JP2006057893A - Boiler control device - Google Patents

Boiler control device Download PDF

Info

Publication number
JP2006057893A
JP2006057893A JP2004239063A JP2004239063A JP2006057893A JP 2006057893 A JP2006057893 A JP 2006057893A JP 2004239063 A JP2004239063 A JP 2004239063A JP 2004239063 A JP2004239063 A JP 2004239063A JP 2006057893 A JP2006057893 A JP 2006057893A
Authority
JP
Japan
Prior art keywords
coal
mill
boiler
temperature
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004239063A
Other languages
Japanese (ja)
Other versions
JP2006057893A5 (en
JP4374298B2 (en
Inventor
Hiroshi Gondo
宏 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004239063A priority Critical patent/JP4374298B2/en
Publication of JP2006057893A publication Critical patent/JP2006057893A/en
Publication of JP2006057893A5 publication Critical patent/JP2006057893A5/ja
Application granted granted Critical
Publication of JP4374298B2 publication Critical patent/JP4374298B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding And Controlling Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boiler control device for controlling combustion so as to prevent ash having a low melting point from adhering when combustion in a boiler furnace is executed by using a low-quality pulverized coal fuel such as subbituminous coal. <P>SOLUTION: This boiler control device is provided with: a means for calculating moisture of coal in a pulverized coal mill; a means for calculating a heat value of coal in process of combustion in the boiler furnace; and a means for determining a property of the coal to be burnt from the moisture of the coal and the heat value of the coal and thereby adjusting coal particle size at the exit of the pulverized coal mill. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ボイラ制御装置に係り、特に微粉炭焚きボイラにて石炭性状の大幅な変化、特に亜瀝青炭、褐炭等の低品位炭に対し制御特性を最適化するのに好適なボイラ制御装置に関する。   The present invention relates to a boiler control apparatus, and more particularly to a boiler control apparatus suitable for optimizing control characteristics for a large change in coal properties, particularly low-grade coal such as subbituminous coal and lignite, in a pulverized coal fired boiler. .

微粉炭焚きボイラで燃焼する石炭は石炭産地により石炭性状が異なっており、広範囲の石炭を燃焼させ微粉炭焚きボイラを安定に制御する対策が重要な課題となっている。従来は瀝青炭と呼ばれる炭化度の進んだ炭が発熱量も多いため良く使用されていたが、石炭性状差もあまり大きくなく、石炭性状差を吸収するための工夫はされていたが、それほど問題にはならなかった。しかし、今後は炭化度の低い亜瀝青炭や褐炭の使用がされる傾向にあり、その技術開発が急務となっている。特に、亜瀝青炭は、低発熱量、低灰分、低硫黄分、高揮発分の特徴があり、硫黄分が低いことから硫黄酸化物排出量が少なく、また高揮発分であり、炭素量が少ないことから、CO排出量が少ないなど、有利な点が多くあるが、灰融点が低く、普通のボイラで燃焼するとスラグが火炉内に付着し、収熱特性が悪くなり、最悪の状態では、火炉がスラグで閉塞するなどの問題があった。
特開平08−125953号公報
Coal combusted in a pulverized coal-fired boiler has different coal properties depending on the coal-producing area, and measures to stably control the pulverized-coal-fired boiler by burning a wide range of coal have become an important issue. Conventionally, charcoal with a high degree of carbonization called bituminous coal was often used because it has a large calorific value, but the coal property difference was not so large and devised to absorb the coal property difference, but it was a problem so much I didn't. However, in the future, sub-bituminous coal and lignite with low carbonization tend to be used, and technology development is urgently needed. In particular, subbituminous coal is characterized by low calorific value, low ash content, low sulfur content, and high volatile content. Low sulfur content results in low sulfur oxide emissions, high volatile content, and low carbon content. Therefore, there are many advantages such as low CO 2 emission, but the ash melting point is low, and when burning in a normal boiler, slag adheres to the furnace, heat recovery characteristics deteriorate, and in the worst state, There was a problem that the furnace was blocked by slag.
JP 08-125953 A

本発明の課題は、上記従来技術の問題点を解決し、亜瀝青炭のような、低融点の灰が付着し易い微粉炭燃料を用いてボイラ火炉内の燃焼を行う場合、低融点の灰が付着し難いように燃焼を制御するボイラ制御装置を提供することにある。   The problem of the present invention is to solve the above-mentioned problems of the prior art, and when burning in a boiler furnace using pulverized coal fuel, such as subbituminous coal, to which low melting point ash is likely to adhere, It is providing the boiler control apparatus which controls combustion so that it does not adhere easily.

上記課題を解決するため、本願で特許請求される発明は下記のとおりである。
(1)微粉炭ミルと、ミル内の石炭の水分を算出する手段と、ボイラ火炉内で燃焼させる石炭の発熱量を算出する手段と、前記石炭の水分と石炭の発熱量から燃焼する石炭の性状を判定する手段と、該石炭の性状から微粉炭ミル出口の石炭粒度を調整する手段とを有するボイラ制御装置。
(2)石炭が亜瀝青炭または褐炭であることを特徴とする(1)記載の装置。
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) A pulverized coal mill, means for calculating the moisture of coal in the mill, means for calculating the calorific value of coal burned in a boiler furnace, and the amount of coal burned from the moisture of coal and the calorific value of coal The boiler control apparatus which has a means to determine a property, and a means to adjust the coal particle size of a pulverized coal mill exit from the property of this coal.
(2) The apparatus according to (1), wherein the coal is subbituminous coal or lignite.

(3)前記石炭の水分を、ミルの入口空気温度、出口空気温度、ミルケーシング温度、石炭の温度、石炭流量、およびミルの入口空気流量からボイラの入熱と出熱を算出し、これらのバランスから前記石炭の水分を計算することを特徴とする(1)または(2)記載の装置。
(4)ボイラ主蒸気温度、ボイラ主蒸気流量、ボイラ主蒸気圧力、および給炭量の計測手段と、該計測手段の入力をもとに石炭の発熱量を算出する手段とを有することを特徴とする(1)ないし(3)のいずれかに記載の装置。
(3) Calculate the heat input and output of the boiler from the coal inlet water temperature, outlet air temperature, mill casing temperature, coal temperature, coal flow rate, and mill inlet air flow rate, The apparatus according to (1) or (2), wherein the coal moisture is calculated from the balance.
(4) It has a measuring means for boiler main steam temperature, boiler main steam flow rate, boiler main steam pressure, and coal supply amount, and means for calculating the calorific value of coal based on the input of the measuring means. The device according to any one of (1) to (3).

微粉炭ミルの回転分級機の回転数をさげることで燃焼する微粉炭の粒度をさげ、微粉炭の燃焼時間を長めとすることにより、ボイラ内の温度分布を後流側に移動し、火炉の温度を下げることで、火炉内のピーク温度を低灰融点温度より低い温度にて運用することで、灰の火炉への付着を防止しつつ、ボイラを制御、運転することができる。   By reducing the number of revolutions of the pulverized coal mill's rotation classifier, the particle size of the pulverized coal is reduced, and the combustion time of the pulverized coal is lengthened, so that the temperature distribution in the boiler is moved to the downstream side, and the furnace By lowering the temperature, the boiler can be controlled and operated while preventing the ash from adhering to the furnace by operating the peak temperature in the furnace at a temperature lower than the low ash melting point temperature.

下記実施例では、ミルの微粉粒度を下げ、バーナ近傍での燃焼温度を下げるように制御を行ったが、ミル一次空気量を下げるかまたはバーナ2次空気量を下げることにより同様の効果も期待できるため、これらの方法と併用してもよい。
〔作用〕
In the following examples, control was performed so as to reduce the fine particle size of the mill and lower the combustion temperature in the vicinity of the burner, but a similar effect can be expected by reducing the primary air amount of the mill or the secondary air amount of the burner. Therefore, it may be used in combination with these methods.
[Action]

微粉炭焚きボイラで燃焼する石炭は、ミル内にて粉砕され微粉炭となるが、微粉粒度が細かいと、バーナでの燃焼時、空気との接触面積が大きくなり、見かけ上、混合速度および燃焼速度が速くなることにより、バーナ近傍の燃焼温度が上昇する。ボイラは主に火炉、前部伝熱管、後部伝熱管にて構成されるが、バーナ近傍の温度が高いと火炉での溶融灰の付着が増加するため、火炉での熱吸収量が減少し、結果として全部伝熱管入口の温度が上昇し、前部伝熱管への溶融灰の付着も増加する。この悪循環の状態が継続すると、前部伝熱管への溶融灰付着が進み、吸熱は後部伝熱管へ移動する。通常はスートブロワにて灰除去を行うため、大幅に悪化することはないが、スートブロワ動作前の灰付着が大きいほど、スートブロワ動作後の吸熱バランスの変動が大きくボイラへの外乱が大きくなる。   Coal that burns in a pulverized coal-fired boiler is pulverized into pulverized coal in the mill. However, if the particle size is fine, the contact area with air increases when burning in the burner, and apparently the mixing speed and combustion As the speed increases, the combustion temperature near the burner increases. The boiler is mainly composed of a furnace, a front heat transfer tube, and a rear heat transfer tube, but if the temperature near the burner is high, adhesion of molten ash in the furnace increases, so the amount of heat absorbed in the furnace decreases, As a result, the temperature at the inlet of the heat transfer tube rises, and the adhesion of molten ash to the front heat transfer tube also increases. If this vicious cycle continues, the molten ash adheres to the front heat transfer tube, and the heat absorption moves to the rear heat transfer tube. Usually, the ash removal is performed by the soot blower, so that there is no significant deterioration. However, the greater the ash adhesion before the soot blower operation, the greater the fluctuation in the endothermic balance after the soot blower operation, and the greater the disturbance to the boiler.

一方、微粉炭の粒度が荒いとバーナでの燃焼時、空気との接触面積が小さくなり、見かけ上、混合速度および燃焼速度が遅くなり、バーナ近傍の燃焼温度が低下する。バーナ近傍の温度が低下すると、融点の低い灰でも溶融しない運転ポイントとなるため、火炉内に付着する灰も少なく、火炎温度は低いが、火炉内での熱吸収は通常の石炭(瀝青炭)よりも若干低い吸熱量となる。従って灰溶融の温度より低い温度で前部伝熱管、後部伝熱管も相当の吸熱量を維持しつつ運転が継続できる。   On the other hand, if the pulverized coal has a coarse particle size, the area of contact with air is reduced during combustion in the burner, and apparently the mixing speed and the combustion speed are reduced, and the combustion temperature in the vicinity of the burner is lowered. When the temperature in the vicinity of the burner falls, it becomes an operating point that does not melt even ash with a low melting point, so there is little ash adhering to the furnace, and the flame temperature is low, but heat absorption in the furnace is better than ordinary coal (bituminous coal) Also, the endotherm is slightly lower. Accordingly, the front heat transfer tube and the rear heat transfer tube can be continuously operated while maintaining a considerable amount of heat absorption at a temperature lower than the ash melting temperature.

このように、灰溶融温度の低い石炭では、バーナの火炎温度を下げて運転することが重要であり、制御方法としては、石炭の性状を検出し、この性状が低品位炭である場合、ミル出口の微粉粒度を下げることにより達成できる。   Thus, in coal with a low ash melting temperature, it is important to operate by lowering the flame temperature of the burner, and as a control method, if the property of the coal is detected and this property is low-grade coal, This can be achieved by reducing the fine particle size at the outlet.

亜瀝青炭の場合、石炭水分が20%以上であり、石炭発熱量が5500kcal/kgであることから、ミルの熱バランスから石炭水分を計算し、ボイラの出力と給炭量から石炭の発熱量を計算することにより、現在燃焼中の炭が亜瀝青炭かどうかは判定できる。従って、亜瀝青炭であれば、ミル出口の微粉粒度を下げることにより、灰融点の低い亜瀝青炭でも、通常のボイラにより安定運転することが可能となる。   In the case of subbituminous coal, the coal moisture is 20% or more and the calorific value is 5500 kcal / kg. Therefore, the coal moisture is calculated from the heat balance of the mill, and the calorific value of the coal is calculated from the boiler output and the coal supply. By calculating, it can be determined whether the currently burning charcoal is subbituminous coal. Therefore, in the case of subbituminous coal, by reducing the fine particle size at the mill outlet, even with subbituminous coal having a low ash melting point, it is possible to stably operate with a normal boiler.

図1は本発明の一実施例を示すボイラ制御装置の説明図である。ミル入口一次空気流量計1、ミル入口一次空気温度計2、ミル出口空気温度計3、給炭量計4、ミルケーシング温度計5、の入力をもとに石炭水分算出器6にて石炭の水分を計算する。石炭の水分はミル入出熱量のバランスより下記式にて算出する。     FIG. 1 is an explanatory diagram of a boiler control apparatus showing an embodiment of the present invention. Based on the inputs of the mill inlet primary air flow meter 1, the mill inlet primary air thermometer 2, the mill outlet air thermometer 3, the coal feed meter 4, and the mill casing thermometer 5, the coal moisture calculator 6 Calculate moisture. The water content of coal is calculated from the balance of the heat input and output of the mill using the following formula.

ミルに供給される熱量:Qin
(1)一次空気:Ma・Ti・Ca
(2)給炭(乾炭)、給炭水分:Mcd・Tc・Cc+Mcw・Tc・Cw
ミル内に蓄積される熱量:ΔQ
(1)ミル内保有炭温度上昇、保有炭水分温度上昇
(2)ミルケーシングの温度上昇
ミルから放熱される熱量:Qout
(1)ミル出口空気:Ma・To・Ca
(2)出炭(微粉炭)、出炭水分、蒸発水分:Mod・To・Co+Mow・To・Co
(3)ミルケーシングから外部への放熱:Qin・K
ミル起動時、停止時などの急激な温度変動を除き、給炭量と出炭量が釣り合う状態では、ΔQ=0となり、下記式が成り立つ。
Quantity of heat supplied to the mill: Qin
(1) Primary air: Ma, Ti, Ca
(2) Coal supply (dry coal), coal supply moisture: Mcd / Tc / Cc + Mcw / Tc / Cw
Heat stored in the mill: ΔQ
(1) Increase in coal holding temperature in the mill, increase in coal moisture temperature (2) Temperature rise in the mill casing Heat released from the mill: Qout
(1) Mill outlet air: Ma, To, Ca
(2) Coming coal (pulverized coal), combusting water, evaporating water: Mod, To, Co + Mow, To, Co
(3) Heat radiation from the mill casing to the outside: Qin · K
Except for rapid temperature fluctuations such as when the mill is started and when it is stopped, ΔQ = 0 in the state where the coal supply amount and the coal output amount are balanced, and the following equation holds.

Qin=Qout
Qin=Ma・Ti・Ca+Mcd・Tc・Cc+Mcw・Tc・Cw
Qout=Ma・To・Ca+Mcd・To・Cc+Mcw・To・Co+Qin・K
Mcw=(Ma(Tik1-To)Ca+Mc(Tck1-To)Cc/((Co-Cc)To-(Cw-Cc)k1Tc)
Q (kJ/h):ミル保有熱量 Mcd (kg/h):給炭(乾炭)
Mcw (kg/h):給炭水分 Ma (kg/h):一次空気流量
Mc (kg/h):給炭量(Mcd+Mcw)
Mod (kg/h):出炭(乾炭) Mow (kg/h):出炭水分
Cc (J/kg℃):石炭比熱 Ca (J/kg℃):空気比熱
Cw (J/kg℃):水比熱 Co (J/kg℃):出口水・蒸気比熱
Tc (℃):給炭温度 Ti (℃):一次空気温度
To (℃):ミル出口空気温度 K (−):放散係数
Mw (%):石炭水分(Mcw/Mc×100)
計算した水分値を比較器8にて石炭水分設定器7で設定した設定値(ここでは20%)と比較して、石炭の水分が設定値(20%)以上であることを判定する。
Qin = Qout
Qin = Ma ・ Ti ・ Ca + Mcd ・ Tc ・ Cc + Mcw ・ Tc ・ Cw
Qout = Ma, To, Ca + Mcd, To, Cc + Mcw, To, Co + Qin, K
Mcw = (Ma (Tik 1 -To) Ca + Mc (Tck 1 -To) Cc / ((Co-Cc) To- (Cw-Cc) k 1 Tc)
Q (kJ / h): Mill heat storage Mcd (kg / h): Charging (dry coal)
Mcw (kg / h): Coal supply moisture Ma (kg / h): Primary air flow rate
Mc (kg / h): Coal supply (Mcd + Mcw)
Mod (kg / h): coal output (dry coal) Mow (kg / h): coal output moisture
Cc (J / kg ° C): Specific heat of coal Ca (J / kg ° C): Specific heat of air
Cw (J / kg ° C): Specific heat of water Co (J / kg ° C): Specific heat of outlet water / steam
Tc (℃): Coal feed temperature Ti (℃): Primary air temperature
To (° C): Mill outlet air temperature K (-): Emission coefficient
Mw (%): Coal moisture (Mcw / Mc × 100)
The calculated moisture value is compared with the set value (20% here) set by the coal moisture setting device 7 in the comparator 8, and it is determined that the moisture of the coal is equal to or more than the set value (20%).

一方、全石炭流量計9から給炭量(Kg)を求め、発電機出力計10からボイラ入熱量(kcal)を求め、これら入力とし、石炭発熱量算出器11で石炭の発熱量を算出する。石炭の発熱量は下式で求められる。   On the other hand, the coal supply amount (Kg) is obtained from the total coal flow meter 9, the boiler heat input (kcal) is obtained from the generator output meter 10, and these inputs are used to calculate the calorific value of the coal by the coal calorific value calculator 11. . The calorific value of coal is obtained by the following formula.

Hc=QFL/Fc(kcal/Kg)
Hc:石炭の発熱量(kcal/Kg) QFL:ボイラ入熱量(kcal) Fc:給炭量(Kg)
得られた発熱量は、適当な補正回路により補正されたものでもよい。計算した発熱量は比較器13で、石炭発熱量設定器12で設定した設定値(ここでは5500kcal)と比較して、石炭の発熱量が設定値(石炭が亜瀝青炭の場合、5500kcal)以下であることを判定する。
これらの2つの結果をAND(論理積)演算器14にて処理し、石炭の水分が20%以上であり、発熱量が5500kcal以下であることを判定する。
Hc = Q FL / Fc (kcal / Kg)
Hc: Calorific value (kcal / Kg) Q FL : Boiler heat input (kcal) Fc: Coal supply (Kg)
The obtained calorific value may be corrected by an appropriate correction circuit. The calculated calorific value is less than the set value (5500 kcal if the coal is sub-bituminous coal) compared with the set value (here, 5500 kcal) set by the coal calorific value setter 12 in the comparator 13. Determine that there is.
These two results are processed by an AND (logical product) computing unit 14, and it is determined that the moisture of coal is 20% or more and the calorific value is 5500 kcal or less.

あらかじめ回転分級機回転数設定器17にて決められた回転分級機の回転数設定値でインバータ19の設定を行い、分級機モータ20の回転数を決める。石炭の水分が20%以上であり、発熱量が5500kcal以下である場合、AND演算器14の出力が1となるため、分級機減回転数設定器15にて設定した回転数(10回転)が減算器18にて当初の回転数より減算され、結果的に回転数が低くなる。この処理により、石炭の水分が20%以上であり、発熱量が5500kcal以下である場合に分級機減回転数が低下し、当初の目的を達成できる。   The inverter 19 is set with the rotational speed setting value of the rotational classifier determined in advance by the rotational classifier rotational speed setting unit 17, and the rotational speed of the classifier motor 20 is determined. When the moisture of coal is 20% or more and the calorific value is 5500 kcal or less, the output of the AND calculator 14 becomes 1, so the rotation speed (10 rotations) set by the classifier reduction rotation speed setting device 15 is The subtractor 18 subtracts from the initial rotational speed, resulting in a lower rotational speed. By this treatment, when the moisture content of the coal is 20% or more and the calorific value is 5500 kcal or less, the classifier reduction rotational speed is reduced, and the original purpose can be achieved.

本発明によれば、現在あまり多く使われていないが埋蔵量の多い灰溶融温度の低い亜瀝青炭を、ボイラ燃焼時に自動判別し、ミル出口の微粉粒度を下げるようにミルを制御することにより、火炉内にて低溶融灰が溶融することなく、ボイラを安定に運転制御することができる。   According to the present invention, subbituminous coal with a low ash melting temperature, which is not much used at present but with a low reserve, is automatically identified during boiler combustion, and by controlling the mill so as to reduce the fine particle size at the mill outlet, The boiler can be stably controlled without melting the low-melt ash in the furnace.

本発明の一実施例を示すボイラ制御装置の説明図。Explanatory drawing of the boiler control apparatus which shows one Example of this invention.

符号の説明Explanation of symbols

1…ミル入口一次空気流量計、2…ミル入口一次空気温度計、3…ミル出口空気温度計、4…給炭量計、5…ミルケーシング温度計、6…石炭水分算出器、7…石炭水分設定器、8…比較器1、9…全石炭流量計、10…発電機出力計、11…石炭発熱量算出器、12…石炭発熱量設定器、13…比較器2、14…AND演算器、15…分級機減回転数設定器、16…乗算器、17…回転分級機回転数設定器、18…減算器、19…インバータ、20…分級機モータ。 DESCRIPTION OF SYMBOLS 1 ... Mill inlet primary air flow meter, 2 ... Mill inlet primary air thermometer, 3 ... Mill outlet air thermometer, 4 ... Coal feed meter, 5 ... Mill casing thermometer, 6 ... Coal moisture calculator, 7 ... Coal Moisture setting device, 8 ... Comparator 1, 9 ... Total coal flow meter, 10 ... Generator output meter, 11 ... Coal heating value calculator, 12 ... Coal heating value setting device, 13 ... Comparator 2, 14 ... AND operation 15: classifier reduction speed setting device, 16: multiplier, 17 ... rotation classifier rotation speed setting device, 18 ... subtractor, 19 ... inverter, 20 ... classifier motor.

Claims (4)

微粉炭ミルと、ミル内の石炭の水分を算出する手段と、ボイラ火炉内で燃焼させる石炭の発熱量を算出する手段と、前記石炭の水分と石炭の発熱量から燃焼する石炭の性状を判定する手段と、該石炭の性状から微粉炭ミル出口の石炭粒度を調整する手段とを有するボイラ制御装置。 A pulverized coal mill, means for calculating the water content of the coal in the mill, means for calculating the calorific value of the coal burned in the boiler furnace, and determining the property of the combusted coal from the water content of the coal and the calorific value of the coal And a means for adjusting the coal particle size at the outlet of the pulverized coal mill from the properties of the coal. 石炭が亜瀝青炭または褐炭であることを特徴とする請求項1記載の装置。 The apparatus according to claim 1, wherein the coal is subbituminous coal or lignite. 前記石炭の水分を、ミルの入口空気温度、出口空気温度、ミルケーシング温度、石炭の温度、石炭流量、およびミルの入口空気流量からボイラの入熱と出熱を算出し、これらのバランスから前記石炭の水分を計算することを特徴とする請求項1または2記載の装置。 The moisture content of the coal is calculated from the balance by calculating the heat input and output heat of the boiler from the mill inlet air temperature, outlet air temperature, mill casing temperature, coal temperature, coal flow rate, and mill inlet air flow rate. 3. The apparatus according to claim 1, wherein the moisture of the coal is calculated. ボイラ主蒸気温度、ボイラ主蒸気流量、ボイラ主蒸気圧力、および給炭量の計測手段と、該計測手段の入力をもとに石炭の発熱量を算出する手段とを有することを特徴とする請求項1ないし3のいずれかに記載の装置。 A boiler main steam temperature, a boiler main steam flow rate, a boiler main steam pressure, and a coal supply amount measuring means, and a means for calculating the calorific value of coal based on the input of the measuring means. Item 4. The apparatus according to any one of Items 1 to 3.
JP2004239063A 2004-08-19 2004-08-19 Boiler control device Expired - Fee Related JP4374298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239063A JP4374298B2 (en) 2004-08-19 2004-08-19 Boiler control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239063A JP4374298B2 (en) 2004-08-19 2004-08-19 Boiler control device

Publications (3)

Publication Number Publication Date
JP2006057893A true JP2006057893A (en) 2006-03-02
JP2006057893A5 JP2006057893A5 (en) 2007-09-27
JP4374298B2 JP4374298B2 (en) 2009-12-02

Family

ID=36105508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239063A Expired - Fee Related JP4374298B2 (en) 2004-08-19 2004-08-19 Boiler control device

Country Status (1)

Country Link
JP (1) JP4374298B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059866A (en) * 2014-09-17 2016-04-25 新日鐵住金株式会社 Arithmetic method, device and program for raw material supply amount in pulverization plant
JP2016205681A (en) * 2015-04-20 2016-12-08 三菱日立パワーシステムズ株式会社 Boiler system
CN111609423A (en) * 2020-04-10 2020-09-01 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Anti-slagging method based on boiler operation angle
CN113359428A (en) * 2021-05-24 2021-09-07 大唐东北电力试验研究院有限公司 Supercritical unit fuel calorific value correction control method based on dynamic work coal ratio
CN113532894A (en) * 2021-06-09 2021-10-22 苏州西热节能环保技术有限公司 Thermal balance monitoring method for coal-fired power plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059866A (en) * 2014-09-17 2016-04-25 新日鐵住金株式会社 Arithmetic method, device and program for raw material supply amount in pulverization plant
JP2016205681A (en) * 2015-04-20 2016-12-08 三菱日立パワーシステムズ株式会社 Boiler system
CN111609423A (en) * 2020-04-10 2020-09-01 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Anti-slagging method based on boiler operation angle
CN113359428A (en) * 2021-05-24 2021-09-07 大唐东北电力试验研究院有限公司 Supercritical unit fuel calorific value correction control method based on dynamic work coal ratio
CN113359428B (en) * 2021-05-24 2022-07-26 大唐东北电力试验研究院有限公司 Supercritical unit fuel calorific value correction control method based on dynamic work coal ratio
CN113532894A (en) * 2021-06-09 2021-10-22 苏州西热节能环保技术有限公司 Thermal balance monitoring method for coal-fired power plant

Also Published As

Publication number Publication date
JP4374298B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
Riaza et al. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor
CA2733121C (en) Oxy/fuel combustion system with minimized flue gas recirculation
CN101978032B (en) Method of operating gasification facility
JP2008145007A (en) Coal burning boiler
US20080105176A1 (en) Staged-coal injection for boiler reliability and emissions reduction
JP2017101885A (en) Coal burning boiler and drying method of low grade coal
JP4374298B2 (en) Boiler control device
TWI480493B (en) Operation method of pulverized coal - fired boiler equipment and equipment for pulverized coal - fired boiler
JP4829817B2 (en) Waste incinerator and incineration method
WO2017183529A1 (en) Method for operating boiler and boiler equipment
TWI429872B (en) Melting furnace
JP5509171B2 (en) Combustion control device for gasification melting furnace and combustion control method for gasification melting furnace
JPH0235887B2 (en)
JP5824812B2 (en) Blast furnace operation method
JP2009173938A (en) Coke dry-quenching method
JP2005213591A (en) Method for blowing solid fuel into blast furnace and blowing lance
JP4393977B2 (en) Burner structure for burning flame retardant carbon powder and its combustion method
JPH0688606A (en) Coal-firing furnace with gas generator
JP2006084062A (en) Operation method and device for coal burning furnace
JP7286871B2 (en) Correlation derivation method and correlation derivation device
Xu et al. Experimental investigation on ignition of low-volatile pulverized coal in a tiny-oil burner in oxygen-enriched conditions
JP5824811B2 (en) Blast furnace operation method
JP6036156B2 (en) Blast furnace operation method
KR101453604B1 (en) Air heater in pci and temperature control method using the same
JP3159737B2 (en) Control unit for desulfurization unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4374298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees