JP2006058196A - Optical measuring instrument - Google Patents

Optical measuring instrument Download PDF

Info

Publication number
JP2006058196A
JP2006058196A JP2004241907A JP2004241907A JP2006058196A JP 2006058196 A JP2006058196 A JP 2006058196A JP 2004241907 A JP2004241907 A JP 2004241907A JP 2004241907 A JP2004241907 A JP 2004241907A JP 2006058196 A JP2006058196 A JP 2006058196A
Authority
JP
Japan
Prior art keywords
electrode
diffracted light
liquid sample
light
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004241907A
Other languages
Japanese (ja)
Other versions
JP4270070B2 (en
Inventor
Kenji Takubo
健二 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004241907A priority Critical patent/JP4270070B2/en
Publication of JP2006058196A publication Critical patent/JP2006058196A/en
Application granted granted Critical
Publication of JP4270070B2 publication Critical patent/JP4270070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical measuring instrument capable of measuring a particle or the like contained in a liquid sample, with high sensitivity. <P>SOLUTION: This measuring instrument is provided with a light source 16, an electric power source 15, a container 11 for holding the liquid sample, diffraction gratings 13a, 13b, 14a, 14b formed in positions contacting with the liquid sample in the container to generate a basic diffraction light pattern by irradiation with light from the light source 16, electrode pairs 13, 14 for constituting at least one part of the diffraction gratings, and capable of impressing negative and positive voltages from the electric power source 15, and a photodetector 18 for detecting diffraction light by the diffraction gratings. A deformed diffraction light pattern different from the basic diffraction light pattern is generated by impressing the voltages to the electrode pairs 13, 14 to change a refractive index distribution of the liquid sample, and information about the liquid sample is measured based on the deformed diffraction light pattern. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液体試料を光学的に測定する光学的測定装置に関し、さらに詳細には、液体試料の屈折率の変化から液体中に存在する物質について測定する光学的測定装置に関する。本発明の光学的測定装置は、例えば、溶液中の粒子の有無の確認、溶液の電気化学反応により発生する粒子の有無、さらには粒子濃度測定をする装置に適用することができる。   The present invention relates to an optical measurement apparatus that optically measures a liquid sample, and more particularly to an optical measurement apparatus that measures a substance present in a liquid from a change in the refractive index of the liquid sample. The optical measurement apparatus of the present invention can be applied to, for example, an apparatus for confirming the presence / absence of particles in a solution, the presence / absence of particles generated by an electrochemical reaction of the solution, and measuring the particle concentration.

溶液中の被測定物質に光を直接照射することなく光学的測定を行う測定手法として、被測定物と隣接する部分に光導波路を接するように配置して、光導波路の等価屈折率、光路長の変化を測定することにより、間接的に被測定物の光学的特性を測定するセンサデバイス技術が開示されている(特許文献1参照)。   As a measurement method for performing optical measurement without directly irradiating the substance to be measured in the solution with light, the optical waveguide is placed in contact with the part adjacent to the object to be measured, and the equivalent refractive index and optical path length of the optical waveguide. A sensor device technology that indirectly measures the optical characteristics of an object to be measured by measuring the change in the above has been disclosed (see Patent Document 1).

このセンサデバイスは、基準導波路(参照側)と感知導波路(試料側)との2本の光導波路を用いる。このうち、感知導波路側は、被測定物に接した状態と、被測定物と接していない状態との2つの異なる状態で測定するようにし、感知導波路近傍に存在する被測定物の影響によって感知導波路側の透過光の等価屈折率が変化するようにする。一方、基準導波路側は、被測定物から離隔した位置に配置されており、被測定物の影響を受けないようにしてある。この基準導波路の透過光の屈折率を参照用(基準用)に測定する。そして、これら2本の光導波路を通過した光束を干渉させる。このとき、感知導波路側が被測定物に接した状態の干渉縞と被測定物に接していない状態の干渉縞とでは、干渉縞の位置が移動する。   This sensor device uses two optical waveguides, a standard waveguide (reference side) and a sensing waveguide (sample side). Among these, the sensing waveguide side is measured in two different states, a state in contact with the object to be measured and a state not in contact with the object to be measured, and the influence of the object to be measured existing in the vicinity of the sensing waveguide. Thus, the equivalent refractive index of the transmitted light on the sensing waveguide side is changed. On the other hand, the reference waveguide side is disposed at a position separated from the object to be measured and is not affected by the object to be measured. The refractive index of light transmitted through the standard waveguide is measured for reference (for standard). Then, the light beams that have passed through these two optical waveguides are caused to interfere. At this time, the position of the interference fringe moves between the interference fringe in a state where the sensing waveguide side is in contact with the object to be measured and the interference fringe in a state not in contact with the object to be measured.

そして、干渉縞の移動量は、感知導波路の等価屈折率の変化、すなわち等価屈折率変化の原因となる感知導波路の周囲に存在する被測定物の濃度変化や厚さ変化に対応するので、干渉縞の移動量の測定から被測定物に関する情報を計測することができる(2光束干渉法)。   The amount of movement of the interference fringes corresponds to the change in the equivalent refractive index of the sensing waveguide, that is, the change in the concentration or thickness of the measurement object existing around the sensing waveguide that causes the equivalent refractive index change. From the measurement of the amount of movement of the interference fringes, information on the object to be measured can be measured (two-beam interference method).

また、出願人自身による先行特許出願において、粒子(溶質分子)の拡散しやすさを計測するための光学的測定装置として、液体中の粒子に誘電泳動を生じさせて移動することにより、粒子集中領域を形成し、その後、誘電泳動を停止して粒子集中領域から粒子を拡散させたときの屈折率変化から、粒子の拡散に関する評価を行う装置を提案している(特願2004−204024号)。この光学的測定装置では、2本の平行に並ぶ電極を通じて被測定溶液に電圧を印加して誘電泳動を引き起こすことにより、溶液の局所的な屈折率変化を発生させている。そして、屈折率変化の検出のための光学的手法としては、特許文献1と同様に、干渉縞の移動量の測定を行う2光束干渉法などの方法が用いられている。
特表2003−515126号公報
In addition, in the prior patent application by the applicant himself, as an optical measurement device for measuring the ease of diffusion of particles (solute molecules), the particles in the liquid are moved by causing dielectrophoresis to move the particles. An apparatus has been proposed that evaluates the diffusion of particles from the change in refractive index when the region is formed and then dielectrophoresis is stopped and the particles are diffused from the particle concentration region (Japanese Patent Application No. 2004-204024). . In this optical measuring apparatus, a local refractive index change of the solution is generated by applying a voltage to the solution to be measured through two parallel electrodes to cause dielectrophoresis. As an optical method for detecting a change in refractive index, a method such as a two-beam interference method for measuring the amount of movement of interference fringes is used as in Patent Document 1.
Special table 2003-515126 gazette

上述した特許文献1に開示された光学的測定方法では、単に、静的な屈折率測定を行えるにすぎず、例えば、試料中の粒子を積極的に移動させた上で、光学的測定を行うことはできない。 In the optical measurement method disclosed in Patent Document 1 described above, only a static refractive index measurement can be performed. For example, the optical measurement is performed after positively moving particles in the sample. It is not possible.

そこで、本発明は、誘電泳動などによって粒子移動や粒子発生を起こした後に、高感度に液体試料の光学的測定を行うことができる光学的測定装置を提供することを目的とする。
また、特許文献1に開示されているような2光束干渉法による屈折率変化の検出方法では、干渉縞の移動量を測定することになる。干渉縞の移動量を測定する場合、通常は、干渉縞をなす明線および暗線のうち、明線の移動を、例えばCCDなどのアレイ検出器を用いて測定した上で、移動量を算出する演算処理を行うようにしている。この場合、演算が必要であることもさることながら、明線のピーク位置の移動を測定することになるため、ピーク移動に伴う微小な光量変化を検出しなければならず、高感度な測定が困難である。すなわち、明線のピーク位置のすぐ隣(明線のピークが移動する位置)は、その時点の明線ピーク位置より光量がわずかに劣るだけの、元々、明るい場所であり、明線のピーク位置が移動した時のわずかな光量の差を検出することは困難である。
Therefore, an object of the present invention is to provide an optical measuring apparatus capable of performing optical measurement of a liquid sample with high sensitivity after particle movement or particle generation is caused by dielectrophoresis or the like.
Further, in the method of detecting refractive index change by the two-beam interference method as disclosed in Patent Document 1, the amount of movement of the interference fringes is measured. When measuring the amount of movement of interference fringes, the amount of movement is usually calculated after measuring the movement of the bright lines among the bright lines and dark lines forming the interference fringes using an array detector such as a CCD. Arithmetic processing is performed. In this case, since the movement of the peak position of the bright line is measured as well as the necessity for calculation, a minute change in the light amount accompanying the peak movement must be detected, and a highly sensitive measurement is performed. Have difficulty. In other words, the bright line peak position immediately next (the position where the bright line peak moves) is originally a bright place where the amount of light is slightly inferior to the bright line peak position at that time, and the bright line peak position. It is difficult to detect a slight difference in the amount of light when the is moved.

むしろ、これまで暗線のあった位置に明線を移動した場合のように、明暗のコントラストがはっきりする位置でピークを検出できるようにすることが望ましい。   Rather, it is desirable to be able to detect a peak at a position where the contrast of light and dark is clear, such as when the bright line is moved to a position where the dark line has been present.

そこで、本発明は、液体試料の屈折率変化を、干渉縞の移動量の検出ではなく、新しい光学的測定手法により明暗のコントラストがはっきり得られる状態で信号を検出するようにして、高感度、高精度な光学的測定を行うことができるようにした光学的測定装置を提供することを目的とする。   Therefore, the present invention detects the change in the refractive index of the liquid sample not by detecting the amount of movement of the interference fringes but by detecting a signal in a state in which contrast between light and dark is clearly obtained by a new optical measurement method, An object of the present invention is to provide an optical measurement apparatus capable of performing high-precision optical measurement.

上記課題を解決するためになされた本発明の光学的測定装置は、光源と、電源と、液体試料を保持する容器と、容器内の液体試料と接する位置に形成され、光源から光が照射されることにより基本回折光パターンを生じる回折格子と、回折格子の少なくとも一部を構成するとともに、電源から正負の電圧を印加することが可能な電極対と、前記回折格子による回折光を検出する光検出器とを備え、電極対に電圧を印加して液体試料の屈折率分布を変化させることにより、基本回折光パターンとは異なる変形回折光パターンを発生させ、変形回折光パターンに基づいて液体試料に関する情報を計測するようにしている。   The optical measuring device of the present invention made to solve the above problems is formed at a position in contact with a light source, a power source, a container holding a liquid sample, and the liquid sample in the container, and is irradiated with light from the light source. A diffraction grating that generates a basic diffraction light pattern by forming a pair of electrodes, an electrode pair that can form at least a part of the diffraction grating and that can be applied with positive and negative voltages from a power source, and light that detects diffracted light by the diffraction grating A modified diffracted light pattern different from the basic diffracted light pattern by changing the refractive index distribution of the liquid sample by applying a voltage to the electrode pair, and the liquid sample based on the deformed diffracted light pattern Information about is being measured.

この発明によれば、容器内に液体試料を入れて保持した状態で、回折格子を構成する電極対に向けて光源から光を照射する。このとき、回折格子によって光が回折され、回折光パターンを生じる。このときの回折光パターンが基本回折光パターンとなる。   According to the present invention, light is irradiated from the light source toward the electrode pair constituting the diffraction grating in a state where the liquid sample is placed and held in the container. At this time, light is diffracted by the diffraction grating to generate a diffracted light pattern. The diffracted light pattern at this time becomes the basic diffracted light pattern.

続いて、電源から電極対に正負の電圧を印加する。液体試料(あるいは液体試料中の粒子)が電圧による影響を受けて、化学変化したり、粒子移動したりすることにより、回折格子部分近傍の液体試料の屈折率分布が変化すると、基本回折光パターンを生じる回折格子とは異なる周期の派生的な回折格子が、新たに発生する。この派生的な回折格子によって、新たな回折光が発生し、その結果、基本回折光パターンに新たな回折光が追加された変形回折光パターンが発生する。この変形回折光パターンにおいて、新たに追加されている回折光は、基本回折光パターンでは回折光が存在していなかった位置(暗い部分)に発生している。したがって、基本回折光パターンから変形回折光パターンへの変化を光検出器で測定することにより、液体試料の動的変化(例えば粒子移動による屈折率変化)を測定する。   Subsequently, positive and negative voltages are applied from the power source to the electrode pair. If the refractive index distribution of the liquid sample near the diffraction grating changes due to a chemical change or particle movement caused by the voltage of the liquid sample (or particles in the liquid sample), the basic diffracted light pattern A new derivative grating with a period different from that of the diffraction grating is generated. With this derivative diffraction grating, new diffracted light is generated, and as a result, a modified diffracted light pattern in which new diffracted light is added to the basic diffracted light pattern is generated. In this modified diffracted light pattern, newly added diffracted light is generated at a position (dark portion) where no diffracted light was present in the basic diffracted light pattern. Therefore, by measuring the change from the basic diffracted light pattern to the deformed diffracted light pattern with a photodetector, the dynamic change of the liquid sample (for example, refractive index change due to particle movement) is measured.

本発明によれば、回折格子を構成する電極対に正負の電圧を印加することによって発生させた屈折率変化により、基本回折光パターンを発生する回折格子とは周期が異なる派生的な回折格子が発生し、この派生的な回折格子によって、基本回折光パターンに新たな回折光が追加された変形回折光パターンが発生している。変形回折光パターンに新たに追加された回折光は、基本回折光パターンでは回折光が存在していなかった位置(暗い部分)に発生しているので、明暗のコントラストがはっきりした位置で、新たに発生した回折光を検出することができ、高感度かつ高精度の測定を行うことができる。   According to the present invention, a derivative diffraction grating having a period different from that of the diffraction grating generating the basic diffraction light pattern due to a change in refractive index generated by applying positive and negative voltages to the electrode pair constituting the diffraction grating. Due to this derivative diffraction grating, a modified diffracted light pattern in which new diffracted light is added to the basic diffracted light pattern is generated. The diffracted light newly added to the deformed diffracted light pattern is generated at the position where the diffracted light did not exist in the basic diffracted light pattern (dark part). The generated diffracted light can be detected, and highly sensitive and highly accurate measurement can be performed.

また、新たに発生する回折光の出現位置は、派生的な回折格子の周期に依存して定まるものであり、液体試料の温度変化などには依存せず、常に一定の位置であるので、この位置に出現する回折光の明るさを単一の検出器で直接測定すればよく、検出光学系の構成を簡便にすることもできる。   In addition, the appearance position of the newly generated diffracted light is determined depending on the period of the derivative diffraction grating, and does not depend on the temperature change of the liquid sample and is always a constant position. The brightness of the diffracted light appearing at the position may be directly measured with a single detector, and the configuration of the detection optical system can be simplified.

上記発明において、電源には交流電源が用いられ、電極対に交流電圧を印加することにより、液体試料に誘電泳動を引き起こして、変形回折光パターンを発生させるようにしてもよい。   In the above invention, an AC power source may be used as the power source, and by applying an AC voltage to the electrode pair, dielectrophoresis may be caused in the liquid sample to generate a deformed diffracted light pattern.

電極対に、交流電圧を印加することで誘電泳動を引き起こすと、液体試料中に粒子が存在する場合には、誘電泳動によって、粒子が電極近傍の電気力線の集中する領域に集まるようになり、その結果、回折格子近傍の液体試料の光学的特性が変化することで、回折光パターンが変化することになる。この回折光パターンを光検出器で高感度に検出することができる。   When an AC voltage is applied to the electrode pair to induce dielectrophoresis, if particles exist in the liquid sample, the particles will collect in the region where the lines of electric force concentrate near the electrodes due to dielectrophoresis. As a result, the optical characteristics of the liquid sample in the vicinity of the diffraction grating change, so that the diffracted light pattern changes. This diffracted light pattern can be detected with high sensitivity by a photodetector.

上記発明において、正負の電極対は、正の電極と負の電極とが隣接する部分が、回折格子の格子間隔周期の2倍以上の整数倍の周期で繰り返すように配置されるようにしてもよい。   In the above invention, the positive and negative electrode pairs may be arranged so that a portion where the positive electrode and the negative electrode are adjacent is repeated at a cycle which is an integral multiple of twice or more the grating interval cycle of the diffraction grating. Good.

正の電極と負の電極とが隣接する部分には、電気力線が集中するので、誘電泳動や化学変化が最も生じる領域となる。この領域が回折格子の周期の2倍、3倍、・・・の整数倍の周期で発生させることにより、回折格子による基本回折光パターンで得られる回折光の間に新たに回折光が発生することになる。したがって、基本回折光パターン以外に新しい回折光が発生するか否かにより、液体試料の変化を高感度に検出することができる。   Since the lines of electric force are concentrated on the portion where the positive electrode and the negative electrode are adjacent to each other, it is a region where the dielectrophoresis and chemical change occur most. When this region is generated with a period that is an integral multiple of twice, three times,... Of the period of the diffraction grating, diffracted light is newly generated between the diffracted lights obtained by the basic diffracted light pattern by the diffraction grating. It will be. Therefore, a change in the liquid sample can be detected with high sensitivity depending on whether or not new diffracted light is generated in addition to the basic diffracted light pattern.

上記発明において、電極対を構成するそれぞれの電極は、平行に並んだ複数の直線状電極片とこの直線状電極片どうしを電気的に接続する接続部とからなり、さらに、それぞれの電極は、少なくとも2本の直線状電極片が隣接する直線状電極片偏在領域と、直線状電極片の存在しない直線状電極片不在領域とが交互に並ぶように形成され、一方の電極における直線状電極片不在領域に、他方の電極の直線状電極片偏在領域が重なるようにして、回折格子が形成されるようにしてもよい。   In the above invention, each electrode constituting the electrode pair is composed of a plurality of linear electrode pieces arranged in parallel and a connection portion for electrically connecting the linear electrode pieces, A linear electrode piece uneven region where at least two linear electrode pieces are adjacent to each other and a linear electrode piece absent region where no linear electrode piece exists are alternately arranged, and the linear electrode piece in one electrode The diffraction grating may be formed such that the linear electrode piece unevenly distributed region of the other electrode overlaps the absent region.

これにより、正の電極と負の電極とが隣接する部分が、回折格子の格子間隔周期の2倍以上の整数倍の周期で繰り返すように配置することができる。   Thereby, it can arrange | position so that the part which a positive electrode and a negative electrode adjoin may repeat with the period of the integral multiple of 2 times or more of the grating | lattice space | interval period of a diffraction grating.

上記発明において、電極対を構成するそれぞれの電極は、平行に並んだ複数の直線状電極片とこの直線状電極片どうしを電気的に接続する接続部とからなり、回折格子は、それぞれの電極の直線状電極片と、いずれの電極とも電気的に接続されず、かつ、前記直線状電極片とほぼ同形状の直線状部材からなる浮遊部とが規則的に配列することにより形成されるようにしてもよい。   In the above invention, each electrode constituting the electrode pair includes a plurality of linear electrode pieces arranged in parallel and a connecting portion for electrically connecting the linear electrode pieces. The linear electrode pieces are not electrically connected to any electrode, and the floating portions made of linear members having substantially the same shape as the linear electrode pieces are regularly arranged. It may be.

これにより、正の電極と負の電極とが隣接する部分が、回折格子の格子間隔周期の2倍以上の整数倍の周期で繰り返すように配置することができる。   Thereby, it can arrange | position so that the part which a positive electrode and a negative electrode adjoin may repeat with the period of the integral multiple of 2 times or more of the grating | lattice space | interval period of a diffraction grating.

上記発明において、少なくとも容器の一部が光源光を透過する材料で形成されるとともに、この光源光を透過する容器部分に電極対が形成されており、当該電極対に向けて光源光を入射させ、光検出器は液体試料を透過した回折光または液体試料で反射した回折光を検出するようにしてもよい。   In the above invention, at least a part of the container is formed of a material that transmits light source light, and an electrode pair is formed on the container part that transmits the light source light, and the light source light is incident on the electrode pair. The photodetector may detect diffracted light transmitted through the liquid sample or diffracted light reflected from the liquid sample.

これにより、容器の一部に形成した電極対に向けて光源光を入射させることにより、透過回折光または反射回折光を簡単に得ることができる。ここで、光源光を透過する容器部分は底面であってもよいし、側壁面であってもよい。   Thereby, the transmission diffracted light or the reflected diffracted light can be easily obtained by causing the light source light to enter the electrode pair formed in a part of the container. Here, the container portion that transmits the light source light may be a bottom surface or a side wall surface.

また、電極対は、光源光が照射されることにより表面プラズモン共鳴を生じる金属膜で形成されるようにしてもよい。   Further, the electrode pair may be formed of a metal film that causes surface plasmon resonance when irradiated with light source light.

表面プラズモン共鳴を利用することにより、電極直上部分の屈折率のわずかな変化で、回折光強度が大きく変化するようになる。これにより、回折光パターンとともに回折光強度の測定により、より高感度な測定を行うことができる。   By using surface plasmon resonance, the intensity of the diffracted light changes greatly with a slight change in the refractive index immediately above the electrode. Thereby, measurement with higher sensitivity can be performed by measuring the diffracted light intensity together with the diffracted light pattern.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
(実施形態1)
図1は、本発明の一実施形態である光学的測定装置の構成を示す概略断面図、図2はその上面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a configuration of an optical measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a top view thereof.

この実施形態の光学的測定装置は、誘電泳動を行いながら、光学的測定を行うものであり、液体試料を保持する容器11、容器11の底面となる底板12aに形成され、回折格子を形成する一対の電極13、14と、電極13および電極14に交流電圧を印加する交流電源15と、光源16と、光源光を収束するレンズ光学系17と、回折光を検出する光検出器18とからなる。   The optical measurement apparatus according to this embodiment performs optical measurement while performing dielectrophoresis, and is formed on a container 11 that holds a liquid sample and a bottom plate 12a that is a bottom surface of the container 11, and forms a diffraction grating. A pair of electrodes 13, 14, an AC power supply 15 that applies an AC voltage to the electrodes 13 and 14, a light source 16, a lens optical system 17 that converges light source light, and a photodetector 18 that detects diffracted light. Become.

容器11は、底板12aの上に、側壁となる枠体12bを貼り付けることにより形成してある。この容器11は、ガラス等の光透過性の材料が用いられ、底板12aを通して、入射光が電極13、14(回折格子)に照射できるようにしてある。   The container 11 is formed by sticking a frame body 12b serving as a side wall on the bottom plate 12a. The container 11 is made of a light-transmitting material such as glass, so that incident light can be applied to the electrodes 13 and 14 (diffraction grating) through the bottom plate 12a.

電極13、14は、マスクパターニング手法を用いて,底板12a上に形成される。なお、本実施形態では、底板12aに電極13、14を形成しているが、容器11が十分に深い場合には、底板12aに代えて、側壁となる枠体12bに電極13、14を形成してもよい。   The electrodes 13 and 14 are formed on the bottom plate 12a using a mask patterning technique. In this embodiment, the electrodes 13 and 14 are formed on the bottom plate 12a. However, when the container 11 is sufficiently deep, the electrodes 13 and 14 are formed on the frame 12b serving as the side wall instead of the bottom plate 12a. May be.

電極13は、2本の平行な直線状電極片13a、13bが隣接する直線状電極片偏在領域13fと、直線状電極片形成されていない直線状電極片不在領域13cとが、交互に繰り返すようにしてあり、すべての直線状電極片13a、13bは、接続部13dにより電気的に接続され、いわゆる櫛型電極構造としてある。   In the electrode 13, linear electrode piece unevenly distributed regions 13f adjacent to two parallel linear electrode pieces 13a and 13b and linear electrode piece absent regions 13c in which no linear electrode pieces are formed are alternately repeated. All of the linear electrode pieces 13a and 13b are electrically connected by the connecting portion 13d, and have a so-called comb electrode structure.

電極14についても同様であり、2本の平行な直線状電極片14a、14bが隣接する直線状電極片偏在領域14fと、直線状電極片が形成されていない直線状電極片不在領域14cとが、交互に繰り返すようにしてあり、すべての直線状電極片14a、14bは、接続部14dにより電気的に接続され、櫛型電極構造としてある。   The same applies to the electrode 14, and a linear electrode piece unevenly distributed region 14f in which two parallel linear electrode pieces 14a and 14b are adjacent to each other and a linear electrode piece absent region 14c in which no linear electrode pieces are formed are provided. The linear electrode pieces 14a and 14b are electrically connected to each other through the connecting portion 14d to form a comb electrode structure.

そして、電極13の直線状電極片不在領域13cの位置に、電極14の直線状電極片14a、14bがくるように配置して、電極13の直線状電極片13a、13bと、電極14の直線状電極片14a、14bとが、等間隔で連続的に並ぶようにして、直線状電極片13a、13b、14a、14bにより回折格子が形成されるようにしてある。
回折格子の寸法は、回折格子を構成する電極幅d1、電極間隔d2のいずれについても、0.5μm〜20μm程度にするのが好ましいが、回折光を発生させることができるものであれば、形状や寸法は、特に限定されない。例えば、電極幅d1と電極間隔d2とが異なる寸法になるようにしてもよいし、回折格子形状が直線状電極片で構成されなくてもよい。なお、本実施形態の回折格子では、電極幅10μm、電極間隔10μmの直線状電極片としている。この場合、回折格子の格子間隔dは、d1+d2となる。
Then, the linear electrode pieces 14 a and 14 b of the electrode 14 are arranged at the position of the linear electrode piece absent region 13 c of the electrode 13, and the straight electrode pieces 13 a and 13 b of the electrode 13 and the straight line of the electrode 14 are arranged. The linear electrode pieces 13a, 13b, 14a, and 14b form a diffraction grating so that the electrode pieces 14a and 14b are continuously arranged at regular intervals.
The size of the diffraction grating is preferably about 0.5 μm to 20 μm for both the electrode width d1 and the electrode interval d2 constituting the diffraction grating. However, the shape of the diffraction grating is not limited as long as it can generate diffracted light. The dimensions are not particularly limited. For example, the electrode width d1 and the electrode interval d2 may have different dimensions, or the diffraction grating shape may not be formed of a linear electrode piece. In the diffraction grating of this embodiment, a linear electrode piece having an electrode width of 10 μm and an electrode interval of 10 μm is used. In this case, the grating interval d of the diffraction grating is d1 + d2.

交流電源15には、誘電泳動を引き起こすことができる電圧、周波数の交流電源が用いられる。具体的には、1〜100V、10KHz〜10MHz程度の交流電圧が印加できる交流電源を使用する。なお、一般的には、高周波電源を用いるのが好ましい。   The AC power supply 15 is an AC power supply having a voltage and frequency that can cause dielectrophoresis. Specifically, an AC power supply capable of applying an AC voltage of about 1 to 100 V, 10 KHz to 10 MHz is used. In general, it is preferable to use a high-frequency power source.

光源16は、測定対象となる液体試料に応じて種類を選択すればよいが、例えば、He−Neレーザ光源(波長633nm)や、その他のレーザ光源を用いるのが好ましい。   The type of the light source 16 may be selected according to the liquid sample to be measured. For example, it is preferable to use a He—Ne laser light source (wavelength 633 nm) or another laser light source.

レンズ光学系17は、光源光を収束して、電極13、14(回折格子)に照射できるように構成してある。なお、光源光の入射角度を調整できるようにして、測定対象、測定目的に応じて、透過回折光、反射回折光のいずれでも、取得できるようにするのが好ましい。   The lens optical system 17 is configured to converge the light source light and irradiate the electrodes 13 and 14 (diffraction grating). In addition, it is preferable that the incident angle of the light source light can be adjusted so that either transmitted diffracted light or reflected diffracted light can be obtained according to the measurement object and the measurement purpose.

透過回折光を測定する場合、入射角は、容器底面と液体試料との界面で全反射が生じない条件であればよく、例えば、入射角0度で入射させてもよい。
光検出器18は、透過回折光を検出するため、液体試料の上部側に配置する。光検出器18には、回折角を測定するための角度調整機構が設けられており、回折光の強度とともに回折角が検出できるようにしてある。この光検出器18には、フォトダイオードやCCDが用いられる。なお、角度調整機構を設ける代わりに、複数の素子を並べたアレイセンサを用いて、回折角が計測できるようにしてもよい。
When measuring transmitted diffracted light, the incident angle may be a condition that does not cause total reflection at the interface between the bottom of the container and the liquid sample. For example, the incident angle may be incident at an incident angle of 0 degree.
The photodetector 18 is arranged on the upper side of the liquid sample in order to detect the transmitted diffracted light. The light detector 18 is provided with an angle adjusting mechanism for measuring the diffraction angle so that the diffraction angle can be detected together with the intensity of the diffracted light. A photodiode or CCD is used for the photodetector 18. Instead of providing the angle adjustment mechanism, the diffraction angle may be measured using an array sensor in which a plurality of elements are arranged.

次に、上記装置の計測動作について説明する。まず、電極13、14に、電圧を印加しない状態で、光源16から入射光を照射する。液体試料は、全体がほぼ均一な状態になっている。このとき、入射光は、直線状電極片13a、13b、14a、14bにより形成される回折格子(以下、周期電極による回折格子(周期d)という)の影響を受け、図5において実線で示すように、周期dの回折条件を満たす角度位置に、−1次、0次、1次、・・・の透過回折光による回折光パターン(基本回折光パターンという)が発生する。   Next, the measurement operation of the above apparatus will be described. First, incident light is irradiated from the light source 16 to the electrodes 13 and 14 without applying a voltage. The liquid sample is almost uniform throughout. At this time, the incident light is affected by a diffraction grating formed by the linear electrode pieces 13a, 13b, 14a, and 14b (hereinafter referred to as a diffraction grating (period d) by a periodic electrode), and is shown by a solid line in FIG. In addition, a diffracted light pattern (referred to as a basic diffracted light pattern) by transmitted diffracted light of −1st order, 0th order, 1st order,.

次に、交流電源15により、電極13、電極14間に交流電圧を印加する。液体試料中に粒子(例えば蛋白質など)が存在すると、交流電圧による誘電泳動作用が働き、粒子は電気力線が集中する領域に移動する。図3、図4は、交流電圧を印加したときの粒子の状態を説明する図である。図に示すように、正極と負極とが隣接することにより電気力線が集中する、直線状電極片14bと直線状電極片13aとの間、あるいは、直線状電極片13bと直線状電極片14aとの間に、粒子が凝集するようになり、屈折率が高い粒子集中領域Pが形成される。この屈折率が高い粒子集中領域Pは、格子間隔dの2倍の周期(2d)で発生しており、このときの屈折率分布による周期2dの回折格子を形成する。   Next, an AC voltage is applied between the electrode 13 and the electrode 14 by the AC power source 15. When particles (such as proteins) are present in the liquid sample, a dielectrophoretic action due to an alternating voltage works, and the particles move to a region where electric lines of force concentrate. 3 and 4 are diagrams for explaining the state of particles when an AC voltage is applied. As shown in the figure, the lines of electric force concentrate due to the adjacent positive and negative electrodes, or between the linear electrode piece 14b and the linear electrode piece 13a, or between the linear electrode piece 13b and the linear electrode piece 14a. In between, the particles are aggregated, and the particle concentration region P having a high refractive index is formed. The particle concentration region P having a high refractive index is generated with a period (2d) twice as long as the grating interval d, and forms a diffraction grating with a period 2d by the refractive index distribution at this time.

入射光は、周期電極による回折格子(周期d)の影響を受けて、基本回折光パターンを発生するとともに、屈折率分布による回折格子(周期2d)の影響を受けて、図5に破線で示すように、周期2dの回折条件を満たす角度位置に、−1次、1次、・・・の透過回折光による回折光パターンを発生する。(ただし、0次透過回折光は、基本回折光パターンにおける0次の回折光と重なる)。   The incident light is influenced by the diffraction grating (period d) by the periodic electrode to generate a basic diffracted light pattern, and is also influenced by the diffraction grating (period 2d) by the refractive index distribution, and is indicated by a broken line in FIG. As described above, a diffracted light pattern by -1st order, 1st order,... Transmitted diffracted light is generated at an angular position satisfying the diffraction condition of the period 2d. (However, the 0th-order transmitted diffracted light overlaps the 0th-order diffracted light in the basic diffracted light pattern).

したがって、基本回折光パターン以外に、周期2dの屈折率分布の回折格子による回折光が観測されるか否かにより、誘電泳動によって移動する粒子の有無を計測することができる。新たに発生した回折光の計測は、基本回折光パターンの影響を受けていないので、高感度で電圧印加による屈折率変化を検出することができる。   Therefore, in addition to the basic diffracted light pattern, the presence or absence of particles moving by dielectrophoresis can be measured based on whether or not the diffracted light by the diffraction grating having the refractive index distribution with the period 2d is observed. Since the measurement of newly generated diffracted light is not affected by the basic diffracted light pattern, it is possible to detect a change in refractive index due to voltage application with high sensitivity.

また、屈折率分布により生じる新たな回折光の強度は、周期的な屈折率分布の最大値と最小値との差により決まるので、たとえ液体試料の温度変化により、溶液全体の屈折率が等しく変化したとしても、その影響を受けることはない。   In addition, the intensity of new diffracted light generated by the refractive index distribution is determined by the difference between the maximum and minimum values of the periodic refractive index distribution, so even if the temperature of the liquid sample changes, the refractive index of the entire solution changes equally. If you do, you will not be affected.

上記実施形態では、電極13、14はそれぞれ2本の直線状電極片が隣接するようにしているが、3本の直線状電極片が等間隔で隣接するようにしてもよい。この場合には、図5に示した屈折率分布の回折により増加する新たな回折光の本数が倍増する。同様に、直線状電極片が4本、あるいはそれ以上の本数が隣接するようにしてもよいが、あまり増やしすぎると、新たな回折光の本数が増加しすぎるので、2〜5本程度が好ましい。
(実施形態2)
実施形態1では、透過回折光を利用したが、反射回折光を利用してもよい。反射回折光を利用すれば、光吸収性のある液体試料についても、回折光の検出を容易に行うことができる。また、表面プラズモン共鳴を利用することで、より高感度な検出が可能になる。
In the above embodiment, the electrodes 13 and 14 each have two linear electrode pieces adjacent to each other, but three linear electrode pieces may be adjacent to each other at equal intervals. In this case, the number of new diffracted light that increases due to the diffraction of the refractive index distribution shown in FIG. 5 doubles. Similarly, four or more linear electrode pieces may be adjacent to each other, but if the number is increased too much, the number of new diffracted light will increase too much, so about 2 to 5 are preferable. .
(Embodiment 2)
In Embodiment 1, transmitted diffracted light is used, but reflected diffracted light may be used. If reflected diffracted light is used, it is possible to easily detect diffracted light even for a liquid sample having light absorption. Further, by using surface plasmon resonance, detection with higher sensitivity becomes possible.

反射回折光を測定する光学的測定装置の場合は、図1に示した装置構成において、光検出器18の位置を、底板12aの下部側に配置するようにする。   In the case of an optical measuring apparatus that measures reflected diffracted light, the position of the photodetector 18 is arranged on the lower side of the bottom plate 12a in the apparatus configuration shown in FIG.

また、反射回折光測定の場合、好ましくは、光源16から照射される入射光の入射角を、全反射が生じる条件にして、反射する回折光の光量をできるだけ増やすようにする。例えば、容器11が、ガラス製であり、液体試料として水系試料が保持されている場合、入射角を46度前後にするのが好ましい。   In the case of reflected diffracted light measurement, it is preferable that the incident angle of incident light emitted from the light source 16 is set so that total reflection occurs, and the amount of reflected diffracted light is increased as much as possible. For example, when the container 11 is made of glass and a water-based sample is held as a liquid sample, the incident angle is preferably set to about 46 degrees.

計測動作は、実施形態1の場合と比較して、光検出器18による検出角度範囲が異なるだけで、他は実施形態1で説明した動作とほぼ同じであるので、図1を用いて説明する(ただし、光検出器18の位置が底板12aの下部側にある)。   The measurement operation is substantially the same as the operation described in the first embodiment except that the detection angle range by the photodetector 18 is different from that in the first embodiment, and will be described with reference to FIG. (However, the position of the photodetector 18 is on the lower side of the bottom plate 12a).

まず、透過回折光測定を行う図1の場合と同様に、電極13、14に、電圧を印加しない状態で、光源16から入射光を照射する。このとき、直線状電極片13a、13b、14a、14bの周期電極による回折格子(周期d)の影響を受け、図7において実線で示すように、周期dの回折条件を満たす角度位置に、−1次、0次、1次、・・・の反射回折光による反射回折光パターン(基本回折光パターンという)が発生する。   First, similarly to the case of FIG. 1 in which transmission diffracted light measurement is performed, incident light is irradiated from the light source 16 without applying a voltage to the electrodes 13 and 14. At this time, under the influence of the diffraction grating (period d) by the periodic electrodes of the linear electrode pieces 13a, 13b, 14a, and 14b, as shown by the solid line in FIG. A reflected diffracted light pattern (referred to as a basic diffracted light pattern) is generated by reflected light of primary, 0th, 1st,...

次に、交流電源15により、電極13、電極14間に交流電圧を印加する。液体試料中に粒子(例えば蛋白質など)が存在すると、交流電圧による誘電泳動作用が働き、粒子は電気力線が集中する位置に移動する。図6は、交流電圧を印加したときの粒子の状態を説明する図である。実施形態1の場合と同様に、正極と負極とが隣接して電気力線が集中する領域部分である、直線状電極片14bと直線状電極片13aとの間、あるいは、直線状電極片13bと直線状電極片14aとの間に、屈折率が高い粒子集中領域Pが形成される。粒子集中領域Pは、格子間隔dの2倍の周期(2d)で発生しており、屈折率分布による周期2dの回折格子を形成する。   Next, an AC voltage is applied between the electrode 13 and the electrode 14 by the AC power source 15. When particles (for example, proteins) are present in the liquid sample, a dielectrophoretic action due to an AC voltage works, and the particles move to a position where electric lines of force concentrate. FIG. 6 is a diagram for explaining the state of particles when an AC voltage is applied. As in the case of the first embodiment, the positive electrode and the negative electrode are adjacent to each other, which is a region where the lines of electric force concentrate, or between the linear electrode piece 14b and the linear electrode piece 13a, or the linear electrode piece 13b. And a linear electrode piece 14a, a particle concentration region P having a high refractive index is formed. The particle concentration region P is generated with a period (2d) twice as long as the grating interval d, and forms a diffraction grating with a period 2d by a refractive index distribution.

入射光は、周期電極による回折格子(周期d)の影響を受けて、基本回折光パターンを発生するとともに、屈折率分布による回折格子(周期2d)の影響を受けて、図7に破線で示すように、周期2dの回折条件を満たす角度位置に、−1次、1次、・・・の反射回折光による回折光パターンを発生する。(ただし、0次透過回折光は、基本回折光パターンにおける0次の回折光と重なる)。   The incident light is affected by the diffraction grating (period d) by the periodic electrode to generate a basic diffracted light pattern, and is also influenced by the diffraction grating (period 2d) by the refractive index distribution, and is indicated by a broken line in FIG. As described above, a diffracted light pattern is generated by reflected diffracted light of −1st order, 1st order,... (However, the 0th-order transmitted diffracted light overlaps the 0th-order diffracted light in the basic diffracted light pattern).

したがって、この場合も、周期2dの屈折率分布の回折格子による回折光が観測されるか否かにより、誘電泳動によって移動することができる粒子の有無を計測することができる。新たに発生した回折光の計測は、基本回折光パターンの影響を受けないので、高感度で電圧印加による屈折率変化を検出することができる。   Therefore, also in this case, the presence / absence of particles that can move by dielectrophoresis can be measured depending on whether or not the diffracted light by the diffraction grating having the refractive index distribution of the period 2d is observed. Since the measurement of newly generated diffracted light is not affected by the basic diffracted light pattern, it is possible to detect a change in refractive index due to voltage application with high sensitivity.

また、屈折率分布により生じる新たな回折光の強度は、周期的な屈折率分布の最大値と最小値との差により決まるので、たとえ液体試料の温度変化により、溶液全体の屈折率が等しく変化したとしても、その影響を受けることはない。   In addition, the intensity of new diffracted light generated by the refractive index distribution is determined by the difference between the maximum and minimum values of the periodic refractive index distribution, so even if the temperature of the liquid sample changes, the refractive index of the entire solution changes equally. If you do, you will not be affected.

上述した反射回折光測定において、電極13、14に光反射特性の優れたAu、Agなどの材料を用いることにより、表面プラズモン共鳴を生じさせることができるので、表面プラズモン共鳴を利用して高感度測定を行うことができる。   In the above-described reflected diffracted light measurement, surface plasmon resonance can be generated by using materials such as Au and Ag having excellent light reflection characteristics for the electrodes 13 and 14, so that high sensitivity is obtained using the surface plasmon resonance. Measurements can be made.

すなわち、入射角度を変化させながら光源16からの入射光を照射することにより、表面プラズモン共鳴が起こる入射角に設定することができる。入射角をこのように設定すると、電極13、14部分での反射の際の位相が、電極直上部分の溶液の屈折率に応じて敏感に変化するので、わずかな屈折率変化(例えば誘電泳動による屈折率変化)で、回折光の強度が大きく変化するようになる。したがって、このような表面プラズモン共鳴して、回折光角とともに、回折光強度を検出することにより、高感度な測定が可能になる。
(実施形態3)
実施形態1、実施形態2では、正の電極と負の電極とが隣接する(電気力線が集中する)部分が、回折格子の格子周期の2倍以上の整数倍の周期で繰り返すようにするため、図2に示したように、直線状電極片が2本(あるいはそれ以上)隣接する領域と、直線状電極片不在領域とが、周期的に繰り返される電極形状を用いている。
That is, the incident angle from which the surface plasmon resonance occurs can be set by irradiating the incident light from the light source 16 while changing the incident angle. When the incident angle is set in this way, the phase at the time of reflection at the electrodes 13 and 14 changes sensitively according to the refractive index of the solution immediately above the electrodes. With the change in refractive index, the intensity of diffracted light changes greatly. Therefore, highly sensitive measurement is possible by detecting the diffracted light intensity as well as the diffracted light angle through such surface plasmon resonance.
(Embodiment 3)
In the first and second embodiments, the portion where the positive electrode and the negative electrode are adjacent (the lines of electric force are concentrated) is repeated at a period that is an integral multiple of twice or more the grating period of the diffraction grating. Therefore, as shown in FIG. 2, an electrode shape in which two (or more) adjacent linear electrode pieces and a linear electrode piece absent region are periodically repeated is used.

電気力線集中部分を、回折格子の格子周期の2倍以上の整数倍の周期で繰り返すようにするための電極形状は、上記のものに限られず、種々の形状が考えられる。   The electrode shape for repeating the electric field line concentration portion with a period that is an integer multiple of twice or more the grating period of the diffraction grating is not limited to the above, and various shapes are conceivable.

図8は、電気力線集中部分を、回折格子の格子周期の2倍以上の整数倍の周期で繰り返すようにするための変形実施形態の構成を示す図である。   FIG. 8 is a diagram showing a configuration of a modified embodiment for repeating the electric field line concentration portion with a period that is an integral multiple of twice or more the grating period of the diffraction grating.

この電極は、一対の電極21、電極22と、電極21および電極22から電気的に独立した直線状の浮遊部23とからなる。この浮遊部23は、電極21、22と同時に、マスクパターン技術を用いて形成される。電極21、電極22は、それぞれ直線状電極片21a、22aが一定の間隔を空けて、周期的に配列されるとともに、直線状電極片の端部どうしが接続部21b、22bにより接続され、いわゆる櫛型電極構造にしてある。そして、電極21の直線状電極片21a、電極22の直線状電極片22a、浮遊部23が交互に並ぶようにして、回折格子が形成されるようにしてある。   This electrode includes a pair of electrodes 21 and 22 and a linear floating portion 23 that is electrically independent from the electrodes 21 and 22. The floating portion 23 is formed simultaneously with the electrodes 21 and 22 by using a mask pattern technique. The electrode 21 and the electrode 22 are arranged so that the linear electrode pieces 21a and 22a are periodically arranged at regular intervals, and the ends of the linear electrode pieces are connected to each other by connection parts 21b and 22b. It has a comb electrode structure. The linear electrode pieces 21a of the electrodes 21, the linear electrode pieces 22a of the electrodes 22, and the floating portions 23 are alternately arranged to form a diffraction grating.

この構成の電極において、電極21、電極22間に交流電圧を印加して、誘電泳動を発生させると、例えば、図9に示すように、回折格子の周期の3倍の周期をもつ屈折率分布を生じさせることができる。
(実施形態4)
実施形態1〜実施形態3では、交流電源を利用して、電気力線が集中する箇所に誘電泳動を生じさせることによって粒子を集中するようにし、粒子が集中することによる屈折率変化を利用して回折光を変化させている。しかしながら、電気力線が集中する箇所の屈折率変化は、誘電泳動以外の方法によっても発生させることができる。
When an alternating voltage is applied between the electrode 21 and the electrode 22 to generate dielectrophoresis in the electrode having this configuration, for example, as shown in FIG. 9, a refractive index distribution having a period three times the period of the diffraction grating. Can be generated.
(Embodiment 4)
In the first to third embodiments, an AC power source is used to concentrate the particles by causing dielectrophoresis at the location where the lines of electric force concentrate, and the change in the refractive index due to the concentration of the particles is used. The diffracted light is changed. However, the change in the refractive index at the location where the lines of electric force are concentrated can be generated by methods other than dielectrophoresis.

例えば、液体試料中に、イオン性の粒子が含まれる場合には、電極対に、直流成分をもった電圧を印加することにより、電気泳動によって、イオン粒子を電気力線が集中する部分に移動させ屈折率分布を生じさせてもよい。また、電気化学的反応によって、電気力線の集中領域に屈折率変化を発生させて屈折率分布を形成してもよい。   For example, when ionic particles are contained in a liquid sample, by applying a voltage having a direct current component to the electrode pair, the ion particles are moved to a portion where the lines of electric force are concentrated by electrophoresis. The refractive index distribution may be generated. Further, a refractive index distribution may be formed by generating a refractive index change in a concentrated region of electric lines of force by an electrochemical reaction.

本発明は、液体試料中の粒子の光学的測定を行う光学的測定装置などに利用することができる。   The present invention can be used for an optical measuring device for optically measuring particles in a liquid sample.

本発明の一実施形態である光学的測定装置の構成を示す概略断面図。1 is a schematic cross-sectional view showing a configuration of an optical measurement apparatus that is an embodiment of the present invention. 図1の光学的測定装置の上面図。FIG. 2 is a top view of the optical measuring device of FIG. 1. 交流電圧を印加したときの屈折率分布状態を説明する図(断面図)。The figure explaining the refractive index distribution state when an alternating voltage is applied (cross-sectional view). 交流電圧を印加したときの屈折率状態を説明する図(上面図)。The figure (top view) explaining a refractive index state when an alternating voltage is applied. 図1の光学的測定装置による回折光パターンを説明する図。The figure explaining the diffracted light pattern by the optical measuring device of FIG. 本発明の他の一実施形態である光学的測定装置において、交流電圧を印加したときの屈折率分布状態を説明する図(断面図)。In the optical measuring device which is other one Embodiment of this invention, the figure (sectional drawing) explaining a refractive index distribution state when an alternating voltage is applied. 図6の光学的測定装置による回折光パターンを説明する図。The figure explaining the diffracted light pattern by the optical measuring device of FIG. 本発明の他の実施形態である光学的測定装置の電極パターン形状を示す図。The figure which shows the electrode pattern shape of the optical measuring device which is other embodiment of this invention. 図8の光学的測定装置の交流電圧を印加したときの屈折率分布状態を説明する図。The figure explaining the refractive index distribution state when the alternating voltage of the optical measuring device of FIG. 8 is applied.

符号の説明Explanation of symbols

11: 容器
12a: 底板
12b: 枠体
13、14 電極
13a、13b、14a、14: 直線状電極片
15: 交流電源
16: 光源
18: 光検出器
21、22: 電極
22a、22b: 直線状電極片
23: 浮遊部
11: Container 12a: Bottom plate 12b: Frame bodies 13, 14 Electrodes 13a, 13b, 14a, 14: Linear electrode piece 15: AC power supply 16: Light source 18: Photo detectors 21, 22: Electrodes 22a, 22b: Linear electrodes Piece 23: Floating part

Claims (7)

光源と、電源と、液体試料を保持する容器と、容器内の液体試料と接する位置に形成され、光源から光が照射されることにより基本回折光パターンを生じる回折格子と、回折格子の少なくとも一部を構成するとともに、電源から正負の電圧を印加することが可能な電極対と、前記回折格子による回折光を検出する光検出器とを備え、
電極対に電圧を印加して液体試料の屈折率分布を変化させることにより、基本回折光パターンとは異なる変形回折光パターンを発生させ、変形回折光パターンに基づいて液体試料に関する情報を計測することを特徴とする光学的測定装置。
A light source, a power source, a container for holding a liquid sample, a diffraction grating formed at a position in contact with the liquid sample in the container and generating a basic diffraction light pattern when irradiated with light from the light source, and at least one of the diffraction gratings Comprising a pair of electrodes capable of applying positive and negative voltages from a power source, and a photodetector for detecting diffracted light by the diffraction grating,
By applying a voltage to the electrode pair to change the refractive index distribution of the liquid sample, a modified diffracted light pattern different from the basic diffracted light pattern is generated, and information about the liquid sample is measured based on the deformed diffracted light pattern An optical measuring device.
電源には交流電源が用いられ、電極対に交流電圧を印加することにより、液体試料に誘電泳動を引き起こして、変形回折光パターンを発生させることを特徴とする請求項1に記載の光学的測定装置。 2. The optical measurement according to claim 1, wherein an AC power source is used as the power source, and an AC voltage is applied to the electrode pair to cause dielectrophoresis in the liquid sample to generate a deformed diffracted light pattern. apparatus. 電極対は、正の電極と負の電極とが隣接する部分が、回折格子の格子周期の2倍以上の整数倍の周期で繰り返すように配置されることを特徴とする請求項1に記載の光学的測定装置。 The electrode pair is arranged so that a portion where the positive electrode and the negative electrode are adjacent to each other is repeated at a period that is an integral multiple of twice or more the grating period of the diffraction grating. Optical measuring device. 電極対を構成するそれぞれの電極は、平行に並んだ複数の直線状電極片とこの直線状電極片どうしを電気的に接続する接続部とからなり、
さらに、それぞれの電極は、少なくとも2本の直線状電極片が隣接する直線状電極片偏在領域と、直線状電極片の存在しない直線状電極片不在領域とが交互に並ぶように形成され、
一方の電極における直線状電極片不在領域に、他方の電極の直線状電極片偏在領域が重なるようにして、回折格子が形成されてなることを特徴とする請求項3に記載の光学的測定装置。
Each electrode constituting the electrode pair is composed of a plurality of linear electrode pieces arranged in parallel and a connecting portion for electrically connecting the linear electrode pieces,
Furthermore, each electrode is formed such that at least two linear electrode pieces are adjacent to each other, and linear electrode piece unevenly distributed regions and linear electrode piece absent regions where no linear electrode pieces are present are alternately arranged,
4. The optical measurement apparatus according to claim 3, wherein a diffraction grating is formed so that the linear electrode piece unevenly distributed region of the other electrode overlaps the linear electrode piece absent region of one electrode. .
電極対を構成するそれぞれの電極は、平行に並んだ複数の直線状電極片とこの直線状電極片どうしを電気的に接続する接続部とからなり、回折格子は、それぞれの電極の直線状電極片と、いずれの電極とも電気的に接続されず、かつ、前記直線状電極片とほぼ同形状の直線状部材からなる浮遊部とが規則的に配列することにより形成されることを特徴とする請求項3に記載の光学的測定装置。 Each electrode constituting the electrode pair is composed of a plurality of linear electrode pieces arranged in parallel and a connecting portion for electrically connecting the linear electrode pieces, and the diffraction grating is a linear electrode of each electrode. It is formed by regularly arranging a piece and a floating portion made of a linear member having substantially the same shape as that of the linear electrode piece and not electrically connected to any electrode. The optical measuring device according to claim 3. 少なくとも容器の一部が光源光を透過する材料で形成されるとともに、この光源光を透過する容器部分に電極対が形成されており、当該電極対に向けて光源光を入射させ、光検出器は液体試料を透過した回折光または液体試料で反射した回折光を検出することを特徴とする請求項1に記載の光学的測定装置。 At least a part of the container is formed of a material that transmits the light source light, and an electrode pair is formed on the container part that transmits the light source light. 2. The optical measuring device according to claim 1, wherein diffracted light transmitted through the liquid sample or diffracted light reflected by the liquid sample is detected. 電極対は、光源光が照射されることにより表面プラズモン共鳴を生じる金属膜で形成されてなることを特徴とする請求項1に記載の光学的測定装置。 The optical measurement apparatus according to claim 1, wherein the electrode pair is formed of a metal film that causes surface plasmon resonance when irradiated with light from a light source.
JP2004241907A 2004-08-23 2004-08-23 Optical measuring device Active JP4270070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241907A JP4270070B2 (en) 2004-08-23 2004-08-23 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241907A JP4270070B2 (en) 2004-08-23 2004-08-23 Optical measuring device

Publications (2)

Publication Number Publication Date
JP2006058196A true JP2006058196A (en) 2006-03-02
JP4270070B2 JP4270070B2 (en) 2009-05-27

Family

ID=36105764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241907A Active JP4270070B2 (en) 2004-08-23 2004-08-23 Optical measuring device

Country Status (1)

Country Link
JP (1) JP4270070B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215882A (en) * 2007-02-28 2008-09-18 Shimadzu Corp Particle measuring instrument
JP4873202B2 (en) * 2007-06-21 2012-02-08 株式会社島津製作所 Analysis method of optical measurement
JP2012047596A (en) * 2010-08-26 2012-03-08 Ngk Insulators Ltd Particulate substance detector
JP2012047597A (en) * 2010-08-26 2012-03-08 Ngk Insulators Ltd Particulate substance detector
JP2012078168A (en) * 2010-09-30 2012-04-19 Nagoya Univ Detection method and detection system using nano structure
JP2012083353A (en) * 2011-11-22 2012-04-26 Shimadzu Corp Optical measurement analyzer
JP2013057608A (en) * 2011-09-09 2013-03-28 Shimadzu Corp Particle-size measuring instrument
JP5777624B2 (en) * 2010-08-19 2015-09-09 シチズンホールディングス株式会社 Refractive index measuring device and refractive index measuring method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215882A (en) * 2007-02-28 2008-09-18 Shimadzu Corp Particle measuring instrument
JP4873202B2 (en) * 2007-06-21 2012-02-08 株式会社島津製作所 Analysis method of optical measurement
JP5777624B2 (en) * 2010-08-19 2015-09-09 シチズンホールディングス株式会社 Refractive index measuring device and refractive index measuring method
JP2012047596A (en) * 2010-08-26 2012-03-08 Ngk Insulators Ltd Particulate substance detector
JP2012047597A (en) * 2010-08-26 2012-03-08 Ngk Insulators Ltd Particulate substance detector
US8820139B2 (en) 2010-08-26 2014-09-02 Ngk Insulators, Ltd. Particulate matter detection device
JP2012078168A (en) * 2010-09-30 2012-04-19 Nagoya Univ Detection method and detection system using nano structure
JP2013057608A (en) * 2011-09-09 2013-03-28 Shimadzu Corp Particle-size measuring instrument
JP2012083353A (en) * 2011-11-22 2012-04-26 Shimadzu Corp Optical measurement analyzer

Also Published As

Publication number Publication date
JP4270070B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP4375576B2 (en) Optical measuring apparatus and method, and nanoparticle measuring method and apparatus
US20120309116A1 (en) Substrate Analysis Using Surface Acoustic Wave Metrology
WO2007010639A1 (en) Optical measuring instrument
KR101371122B1 (en) Plasmon tomography
JP4868190B2 (en) Nano particle measuring device
JP4270070B2 (en) Optical measuring device
JP6538844B2 (en) Sample Measurement Chip, Sample Measurement Device, and Sample Measurement Method
JP2007057338A (en) Optical measuring instrument
JP2008051606A (en) Particle size measuring method and measuring instrument
JP5360391B2 (en) Particle measuring method and apparatus
JP4325519B2 (en) Nanoparticle measuring method and apparatus
JP2006349386A (en) Optical measuring instrument
JP4270121B2 (en) Optical measuring device
JP4517980B2 (en) Particle measuring device
JP2010249607A (en) Particle detector
JP4315083B2 (en) Optical measuring apparatus and optical measuring method
JP4367263B2 (en) Diffusion measuring device
JP4379318B2 (en) Optical measuring apparatus and optical measuring method
JP4830909B2 (en) Particle measuring device
JP2012042290A (en) Device and method for measuring amount of micro objects
JP5104643B2 (en) Particle size measuring apparatus and particle size measuring method
JP2011080819A (en) Particle-size measuring instrument
JP5109988B2 (en) Particle size measuring apparatus and particle size measuring method
JP2010101657A (en) Particle size measuring device
JP2004085437A (en) Material sensor using surface plasmon resonance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5