JP2006057894A - Boiling/atomizing nozzle for exhaust gas temperature-decreasing device for spraying pressurized hot water and spray method of pressurized hot water using it - Google Patents

Boiling/atomizing nozzle for exhaust gas temperature-decreasing device for spraying pressurized hot water and spray method of pressurized hot water using it Download PDF

Info

Publication number
JP2006057894A
JP2006057894A JP2004239065A JP2004239065A JP2006057894A JP 2006057894 A JP2006057894 A JP 2006057894A JP 2004239065 A JP2004239065 A JP 2004239065A JP 2004239065 A JP2004239065 A JP 2004239065A JP 2006057894 A JP2006057894 A JP 2006057894A
Authority
JP
Japan
Prior art keywords
hot water
exhaust gas
boiling
nozzle
gas temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004239065A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sato
和宏 佐藤
Kokei Doi
弘敬 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2004239065A priority Critical patent/JP2006057894A/en
Publication of JP2006057894A publication Critical patent/JP2006057894A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chimneys And Flues (AREA)
  • Nozzles (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiling/atomizing nozzle capable of remarkably enhancing temperature decreasing efficiency by always stably spraying hot water in a good state from a hot water spray nozzle, in an exhaust gas temperature-decreasing system using hot water. <P>SOLUTION: In relation to a boiling/atomizing nozzle for an exhaust gas temperature-decreasing device for spraying pressurized hot water at a temperature higher than the boiling point of water under atmospheric pressure, this boiling/atomizing nozzle for an exhaust gas temperature-decreasing device is composed of: a nozzle tip 11 having, in its inside, a rotor insertion part 12a and a hot water jetting port 12c communicating with it; and the rotor 15 rotatably inserted into the rotor insertion part 12a, and composed by drilling a linear single hole 15 at its center and by spirally forming a turning groove 15a on its peripheral surface; and is used for spraying pressurized hot water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱水を利用した排ガス減温システムの改良に関するものであり、排ガスの減温をより安定した状態下で効率よく行えるようにした加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズルと、これを用いた熱水の噴霧方法に関するものである。   The present invention relates to an improvement of an exhaust gas temperature reduction system using hot water, and is intended for an exhaust gas temperature reduction device that sprays pressurized hot water that can efficiently reduce the temperature of exhaust gas in a more stable state. The present invention relates to a boiling atomization nozzle and a method of spraying hot water using the same.

一般にごみ焼却炉やごみ溶融炉、ボイラ燃焼装置等から排出された燃焼排ガスは、所定の温度にまで減温されたあとガス浄化装置により清浄化され、大気中へ放散されて行く。   In general, combustion exhaust gas discharged from a waste incinerator, a waste melting furnace, a boiler combustion device, etc. is cooled to a predetermined temperature, then purified by a gas purification device, and diffused into the atmosphere.

また、上記排ガスの減温システムとしては、所謂一流体方式(加圧水)や二流体方式(圧縮流体+加圧水)と呼ばれる常温水を排ガス内へ噴霧する方式が多く利用されて来たが、近年、大気圧下での水の沸点よりも高い温度の加圧熱水を排ガス内へ噴霧するようにした排ガス減温システムが、新たに開発されて実用化の段階に来ている。   In addition, as the exhaust gas temperature reduction system, a so-called one-fluid system (pressurized water) and a two-fluid system (compressed fluid + pressurized water), which sprays room temperature water into the exhaust gas, have been used in recent years. An exhaust gas temperature reduction system in which pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure is sprayed into the exhaust gas has been newly developed and is in the stage of practical use.

図8は、本願出願人が先きに開発をして実用化を進めている熱水を利用した排ガス減温システムの基本構成を示すものであり、図8において、1は排ガス冷却塔、1aは排ガス入口、1bは排ガス出口、1cは灰出口、1dは気密保持装置、2は熱水タンク、3は加圧ポンプ、4は熱水噴霧ノズル、5は温度制御装置、5aは出口側の排ガス温度検出器、5bは入口側の排ガス温度検出器、6は熱水量制御弁、Ghは高温排ガス、GLは低温排ガス、Sは加熱蒸気、Wtは熱水、Chは灰である。   FIG. 8 shows a basic configuration of an exhaust gas temperature reduction system using hot water that has been developed and put into practical use by the applicant of the present application. In FIG. 8, 1 is an exhaust gas cooling tower, 1a Is an exhaust gas inlet, 1b is an exhaust gas outlet, 1c is an ash outlet, 1d is an airtight holding device, 2 is a hot water tank, 3 is a pressure pump, 4 is a hot water spray nozzle, 5 is a temperature control device, and 5a is an outlet side. An exhaust gas temperature detector, 5b is an exhaust gas temperature detector on the inlet side, 6 is a hot water amount control valve, Gh is a high temperature exhaust gas, GL is a low temperature exhaust gas, S is heated steam, Wt is hot water, and Ch is ash.

高温排ガスGhの減温に際しては、熱水タンク2内の熱水Wtが、熱水タンク2内の内圧及び又は減温水加圧ポンプ3の加圧送水力によって減温水ノズル4へ送られ、熱水噴霧ノズル4から高温排ガスGh内へ噴霧される。熱水噴霧ノズル4から噴霧された熱水Wtは、大気圧下における沸点(100℃)よりも相当に高い温度の高圧水であるため、熱水噴霧ノズル4の噴出口の出口近傍で急激に減圧沸騰し、熱水噴霧ノズル4から噴霧された加圧熱水は、粒子径が約数10μm〜数μmの微細粒子になると共に、瞬時に蒸発して水蒸気となり、排ガス冷却塔1内の高温排ガスGhとの熱交換によりこれを冷却する。また、所定の温度にまで冷却された低温排ガスGLは排ガス出口1bを通して外部へ誘引され、更に、分離された排ガス内の灰(ダスト等)Chは、灰出口1cより外部へ排出されて行く。   When the temperature of the high-temperature exhaust gas Gh is reduced, the hot water Wt in the hot water tank 2 is sent to the hot water nozzle 4 by the internal pressure in the hot water tank 2 and / or the pressurized water supply force of the reduced temperature water pressurizing pump 3. Spraying from the spray nozzle 4 into the high temperature exhaust gas Gh. Since the hot water Wt sprayed from the hot water spray nozzle 4 is high-pressure water having a temperature substantially higher than the boiling point (100 ° C.) under atmospheric pressure, the hot water Wt is rapidly increased in the vicinity of the outlet of the hot water spray nozzle 4. The pressurized hot water boiled under reduced pressure and sprayed from the hot water spray nozzle 4 becomes fine particles having a particle size of about several tens of μm to several μm and instantly evaporates into water vapor, resulting in a high temperature in the exhaust gas cooling tower 1. This is cooled by heat exchange with the exhaust gas Gh. The low-temperature exhaust gas GL cooled to a predetermined temperature is attracted to the outside through the exhaust gas outlet 1b, and the ash (dust etc.) Ch in the separated exhaust gas is discharged to the outside from the ash outlet 1c.

上記図8の排ガス減温システムは、(a)減温水として加圧熱水を用いているため、噴霧された熱水は、熱水噴霧ノズルの噴出口の近傍に於いて急激に減圧沸騰をし、粒径が数μm程度の微粒子状の噴霧となると共に瞬時に蒸発をして水蒸気となる。これにより、水滴の付着に起因するガス冷却室壁面の損傷やダストの堆積によるトラブルがほぼ完全に防止されること、(b)噴霧された熱水が瞬時に蒸発されることにより噴霧水の冷却性能が大幅に向上し、排ガス冷却塔の大幅な小形化が可能となること、(c)熱水タンクの加圧力が十分である場合には、熱水加圧ポンプが不要となって設備が極めて簡素に構成できるうえ、ランニングコストの大幅な引下げが可能になること、(d)焼却炉やボイラ設備に脱気器が付属されている場合には、脱気器の熱水をそのまま利用することができ、熱水設備としては熱水噴霧ノズルと脱気器からの配管設備のみがあれば良く、排ガス減温設備を極めて安価に構成することができること等の優れた効用を奏するものであり、高い実用的効用を有している。   Since the exhaust gas temperature reduction system of FIG. 8 uses (a) pressurized hot water as the temperature reduction water, the sprayed hot water suddenly undergoes boiling under reduced pressure in the vicinity of the outlet of the hot water spray nozzle. In addition, it becomes a fine particle spray having a particle size of about several μm and instantly evaporates to become water vapor. As a result, damage to the gas cooling chamber wall caused by adhesion of water droplets and troubles due to dust accumulation are almost completely prevented, and (b) the sprayed hot water is instantly evaporated to cool the spray water. The performance is greatly improved, and the exhaust gas cooling tower can be greatly reduced in size. (C) When the hot water tank is sufficiently pressurized, the hot water pressurizing pump is not required and the equipment is installed. It can be configured very simply and the running cost can be greatly reduced. (D) When the deaerator is attached to the incinerator or boiler equipment, the hot water from the deaerator is used as it is. As the hot water equipment, only the hot water spray nozzle and the piping from the deaerator need be installed, and the exhaust gas temperature reducing equipment can be configured at a very low cost and has excellent effects. Have high practical utility That.

しかし、当該排ガス減温システムにも未だ解決すべき多くの課題が残されており、実用化試験の積み重ねと共にその問題点が明らかになって来た。
第1の問題点は、熱水噴霧の熱水噴霧特性に関する点である。従前から、この積の熱水を利用する排ガス減温装置では、沸騰微粒化ノズルとして単孔型ノズルとホロコーン型ノズル(旋回孔型ノズル)が多く使用されてきた。
However, many problems to be solved still remain in the exhaust gas temperature reduction system, and the problems have been clarified along with the accumulation of practical tests.
The first problem relates to the hot water spray characteristics of hot water spray. Conventionally, in an exhaust gas temperature reducing device using hot water of this product, a single hole type nozzle and a hollow cone type nozzle (a swirl hole type nozzle) have been frequently used as boiling atomization nozzles.

前者の単孔型ノズルは図9に示す如き構造のものであり、ノズル本体4aの構造が簡単で安価であり、しかもトラブルの発生が少ないと云う特徴を有している。しかし、ノズル口径Rが大きくなってくると、噴射口4aより吐出された噴霧水滴がノズル噴射口4bの中心軸線φ側に集まり易くなり、その結果排ガス冷却塔1に於ける熱水Wtの排ガス減温効率が低下することになる。   The former single-hole nozzle has a structure as shown in FIG. 9, and has a feature that the structure of the nozzle body 4a is simple and inexpensive, and that troubles are less likely to occur. However, when the nozzle diameter R increases, the sprayed water droplets discharged from the injection port 4a are likely to gather on the central axis φ side of the nozzle injection port 4b, and as a result, the exhaust gas of the hot water Wt in the exhaust gas cooling tower 1 The temperature reduction efficiency will decrease.

また、熱水Wtの噴霧開始時には、配管自体の熱容量による熱水Wtの冷却や配管内での減圧・気化によって熱水温度が低下する。そのため、熱水Wtが十分に微粒化し難くなると云う問題がある。
尚、上記熱水Wtが十分に微粒化し難くなると云う問題は、噴霧停止時にも同様に発生することであり、噴霧停止時に配管内に残留する熱水Wtの残量により、比較的大粒径の水滴が継続的に噴出すると云う問題がある。
At the start of spraying of hot water Wt, the temperature of the hot water decreases due to cooling of the hot water Wt due to the heat capacity of the pipe itself or pressure reduction / vaporization in the pipe. Therefore, there is a problem that the hot water Wt is difficult to be sufficiently atomized.
The problem that the hot water Wt is difficult to be sufficiently atomized occurs similarly when the spraying is stopped. The relatively large particle size is caused by the remaining amount of hot water Wt remaining in the pipe when the spraying is stopped. There is a problem that water droplets are continuously ejected.

一方、後者の図10に示す所謂ホロコーン型ノズルに於いては、旋回体4dの旋回孔4cが大口径になっても、噴射口4bからの噴霧粒(噴霧水滴)が軸線φ側へ集まると云う傾向は比較的少ない。しかし、圧力制御によって噴霧量の調整を行う際に低噴霧圧領域に入ると、噴霧状態が極端に悪化して所謂一様に拡がった良好な噴霧状態を保持できなくなり、結果として排ガス冷却効率が悪化する等の問題がある。   On the other hand, in the latter so-called hollow cone type nozzle shown in FIG. 10, even if the swivel hole 4c of the swivel body 4d has a large diameter, the spray particles (spray water droplets) from the spray port 4b gather on the axis φ side. There is relatively little tendency. However, if the spray amount is adjusted by pressure control and enters the low spray pressure region, the spray state becomes extremely deteriorated and the so-called uniformly spread good spray state cannot be maintained, and as a result, the exhaust gas cooling efficiency is reduced. There are problems such as worsening.

特開2000−274654号公報JP 2000-274654 A 特開2001−314725号公報JP 2001-314725 A 特開2002−113328号公報JP 2002-113328 A 特開2003−254678号公報JP 2003-254678 A

本発明は従前の熱水を利用した排ガス減温システムにおける上述の如き問題、即ち(イ)単孔型の熱水噴霧ノズルにあっては、熱水噴霧量が増大してノズル口径Rが大きくなると、噴霧水滴がノズル軸線φ寄りに集中し、熱水Wtによる総合的な排ガス減温効率が低下すること、(ロ)熱水Wtの噴霧の開始時や噴霧の停止時に於ける熱水の噴霧状態が、定常運転時に比較して著しく悪化すること、及び(ハ)ホロコーン型ノズルにあっては、圧力制御による熱水の流量調整時に低噴霧圧領域に入ると、噴霧状態が著しく悪化すること等の問題を解決せんとするものであり、ホロコーン型熱水噴霧ノズルの構造に改良を加えることにより、上記(イ)、(ロ)及び(ハ)のような問題の発生をほぼ完全に防止できるようにした新規な熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズルを提供すると共に、複数個の沸騰微粒化ノズルを同時に作動させることにより、効率的な排ガス減温を行えるようにした加圧熱水の噴霧方法を提供することを発明の主目的とするものである。   The present invention has the problems as described above in the conventional exhaust gas temperature reduction system using hot water, that is, (a) in a single-hole hot water spray nozzle, the amount of hot water spray increases and the nozzle diameter R increases. Then, the spray water droplets concentrate near the nozzle axis φ, and the overall exhaust gas temperature reduction efficiency due to the hot water Wt decreases. (B) Hot water at the start of spraying of the hot water Wt or at the stop of spraying The spraying state is significantly worse than that during steady operation, and (c) in the case of a hollow cone type nozzle, when the flow rate of hot water is adjusted by pressure control, the spraying state is significantly worsened. In order to solve these problems, the problems such as (a), (b) and (c) are almost completely eliminated by improving the structure of the hollow cone type hot water spray nozzle. New hot water spray that can be prevented In addition to providing a boiling atomization nozzle for an exhaust gas temperature reducing device, a method for spraying pressurized hot water that enables efficient exhaust gas temperature reduction by simultaneously operating a plurality of boiling atomization nozzles is provided. This is the main purpose of the invention.

請求項1の発明は、大気圧下での水の沸点よりも高い温度の加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズルに於いて、内部に回転子挿着部12aとこれに連通する熱水噴出口12cを備えたノズルチップ11と、前記回転子挿着部12a内へ回転自在に挿着され、中心部に直線状の単孔15bを穿設すると共に外周面に旋回溝15aを螺旋状に形成して成る回転子15とから構成したことを特徴とする加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズル。   The invention of claim 1 is a boiling atomization nozzle for an exhaust gas temperature reducing device for spraying pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure. A nozzle tip 11 having a hot water jet 12c communicating with the nozzle tip 11 is rotatably inserted into the rotor insertion portion 12a, and a straight single hole 15b is formed in the central portion and at the outer peripheral surface. A boiling atomization nozzle for an exhaust gas temperature reducing device for spraying pressurized hot water, characterized in that it comprises a rotor 15 having a spiral groove 15a formed therein.

請求項2の発明は、ノズルチップ11を、熱水噴出口12cと熱水噴出通路12bと回転子挿着部12aを備えたチップ本体12と、回転子15を挿着したチップ本体12の後方にシール材14を介設して気密状に固定した回転子支持体13とから形成するようにしたものである。   According to the second aspect of the present invention, the nozzle tip 11 is connected to the tip body 12 having the hot water outlet 12c, the hot water jet passage 12b and the rotor insertion portion 12a, and the rear side of the tip body 12 to which the rotor 15 is inserted. And a rotor support 13 fixed in an airtight manner with a sealing material 14 interposed therebetween.

請求項3の発明は、請求項1の発明において、回転子15の単孔15bの長さLとその内径Dとの比L/Dを7以上とするようにしたものである。   According to a third aspect of the invention, in the first aspect of the invention, the ratio L / D between the length L of the single hole 15b of the rotor 15 and the inner diameter D thereof is set to 7 or more.

請求項4の発明は、請求項1の発明において、回転子15の単孔15bの断面積S1 と旋回溝15aの断面積S2との比S1 /S2 を0.2以上とするようにしたものである。 According to a fourth aspect of the present invention, in the first aspect of the invention, the ratio S 1 / S 2 between the cross-sectional area S 1 of the single hole 15b of the rotor 15 and the cross-sectional area S 2 of the turning groove 15a is 0.2 or more. It is what I did.

請求項5の発明は、請求項1の発明において、ノズルチップ11の前端面12eを平坦面としたものである。   The invention of claim 5 is the invention of claim 1, wherein the front end surface 12e of the nozzle tip 11 is a flat surface.

請求項6の発明は、排ガス減温装置内へ大気圧下での水の沸点よりも高い温度の加圧熱水を噴霧して排ガスを減温するようにした沸騰微粒化ノズルを用いた加圧熱水の噴霧方法に於いて、排ガス減温装置1の中央部に複数個の沸騰微粒化ノズル10を隣接して配置し、前記各沸騰微粒化ノズル10からほぼ等量の熱水Wtを排ガス流と同方向に噴霧すると共に、前記隣接する沸騰微粒化ノズル10の熱水噴出口12cの間隔Zを300mm以上としたことを発明の基本構成とするものである。   The invention according to claim 6 is an addition using a boiling atomization nozzle in which pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure is sprayed into the exhaust gas temperature reducing device to reduce the exhaust gas temperature. In the method of spraying pressurized hot water, a plurality of boiling atomizing nozzles 10 are arranged adjacent to each other in the center of the exhaust gas temperature reducing device 1, and an approximately equal amount of hot water Wt is supplied from each boiling atomizing nozzle 10. While spraying in the same direction as the exhaust gas flow, the basic configuration of the invention is that the interval Z between the hot water outlets 12c of the adjacent boiling atomization nozzles 10 is set to 300 mm or more.

請求項7の発明は、排ガス減温装置内へ大気圧下での水の沸点よりも高い温度の加圧熱水を噴霧して排ガスを減温するようにした沸騰微粒化ノズルを用いた加圧熱水の噴霧方法に於いて、排ガス減温装置1の中央部に3個の沸騰微粒化ノズル10を隣接して配置し、前記各沸騰微粒化ノズル10からほぼ等量の熱水Wtを排ガス流と同方向に噴霧すると共に、前記隣接する沸騰微粒化ノズル10の熱水噴出口12cの間隔Zを100〜300mmとすると共に、両側に位置する沸騰微粒化ノズル10の熱水噴出口12cの軸線方向を排ガスの流れの方向に対して夫々対向状に5〜20度傾斜させるようにしたことを発明の基本構成とするものである。   The invention of claim 7 is an addition using a boiling atomization nozzle in which pressurized hot water having a temperature higher than the boiling point of water at atmospheric pressure is sprayed into the exhaust gas temperature reducing device to reduce the exhaust gas temperature. In the method of spraying pressurized hot water, three boiling atomization nozzles 10 are arranged adjacent to each other in the center of the exhaust gas temperature reducing device 1, and an approximately equal amount of hot water Wt is supplied from each boiling atomization nozzle 10. While spraying in the same direction as the exhaust gas flow, the interval Z between the hot water outlets 12c of the adjacent boiling atomizing nozzles 10 is set to 100 to 300 mm, and the hot water outlet 12c of the boiling atomizing nozzle 10 located on both sides. The basic configuration of the present invention is that the axial direction of each is inclined 5 to 20 degrees opposite to the flow direction of the exhaust gas.

本発明に係る沸騰微粒化ノズルでは、外周面に旋回溝15aを設けた回転子15の高速回転によりノズルチップ11内部に加圧熱水の旋回流が形成される。これにより、従前の単孔型ノズルに比較して熱水噴出口(ノズル口)12cの口径が大きくても、噴霧熱水の水滴粒が均等に分散されることになり、排ガスGhとの接触効率が上昇する。その結果、噴霧熱水の蒸発時間が短縮されるため、排ガス減温装置1の大幅な小形化が可能となる。   In the boiling atomization nozzle according to the present invention, a swirling flow of pressurized hot water is formed inside the nozzle tip 11 by the high speed rotation of the rotor 15 having the swirling grooves 15a on the outer peripheral surface. Thereby, even if the diameter of the hot water jet (nozzle port) 12c is larger than that of the conventional single hole type nozzle, the water droplets of the sprayed hot water are evenly dispersed, and contact with the exhaust gas Gh. Increases efficiency. As a result, the evaporation time of the spray hot water is shortened, so that the exhaust gas temperature reducing device 1 can be greatly downsized.

また、噴霧開始時や停止時の低噴霧圧における噴霧状態の悪化を防ぐことができるうえ、ノズルチップ11の先端部を平坦にすることにより、排ガスの巻込みがなくなり、噴霧不良の状態を引き起こすノズル先端へのダスト固着・成長が防止されることになる。
上述のように、本発明の沸騰微粒化ノズルを用いることにより、排ガス減温装置の小型化及び減温効率の向上が可能となる。
Further, it is possible to prevent the deterioration of the spray state at the low spray pressure at the start and stop of spraying, and by flattening the tip portion of the nozzle tip 11, there is no entrainment of exhaust gas, causing a state of poor spraying. This prevents dust sticking and growth on the nozzle tip.
As described above, by using the boiling atomization nozzle of the present invention, it is possible to downsize the exhaust gas temperature reducing device and improve the temperature reduction efficiency.

以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明の実施形態に係る熱水噴霧用の沸騰微粒化ノズルの一部を縦断した断面概要図であり、図2は図1のA−A視断面図である。
当該沸騰微粒化ノズル10はノズルチップ11と、ノズルチップ11内へ回転自在に挿着した回転子15とから形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a part of a boiling atomization nozzle for spraying hot water according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.
The boiling atomization nozzle 10 is formed of a nozzle tip 11 and a rotor 15 rotatably inserted into the nozzle tip 11.

また、前記ノズルチップ11は、円筒状の回転子挿着部12aと大径の噴出通路12bと小口径の熱水噴出口12cとラッパ形の噴射口12dと平面状の前端面12eとを備えたチップ本体12と、チップ本体12の後方へ螺挿した前端に鍔部13aを有する回転子支持体13とから形成されており、チップ本体12と回転子支持体13との間には気密保持用のシールリング14が配設されている。   The nozzle tip 11 includes a cylindrical rotor insertion portion 12a, a large-diameter ejection passage 12b, a small-diameter hot water ejection port 12c, a trumpet-shaped ejection port 12d, and a planar front end surface 12e. The chip body 12 and a rotor support body 13 having a flange 13a at the front end screwed to the rear of the chip body 12 are kept airtight between the chip body 12 and the rotor support body 13. A seal ring 14 is provided.

前記回転子15は、外周面に断面形状がU形又は半円形の螺旋状の旋回溝15aを有すると共に、中心部に断面形状が円形の単孔15bを穿設した短円柱体であり、その後端面にはガイド部15cが回転支持体13内へ突設されている。   The rotor 15 is a short columnar body having a spiral turning groove 15a having a U-shaped or semicircular cross-sectional shape on the outer peripheral surface and a single hole 15b having a circular cross-sectional shape in the center. A guide portion 15 c projects from the end surface into the rotary support 13.

前記回転子支持体13の上流側よりチップ本体12内へ流入した加圧熱水Wtは、単孔15bと、回転子挿着部12aの内周面と回転子15の外周面間に形成された螺旋状の旋回溝15aとに分流して熱水噴出口12c側へ流通し、旋回溝15a内を流通する熱水Wtの旋回力により回転子15が高速回転される。
その結果、単孔15bからの微粒化水滴が旋回溝15aからの旋回する微粒化水滴によって拡散されることになり、排ガスGhとの接触効率が向上することになる。
Pressurized hot water Wt flowing into the chip body 12 from the upstream side of the rotor support 13 is formed between the single hole 15b, the inner peripheral surface of the rotor insertion portion 12a, and the outer peripheral surface of the rotor 15. The rotor 15 is rotated at a high speed by the turning force of the hot water Wt flowing through the swirl groove 15a.
As a result, the atomized water droplets from the single hole 15b are diffused by the swirling atomized water droplets from the swivel groove 15a, and the contact efficiency with the exhaust gas Gh is improved.

尚、図3は、沸騰微粒化ノズル10における熱水Wtの流通状態を模式的に示したものであり、ノズルチップ内へ供給された加圧熱水Wtは、小口径の熱水噴霧口12c内での急減圧に伴う気泡の生成過程を経て、噴霧後は瞬時に液分裂をして微粒化することになる。即ち、液相流、気泡流、液分裂の過程を経て所謂噴霧状態となる。   FIG. 3 schematically shows a flow state of the hot water Wt in the boiling atomization nozzle 10, and the pressurized hot water Wt supplied into the nozzle tip is a small-diameter hot water spray port 12c. Through the bubble generation process accompanying the sudden pressure reduction in the inside, after spraying, the liquid breaks up instantly and atomizes. That is, a so-called spray state is obtained through a process of liquid phase flow, bubble flow, and liquid splitting.

また、上記沸騰微粒化ノズル10の基本的な構成は公知であるが、後述する如く本発明に係る沸騰微粒化ノズル10は、熱水Wtを用いること及び単孔15bの内径Dとその長さ寸法Lの比(L/D)、旋回溝15aの有効断面積S2 と単孔15bの有効断面積S1 の比(S1 /S2 )等を特定の範囲内の値に限定したこと等に特徴点を有している。 The basic structure of the boiling atomization nozzle 10 is known, but the boiling atomization nozzle 10 according to the present invention uses hot water Wt and the inner diameter D of the single hole 15b and its length as will be described later. The ratio of the dimension L (L / D), the ratio of the effective sectional area S 2 of the swivel groove 15a to the effective sectional area S 1 of the single hole 15b (S 1 / S 2 ), etc. are limited to values within a specific range. And so on.

即ち、本発明の熱水沸騰微粒化ノズル10においては、前記回転子15の単孔15bの内径Dと長さ寸法Lとの比L/Dを、図1のKに示すような理想的な熱水噴霧状態を得るために7以上の値、好ましくは10以上の値に設定されており、内径Dと長さLとの比をL/Dを上述の如き値とすることにより、理想的な熱水の微粒化状態を得ることができる実作動試験により確認されている。   That is, in the hot water boiling atomization nozzle 10 of the present invention, the ratio L / D between the inner diameter D and the length dimension L of the single hole 15b of the rotor 15 is ideal as shown in K of FIG. In order to obtain a hot water spray state, the value is set to 7 or more, preferably 10 or more, and the ratio of the inner diameter D to the length L is set to L / D as described above, which is ideal. It has been confirmed by an actual operation test that can obtain a fine atomized state of hot water.

同様に、回転子15の旋回溝15aの断面積S2 と直線状の単孔15bの断面積S1 との比S1 /S2 は0.2以上の値にする必要があり、当該S1 /S2 の値を0.2以上とすることにより、所定の噴霧の広がり角度αの全域に対して均等に熱水が微粒子化されることが、実作動試験により確認されている。 Similarly, the ratio S 1 / S 2 between the cross-sectional area S 2 of the turning groove 15 a of the rotor 15 and the cross-sectional area S 1 of the linear single hole 15 b needs to be set to a value of 0.2 or more. By making the value of 1 / S 2 0.2 or more, it has been confirmed by actual operation tests that hot water is finely divided uniformly over the entire range of the predetermined spray spread angle α.

更に、ノズルチップ本体12の前端面12eは平坦面にするのが望ましい。当該前端面12eを平坦面とすることにより、排ガスの巻込みによるノズル10の先端部へのダストの付着・成長を有効に防止できることが、実作動試験により確認されている。   Furthermore, the front end surface 12e of the nozzle tip body 12 is preferably a flat surface. It has been confirmed by actual operation tests that the front end face 12e can be effectively prevented from adhering and growing dust on the tip of the nozzle 10 due to the inclusion of exhaust gas.

(試験例1)
図4は、本発明の熱水噴霧用沸騰微粒化ノズル10及びこれを用いた熱水の噴霧方法に関する基礎データを得るために用いた試験装置の全体系統図である。図4において、1は排ガス冷却塔、2は熱水タンク、3は熱水加圧ポンプ、5は減温後の排ガス温度制御装置、6は熱水量制御弁、7は低圧蒸気だめ、8は蒸気式熱交換器、9は復水タンク、16は熱水温度制御装置、17は熱水循環圧力制御装置、18は水槽、19は水供給ポンプ、Tは温度検出器(又は温度計)、Pは圧力検出器(又は圧力計)、Fは熱水流量計である。
(Test Example 1)
FIG. 4 is an overall system diagram of a test apparatus used for obtaining basic data on a boiling atomization nozzle 10 for hot water spraying according to the present invention and a hot water spraying method using the same. In FIG. 4, 1 is an exhaust gas cooling tower, 2 is a hot water tank, 3 is a hot water pressurizing pump, 5 is an exhaust gas temperature control device after temperature reduction, 6 is a hot water control valve, 7 is a low-pressure steam reservoir, 8 is Steam heat exchanger, 9 is a condensate tank, 16 is a hot water temperature control device, 17 is a hot water circulation pressure control device, 18 is a water tank, 19 is a water supply pump, T is a temperature detector (or thermometer), P is a pressure detector (or pressure gauge), and F is a hot water flow meter.

熱水Wtの加熱源として蒸気式熱交換器8が使用されており、低圧蒸気だめ7より過熱蒸気Sを熱交換器8へ供給することにより、熱水(120℃〜155℃、1.1MPa〜2.0MPa)Wtが製造されている。
また、排ガス冷却塔1は内径約1500mmφ、高さ約8000mmの外形寸法を有しており、その中に沸騰微粒化ノズル10を取替可能に設けると共に、これに熱水Wtを噴霧温度130℃、噴霧圧力0.3〜1.0MPa、噴霧量100〜250kg/hの条件下で供給し、噴霧状態を目視によって排ガス冷却塔1の外部から検査窓を通して観察した。尚、当該試験例1に於いては、高温排ガスGhの供給をストップした状態としている。
A steam heat exchanger 8 is used as a heating source for the hot water Wt, and hot water (120 ° C. to 155 ° C., 1.1 MPa is supplied by supplying superheated steam S from the low pressure steam sump 7 to the heat exchanger 8. ~ 2.0 MPa) Wt is manufactured.
Further, the exhaust gas cooling tower 1 has an outer diameter of about 1500 mmφ and a height of about 8000 mm. In the exhaust gas cooling tower 1, the boiling atomization nozzle 10 is provided in a replaceable manner, and hot water Wt is sprayed at a spray temperature of 130 ° C. The spray was supplied under conditions of a spray pressure of 0.3 to 1.0 MPa and a spray amount of 100 to 250 kg / h, and the spray state was visually observed through the inspection window from the outside of the exhaust gas cooling tower 1. In Test Example 1, the supply of the high temperature exhaust gas Gh is stopped.

上記熱水噴霧状態の観察を、沸騰微粒化ノズル10の前記L/D(L=単孔15bの長さL、D=単孔15bの内径)及び前記S1 /S2 (S1 =単孔15bの断面積、S2 =旋回溝15aの断面積)を変化させた7個の異なる沸騰微粒化ノズル10について、夫々行った。
表1は、上記試験例1の結果を示すものである。
The observation of the hot water spray state is performed by measuring the L / D (L = length L of the single hole 15b, D = inner diameter of the single hole 15b) and the S 1 / S 2 (S 1 = single) of the boiling atomization nozzle 10. Each of the seven different boiling atomizing nozzles 10 in which the cross-sectional area of the hole 15b, S 2 = the cross-sectional area of the swirling groove 15a) was changed was performed.
Table 1 shows the results of Test Example 1 described above.

Figure 2006057894
Figure 2006057894

上記ノズル10のL/D及びS1 /S2 を変えた噴霧テストの結果からも明らかなように、L/D>7、S1 /S2 >0.2以上において、均等な微粒化がおこっている良好な噴霧状態が得られることが判明した。 As is clear from the results of the spray test in which the L / D and S 1 / S 2 of the nozzle 10 are changed, uniform atomization is achieved when L / D> 7 and S 1 / S 2 > 0.2 or more. It has been found that a good spraying state can be obtained.

(試験例2)
次に、図4の実験装置を用いて、排ガスGhの減温試験を行った。尚、排ガスGhは都市ごみ焼却施設パイロットプラントを実稼動させ、その高温燃焼排ガスGhを排ガス冷却塔1へ導入した。
試験条件を排ガス流量1600Nm3 /H、排ガス温度420℃、熱水噴霧量200kg/H、排ガス減温塔1の排ガス出口の排ガス温度180℃とし、且つ熱水噴霧ノズルとして、本発明の沸騰微粒化ノズル10と従前の単孔噴霧ノズルと二流体式噴霧ノズル(熱水圧力より僅かに高圧力の圧縮空気を熱水流量の約1/3の流量で供給)の三種のノズルを使用した。
(Test Example 2)
Next, the temperature reduction test of the exhaust gas Gh was performed using the experimental apparatus of FIG. For the exhaust gas Gh, a municipal waste incineration facility pilot plant was actually operated, and the high-temperature combustion exhaust gas Gh was introduced into the exhaust gas cooling tower 1.
The test conditions are an exhaust gas flow rate of 1600 Nm 3 / H, an exhaust gas temperature of 420 ° C., a hot water spraying amount of 200 kg / H, an exhaust gas temperature of 180 ° C. at the exhaust gas outlet of the exhaust gas temperature reducing tower 1, and a hot water spray nozzle. Three types of nozzles were used, namely, the nozzle 10, a conventional single-hole spray nozzle, and a two-fluid spray nozzle (supplying compressed air slightly higher than the hot water pressure at a flow rate of about 1/3 of the hot water flow rate).

試験は、排ガス減温塔1の内部の多数個所で温度を測定し、各地点の排ガス温度が完全に均一な温度(即ち、一定の温度)になるまでの時間(以下、蒸発時間と呼ぶ)を比較することにより行った。
表2は、試験例2の結果を示すものである。
In the test, temperatures are measured at a number of locations inside the exhaust gas temperature reducing tower 1, and the time until the exhaust gas temperature at each point reaches a completely uniform temperature (that is, a constant temperature) (hereinafter referred to as evaporation time). Was performed by comparing.
Table 2 shows the results of Test Example 2.

Figure 2006057894
Figure 2006057894

表2の試験結果からも明らかなように、本発明に係る沸騰微粒化ノズル10が最も速く噴霧微粒体が蒸発を完了すること、即ち所謂熱水の噴霧状態が良好なことが判明した。但し、当該試験例2で使用したノズル10の各要部の寸法はL=1.2mm、D=10.0mm、S1 =1.1mm2 、S2 =5.5mm2 であった。 As is apparent from the test results in Table 2, it was found that the boiling atomization nozzle 10 according to the present invention completed the evaporation of the spray particles most quickly, that is, the so-called hot water spray state was good. However, the dimensions of each main part of the nozzle 10 used in Test Example 2 were L = 1.2 mm, D = 10.0 mm, S 1 = 1.1 mm 2 , and S 2 = 5.5 mm 2 .

また、当該試験例2では、沸騰微粒化ノズル10のチップ本体12の前端面12eを平坦面としたものと、鋭角に加工したものとの両型式のノズル10について、排ガスGh内のダストの付着成長状態を観察した。
その結果、ノズル10の先端部を鋭角に加工すると、噴射口12dの近傍からダストの固着成長が始まり、これが噴霧状態を悪化させることが確認された。
Further, in Test Example 2, the dust in the exhaust gas Gh adheres to both types of nozzles 10 in which the front end surface 12e of the chip body 12 of the boiling atomization nozzle 10 is a flat surface and those processed into an acute angle. The growth state was observed.
As a result, when the tip of the nozzle 10 was processed to an acute angle, it was confirmed that dust growth started from the vicinity of the injection port 12d, which deteriorated the spray state.

次に、本発明に係る沸騰微粒化ノズル10を複数個同時使用する場合のノズルチップ11の最適間隔を求めるため、図4の排ガス減温塔1を排ガスGhが上向流であるものに変えると共に、熱水Wtを上向き(即ち、排ガスGhの流れと同方向)に噴霧するように変更した。   Next, in order to obtain the optimum interval between the nozzle tips 11 when a plurality of boiling atomization nozzles 10 according to the present invention are used simultaneously, the exhaust gas temperature reducing tower 1 in FIG. 4 is changed to one in which the exhaust gas Gh is an upward flow. At the same time, the hot water Wt is changed to spray upward (that is, in the same direction as the flow of the exhaust gas Gh).

図5は3個の沸騰微粒化ノズル10を垂直姿勢で且つ相互の間隔Zを調整自在に一列状に配列した場合を示すものであり、また、図6は3個のノズルチップ11を傾斜角度αを調整自在に一列状に配列した場合を示すものである。   FIG. 5 shows a case where the three boiling atomizing nozzles 10 are arranged in a line in a vertical posture and the interval Z can be adjusted, and FIG. 6 shows the inclination angle of the three nozzle tips 11. It shows a case where α is arranged in a row so as to be adjustable.

(試験例3)
先ず、試験条件(全連続式都市ごみ焼却施設(55ton/日)における試験)として、排ガス流量16000Nm3 /H、高温排ガスGhの温度280℃、全熱水噴霧量800kg/h、排ガス減温塔出口の排ガスGIの温度180℃に設定し、次にノズルチップ11の間隔Zを200mm、300mm及び400mmとした場合の、排ガス減温塔1内の排ガス温度がほぼ均一になる高さ位置を測定した。
尚、減温塔1内の温度分布は、試験例2の蒸発時間の測定の場合と同様に、減温塔1内に配置した複数の温度検出器により検出したものである。
(Test Example 3)
First, as test conditions (test in a full continuous municipal waste incineration facility (55 ton / day)), an exhaust gas flow rate of 16000 Nm 3 / H, a high temperature exhaust gas Gh temperature of 280 ° C., a total hot water spray amount of 800 kg / h, an exhaust gas temperature reduction tower The exhaust gas temperature at the outlet GI is set to 180 ° C., and then the height position at which the exhaust gas temperature in the exhaust gas temperature reducing tower 1 becomes almost uniform is measured when the interval Z between the nozzle tips 11 is 200 mm, 300 mm, and 400 mm. did.
The temperature distribution in the temperature reducing tower 1 is detected by a plurality of temperature detectors arranged in the temperature reducing tower 1 as in the case of the evaporation time measurement in Test Example 2.

図7はその試験結果を示すものであり、例えば、3ヶのノズルチップ11の相互間の距離Zが300mmの場合には、ノズルチップ11から約5000mmの高さ位置において排ガス温度が約150℃位いになる。   FIG. 7 shows the test results. For example, when the distance Z between the three nozzle tips 11 is 300 mm, the exhaust gas temperature is about 150 ° C. at a height of about 5000 mm from the nozzle tips 11. Become a rank.

これに対して、ノズルチップ11の間の間隔距離Zが200mmの場合には、高さ約5000mmの位置における排ガス温度は、排ガス冷却塔1の中心部で約130℃、中心より200mm離れた位置で約110℃となり、ほぼ同じ温度には至っていないことが判る。   On the other hand, when the distance Z between the nozzle tips 11 is 200 mm, the exhaust gas temperature at the height of about 5000 mm is about 130 ° C. at the center of the exhaust gas cooling tower 1 and 200 mm away from the center. It is about 110 ° C., and it can be seen that the temperature has not reached the same level.

上記図7に示した試験例3の結果から、複数個のノズルチップ11を用いて、排ガスGhの流れ方向と平行に熱水噴霧を行う場合には、ノズルチップ11の相互間の間隔距離(小口径の熱水噴出口12cの軸線φ間の距離)Zを300mm以上とすることにより、減温塔1内の排ガス温度を減温塔1の高さ方向より低い位置において、その半径方向の全域において均一に保持できることが確認された。   From the results of Test Example 3 shown in FIG. 7, when spraying hot water in parallel with the flow direction of the exhaust gas Gh using a plurality of nozzle tips 11, the distance between the nozzle tips 11 ( By setting the distance Z between the axes φ of the small-diameter hot water jets 12c to 300 mm or more, the exhaust gas temperature in the temperature reducing tower 1 is reduced in the radial direction at a position lower than the height direction of the temperature reducing tower 1. It was confirmed that it could be held uniformly throughout the entire area.

(試験例4)
図6の試験装置において、3ヶのノズルチップ11を300mm以下の間隔Zでもって横一列に配列し、両側のノズルチップ11の傾斜角度αを調整可能な構造とすると共に、その傾斜角αを5〜20度に亘って変化をさせて、排ガス減温塔1の内壁面に付着する水滴の状態を観測した。
(Test Example 4)
In the test apparatus of FIG. 6, the three nozzle tips 11 are arranged in a horizontal row with an interval Z of 300 mm or less, and the inclination angle α of the nozzle tips 11 on both sides is adjustable, and the inclination angle α is The state of water droplets adhering to the inner wall surface of the exhaust gas temperature reducing tower 1 was observed by changing the temperature over 5 to 20 degrees.

尚、排ガス減温塔1内へ供給する排ガス温度GH等の条件は図5の試験の場合と同一であり、また排ガス減温塔1の寸法は内径2400mmφ、高さ約10000mmである。更に、使用したノズルチップ11の構造条件は、小口径熱水噴出口12cの内径Rが1.6mm、単孔15bの内径D=1.2m、長さL=10.0mm、断面積S1 =1.1mm、旋回溝15aの断面積S2 =5.5mm2 であり、且つ各ノズルチップ11は相互の間隔Zを300mm以下に選定して配列されている。 The conditions such as the exhaust gas temperature GH supplied to the exhaust gas temperature reducing tower 1 are the same as in the test of FIG. 5, and the exhaust gas temperature reducing tower 1 has an inner diameter of 2400 mmφ and a height of about 10,000 mm. Furthermore, the structural conditions of the nozzle tip 11 used are as follows: the inner diameter R of the small-diameter hot water jet 12c is 1.6 mm, the inner diameter D of the single hole 15b is 1.2 m, the length L is 10.0 mm, and the cross-sectional area S 1. = 1.1 mm, cross-sectional area S 2 of the turning groove 15 a = 5.5 mm 2 , and the nozzle tips 11 are arranged with the mutual interval Z selected to be 300 mm or less.

上記試験例4の結果から、両側のノズルチップ11の傾斜角度αを20度以上にすると、排ガス冷却塔1の内壁面に水滴が付着することが判明した。
また、傾斜角度αが5℃以下であると、噴霧熱水同士の干渉により減温効率が低下することが確認された。
From the results of Test Example 4, it was found that water droplets adhered to the inner wall surface of the exhaust gas cooling tower 1 when the inclination angle α of the nozzle tips 11 on both sides was set to 20 degrees or more.
Moreover, it was confirmed that the temperature reduction efficiency falls by interference of spray hot water as the inclination | tilt angle (alpha) is 5 degrees C or less.

上記の如き事実から、複数の沸騰微粒化ノズル10を並列配置して同時使用する場合には、相互の間隔を300mm以上にする必要のあることが判明した。また複数(3個)の沸騰微粒化ノズル10を減温塔1の中央部に横一列に配置し、両側に位置するノズル10の取付角度αを変化させる場合には、傾斜角度αは5〜20度の間にする必要のあることが判明した。   From the facts described above, it has been found that when a plurality of boiling atomization nozzles 10 are arranged in parallel and used simultaneously, the interval between them needs to be 300 mm or more. In addition, when a plurality (three) of the boiling atomization nozzles 10 are arranged in a horizontal row at the center of the temperature reducing tower 1 and the mounting angle α of the nozzles 10 located on both sides is changed, the inclination angle α is 5 to 5. It turns out that it needs to be between 20 degrees.

前記試験例3及び試験例4では、高温排ガスGhを上向流とし、これと同方向に熱水噴霧を行うようにしているが、高温排ガスGhを下向流とすると共に、熱水噴霧を減温塔1の上方から下方へ向って行うようにしてもよいことは勿論である。   In Test Example 3 and Test Example 4, the high temperature exhaust gas Gh is used as an upward flow, and hot water spraying is performed in the same direction as this, but the high temperature exhaust gas Gh is used as a downward flow and hot water spraying is performed. Of course, it may be carried out from the upper side to the lower side of the temperature reducing tower 1.

また、前記試験例3及び試験例4では、3個の熱水沸騰微粒化ノズル10を排ガス減温塔1の中央部に横一列に配列する構成としているが、ノズル10の数及び各ノズル10の配置の形態は、各ノズル10間の間隔Zが300mm以上である限り、任意に選定できることは勿論である。   Further, in Test Example 3 and Test Example 4, three hot water boiling atomization nozzles 10 are arranged in a horizontal row in the center of the exhaust gas temperature reducing tower 1, but the number of nozzles 10 and each nozzle 10 are set. Of course, as long as the interval Z between the nozzles 10 is 300 mm or more, the arrangement form can be arbitrarily selected.

本発明は、主として都市ごみ焼却炉や灰溶融炉、ボイラ装置を含む各種燃焼装置等からの燃焼排ガスの冷却に用いられるものである。   The present invention is mainly used for cooling combustion exhaust gas from various combustion apparatuses including municipal waste incinerators, ash melting furnaces, and boiler apparatuses.

本発明の実施形態に係る熱水噴霧用沸騰微粒化ノズルの一部を縦断した断面概要図である。It is the cross-sectional schematic diagram which longitudinally cut part of the boiling atomization nozzle for hot water spraying which concerns on embodiment of this invention. 図1のA−A視断面図である。It is AA sectional view taken on the line of FIG. 本発明の沸騰微粒化ノズル10の内部に於ける熱水Wtの流動状態を示す説明図である。It is explanatory drawing which shows the flow state of the hot water Wt in the inside of the boiling atomization nozzle 10 of this invention. 本発明に係る沸騰微粒化ノズルの熱水噴霧特性の各試験に用いた試験設備の全体系統図である。It is a whole system diagram of the test equipment used for each test of the hot-water spray characteristic of the boiling atomization nozzle concerning the present invention. 複数個の沸騰微粒化ノズルを使用する場合の熱水噴霧特性の試験に使用した排ガス減温塔の断面概要図である。It is a cross-sectional schematic diagram of the exhaust gas temperature-reduction tower used for the test of the hot-water spray characteristic in the case of using a plurality of boiling atomization nozzles. 複数個のノズルチップ11を備えた沸騰微粒化ノズルを用いた場合の熱水噴霧特性の試験に使用した排ガス減温塔の断面概要図である。It is a cross-sectional schematic diagram of the exhaust gas temperature reduction tower used for the test of the hot-water spray characteristic at the time of using the boiling atomization nozzle provided with the some nozzle tip 11. FIG. 図5の熱水噴霧特性試験に於ける試験結果を示す線図である。It is a diagram which shows the test result in the hot-water spray characteristic test of FIG. 従前の熱水を利用した排ガス減温塔の全体系統図である。It is a whole system diagram of an exhaust gas temperature-reduction tower using conventional hot water. 従前の単孔型熱水噴霧ノズルの断面概要図である。It is a cross-sectional schematic diagram of a conventional single hole type hot water spray nozzle. 従前のホロコーン型熱水噴霧ノズルの断面概要図である。It is a cross-sectional schematic diagram of a conventional hollow cone type hot water spray nozzle.

符号の説明Explanation of symbols

Wtは熱水、Sは加熱蒸気、Wは上水、Ghは高温排ガス、Giは低温排ガス、S1 は単孔の断面積、S2 は旋回孔の断面積、Dは単孔15bの内径、Lは単孔15bの長さ、D2 は旋回孔の内径、Rはノズル口径、φはノズル噴射口4aの軸線、Aoは気泡、Tは温度検出器(又は温度計)、Pは圧力検出器(又は圧力計)、Fは熱水流量計、Zはノズルチップの間隔、αはノズルチップの傾斜角度、Kは熱水の噴霧体、1は排ガス冷却塔(排ガス冷却装置)、1aは排ガス入口、1bは排ガス出口、1cは灰出口、1dは気密保持装置、2は熱水タンク、3は加圧ポンプ、4は熱水噴霧ノズル、4aはノズル本体、4bは噴射口、4cは旋回孔、4dは旋回体、5は温度制御装置、5aは出口側の排ガス温度検出器、5bは入口側の排ガス温度検出器、6は熱水量制御弁、10は沸騰微粒化ノズル、11はノズルチップ、12はチップ本体、12aは回転子挿着部、12bは大径の噴出通路、12cは小口径の熱水噴出口、12dはラッパ形の噴射口、12eは平面状の前端面、13は回転子支持体、13aは鍔部、14はシール材、15は回転子、15aは螺旋状旋回溝、15bは単孔、15cはガイド部、16は熱水温度制御装置、17は熱水循環圧力制御装置、18は水槽、19は水供給ポンプ。 Wt is hot water, S is heated steam, W is clean water, Gh is high-temperature exhaust gas, Gi is low-temperature exhaust gas, S 1 is a cross-sectional area of a single hole, S 2 is a cross-sectional area of a swirl hole, and D is an inner diameter of the single hole 15b. , L is single-hole 15b long in, D 2 is the inside diameter of the pivot hole, R represents a nozzle diameter, phi is the axis of the nozzle injection port 4a, Ao bubbles, T is the temperature detector (or thermometer), P is the pressure Detector (or pressure gauge), F is a hot water flow meter, Z is an interval between nozzle tips, α is an inclination angle of the nozzle tips, K is a spray body of hot water, 1 is an exhaust gas cooling tower (exhaust gas cooling device), 1a Is an exhaust gas inlet, 1b is an exhaust gas outlet, 1c is an ash outlet, 1d is an airtight holding device, 2 is a hot water tank, 3 is a pressure pump, 4 is a hot water spray nozzle, 4a is a nozzle body, 4b is an injection port, 4c Is a revolving hole, 4d is a revolving body, 5 is a temperature control device, 5a is an exhaust gas temperature detector on the outlet side, and 5b is an exhaust gas temperature on the inlet side. Degree detector, 6 is a hot water control valve, 10 is a boiling atomization nozzle, 11 is a nozzle tip, 12 is a tip body, 12a is a rotor insertion part, 12b is a large-diameter ejection passage, and 12c is a small-diameter heat. Water ejection port, 12d is a trumpet-shaped ejection port, 12e is a flat front end surface, 13 is a rotor support, 13a is a flange, 14 is a sealing material, 15 is a rotor, 15a is a spiral swivel groove, 15b Is a single hole, 15c is a guide part, 16 is a hot water temperature control device, 17 is a hot water circulation pressure control device, 18 is a water tank, and 19 is a water supply pump.

Claims (7)

大気圧下での水の沸点よりも高い温度の加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズルに於いて、内部に回転子挿着部(12a)とこれに連通する熱水噴出口(12c)を備えたノズルチップ(11)と、前記回転子挿着部(12a)内へ回転自在に挿着され、中心部に直線状の単孔(15b)を穿設すると共に外周面に旋回溝(15a)を螺旋状に形成して成る回転子(15)とから構成したことを特徴とする加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズル。   In a boiling atomization nozzle for an exhaust gas temperature reducing device spraying pressurized hot water having a temperature higher than the boiling point of water under atmospheric pressure, a rotor insertion portion (12a) and heat communicating with the nozzle insertion portion A nozzle tip (11) provided with a water outlet (12c) and a rotor single hole (12b) are rotatably inserted into the rotor insertion part (12a), and a straight single hole (15b) is formed in the center. A boiling atomizing nozzle for an exhaust gas temperature reducing device for spraying pressurized hot water, characterized by comprising a rotor (15) having a spiral groove (15a) formed on its outer peripheral surface. ノズルチップ(11)を、熱水噴出口(12c)と熱水噴出通路(12b)と回転子挿着部(12a)を備えたチップ本体(12)と、回転子(15)を挿着したチップ本体(12)の後方にシール材(14)を介設して気密状に固定した回転子支持体(13)とから形成するようにした請求項1に記載の加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズル。   A nozzle body (12) having a nozzle tip (11), a hot water outlet (12c), a hot water jet passage (12b), and a rotor insertion portion (12a), and a rotor (15) were inserted. The pressurized hot water according to claim 1, wherein the pressure hot water is sprayed from a rotor support (13) fixed in an airtight manner with a sealing material (14) interposed behind the chip body (12). Boiling atomization nozzle for exhaust gas temperature reducer. 回転子(15)の単孔(15b)の長さLとその内径Dとの比L/Dを7以上とするようにした請求項1に記載の加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズル。   The exhaust gas temperature reducing device for spraying pressurized hot water according to claim 1, wherein the ratio L / D between the length L of the single hole (15b) of the rotor (15) and its inner diameter D is 7 or more. Boiling atomization nozzle for use. 回転子(15)の単孔(15b)の断面積(S1 )と旋回溝(15a)の断面積(S2)との比S1 /S2 を0.2以上とするようにした加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズル。 Cross-sectional area of the single-hole (15b) of the rotor (15) (S 1) and turning groove (15a) cross sectional area (S 2) and the ratio S 1 / S 2 a pressurized which is adapted to 0.2 or more Boiling atomization nozzle for exhaust gas temperature reducing device spraying pressurized hot water. ノズルチップ(11)の前端面(12e)を平坦面とした請求項1に記載の加圧熱水を噴霧する排ガス減温装置用の沸騰微粒化ノズル。   The boiling atomizing nozzle for an exhaust gas temperature reducing apparatus for spraying pressurized hot water according to claim 1, wherein the front end surface (12e) of the nozzle tip (11) is a flat surface. 排ガス減温装置内へ大気圧下での水の沸点よりも高い温度の加圧熱水を噴霧して排ガスを減温するようにした沸騰微粒化ノズルを用いた加圧熱水の噴霧方法に於いて、排ガス減温装置(1)の中央部に複数個の沸騰微粒化ノズル(10)を隣接して配置し、前記各沸騰微粒化ノズル(10)からほぼ等量の熱水(Wt)を排ガス流と同方向に噴霧すると共に、前記隣接する沸騰微粒化ノズル(10)の熱水噴出口(12c)の間隔(Z)を300mm以上としたことを特徴とする沸騰微粒化ノズルを用いた加圧熱水の噴霧方法。   A method of spraying pressurized hot water using a boiling atomization nozzle that sprays pressurized hot water at a temperature higher than the boiling point of water under atmospheric pressure into the exhaust gas temperature reducing device to reduce the temperature of the exhaust gas. In this case, a plurality of boiling atomization nozzles (10) are arranged adjacent to each other at the center of the exhaust gas temperature reducing device (1), and an approximately equal amount of hot water (Wt) is provided from each of the boiling atomization nozzles (10). Is used in the same direction as the exhaust gas flow, and the boiling atomization nozzle is characterized in that the interval (Z) between the hot water outlets (12c) of the adjacent boiling atomization nozzles (10) is 300 mm or more. The method of spraying pressurized hot water. 排ガス減温装置内へ大気圧下での水の沸点よりも高い温度の加圧熱水を噴霧して排ガスを減温するようにした沸騰微粒化ノズルを用いた加圧熱水の噴霧方法に於いて、排ガス減温装置(1)の中央部に3個の沸騰微粒化ノズル(10)を隣接して配置し、前記各沸騰微粒化ノズル(10)からほぼ等量の熱水(Wt)を排ガス流と同方向に噴霧すると共に、前記隣接する沸騰微粒化ノズル(10)の熱水噴出口(12c)の間隔(Z)を100〜300mmとすると共に、両側に位置する沸騰微粒化ノズル(10)の熱水噴出口(12c)の軸線方向を排ガスの流れの方向に対して夫々対向状に5〜20度傾斜させるようにした沸騰微粒化ノズルを用いた加圧熱水の噴霧方法。   A method of spraying pressurized hot water using a boiling atomization nozzle that sprays pressurized hot water at a temperature higher than the boiling point of water under atmospheric pressure into the exhaust gas temperature reducing device to reduce the temperature of the exhaust gas. In this case, three boiling atomization nozzles (10) are arranged adjacent to the center of the exhaust gas temperature reducing device (1), and approximately equal amount of hot water (Wt) is provided from each of the boiling atomization nozzles (10). Is sprayed in the same direction as the exhaust gas flow, and the interval (Z) between the hot water outlets (12c) of the adjacent boiling atomization nozzles (10) is set to 100 to 300 mm, and the boiling atomization nozzles located on both sides A method for spraying pressurized hot water using a boiling atomization nozzle in which the axial direction of the hot water outlet (12c) of (10) is inclined by 5 to 20 degrees opposed to the direction of exhaust gas flow, respectively. .
JP2004239065A 2004-08-19 2004-08-19 Boiling/atomizing nozzle for exhaust gas temperature-decreasing device for spraying pressurized hot water and spray method of pressurized hot water using it Pending JP2006057894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239065A JP2006057894A (en) 2004-08-19 2004-08-19 Boiling/atomizing nozzle for exhaust gas temperature-decreasing device for spraying pressurized hot water and spray method of pressurized hot water using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239065A JP2006057894A (en) 2004-08-19 2004-08-19 Boiling/atomizing nozzle for exhaust gas temperature-decreasing device for spraying pressurized hot water and spray method of pressurized hot water using it

Publications (1)

Publication Number Publication Date
JP2006057894A true JP2006057894A (en) 2006-03-02

Family

ID=36105509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239065A Pending JP2006057894A (en) 2004-08-19 2004-08-19 Boiling/atomizing nozzle for exhaust gas temperature-decreasing device for spraying pressurized hot water and spray method of pressurized hot water using it

Country Status (1)

Country Link
JP (1) JP2006057894A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023459A (en) * 2006-07-21 2008-02-07 Takuma Co Ltd Two-fluid spray nozzle
JP2009226282A (en) * 2008-03-21 2009-10-08 Taiyo Nippon Sanso Corp Atomizing nozzle device
WO2012099046A1 (en) * 2011-01-21 2012-07-26 三菱重工業株式会社 Power generation plant
CN107328294A (en) * 2017-07-18 2017-11-07 甘肃蓝科石化高新装备股份有限公司 Shell-and-plate heat exchanger liquid distribution mixing arrangement
CN111069559A (en) * 2018-10-18 2020-04-28 游家龙 Metal die casting machine nozzle device capable of enhancing atomization effect
CN116853508A (en) * 2023-09-04 2023-10-10 中国航空工业集团公司金城南京机电液压工程研究中心 Aircraft spray cooling control method and device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023459A (en) * 2006-07-21 2008-02-07 Takuma Co Ltd Two-fluid spray nozzle
JP2009226282A (en) * 2008-03-21 2009-10-08 Taiyo Nippon Sanso Corp Atomizing nozzle device
WO2012099046A1 (en) * 2011-01-21 2012-07-26 三菱重工業株式会社 Power generation plant
JP5558592B2 (en) * 2011-01-21 2014-07-23 三菱重工業株式会社 Power plant
KR101434119B1 (en) * 2011-01-21 2014-08-25 미츠비시 쥬고교 가부시키가이샤 Power generation plant
KR101503294B1 (en) * 2011-01-21 2015-03-18 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Power generation plant
US9074532B2 (en) 2011-01-21 2015-07-07 Mitsubishi Hitachi Power Systems, Ltd. Power generation plant
CN107328294A (en) * 2017-07-18 2017-11-07 甘肃蓝科石化高新装备股份有限公司 Shell-and-plate heat exchanger liquid distribution mixing arrangement
CN107328294B (en) * 2017-07-18 2023-09-08 甘肃蓝科石化高新装备股份有限公司 Liquid distribution mixing device for plate-shell heat exchanger
CN111069559A (en) * 2018-10-18 2020-04-28 游家龙 Metal die casting machine nozzle device capable of enhancing atomization effect
CN116853508A (en) * 2023-09-04 2023-10-10 中国航空工业集团公司金城南京机电液压工程研究中心 Aircraft spray cooling control method and device
CN116853508B (en) * 2023-09-04 2023-11-14 中国航空工业集团公司金城南京机电液压工程研究中心 Aircraft spray cooling control method and device

Similar Documents

Publication Publication Date Title
KR100375648B1 (en) How to increase net power of industrial gas turbine and power generation device
US3073683A (en) Apparatus for submerged combustion heating of liquids
JPS631103B2 (en)
CN206234834U (en) Chilling tower
JP2006057894A (en) Boiling/atomizing nozzle for exhaust gas temperature-decreasing device for spraying pressurized hot water and spray method of pressurized hot water using it
CN104056742B (en) Atomization proportioning type multiple entry medium ejectors
JP5988396B2 (en) Exhaust gas cooling method
CN217568185U (en) Denitration spray gun
CN203319949U (en) Low-pressure powdered coal gasification burner
RU183563U1 (en) IRRIGATED HEAT EXCHANGER
CN105352358B (en) Multipoint Uniform jet atomization device
CN204329646U (en) For the spray cooling system of cleaner
RU2359176C1 (en) Water cooling plant with evaporation of recirculation water
CN208442806U (en) A kind of heat conducting oil boiler steam generating system for the physicochemical characteristics changing water
CN210485760U (en) Organic waste liquid gasification furnace
RU2506116C1 (en) Kochetov&#39;s packed scrubber
RU2537108C1 (en) Kochetov&#39;s contact heat-exchanger with active nozzle
RU2411061C1 (en) Jet scrubber
CN202002095U (en) Burner for cremation machine
CN101832730A (en) Atomizer structure with water pressure fluctuation automatic flow regulation
WO2015084787A1 (en) Method for decreasing smr tube temperature
CN110469858A (en) Organic liquid waste gasification furnace and waste gas treatment process
CN221649253U (en) Gas-liquid atomization cooling device
CN104791808B (en) Closed cooling circulation system used for waste incineration device
CN204737977U (en) Evaporative cooler and converter coal gas dry process dust pelletizing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091030