JP2006058174A - COLLIMATOR FOR gamma RAYS/X RAYS - Google Patents

COLLIMATOR FOR gamma RAYS/X RAYS Download PDF

Info

Publication number
JP2006058174A
JP2006058174A JP2004241460A JP2004241460A JP2006058174A JP 2006058174 A JP2006058174 A JP 2006058174A JP 2004241460 A JP2004241460 A JP 2004241460A JP 2004241460 A JP2004241460 A JP 2004241460A JP 2006058174 A JP2006058174 A JP 2006058174A
Authority
JP
Japan
Prior art keywords
rays
layer
collimator
lead
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004241460A
Other languages
Japanese (ja)
Inventor
Isamu Saito
勇 齊藤
Yusuke Kobayashi
祐介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2004241460A priority Critical patent/JP2006058174A/en
Publication of JP2006058174A publication Critical patent/JP2006058174A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a beam profile without making the structure of a collimator for γ rays/X rays complex. <P>SOLUTION: The collimator 10 has an aluminum layer 14 in which an absorption coefficient to energy, such as γ rays, is smaller than that of lead inside a lead layer 12 for shielding γ rays, or the like. More specifically, the collimator 10 has a layer 14 made of aluminum having a small absorption coefficient between a through hole 16 for transmitting γ rays, or the like and the lead layer 12 for shielding γ rays, or the like. Since aluminum has a much smaller absorption coefficient than lead, the aluminum layer 14 having the same length cannot shield γ rays, or the like completely even if the lead layer 12 has a sufficient width for shielding incident γ rays, or the like completely. As a result, the beam profile can be changed as compared with a conventional structure in which a body made of a single material, namely lead, is provided with a through hole. An appropriate profile can be obtained by determining the layer thickness of the aluminum layer 14 appropriately. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、γ線又はX線用のコリメータに関する。   The present invention relates to a collimator for γ rays or X rays.

ポジトロン断層撮影(PET)やシンチスキャナなどの医療分野、或いはその他の分野で、γ線又はX線(以下「γ線等」と略す)の発生源分布の測定が行われている。このような用途では、検出器に対し様々な方向からγ線等が入射したのでは、発生源の位置を精度よく特定することができないため、分布の精度が悪くなる。そこで、検出器の前段にコリメータを設けることで、検出器に対しγ線等が入射する方向を制限している。   In the medical field such as positron tomography (PET) and cinch scanner, or other fields, measurement of the source distribution of γ-rays or X-rays (hereinafter abbreviated as “γ-rays”) is performed. In such an application, if γ rays or the like are incident on the detector from various directions, the position of the generation source cannot be specified with high accuracy, and the accuracy of the distribution deteriorates. Thus, by providing a collimator in front of the detector, the direction in which γ rays and the like enter the detector is limited.

従来のγ線等用のコリメータは、γ線等の遮蔽能力に優れた鉛やタングステン等の、γ線等の吸収の大きい単一材料に対し、γ線等を透過させる孔を形成して構成されていた。孔の形状には、断面が円形乃至六角の平行孔形状(特許文献1)やテーパーの付いた円錐形状(特許文献2)、図1に示すようなファンビーム形状や、図2に示すようなピンホール形状などがあり、検出したいγ線等の方向に応じた孔形状を持つコリメータが利用される。また、入射するγ線等の強度や強度分布を所望のものにするために、図3に示すように、鉛からなる遮蔽体110に設けられた孔115の内側面120に溝125を形成することで、溝が形成された部分128での、γ線等の透過方向に沿った単位長さ当たりの鉛等の密度を、その外側の部分の密度より小さくするようなコリメータ設計も行われている。   A conventional collimator for γ-rays is configured by forming a hole that allows γ-rays to pass through a single material with high absorption such as γ-rays, such as lead or tungsten, which has excellent shielding ability for γ-rays. It had been. The shape of the hole includes a parallel hole shape having a circular or hexagonal cross section (Patent Document 1), a tapered cone shape (Patent Document 2), a fan beam shape as shown in FIG. 1, and a shape as shown in FIG. There is a pinhole shape or the like, and a collimator having a hole shape corresponding to the direction of γ rays or the like to be detected is used. Further, in order to make the intensity and intensity distribution of incident γ rays and the like desired, as shown in FIG. 3, a groove 125 is formed on the inner side surface 120 of the hole 115 provided in the shield 110 made of lead. Therefore, a collimator design is also made so that the density of lead or the like per unit length along the transmission direction of γ-rays in the portion 128 where the groove is formed is smaller than the density of the outer portion. Yes.

特開2000−28733号公報JP 2000-28733 A 特開平11−153673号公報Japanese Patent Laid-Open No. 11-153673

鉛等に平行孔を形成して構成されるコリメータは製造が容易であるが、透過するγ線等の強度分布は孔の直径や長さにより決まってくるため、所望の強度分布を得ることが困難な場合がある。これに対し、図3のように孔の断面形状を工夫すれば、強度分布を調整することができるが、断面形状が複雑になった分だけ製造に手間やコストがかかるという問題がある。   A collimator constructed by forming parallel holes in lead or the like is easy to manufacture, but the intensity distribution of γ-rays that pass through it is determined by the diameter and length of the holes, so that a desired intensity distribution can be obtained. It can be difficult. On the other hand, if the cross-sectional shape of the hole is devised as shown in FIG. 3, the intensity distribution can be adjusted, but there is a problem that the manufacturing takes time and cost as much as the cross-sectional shape becomes complicated.

本発明に係るγ線等のコリメータは、γ線又はX線を透過させるための孔を中心として多層構造をなし、該多層構造における第1の層を形成する材質は、該第1の層の内側の第2の層の材質よりも、前記γ線又はX線に対する吸収が大きいことを特徴とする。   The collimator such as γ-ray according to the present invention has a multilayer structure centered on a hole for transmitting γ-rays or X-rays, and the material forming the first layer in the multilayer structure is the first layer. The absorption of the γ-rays or X-rays is greater than the material of the inner second layer.

また本発明の好適な態様では、前記第1の層を形成する材質は、前記第2の層を形成する材質よりも、前記γ線又はX線のエネルギーに対する吸収係数が大きいことを特徴とする。   In a preferred aspect of the present invention, the material forming the first layer has a larger absorption coefficient for the energy of the γ-rays or X-rays than the material forming the second layer. .

又、本発明の好適な態様では、前記第1の層は鉛により形成され、前記第2の層はアルミニウムにより形成される。   In a preferred aspect of the present invention, the first layer is made of lead, and the second layer is made of aluminum.

本発明のコリメータでは、内側の第2の層の方が外側の第1の層よりもγ線等に対する遮蔽能力が小さいので、図3に例示した従来のコリメータ構造に近い強度分布を実現できる。しかも、内側面の形状が複雑な図3の構造と比べて、製造が容易であるという利点がある。   In the collimator of the present invention, the inner second layer has a smaller shielding ability against γ rays and the like than the outer first layer, so that an intensity distribution close to the conventional collimator structure illustrated in FIG. 3 can be realized. In addition, there is an advantage that manufacture is easy as compared with the structure of FIG. 3 in which the shape of the inner surface is complicated.

以下、図面を参照して、本発明を実施するための最良の形態(以下「実施形態」と呼ぶ)について説明する。   The best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described below with reference to the drawings.

図4は、本発明に係るγ線等のコリメータ10の構造を説明するための断面図である。   FIG. 4 is a cross-sectional view for explaining the structure of the collimator 10 for gamma rays or the like according to the present invention.

図4に示すように、このコリメータ10は、γ線等の遮蔽のための鉛層12の内側に、コリメート対象のγ線等のエネルギーに対する吸収係数が鉛よりも小さいアルミニウム層14を有している。すなわち、このコリメータ10は、γ線等を透過する貫通孔16と、γ線等を遮蔽する鉛層12との間に、コリメート対象のγ線等のエネルギーに対する吸収係数が比較的小さいアルミニウムからなる層14を有している。   As shown in FIG. 4, the collimator 10 has an aluminum layer 14 that has an absorption coefficient smaller than that of lead for energy such as γ rays to be collimated inside the lead layer 12 for shielding γ rays and the like. Yes. That is, the collimator 10 is made of aluminum having a relatively small absorption coefficient for energy such as γ rays to be collimated between the through hole 16 that transmits γ rays and the like and the lead layer 12 that shields γ rays and the like. It has a layer 14.

周知のように、γ線等と物質の相互作用には、光電効果、コンプトン効果、及び電子対生成があり、γ線等の物質による減衰(吸収)はこれら相互作用の和によって生じる。しして、その和の効果は、ウイリアム・J・プライス 原著、西野治 監修、関口晃 訳「放射線計測」,第11版,コロナ社,昭和53年7月10日,p.22−31に示されるように、その物質の吸収係数で表される。この吸収係数は、同書に示されるように、物質の種類と、対象となるγ線等のエネルギーの両方に依存する。同書に示されるように、吸収係数は、全体的な傾向としては、原子番号が大きい物質ほど大きい値となり、対象のγ線等のエネルギーが増すほど小さい値となる。ただし、2つの物質の吸収係数の大小関係がγ線等のエネルギー範囲によって逆転することもある。   As is well known, interactions between γ rays and substances include photoelectric effect, Compton effect, and electron pair generation, and attenuation (absorption) by substances such as γ rays is caused by the sum of these interactions. Thus, the effect of the sum is as follows: William J. Price original, supervised by Nishino Osamu, Satoshi Sekiguchi Translated, “Radiation Measurement”, 11th edition, Corona, July 10, 1978, p. As shown in 22-31, it is expressed by the absorption coefficient of the substance. This absorption coefficient depends on both the type of substance and the energy of the target γ-ray, as shown in the same document. As shown in the same book, as an overall trend, the absorption coefficient has a larger value as a substance having a larger atomic number, and a smaller value as the energy of the target γ-ray increases. However, the magnitude relationship between the absorption coefficients of the two substances may be reversed depending on the energy range such as gamma rays.

本実施形態の基本的な考え方は、コリメータを多層構造とし、コリメート対象となるγ線等に対する吸収(減衰)能力が大きい材質の層を外側に、小さい材質の層を内側に配するというものであるが、この場合の各材質の吸収能力を示す吸収係数は、材質のみならずコリメート対象のγ線等のエネルギーにも依存する。このようなことから、上記では、材質のγ線等に対する吸収係数をいう場合に「コリメート対象のγ線等のエネルギーに対する吸収係数」としている。ただし、以下では繁雑さを避けるため、これを単に「吸収係数」ということにする。   The basic idea of this embodiment is that the collimator has a multi-layer structure, and a layer made of a material having a large absorption (attenuation) ability for gamma rays to be collimated is arranged on the outside and a layer made of a small material is arranged on the inside. However, the absorption coefficient indicating the absorption ability of each material in this case depends not only on the material but also on energy such as γ rays to be collimated. For this reason, in the above description, the absorption coefficient for the γ-rays of the material is referred to as “absorption coefficient for the energy of γ-rays to be collimated”. However, in the following, in order to avoid complexity, this is simply referred to as “absorption coefficient”.

アルミニウムは、吸収係数が鉛に比して大幅に小さいため、γ線等に対する遮蔽能力が鉛よりも小さい。このため、鉛層12が、入射するγ線等を完全に遮蔽するのに十分な幅(つまり透過方向に沿った長さ)を持っていたとしても、それと同じ長さを持つアルミニウム層14ではγ線等が完全に遮蔽されず、その一部がアルミニウム層14を通って検出器に到達する。このため、鉛からなる単一材料の本体に対し貫通孔を設けた従来のコリメータとは、透過するγ線等の強度や強度分布を変えることができる。   Aluminum has a much smaller absorption coefficient than lead, and thus has a shielding ability against γ rays and the like that is smaller than that of lead. For this reason, even if the lead layer 12 has a sufficient width (that is, a length along the transmission direction) to completely shield incident γ rays and the like, in the aluminum layer 14 having the same length as that, Gamma rays and the like are not completely shielded, and a part thereof reaches the detector through the aluminum layer 14. For this reason, the intensity | strength and intensity distribution of the permeation | transmission gamma ray etc. can be changed with the conventional collimator which provided the through-hole with respect to the main body of the single material which consists of lead.

このような本実施形態の構造と従来構造の効果の差を確かめるシミュレーションの結果を以下に説明する。   The results of simulation for confirming the difference between the effects of the structure of the present embodiment and the conventional structure will be described below.

比較対象とした従来構造のコリメータ20の構造を図5の(a)に示す。このコリメータ20は、鉛からなる円柱状の遮蔽体22の中央に断面円形の貫通孔24を形成したものであり、貫通孔24の直径が5mm、遮蔽体22の透過方向に沿った長さが10cmであるとする。   FIG. 5A shows the structure of a collimator 20 having a conventional structure as a comparison target. This collimator 20 is formed by forming a through hole 24 having a circular cross section in the center of a cylindrical shield 22 made of lead. The diameter of the through hole 24 is 5 mm, and the length along the transmission direction of the shield 22 is long. Suppose that it is 10 cm.

これと比較する本実施形態のコリメータ30の構造を図5の(b)に示す。このコリメータ30は、貫通孔36を中心として、内側から順にアルミニウム層34、鉛層32が配設された構造を有する。このコリメータ30の長さは、従来構造と同じく10cmであり、この結果鉛層32は入射するγ線又はX線に対して遮蔽体として機能する。貫通孔36の直径は、従来構造と同じく5mmである。そして、アルミニウム層34の厚みは2.5mmとなっている。   The structure of the collimator 30 of this embodiment compared with this is shown in FIG. The collimator 30 has a structure in which an aluminum layer 34 and a lead layer 32 are arranged in this order from the inside around a through hole 36. The length of the collimator 30 is 10 cm as in the conventional structure. As a result, the lead layer 32 functions as a shield against incident γ rays or X rays. The diameter of the through hole 36 is 5 mm as in the conventional structure. The thickness of the aluminum layer 34 is 2.5 mm.

シミュレーションでは、図6に示すように、コリメータ40の一方の端面に検出器50の検出面を密着させ、貫通孔42の一方の開口を検出面で完全に覆うようにした。そして、コリメータ40のもう一方の端面44の直径に沿って、γ線を放射する点線源60を移動させ、その直径上の各位置に点線源60が位置するときの検出器50の計数効率を計算した。点線源60からは、全方位に等しい確率で511keV(ポジトロン消滅時に発生するγ線のエネルギー)のγ線が放射されるようにした。各位置での点線源60からのγ線を放射する数は、統計的にみて十分な数とした。また、検出器50が測定するγ線のエネルギー範囲は、ノイズを除去するため、450〜550keVとした。シミュレーションなので点線源60から放射されるγ線の数は分かり、コリメータ40を通って検出器50に達するγ線の数もシミュレーションで計算できるので、計数効率が計算できる。   In the simulation, as shown in FIG. 6, the detection surface of the detector 50 is brought into close contact with one end surface of the collimator 40 so that one opening of the through hole 42 is completely covered with the detection surface. Then, the point source 60 that emits γ rays is moved along the diameter of the other end face 44 of the collimator 40, and the counting efficiency of the detector 50 when the point source 60 is located at each position on the diameter is determined. Calculated. A γ-ray of 511 keV (γ-ray energy generated when the positron disappears) is emitted from the point source 60 with a probability equal to all directions. The number of γ rays emitted from the point source 60 at each position is a sufficient number from a statistical viewpoint. Further, the energy range of γ rays measured by the detector 50 is set to 450 to 550 keV in order to remove noise. Since it is a simulation, the number of γ rays emitted from the point source 60 is known, and the number of γ rays reaching the detector 50 through the collimator 40 can also be calculated by simulation, so that the counting efficiency can be calculated.

このようなシミュレーションにより得られた計数効率の分布を、図7に示す。図7のグラフの横軸はコリメータの端面の直径上での点線源60の位置(貫通孔の中心を原点位置(0mm)とする)を示し、縦軸は計数効率を示す。また図7において、曲線72は図5(a)の従来構造における計数効率の分布を示し、曲線74は図5(b)の本実施形態の構造における計数効率の分布を示す。   The distribution of counting efficiency obtained by such a simulation is shown in FIG. The horizontal axis of the graph of FIG. 7 indicates the position of the point source 60 on the diameter of the end face of the collimator (the center of the through hole is the origin position (0 mm)), and the vertical axis indicates the counting efficiency. In FIG. 7, a curve 72 shows the distribution of counting efficiency in the conventional structure of FIG. 5 (a), and a curve 74 shows the distribution of counting efficiency in the structure of this embodiment of FIG. 5 (b).

これら曲線72と74の比較から分かるように、本実施形態の構造の方が、従来構造よりも、中央部のピークを初めとして全体的に計数効率が高いことが分かる。このように、本実施形態のコリメータ構造により、貫通孔が同じ径であれば、γ線のピーク強度を高くすることができることがわかる。   As can be seen from the comparison of these curves 72 and 74, it can be seen that the structure of this embodiment has a higher counting efficiency than the conventional structure, starting with the peak at the center. Thus, according to the collimator structure of the present embodiment, it can be seen that the peak intensity of γ rays can be increased if the through holes have the same diameter.

また、更に、γ線のピーク強度(ピーク計数効率)が図5(b)の本実施形態の構造のものとほぼ等しくなるよう従来構造の貫通孔の径を大きくし、シミュレーションを行った。この場合の従来構造の貫通孔の直径は7.7mmであり、その他の寸法は図5(a)の例と同じである。このシミュレーションで得られた従来構造の計数効率の分布が、図7の曲線76である。   Further, a simulation was performed by increasing the diameter of the through-hole of the conventional structure so that the peak intensity (peak counting efficiency) of the γ-ray is substantially equal to that of the structure of the present embodiment in FIG. In this case, the diameter of the through hole of the conventional structure is 7.7 mm, and the other dimensions are the same as those in the example of FIG. The distribution of counting efficiency of the conventional structure obtained by this simulation is a curve 76 in FIG.

曲線74と76とを比較すれば、ピークの高さはほぼ同じであるのに対し、分布の「肩」部分75及び77は曲線74(本実施形態)の肩部分75の方が明らかに下がっていることが分かる。これは、ピークの高さが同じなら、本実施形態の構造の方が空間分解能が高いことを意味する。したがって、本実施形態の構造によれば、計数効率を落とさずに空間でのビームプロファイルを改善できることが分かる。   Comparing curves 74 and 76, the peak heights are approximately the same, while the “shoulder” portions 75 and 77 of the distribution are clearly lower in the shoulder portion 75 of the curve 74 (this embodiment). I understand that This means that the spatial resolution is higher in the structure of this embodiment if the peak height is the same. Therefore, according to the structure of the present embodiment, it can be seen that the beam profile in the space can be improved without reducing the counting efficiency.

以上に説明したように、本実施形態のコリメータ構造によれば、単純な円筒孔を持つ単一材質の従来のコリメータよりもビームプロファイルを改善できるので、検出器の位置分解能の向上が期待できる。また、本実施形態の構造は、図3に例示した複雑な断面形状を持つ従来構造に比べて製造が容易であるという利点がある。   As described above, according to the collimator structure of the present embodiment, the beam profile can be improved as compared with a conventional collimator made of a single material having a simple cylindrical hole, so that an improvement in the position resolution of the detector can be expected. In addition, the structure of this embodiment has an advantage that it is easier to manufacture than the conventional structure having a complicated cross-sectional shape illustrated in FIG.

以上では、アルミニウムと鉛の2層構造を例示したが、これはあくまで一例である。例えば、内側の層の材質をアルミニウムの代わりに銅や鉄としてもよい。また、外側の層の材質を鉛に代えてタングステンとしてもよい。いずれにしても、内側の層の材質としては、コリメータの長さ(透過方向に沿った長さ)ではγ線等を完全に遮蔽しない程度に吸収係数の小さい材質を用いればよい。一方、外側の層としては、その長さでγ線等を完全に遮蔽できる高い吸収係数の大きい材質を用いればよい。内側の層の材質や厚み(層厚)を適宜選択することで、様々なビームプロファイル(検出器の計数効率分布)を実現することができる。   In the above, a two-layer structure of aluminum and lead has been exemplified, but this is only an example. For example, the material of the inner layer may be copper or iron instead of aluminum. The material of the outer layer may be tungsten instead of lead. In any case, as a material of the inner layer, a material having a small absorption coefficient may be used so long as the collimator length (length along the transmission direction) does not completely block γ rays or the like. On the other hand, as the outer layer, a material having a high absorption coefficient that can completely shield γ rays and the like by its length may be used. By appropriately selecting the material and thickness (layer thickness) of the inner layer, various beam profiles (counting efficiency distribution of the detector) can be realized.

以上では、コリメータの各層の材質として鉛やアルミニウムなどの単一元素の金属物質を例示したが、合金も同様に利用することができる。合金を用いる場合も、単一元素金属の場合と同様、吸収係数によりγ線等の吸収能力を判別することができるので、吸収係数に応じて材質選択を行えばよい。   In the above, a single element metal material such as lead or aluminum is exemplified as the material of each layer of the collimator, but an alloy can be similarly used. In the case of using an alloy as well, in the same way as in the case of a single element metal, the absorption capability of γ rays and the like can be determined by the absorption coefficient, so that material selection may be performed according to the absorption coefficient.

また、以上では、コリメータの各層の材質として稠密な金属物質を用いた場合を例示したが、多孔質金属材料などのような稠密でない材料を用いることもできる。このような稠密でない材料は、同じ物質からなる稠密な材料よりもγ線等の吸収能力が低くなるので、その吸収能力に応じ内側の層などの材質として利用すればよい。もちろん、金属以外の材質でも同様に利用できる。   Moreover, although the case where the dense metal substance was used as a material of each layer of a collimator was illustrated above, a non-dense material such as a porous metal material can also be used. Such a non-dense material has a lower ability to absorb γ rays or the like than a dense material made of the same substance, and therefore may be used as a material for an inner layer or the like according to the absorption ability. Of course, materials other than metal can be used in the same manner.

また、2層以上の多層構造にすることも可能である。この場合、各層の材質の吸収係数が内側(すなわち貫通孔に近い側)から外側に向かって順に大きくなるようにすれば、例示した2層構造と同様、山状のビームプロファイルを得ることができる。そしてこの制限の下で、各層の材質や厚みを調整することで、様々なビームプロファイルが実現できる。   It is also possible to make a multilayer structure of two or more layers. In this case, if the absorption coefficient of the material of each layer is increased in order from the inner side (that is, the side close to the through hole) to the outer side, a mountain-shaped beam profile can be obtained as in the illustrated two-layer structure. . Under this restriction, various beam profiles can be realized by adjusting the material and thickness of each layer.

また、以上では、貫通孔の断面形状が円形であったが、円形断面以外の貫通孔の場合にも、本実施形態の構造は適用可能である。   In the above description, the cross-sectional shape of the through-hole is circular. However, the structure of the present embodiment can be applied to a through-hole other than the circular cross-section.

また、以上では、γ線等を透過させる貫通孔が1つしかないコリメータを例示したが、貫通孔が複数ある多孔型のコリメータの場合も同様の構造が採用できる。   In the above, a collimator having only one through-hole that transmits γ-rays and the like has been exemplified, but the same structure can be adopted in the case of a porous collimator having a plurality of through-holes.

また、以上ではγ線の場合のシミュレーション結果を示したが、X線も光線としてはγ線と同等なので、X線についても同等の効果が得られるものと考えられる。   In addition, although the simulation result in the case of γ rays has been described above, since the X-rays are equivalent to γ rays as light rays, it is considered that the same effects can be obtained for X-rays.

従来のコリメータの構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the conventional collimator. 従来のコリメータの構造の別の例を示す斜視図である。It is a perspective view which shows another example of the structure of the conventional collimator. 従来のコリメータの構造の別の例を示す断面図である。It is sectional drawing which shows another example of the structure of the conventional collimator. 実施形態のコリメータの構造を示す断面図である。It is sectional drawing which shows the structure of the collimator of embodiment. シミュレーションに用いた従来及び本実施形態のコリメータ構造を示す図である。It is a figure which shows the collimator structure of the prior art used for simulation, and this embodiment. シミュレーションを説明するための図である。It is a figure for demonstrating simulation. シミュレーションにより得られた計数効率分布を示す図である。It is a figure which shows the count efficiency distribution obtained by simulation.

符号の説明Explanation of symbols

10 コリメータ、12 鉛層、14 アルミニウム層、16 貫通孔。   10 collimators, 12 lead layers, 14 aluminum layers, 16 through holes.

Claims (3)

γ線又はX線を透過させるための孔を中心として多層構造をなし、該多層構造における第1の層を形成する材質が、該第1の層の内側の第2の層の材質よりも、前記γ線又はX線に対する吸収が大きいことを特徴とするγ線・X線用コリメータ。   The material for forming the first layer in the multilayer structure is more than the material of the second layer inside the first layer, with a multilayer structure centered on the hole for transmitting γ-rays or X-rays. A γ-ray / X-ray collimator characterized by having a large absorption with respect to the γ-ray or X-ray. 前記第1の層を形成する材質は、前記第2の層を形成する材質よりも、前記γ線又はX線のエネルギーに対する吸収係数が大きいことを特徴とする請求項1記載のγ線・X線用コリメータ。   2. The γ-ray / X according to claim 1, wherein the material forming the first layer has a larger absorption coefficient for the energy of the γ-rays or X-rays than the material forming the second layer. Line collimator. 前記第1の層は鉛により形成され、前記第2の層はアルミニウムにより形成されることを特徴とする請求項1記載のγ線・X線用コリメータ。   2. The γ-ray / X-ray collimator according to claim 1, wherein the first layer is made of lead, and the second layer is made of aluminum.
JP2004241460A 2004-08-20 2004-08-20 COLLIMATOR FOR gamma RAYS/X RAYS Pending JP2006058174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241460A JP2006058174A (en) 2004-08-20 2004-08-20 COLLIMATOR FOR gamma RAYS/X RAYS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241460A JP2006058174A (en) 2004-08-20 2004-08-20 COLLIMATOR FOR gamma RAYS/X RAYS

Publications (1)

Publication Number Publication Date
JP2006058174A true JP2006058174A (en) 2006-03-02

Family

ID=36105745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241460A Pending JP2006058174A (en) 2004-08-20 2004-08-20 COLLIMATOR FOR gamma RAYS/X RAYS

Country Status (1)

Country Link
JP (1) JP2006058174A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760505A (en) * 2011-04-26 2012-10-31 通用电气公司 Composite material x-ray collimator and method of manufacturing thereof
CN104040374A (en) * 2012-01-13 2014-09-10 独立行政法人放射线医学综合研究所 Radioactive substance detection device, radiation source location visibility system, and radioactive substance detection method
KR20210064796A (en) * 2019-11-26 2021-06-03 한서대학교 산학협력단 Collimator for radiation generating apparatus
CN114034723A (en) * 2021-11-25 2022-02-11 华北电力大学 X-ray-based detection method for micro electric tree defects of XLPE cable
CN114414597A (en) * 2022-01-05 2022-04-29 华北电力大学 X-ray-based XLPE cable intermediate joint air gap defect detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760505A (en) * 2011-04-26 2012-10-31 通用电气公司 Composite material x-ray collimator and method of manufacturing thereof
CN104040374A (en) * 2012-01-13 2014-09-10 独立行政法人放射线医学综合研究所 Radioactive substance detection device, radiation source location visibility system, and radioactive substance detection method
CN104040374B (en) * 2012-01-13 2016-11-16 国立研究开发法人量子科学技术研究开发机构 Radioactive Materials Inspection System, radiation source position visualization system and radioactive substance detection method
KR20210064796A (en) * 2019-11-26 2021-06-03 한서대학교 산학협력단 Collimator for radiation generating apparatus
KR102348018B1 (en) * 2019-11-26 2022-01-06 한서대학교 산학협력단 Collimator for radiation generating apparatus
US11311253B2 (en) 2019-11-26 2022-04-26 Hanseo University Academic Cooperation Foundation Collimator for radiation generating apparatus
CN114034723A (en) * 2021-11-25 2022-02-11 华北电力大学 X-ray-based detection method for micro electric tree defects of XLPE cable
CN114414597A (en) * 2022-01-05 2022-04-29 华北电力大学 X-ray-based XLPE cable intermediate joint air gap defect detection method

Similar Documents

Publication Publication Date Title
Mori et al. Enlarged longitudinal dose profiles in cone‐beam CT and the need for modified dosimetry
JP4969755B2 (en) Method and apparatus for detection of ionizing radiation by spectral decomposition
US7885372B2 (en) System and method for energy sensitive computed tomography
Taguchi et al. Spatio‐energetic cross talk in photon counting detectors: detector model and correlated Poisson data generator
WO2001090780A1 (en) Pet device and image generating method for pet device
CN106687042B (en) System and method for generating X-ray projections of an object
EP2219049A2 (en) Radiation detector with converters
US8311184B2 (en) Fan-shaped X-ray beam imaging systems employing graded multilayer optic devices
US20070153979A1 (en) X-ray system having an x-ray generator that produces an x-ray focal spot with multiple intensity maxima
JP6670659B2 (en) X-ray detector device and X-ray CT device
JP2014226551A (en) X-ray ct apparatus and detector
Dunning et al. Sheet beam x‐ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles
JP2018040800A (en) Signal processing circuit, radiation detector, and signal processing method
JP2007504881A (en) Array for electromagnetic radiation irradiation
JP2006058174A (en) COLLIMATOR FOR gamma RAYS/X RAYS
WO2020125080A1 (en) Ct system and detection device for ct system
US9897708B2 (en) Polar effect model, system, and method for photon counting detector in medical imaging systems including computed tomography
US20170090046A1 (en) X-ray detector arrangement
US20200200941A1 (en) X-ray detection system and method
US11000249B2 (en) X-ray detector for grating-based phase-contrast imaging
JPWO2019167145A1 (en) Collimator, radiation detection device, and radiation inspection device
Engel et al. Spectral analysis of scattered radiation in CT
CN110006932B (en) K-edge imaging method
CN116113855A (en) Low density or collimated logging radiation detector window
CN108078580B (en) Radiation imaging method and system thereof