylene separator and laminated together with the other electrode plate,
The positive electrode plate surface and the negative electrode plate surface are curved in a convex shape in a direction opposite to the press-fitting direction of the cutting blade,
A lead storage battery characterized in that the positive electrode plate and the negative electrode plate constituting the electrode plate group have the same bending direction.
前記正極板において、前記活物質は前記正極板厚みが前記エキスパンド格子体厚みよりも大となるようオーバーペーストで充填され、正極板のオーバーペースト面からもう一方の面に向けて前記切断刃を圧入して切断したことを特徴とする鉛蓄電池。 In the positive electrode plate, the active material is filled with an over paste so that the thickness of the positive electrode plate is larger than the thickness of the expanded lattice, and the cutting blade is press-fitted from the over paste surface of the positive electrode plate to the other surface. Lead-acid battery characterized by being cut. 前記正極板および前記負極板の凸状に湾曲した面を上方として仮想平面上に載置し、この仮想平面からの前記凸状の頂点までの距離(H)から前記正極板および負極板のそれぞれの厚み(t)を差し引いた値(H−t)を湾曲量(D)としたときに、前記正極板および負極板幅(W)に対する湾曲量(D)の比率(D/W)を0.007以上としたことを特徴とする請求項1および2に記載の鉛蓄電池。 The positively curved surface of the positive electrode plate and the negative electrode plate is placed on a virtual plane with the upper surface being upward, and each of the positive electrode plate and the negative electrode plate is determined from the distance (H) from the virtual plane to the convex vertex. The ratio (D / W) of the bending amount (D) to the positive electrode plate and negative electrode plate width (W) is 0 when the value (Ht) obtained by subtracting the thickness (t) of the film is defined as the bending amount (D). The lead-acid battery according to claim 1 or 2, wherein the lead-acid battery is 0.007 or more.
JP2004240474A 2004-08-20 2004-08-20 Lead acid battery Active JP4599940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240474A JP4599940B2 (en) 2004-08-20 2004-08-20 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240474A JP4599940B2 (en) 2004-08-20 2004-08-20 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006059671A true JP2006059671A (en) 2006-03-02
JP4599940B2 JP4599940B2 (en) 2010-12-15

Family

ID=36106966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240474A Active JP4599940B2 (en) 2004-08-20 2004-08-20 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4599940B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242320A (en) * 2006-03-07 2007-09-20 Panasonic Ev Energy Co Ltd Battery and its manufacturing method
JP2009170234A (en) * 2008-01-15 2009-07-30 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2010520607A (en) * 2007-03-02 2010-06-10 ジョンソン コントロールズ テクノロジー カンパニー Battery negative grid
WO2012132477A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Lead-acid storage battery and electric vehicle
KR101195864B1 (en) 2011-04-13 2012-10-30 국방과학연구소 Umbilical Connector with Dual Face Separation
CN103247825A (en) * 2013-05-31 2013-08-14 深圳市格瑞普电池有限公司 Laminated lithium ion battery preparation method and prepared battery
CN103268961A (en) * 2013-05-31 2013-08-28 深圳市格瑞普电池有限公司 Laminated lithium ion battery preparation method and battery
CN103337661A (en) * 2013-05-31 2013-10-02 深圳市格瑞普电池有限公司 Packaging mold and packaging method used for aluminum/plastic film
EP2988362A1 (en) * 2013-07-31 2016-02-24 LG Chem, Ltd. Curved electrode stack and battery pack comprising same
JP2021114404A (en) * 2020-01-17 2021-08-05 古河電池株式会社 Lead acid battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322351A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH0478762U (en) * 1990-11-21 1992-07-09
JPH11273709A (en) * 1998-01-05 1999-10-08 Haibaru:Kk Battery
JP2000348732A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Lead-acid battery and manufacture therefor
JP2003132897A (en) * 2001-10-30 2003-05-09 Shin Kobe Electric Mach Co Ltd Method for manufacturing expand type electrode plate for positive electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322351A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH0478762U (en) * 1990-11-21 1992-07-09
JPH11273709A (en) * 1998-01-05 1999-10-08 Haibaru:Kk Battery
JP2000348732A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Lead-acid battery and manufacture therefor
JP2003132897A (en) * 2001-10-30 2003-05-09 Shin Kobe Electric Mach Co Ltd Method for manufacturing expand type electrode plate for positive electrode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242320A (en) * 2006-03-07 2007-09-20 Panasonic Ev Energy Co Ltd Battery and its manufacturing method
JP2010520607A (en) * 2007-03-02 2010-06-10 ジョンソン コントロールズ テクノロジー カンパニー Battery negative grid
JP2009170234A (en) * 2008-01-15 2009-07-30 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
WO2012132477A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Lead-acid storage battery and electric vehicle
JP5106712B2 (en) * 2011-03-31 2012-12-26 パナソニック株式会社 Lead-acid battery and electric vehicle
KR101195864B1 (en) 2011-04-13 2012-10-30 국방과학연구소 Umbilical Connector with Dual Face Separation
CN103247825A (en) * 2013-05-31 2013-08-14 深圳市格瑞普电池有限公司 Laminated lithium ion battery preparation method and prepared battery
CN103268961A (en) * 2013-05-31 2013-08-28 深圳市格瑞普电池有限公司 Laminated lithium ion battery preparation method and battery
CN103337661A (en) * 2013-05-31 2013-10-02 深圳市格瑞普电池有限公司 Packaging mold and packaging method used for aluminum/plastic film
EP2988362A1 (en) * 2013-07-31 2016-02-24 LG Chem, Ltd. Curved electrode stack and battery pack comprising same
JP2016525768A (en) * 2013-07-31 2016-08-25 エルジー・ケム・リミテッド Curved electrode laminate and battery pack including the same
EP2988362A4 (en) * 2013-07-31 2017-04-05 LG Chem, Ltd. Curved electrode stack and battery pack comprising same
US9972868B2 (en) 2013-07-31 2018-05-15 Lg Chem, Ltd. Curved electrode stack and battery pack including the same
JP2021114404A (en) * 2020-01-17 2021-08-05 古河電池株式会社 Lead acid battery
JP7128483B2 (en) 2020-01-17 2022-08-31 古河電池株式会社 lead acid battery

Also Published As

Publication number Publication date
JP4599940B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP2022093710A (en) Battery grid with varied corrosion resistance
JP4599940B2 (en) Lead acid battery
JP3358508B2 (en) Expanded grid for lead-acid battery
JP2010140772A (en) Lead storage battery
JP5230845B2 (en) Electrode plate group for lead-acid battery, lead-acid battery, and method for producing electrode plate group for lead-acid battery
JP5521503B2 (en) Lead acid battery
JP2010244748A (en) Method for manufacturing electrode plate
JP2000106190A (en) Manufacture of lead-acid battery
JP4923485B2 (en) Expanded grid for lead-acid battery and lead-acid battery using the expanded grid
JP4385441B2 (en) Lead acid battery
US20190013511A1 (en) Electrode sheet manufacturing method
JP4239303B2 (en) Lead acid battery
JP5343514B2 (en) Paste type lead acid battery
JP2000323165A (en) Wound body electrode group for accumulator and alkali storage battery
JP2000357518A (en) Grid for lead-acid battery and its manufacture
JP4834912B2 (en) Manufacturing method of storage battery grid and manufacturing method of lead storage battery using storage battery grid manufactured by the manufacturing method
JP4945960B2 (en) Method for producing expanded grid for lead-acid battery
JP4904632B2 (en) Lead acid battery
JP2003132897A (en) Method for manufacturing expand type electrode plate for positive electrode
JPS6145566A (en) Manufacture of grid for lead storage battery
JP4894105B2 (en) Lead acid battery
JP2012014870A (en) Hydrogen-occluding alloy electrode and method of manufacturing the same
JP5034249B2 (en) Lead acid battery
JP2002075380A (en) Expand grid body for lead-acid battery
JP2004063151A (en) Polar plate manufacturing device for lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4599940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350