JP2006058511A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2006058511A
JP2006058511A JP2004239145A JP2004239145A JP2006058511A JP 2006058511 A JP2006058511 A JP 2006058511A JP 2004239145 A JP2004239145 A JP 2004239145A JP 2004239145 A JP2004239145 A JP 2004239145A JP 2006058511 A JP2006058511 A JP 2006058511A
Authority
JP
Japan
Prior art keywords
color
filter
temperature conversion
color temperature
conversion filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004239145A
Other languages
Japanese (ja)
Inventor
Takashi Noguchi
高史 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004239145A priority Critical patent/JP2006058511A/en
Publication of JP2006058511A publication Critical patent/JP2006058511A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Control For Cameras (AREA)
  • Blocking Light For Cameras (AREA)
  • Optical Filters (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the color reproducibility of a color imaging apparatus. <P>SOLUTION: A color imaging apparatus is provided for imaging an optical image of a subject obtained through a lens 8 with an imaging means 9, wherein a color temperature conversion filter 12 is fixed and set on the light input side of the imaging means 9. The color temperature conversion filter 12 has characteristics for improving color reproducibility relative to a various types of a light source compared to the case where the color temperature conversion filter is not used. Specifically, where the spectral transmittance of a wavelength γ[nm] is defined as T(λ), the filter 12 has the characteristics in which 1.3≤T(450)/T(540)≤1.8, 1.3≤T(540)/T(640)≤1.5, and 1.7≤T(450)/T(610)≤3.0 are satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フィルムカメラやデジタルカメラ等のカラー画像撮像装置に係り、特に、高い色再現性を実現したカラー画像撮像装置に関する。   The present invention relates to a color image capturing apparatus such as a film camera or a digital camera, and more particularly to a color image capturing apparatus that realizes high color reproducibility.

被写体のカラー画像を撮像する場合、被写体を照明する光源の分光特性に応じて撮像画像を補正する必要がある。例えば、従来のデジタルカメラの場合、撮像したカラー画像を構成する赤色(R),緑色(G),青色(B)の各色のレベル差を検出し、レベル差が零となるように各色の利得を調整している。この調整はホワイトバランス調整と呼ばれ、広く採用されている。しかし、ホワイトバランス調整を行っただけでは、撮像画像の色再現性が十分でないという問題がある。   When capturing a color image of a subject, it is necessary to correct the captured image according to the spectral characteristics of the light source that illuminates the subject. For example, in the case of a conventional digital camera, the level difference of each color of red (R), green (G), and blue (B) constituting a captured color image is detected, and the gain of each color is set so that the level difference becomes zero. Is adjusted. This adjustment is called white balance adjustment and is widely adopted. However, there is a problem that the color reproducibility of the captured image is not sufficient only by performing the white balance adjustment.

そこで従来は、例えば下記特許文献1に記載されている様に、ホワイトバランス調整に加え、複数種類の色温度変換フィルタを用意し、照明光源の分光特性に応じて最適な色温度変換フィルタを選択しこれを撮像装置の光路中に挿入する構成を採用している。   Therefore, conventionally, for example, as described in Patent Document 1 below, in addition to white balance adjustment, a plurality of types of color temperature conversion filters are prepared, and an optimum color temperature conversion filter is selected according to the spectral characteristics of the illumination light source. A configuration is adopted in which this is inserted into the optical path of the imaging device.

特開平5―68257号公報JP-A-5-68257

色温度変換フィルタを用いることで、撮像画像の色再現性を向上させることができる。しかし、色温度変換フィルタを搭載した従来の撮像装置は、複数種類の色温度変換フィルタを用意すると共に、その中から撮影状況に応じて最適な色温度変換フィルタを選択する制御系を設けているため、装置が大型化すると共に製造コストが嵩んでしまうという問題がある。ユーザがマニュアル操作により色温度変換フィルタを選択する構成にすることも可能であるが、照明光源の分光特性に合わせて色温度変換フィルタを選択するには熟練が必要であり、非熟練者には困難である。   By using the color temperature conversion filter, the color reproducibility of the captured image can be improved. However, a conventional imaging device equipped with a color temperature conversion filter is provided with a plurality of types of color temperature conversion filters and a control system for selecting an optimum color temperature conversion filter from among them according to the shooting situation. For this reason, there is a problem that the apparatus becomes large and the manufacturing cost increases. Although it is possible for the user to select the color temperature conversion filter by manual operation, skill is required to select the color temperature conversion filter according to the spectral characteristics of the illumination light source. Have difficulty.

本発明の目的は、色再現性の優れた小型且つ低コストのカラー画像撮像装置を提供することにある。   An object of the present invention is to provide a small-sized and low-cost color image capturing apparatus having excellent color reproducibility.

本発明のカラー画像撮像装置は、レンズを通して得られた被写体光像を撮像手段で撮像するカラー画像撮像装置において、前記撮像手段の光入力側に色温度変換フィルタを固定設置したことを特徴とする。   The color image capturing apparatus of the present invention is characterized in that a color temperature conversion filter is fixedly installed on the light input side of the image capturing means in the color image capturing apparatus that captures the subject light image obtained through the lens by the image capturing means. .

本発明のカラー画像撮像装置の前記色温度変換フィルタは、各種光源に対して色温度変換フィルタ無しの状態より色再現性が向上する特性を有することを特徴とする。   The color temperature conversion filter of the color image pickup apparatus of the present invention is characterized in that color reproducibility is improved with respect to various light sources as compared with a state without the color temperature conversion filter.

本発明のカラー画像撮像装置の前記色温度変換フィルタは、波長λ〔nm〕の分光透過率をT(λ)としたとき、1.3≦T(450)/T(540)≦1.8の特性を有することを特徴とする。   The color temperature conversion filter of the color image pickup device of the present invention has 1.3 ≦ T (450) / T (540) ≦ 1.8, where T (λ) is the spectral transmittance of the wavelength λ [nm]. It is characterized by having the following characteristics.

本発明のカラー画像撮像装置の前記色温度変換フィルタは、波長λ〔nm〕の分光透過率をT(λ)としたとき、1.3≦T(540)/T(610)≦1.5の特性を有することを特徴とする。   The color temperature conversion filter of the color image pickup device of the present invention has 1.3 ≦ T (540) / T (610) ≦ 1.5, where T (λ) is the spectral transmittance of the wavelength λ [nm]. It is characterized by having the following characteristics.

本発明のカラー画像撮像装置の前記色温度変換フィルタは、波長λ〔nm〕の分光透過率をT(λ)としたとき、1.7≦T(450)/T(610)≦3.0の特性を有することを特徴とする。   The color temperature conversion filter of the color image pickup apparatus of the present invention has 1.7 ≦ T (450) / T (610) ≦ 3.0, where T (λ) is the spectral transmittance of wavelength λ [nm]. It is characterized by having the following characteristics.

本発明のカラー画像撮像装置は、前記撮像手段が固体撮像素子であることを特徴とする。   The color image pickup apparatus of the present invention is characterized in that the image pickup means is a solid-state image pickup device.

本発明のカラー画像撮像装置は、前記固体撮像素子から出力される撮像画像データに対してホワイトバランス調整を行う信号処理手段を備えることを特徴とする。   The color image capturing apparatus according to the present invention includes signal processing means for performing white balance adjustment on captured image data output from the solid-state image sensor.

本発明のカラー画像撮像装置は、前記撮像手段がフィルムであることを特徴とする。   The color image pickup apparatus of the present invention is characterized in that the image pickup means is a film.

本発明では、各種照明光源に対して撮像画像の色再現性を向上させる色温度変換フィルタを光学系内の光路中に固定設置したため、色再現性の優れたカラー画像撮像装置を小型且つ低コストで実現できる。   In the present invention, since the color temperature conversion filter for improving the color reproducibility of the captured image with respect to various illumination light sources is fixedly installed in the optical path in the optical system, a color image capturing apparatus having excellent color reproducibility is reduced in size and cost. Can be realized.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るカラー画像撮像装置の一例であるデジタルスチルカメラのブロック構成図である。尚、デジタルスチルカメラに限らず、デジタルビデオカメラや携帯電話機搭載のデジタルカメラ等にも本発明を適用可能であり、また、図1に示す光学系の部分を搭載したフィルムカメラにも本発明を適用可能である。   FIG. 1 is a block diagram of a digital still camera as an example of a color image capturing apparatus according to an embodiment of the present invention. The present invention can be applied not only to a digital still camera but also to a digital video camera, a digital camera mounted on a mobile phone, and the like, and the present invention is also applied to a film camera mounted with an optical system portion shown in FIG. Applicable.

図1に示すデジタルスチルカメラは、撮影レンズ8と、CCDやCMOS等の固体撮像素子9と、この両者の間に設けられた、絞り10と、赤外線カットフィルタ11と、詳細は後述する色温度変換フィルタ12と、光学ローパスフィルタ13とを備える。   The digital still camera shown in FIG. 1 includes a photographing lens 8, a solid-state image pickup device 9 such as a CCD or a CMOS, a diaphragm 10 and an infrared cut filter 11 provided between the two, and a color temperature described later in detail. A conversion filter 12 and an optical low-pass filter 13 are provided.

本発明では一種類の色温度変換フィルタ12しか用いず、撮影レンズ8に入射した被写体像は必ずこの色温度変換フィルタ12を通った後に固体撮像素子9で光電変換される。色温度変換フィルタ12を光路中に固定設置する場所は、図示する例では赤外線カットフィルタ11と光学ローパスフィルタ13との間であるが、固体撮像素子9の光入力側であればどこでもよい。   In the present invention, only one type of color temperature conversion filter 12 is used, and a subject image incident on the photographing lens 8 is always photoelectrically converted by the solid-state image sensor 9 after passing through the color temperature conversion filter 12. The place where the color temperature conversion filter 12 is fixedly installed in the optical path is between the infrared cut filter 11 and the optical low-pass filter 13 in the illustrated example, but may be anywhere on the light input side of the solid-state imaging device 9.

デジタルスチルカメラの全体を制御するCPU15は、フラッシュ用の発光部16及び受光部17を制御し、また、レンズ駆動部18を制御して撮影レンズ8の位置をフォーカス位置に調整し、絞り駆動部19を介し絞り10の開口量を制御して露光量が適正露光量となるように調整する。   The CPU 15 that controls the entire digital still camera controls the light emitting unit 16 and the light receiving unit 17 for flash, controls the lens driving unit 18 to adjust the position of the photographing lens 8 to the focus position, and stops the aperture driving unit. The opening amount of the diaphragm 10 is controlled via 19 so that the exposure amount becomes an appropriate exposure amount.

また、CPU15は、撮像素子駆動部20を介して固体撮像素子9を駆動し、撮影レンズ8や各フィルタ11,12,13を通して撮像した被写体画像を色信号として出力させる。また、CPU15には、操作部21を通してユーザの指示信号が入力され、CPU15はこの指示に従って各種制御を行う。   Further, the CPU 15 drives the solid-state image sensor 9 via the image sensor driving unit 20 and outputs the subject image captured through the photographing lens 8 and the filters 11, 12, 13 as a color signal. In addition, a user instruction signal is input to the CPU 15 through the operation unit 21, and the CPU 15 performs various controls according to the instruction.

操作部21はシャッタボタン(レリーズボタン)を含み、シャッタボタンが半押し状態(スイッチS1)になったときにフォーカス調整や露光調整が為され、シャッタボタンが全押し状態(スイッチS2)になると、撮像が行われる。   The operation unit 21 includes a shutter button (release button). When the shutter button is half-pressed (switch S1), focus adjustment and exposure adjustment are performed, and when the shutter button is fully pressed (switch S2), Imaging is performed.

デジタルスチルカメラの電気制御系は、固体撮像素子9の出力に接続されたアナログ信号処理部22と、このアナログ信号処理部22から出力されたRGBの色信号をデジタル信号に変換するA/D変換回路23とを備え、これらはCPU15によって制御される。   The electric control system of the digital still camera includes an analog signal processing unit 22 connected to the output of the solid-state imaging device 9 and A / D conversion for converting RGB color signals output from the analog signal processing unit 22 into digital signals. The circuit 23 is provided and these are controlled by the CPU 15.

更に、このデジタルスチルカメラの電気制御系は、メインメモリ24に接続されたメモリ制御部25と、ホワイトバランス調整やガンマ補正等を行うデジタル信号処理部26と、撮像画像をJPEG画像に圧縮したり圧縮画像を伸張したりする圧縮伸張処理部27と、後述の測光データを積算してホワイトバランスのゲインを調整させる積算部28と、着脱自在の記録媒体29が接続される外部メモリ制御部30と、カメラ背面等に搭載された液晶表示部31が接続される表示制御部32とを備え、これらは、制御バス33及びデータバス34によって相互に接続され、CPU15からの指令によって制御される。   Furthermore, the electric control system of the digital still camera includes a memory control unit 25 connected to the main memory 24, a digital signal processing unit 26 that performs white balance adjustment, gamma correction, and the like, and compresses a captured image into a JPEG image. A compression / expansion processing unit 27 that expands or compresses a compressed image; an integration unit 28 that integrates photometric data to be described later to adjust the gain of white balance; and an external memory control unit 30 to which a removable recording medium 29 is connected. And a display control unit 32 to which a liquid crystal display unit 31 mounted on the rear surface of the camera is connected. These are connected to each other by a control bus 33 and a data bus 34, and are controlled by commands from the CPU 15.

斯かる構成のデジタルスチルカメラでは、シャッタボタン半押し状態のときに固体撮像素子9から動画状態で出力される画像データを測光データとしてデジタル信号処理部26がアナログ信号処理部22及びA/D変換回路23を介して取り込み、データ処理する。このデータ処理結果により、CPU15は、レンズ8のフォーカス位置を調整し、絞り10を開閉して露光量を調整する。   In the digital still camera having such a configuration, the digital signal processing unit 26 uses the analog signal processing unit 22 and the A / D conversion by using the image data output in a moving image state from the solid-state imaging device 9 as photometry data when the shutter button is half-pressed. The data is taken in through the circuit 23 and processed. Based on the result of this data processing, the CPU 15 adjusts the focus position of the lens 8 and opens / closes the diaphragm 10 to adjust the exposure amount.

また、積算部28は、測光データ中のR成分,G成分,B成分の積算を行い、積算結果をデジタル信号処理部26に渡し、デジタル信号処理部26は、R成分の積算値とG成分の積算値とB成分の積算値とが等しくなるようにR,G,B信号の各ゲインを決定する。   Further, the integrating unit 28 integrates the R component, G component, and B component in the photometric data, and passes the integration result to the digital signal processing unit 26. The digital signal processing unit 26 adds the integrated value of the R component and the G component. The gains of the R, G, and B signals are determined so that the integrated value of B and the integrated value of the B component are equal.

シャッタボタンが全押しされると、固体撮像素子9から静止画像データがアナログ信号処理部22及びA/D変換回路23を介してデジタル信号処理部26に出力される。デジタル信号処理部26は、この画像データを構成するR信号,B信号,G信号に対し、上記の測光データから求めたR信号用ゲイン,G信号用ゲイン,B信号用ゲインを乗算してホワイトバランス調整を行い、その他、ガンマ補正やRGB/YC変換処理等を施して輝度信号と色差信号でなる静止画像データを生成し、圧縮伸長処理部27はこの静止画像データをJPEGデータに圧縮し、外部メモリ制御部30がJPEGデータを記録媒体29に格納する。   When the shutter button is fully pressed, still image data is output from the solid-state imaging device 9 to the digital signal processing unit 26 via the analog signal processing unit 22 and the A / D conversion circuit 23. The digital signal processing unit 26 multiplies the R signal, B signal, and G signal constituting the image data by the R signal gain, G signal gain, and B signal gain obtained from the above-mentioned photometric data. The balance adjustment is performed, and in addition, gamma correction, RGB / YC conversion processing, and the like are performed to generate still image data including a luminance signal and a color difference signal. The compression / decompression processing unit 27 compresses the still image data into JPEG data, The external memory control unit 30 stores the JPEG data in the recording medium 29.

次に、本実施形態のデジタルスチルカメラに搭載した色温度変換フィルタ12について説明する。   Next, the color temperature conversion filter 12 mounted on the digital still camera of this embodiment will be described.

カラー画像撮像装置で被写体を撮像するときに用いられる照明光源には、一般に、A光源,C光源,D50光源,D55光源,D65光源,D75光源等がある。図2は、これら各光源における波長と強度の関係を示すグラフである。人間の目が青色と感じる波長は450nm付近であり、緑色と感じる波長は540nm付近、赤色と感じる波長は610nm付近であるが、図2から分かる通り、光源によって、青色が強かったり、赤色が強かったりする。   Illumination light sources used when a subject is imaged by a color image capturing apparatus generally include an A light source, a C light source, a D50 light source, a D55 light source, a D65 light source, a D75 light source, and the like. FIG. 2 is a graph showing the relationship between the wavelength and intensity of each light source. The wavelength that human eyes perceive as blue is around 450 nm, the wavelength perceived as green is around 540 nm, and the wavelength perceived as red is around 610 nm. As can be seen from FIG. Or

被写体を色再現性よく撮像するには、赤っぽい照明光源の元では青っぽい色温度変換フィルタを使用し、青っぽい照明光源の元では赤っぽい色温度変換フィルタを使用するのが好ましい。しかし、本実施形態では、1つの色温度変換フィルタ12をカラー画像撮像装置に固定設置してしまうため、全ての照明光源に合う色温度変換フィルタを選ぶ必要がある。   In order to image a subject with good color reproducibility, it is preferable to use a bluish color temperature conversion filter under a reddish illumination light source and a reddish color temperature conversion filter under a bluish illumination light source. However, in the present embodiment, since one color temperature conversion filter 12 is fixedly installed in the color image capturing apparatus, it is necessary to select a color temperature conversion filter suitable for all illumination light sources.

図3は、4種類の色温度変換フィルタ(aフィルタ、bフィルタ、cフィルタ、dフィルタ)の波長と分光透過率の関係を示すグラフである。aフィルタからdフィルタまで、いずれのフィルタも、青色から長波長側になるに従って分光透過率は低くなり、また、aフィルタの分光透過率が最も高く、bフィルタ,cフィルタ,dフィルタとなるに従って分光透過率は小さくなっている。   FIG. 3 is a graph showing the relationship between the wavelength and spectral transmittance of four types of color temperature conversion filters (a filter, b filter, c filter, and d filter). All filters from the a filter to the d filter have a lower spectral transmittance as they go from the blue to the longer wavelength side, and the spectral transmittance of the a filter is the highest and becomes a b filter, a c filter, and a d filter. Spectral transmittance is small.

これらの各色温度変換フィルタを光学系の光路中に挿入し、評価対象色を撮像して得た色再現性を、そのu’v’色度図上の面積(以下、評価面積という。)で評価した図が図4である。尚、評価対象色としては、平均演色評価数算出用試験色票No.1〜No.8を使用しているが、これに限るものではない。   The color reproducibility obtained by inserting each of these color temperature conversion filters into the optical path of the optical system and imaging the color to be evaluated is an area on the u′v ′ chromaticity diagram (hereinafter referred to as an evaluation area). The evaluated figure is FIG. In addition, as an evaluation object color, the test color chart No. 1-No. Although 8 is used, it is not limited to this.

A光源下で、色温度変換フィルタ無しの状態で得られた評価面積が0.00393であったとき、aフィルタを挿入すると評価面積は0.00472となり、bフィルタを挿入すると評価面積は0.00535となり、cフィルタを挿入すると評価面積は0.00555となり、dフィルタを挿入すると評価面積は0.00577となる。A光源の場合、フィルタ無しの場合の評価面積に比べて、いずれの色温度変換フィルタa,b,c,dを挿入してもその評価面積は増大しており、各フィルタで色再現性が向上していることが分かる。   When the evaluation area obtained without the color temperature conversion filter under the light source A is 0.00393, the evaluation area is 0.00472 when the a filter is inserted, and the evaluation area is 0.002 when the b filter is inserted. When the c filter is inserted, the evaluation area is 0.00555, and when the d filter is inserted, the evaluation area is 0.00577. In the case of the A light source, the evaluation area increases even if any of the color temperature conversion filters a, b, c, and d is inserted, compared to the evaluation area without the filter, and the color reproducibility of each filter is increased. It can be seen that it has improved.

D65光源の場合、色温度変換フィルタ無しの状態で得られる評価面積は0.00719であり、aフィルタ挿入により評価面積は0.00726となり、bフィルタ挿入により評価面積は0.00756となり、cフィルタ挿入により評価面積は0.00740となり、dフィルタ挿入により評価面積は0.00707となる。従って、D65光源の場合、色温度変換フィルタ無しの状態で得られる評価面積に対して、dフィルタを挿入したときの評価面積が小さくなっており、a,b,cフィルタ挿入によって色再現性は増すが、dフィルタ挿入によって色再現性が低下することが分かる。   In the case of the D65 light source, the evaluation area obtained without the color temperature conversion filter is 0.00719, the evaluation area becomes 0.00726 when the a filter is inserted, and the evaluation area becomes 0.00756 when the b filter is inserted. The evaluation area becomes 0.00740 by insertion, and the evaluation area becomes 0.00707 by insertion of the d filter. Therefore, in the case of the D65 light source, the evaluation area when the d filter is inserted is smaller than the evaluation area obtained without the color temperature conversion filter, and the color reproducibility is reduced by inserting the a, b, and c filters. Although it increases, it can be seen that the color reproducibility is lowered by the d filter insertion.

図4において、各光源で各フィルタを挿入したときに得られる評価面積がフィルタ無しの評価面積より増大した場合にその値を楕円で囲っている。この楕円で囲った部分が色再現性が向上した部分である。この図4によれば、bフィルタを色温度変換フィルタ12として光学系の光路中に固定設置すれば、全ての光源において色再現性が向上することが分かる。また、aフィルタ,cフィルタは、D75光源以外の光源に対して色再現性が向上しており、特にcフィルタはD75光源での色再現性の低下がaフィルタより小さいことが分かる。   In FIG. 4, when the evaluation area obtained when each filter is inserted with each light source is larger than the evaluation area without a filter, the value is enclosed by an ellipse. A portion surrounded by the ellipse is a portion where the color reproducibility is improved. According to FIG. 4, it can be seen that if the b filter is fixedly installed in the optical path of the optical system as the color temperature conversion filter 12, the color reproducibility is improved for all light sources. It can also be seen that the a filter and the c filter have improved color reproducibility with respect to light sources other than the D75 light source, and in particular, the c filter has a lower color reproducibility with the D75 light source than the a filter.

図5は、図3に示す各フィルタの特性グラフにおける波長450nm、540nm、610nmの分光透過率T(450),T(540),T(610)と、各分光透過率の「450nm/540nm」、「540nm/610nm」、「450nm/610nm」の比の値を示す図表である。   FIG. 5 shows spectral transmittances T (450), T (540), and T (610) at wavelengths of 450 nm, 540 nm, and 610 nm in the characteristic graph of each filter shown in FIG. 3, and “450 nm / 540 nm” of each spectral transmittance. , “540 nm / 610 nm” and “450 nm / 610 nm” ratio values.

図4に示す様に、bフィルタを色温度変換フィルタ12として挿入設置するのが最も好ましく、このbフィルタの特性は、分光透過率の比の値で
〔特性1〕
1.30≦T(450)/T(540)≦1.73
1.28≦T(540)/T(610)≦1.45
1.66≦T(450)/T(610)≦2.53
と表すことができる。
As shown in FIG. 4, it is most preferable to insert the b filter as the color temperature conversion filter 12, and the characteristic of this b filter is the value of the spectral transmittance ratio [Characteristic 1].
1.30 ≦ T (450) / T (540) ≦ 1.73
1.28 ≦ T (540) / T (610) ≦ 1.45
1.66 ≦ T (450) / T (610) ≦ 2.53
It can be expressed as.

また、前述した様に、cフィルタであっても多くの光源で色再現性が向上するため、bフィルタ,cフィルタを含む特性は、分光透過率の比の値で、
〔特性2〕
1.30≦T(450)/T(540)≦1.93
1.28≦T(540)/T(610)≦1.63
1.66≦T(450)/T(610)≦3.18
と表すことができる。
In addition, as described above, since the color reproducibility is improved with many light sources even with the c filter, the characteristics including the b filter and the c filter are the values of the spectral transmittance ratio.
[Characteristic 2]
1.30 ≦ T (450) / T (540) ≦ 1.93
1.28 ≦ T (540) / T (610) ≦ 1.63
1.66 ≦ T (450) / T (610) ≦ 3.18
It can be expressed as.

以上を纏め、また、cフィルタではD75光源で色再現性が若干低下することを考慮し、更に、各光源で確実に色再現性を向上させる範囲を考慮すると、
〔特性3〕
1.30≦T(450)/T(540)≦1.80
1.30≦T(540)/T(610)≦1.50
1.70≦T(450)/T(610)≦3.00
とするのが良い。
Summarizing the above, considering that the color reproducibility is slightly reduced with the D75 light source in the c filter, and further considering the range in which the color reproducibility is reliably improved with each light source,
[Characteristic 3]
1.30 ≦ T (450) / T (540) ≦ 1.80
1.30 ≦ T (540) / T (610) ≦ 1.50
1.70 ≦ T (450) / T (610) ≦ 3.00
It is good to do.

このように、上述した特性1,特性2,特性3のいずれかの特性を有する色温度変換フィルタ12を用いることで色再現性が向上する。更に、この色温度変換フィルタ12を用いると共に、従来と同様のホワイトバランス調整を行うことで、より一層、色再現性が向上する。   As described above, the color reproducibility is improved by using the color temperature conversion filter 12 having any one of the above-described characteristic 1, characteristic 2, and characteristic 3. Furthermore, the color reproducibility is further improved by using the color temperature conversion filter 12 and performing the same white balance adjustment as in the prior art.

尚、(株)保谷ガラス製の商品名LB100という色温度変換フィルタの特性が上記のbフィルタの特性に近く、LB120が上記のcフィルタに近いため、これらの既存の色温度変換フィルタをカラー画像撮像装置に搭載する構成としてもよい。   The characteristics of the color temperature conversion filter, trade name LB100, manufactured by Hoya Glass Co., Ltd. are close to the characteristics of the b filter, and LB120 is close to the c filter. Therefore, these existing color temperature conversion filters are used as color images. It is good also as a structure mounted in an imaging device.

また、デジタルカメラであればホワイトバランス調整をデジタル信号処理部で行うことができるが、フィルムカメラの場合にはホワイトバランス調整をカメラ側で行うことができない。しかし、上述した色温度変換フィルタを光学系に設置することで、色再現性は色温度変換フィルタを設けない場合に比較して向上する。   Also, in the case of a digital camera, white balance adjustment can be performed by the digital signal processing unit, but in the case of a film camera, white balance adjustment cannot be performed on the camera side. However, by installing the above-described color temperature conversion filter in the optical system, the color reproducibility is improved as compared with the case where the color temperature conversion filter is not provided.

本発明に係るカラー画像撮像装置は低コストで色再現性が向上するため、デジタルカメラやフィルムカメラ等として有用である。   The color image capturing apparatus according to the present invention is useful as a digital camera, a film camera, or the like because color reproducibility is improved at low cost.

本発明の一実施形態に係るデジタルスチルカメラのブロック図である。1 is a block diagram of a digital still camera according to an embodiment of the present invention. 各種光源の波長と強度の関係を示すグラフである。It is a graph which shows the relationship between the wavelength and intensity | strength of various light sources. 4種類の色温度変換フィルタの波長と分光透過率との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of four types of color temperature conversion filters, and spectral transmittance. 図3に示す4種類の色温度変換フィルタを用いたときの色再現性の評価結果を示す図である。It is a figure which shows the evaluation result of color reproducibility when four types of color temperature conversion filters shown in FIG. 3 are used. 図3に示す4種類の色温度変換フィルタの特性範囲を示す図である。It is a figure which shows the characteristic range of four types of color temperature conversion filters shown in FIG.

符号の説明Explanation of symbols

8 撮影レンズ
9 固体撮像素子
10 絞り
11 赤外線カットフィルタ
12 色温度変換フィルタ
13 光学ローパスフィルタ
15 CPU
26 デジタル信号処理部
28 積算部
8 Shooting Lens 9 Solid Image Sensor 10 Aperture 11 Infrared Cut Filter 12 Color Temperature Conversion Filter 13 Optical Low-Pass Filter 15 CPU
26 Digital Signal Processing Unit 28 Integration Unit

Claims (8)

レンズを通して得られた被写体光像を撮像手段で撮像するカラー画像撮像装置において、前記撮像手段の光入力側に色温度変換フィルタを固定設置したことを特徴とするカラー画像撮像装置。   A color image pickup apparatus for picking up a subject light image obtained through a lens with an image pickup means, wherein a color temperature conversion filter is fixedly installed on the light input side of the image pickup means. 前記色温度変換フィルタは、各種光源に対して色温度変換フィルタ無しの状態より色再現性が向上する特性を有することを特徴とする請求項1に記載のカラー画像撮像装置。   The color image capturing apparatus according to claim 1, wherein the color temperature conversion filter has a characteristic that color reproducibility is improved with respect to various light sources as compared with a state without the color temperature conversion filter. 前記色温度変換フィルタは、波長λ〔nm〕の分光透過率をT(λ)としたとき、1.3≦T(450)/T(540)≦1.8の特性を有することを特徴とする請求項1または請求項2に記載のカラー画像撮像装置。   The color temperature conversion filter has a characteristic of 1.3 ≦ T (450) / T (540) ≦ 1.8, where T (λ) is a spectral transmittance of a wavelength λ [nm]. The color image imaging device according to claim 1 or 2. 前記色温度変換フィルタは、波長λ〔nm〕の分光透過率をT(λ)としたとき、1.3≦T(540)/T(610)≦1.5の特性を有することを特徴とする請求項1乃至請求項3のいずれかに記載のカラー画像撮像装置。   The color temperature conversion filter has a characteristic of 1.3 ≦ T (540) / T (610) ≦ 1.5, where T (λ) is a spectral transmittance of a wavelength λ [nm]. The color image imaging device according to any one of claims 1 to 3. 前記色温度変換フィルタは、波長λ〔nm〕の分光透過率をT(λ)としたとき、1.7≦T(450)/T(610)≦3.0の特性を有することを特徴とする請求項1乃至請求項4のいずれかに記載のカラー画像撮像装置。   The color temperature conversion filter has a characteristic of 1.7 ≦ T (450) / T (610) ≦ 3.0, where T (λ) is a spectral transmittance of a wavelength λ [nm]. The color image capturing device according to any one of claims 1 to 4. 前記撮像手段が固体撮像素子であることを特徴とする請求項1乃至請求項5のいずれかに記載のカラー画像撮像装置。   6. The color image pickup apparatus according to claim 1, wherein the image pickup unit is a solid-state image pickup device. 前記固体撮像素子から出力される撮像画像データに対してホワイトバランス調整を行う信号処理手段を備えることを特徴とする請求項6に記載のカラー画像撮像装置。   The color image capturing apparatus according to claim 6, further comprising a signal processing unit that performs white balance adjustment on captured image data output from the solid-state image sensor. 前記撮像手段がフィルムであることを特徴とする請求項1乃至請求項5のいずれかに記載のカラー画像撮像装置。   6. The color image pickup apparatus according to claim 1, wherein the image pickup unit is a film.
JP2004239145A 2004-08-19 2004-08-19 Imaging apparatus Pending JP2006058511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239145A JP2006058511A (en) 2004-08-19 2004-08-19 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239145A JP2006058511A (en) 2004-08-19 2004-08-19 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2006058511A true JP2006058511A (en) 2006-03-02

Family

ID=36106028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239145A Pending JP2006058511A (en) 2004-08-19 2004-08-19 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2006058511A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49140040U (en) * 1973-03-29 1974-12-03
JPS5294147A (en) * 1976-02-03 1977-08-08 Meishiyou Kouki Kk Variable hue color filter
JPH0637802U (en) * 1992-10-23 1994-05-20 株式会社村上開明堂 Filter with built-in ring heater
JPH0720535A (en) * 1993-06-30 1995-01-24 Sigma Corp Camera
JPH09160092A (en) * 1995-12-06 1997-06-20 Fuirutetsuku:Kk Highly reproducible color filter for camera
JP2000075128A (en) * 1998-08-31 2000-03-14 Osaka Megane Glass Kk Glass filter and drive glass
JP2002107531A (en) * 2000-10-02 2002-04-10 Fuji Film Microdevices Co Ltd Color filter and color image pickup device
JP2002261263A (en) * 2001-03-05 2002-09-13 Fuji Film Microdevices Co Ltd Color imaging device
JP2002268120A (en) * 2001-03-14 2002-09-18 Kureha Chem Ind Co Ltd Optically functional filter member and image pickup device
JP2002354491A (en) * 2001-05-22 2002-12-06 Fuji Film Microdevices Co Ltd Color image pickup device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49140040U (en) * 1973-03-29 1974-12-03
JPS5294147A (en) * 1976-02-03 1977-08-08 Meishiyou Kouki Kk Variable hue color filter
JPH0637802U (en) * 1992-10-23 1994-05-20 株式会社村上開明堂 Filter with built-in ring heater
JPH0720535A (en) * 1993-06-30 1995-01-24 Sigma Corp Camera
JPH09160092A (en) * 1995-12-06 1997-06-20 Fuirutetsuku:Kk Highly reproducible color filter for camera
JP2000075128A (en) * 1998-08-31 2000-03-14 Osaka Megane Glass Kk Glass filter and drive glass
JP2002107531A (en) * 2000-10-02 2002-04-10 Fuji Film Microdevices Co Ltd Color filter and color image pickup device
JP2002261263A (en) * 2001-03-05 2002-09-13 Fuji Film Microdevices Co Ltd Color imaging device
JP2002268120A (en) * 2001-03-14 2002-09-18 Kureha Chem Ind Co Ltd Optically functional filter member and image pickup device
JP2002354491A (en) * 2001-05-22 2002-12-06 Fuji Film Microdevices Co Ltd Color image pickup device

Similar Documents

Publication Publication Date Title
US8842194B2 (en) Imaging element and imaging apparatus
KR100580911B1 (en) Image synthesis method and image pickup apparatus
US6995791B2 (en) Automatic white balance for digital imaging
US8629919B2 (en) Image capture with identification of illuminant
US7479991B2 (en) Digital camera, and signal processing method and signal processing apparatus for the same
JP4874752B2 (en) Digital camera
EP2362662B1 (en) Imaging device, imaging method and computer readable recording medium storing program for performing the imaging method
JP2011166753A (en) Imaging apparatus
US20060222324A1 (en) Imaging device
US7646406B2 (en) Image taking apparatus
JP7371197B2 (en) Image processing device and its control method
KR100651813B1 (en) Strobo control apparatus, and strobo control method
JP2004186879A (en) Solid-state imaging unit and digital camera
US8866925B2 (en) Image sensor compensation
JP2004048562A (en) Noise reduction circuit and imaging apparatus
JP2003287674A (en) Camera
JP2006058511A (en) Imaging apparatus
JP4239219B2 (en) Auto white balance adjustment method and apparatus
JP4397724B2 (en) Imaging apparatus, camera, and signal processing method
JP2005323141A (en) Imaging camera, camera and method for processing signal
JP2004201203A (en) Imaging device and digital image pickup apparatus equipped with the same
JP2004228675A (en) Solid-state imaging apparatus, digital camera, and chrominance signal processing method
JP2003087802A (en) Color imaging device
JP2006186536A (en) Image pickup apparatus and white balance control method
JP2009022026A (en) Solid-state imaging device and digital camera

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511