JP2006057891A - Cooling liquid manufacturing device - Google Patents

Cooling liquid manufacturing device Download PDF

Info

Publication number
JP2006057891A
JP2006057891A JP2004238778A JP2004238778A JP2006057891A JP 2006057891 A JP2006057891 A JP 2006057891A JP 2004238778 A JP2004238778 A JP 2004238778A JP 2004238778 A JP2004238778 A JP 2004238778A JP 2006057891 A JP2006057891 A JP 2006057891A
Authority
JP
Japan
Prior art keywords
cooling
water
liquid
peltier element
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004238778A
Other languages
Japanese (ja)
Inventor
Takatoshi Kimura
隆俊 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nihon Network Support Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nihon Network Support Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nihon Network Support Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2004238778A priority Critical patent/JP2006057891A/en
Publication of JP2006057891A publication Critical patent/JP2006057891A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling liquid manufacturing device miniaturizable and capable of cooling a liquid immediately after current carrying to a Peltier element is started. <P>SOLUTION: This cooling liquid manufacturing device is provided with: a water-running member 2 having cross-sectionally H-shaped water-running passages 7 for running water; the Peltier elements 3 arranged so as to respectively contact one-side surface 2A and the other-side surface 2B of the water-running member 2; and cooling members 4 respectively arranged oppositely to the one-side surface 2A and the other-side surface 2B in the thickness direction of the water-running members 2 by interposing the respective Peltier elements 3 and having cross-sectionally nearly H-shaped cooling passages 21 for running cooling water for cooling the respective Peltier elements 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷却された液体を製造するための冷却液体製造装置に関する。   The present invention relates to a cooling liquid manufacturing apparatus for manufacturing a cooled liquid.

冷水を飲みたい時に飲むことができるように、水道水(飲料水)をティーポットなどの容器に入れて、これを冷蔵庫で冷やして保存しておくことが一般的に行われている。しかし、水道水の冷蔵庫での保存は、水道水が腐敗するおそれがあるので、衛生上好ましいとは言えない。そのため、水道から流出する水道水を瞬間的に冷却することのできる飲料水冷却装置があれば、冷水を飲みたいときに作ることができ、また、そのような装置では衛生上の問題も生じないので、広く普及すると思われる。   In general, tap water (drinking water) is put in a container such as a teapot, and then cooled and stored in a refrigerator so that the user can drink cold water. However, storage in tap water in a refrigerator is not preferable for hygiene because tap water may be spoiled. Therefore, if there is a drinking water cooling device that can instantaneously cool the tap water flowing out of the water supply, it can be made when you want to drink cold water, and such a device does not cause sanitary problems. So it seems to be widely spread.

水道水を冷却する装置として、パラフィン族炭化水素からなる蓄熱材を収容した蓄熱容器と、その蓄熱材内に埋設され、水道水が流通する配管と、蓄熱容器に装備されたペルチェ素子とを備えたものが知られている(たとえば、特許文献1参照)。ペルチェ素子により蓄熱容器内の蓄熱材を冷却して、蓄熱材に冷熱を潜熱として蓄積させておけば、配管を流通する水道水を冷却することができる。
特開平9−218810号公報
As a device for cooling tap water, a heat storage container containing a heat storage material made of paraffinic hydrocarbons, a pipe embedded in the heat storage material and through which tap water flows, and a Peltier element equipped in the heat storage container are provided. Are known (for example, see Patent Document 1). If the heat storage material in the heat storage container is cooled by the Peltier element and cold heat is accumulated as latent heat in the heat storage material, the tap water flowing through the pipe can be cooled.
JP-A-9-218810

しかし、上記のような構成では、配管を流通する水道水を飲用に適した低温(5℃程度)に冷却するためには、十分な冷熱量を蓄熱材に蓄えておかなければならないので、多量の蓄熱材を必要とし、装置(蓄熱容器)のサイズが大型になるという不具合がある。また、蓄熱材に冷熱が蓄えられていないと、水道水を冷却することができないので、ペルチェ素子への通電直後は冷水を得ることができない。ペルチェ素子に常時通電しておけば、いつでも冷水を得ることができるが、消費電力量が多くなり、ランニングコスト(電気代)が高くついてしまう。   However, in the configuration as described above, in order to cool the tap water flowing through the pipe to a low temperature (about 5 ° C.) suitable for drinking, a sufficient amount of cold heat must be stored in the heat storage material. Heat storage material is required, and the size of the device (heat storage container) becomes large. Moreover, since tap water cannot be cooled if cold heat is not stored in the heat storage material, cold water cannot be obtained immediately after energizing the Peltier element. If the Peltier element is always energized, cold water can be obtained at any time, but the power consumption increases and the running cost (electricity cost) increases.

そこで、本発明の目的は、小型化を図ることができ、かつ、ペルチェ素子への通電開始直後から液体を冷却することができる冷却液体製造装置を提供することにある。   Accordingly, an object of the present invention is to provide a cooling liquid manufacturing apparatus that can be downsized and can cool a liquid immediately after the start of energization of a Peltier element.

上記の目的を達成するため、請求項1に記載の発明は、冷却液体製造装置において、冷却するための液体を流通するための通液流路を有する通液部材と、吸熱面および放熱面を有し、前記吸熱面が前記通液部材と接触するように配置されるペルチェ素子と、前記放熱面に接触するように配置され、前記放熱面を冷却するための冷却部材とを備え、前記ペルチェ素子が、前記通液部材を挟んで配置され、前記冷却部材が、前記通液部材を挟んで配置される各前記ペルチェ素子に対して、前記通液部材の反対側にそれぞれ配置されていることを特徴としている。   In order to achieve the above object, the invention according to claim 1 is a cooling liquid manufacturing apparatus comprising: a liquid passing member having a liquid passing passage for circulating a liquid for cooling; a heat absorbing surface and a heat radiating surface. A Peltier element disposed so that the heat absorbing surface is in contact with the liquid passing member; and a cooling member disposed so as to be in contact with the heat radiating surface and cooling the heat radiating surface. An element is disposed across the liquid passing member, and the cooling member is disposed on the opposite side of the liquid passing member with respect to each Peltier element disposed across the liquid passing member. It is characterized by.

このような構成によると、ペルチェ素子の吸熱面が通液部材と接触するように配置されているので、ペルチェ素子に直流電流を通電しながら、通液流路に液体を流通させることによって、その通液流路を流通する液体を冷却することができる。
そして、ペルチェ素子が通液部材を挟んで配置されているので、通液流路を流通する液体をペルチェ素子の対向方向両側から冷却(吸熱)することができる。しかも、ペルチェ素子の放熱面を冷却部材によって冷却することができるので、ペルチェ素子の冷却能力を良好に発揮させることができる。そのため、通液流路を流通する液体の効率的な冷却を達成することができ、ペルチェ素子への通電開始直後から通液流路を流通する液体を十分に冷却することができる。その結果、ペルチェ素子への常時通電を不要とすることができるので、ランニングコストの低減化を図ることができる。また、冷熱を蓄えておくための蓄熱材を不要とすることができので、装置の小型化を図ることもできる。
According to such a configuration, since the heat absorption surface of the Peltier element is arranged so as to contact the liquid passing member, the liquid flows through the liquid flow path while passing a direct current through the Peltier element. The liquid flowing through the liquid flow path can be cooled.
And since the Peltier element is arrange | positioned on both sides of a liquid flow member, the liquid which distribute | circulates a liquid flow path can be cooled (heat absorption) from the opposing direction both sides of a Peltier element. In addition, since the heat dissipation surface of the Peltier element can be cooled by the cooling member, the cooling ability of the Peltier element can be exhibited well. Therefore, efficient cooling of the liquid flowing through the liquid flow path can be achieved, and the liquid flowing through the liquid flow path can be sufficiently cooled immediately after the start of energization to the Peltier element. As a result, it is possible to eliminate the need to constantly energize the Peltier element, so that the running cost can be reduced. Moreover, since the heat storage material for storing cold heat can be made unnecessary, the apparatus can be downsized.

また、請求項2に記載の発明は、請求項1に記載の発明において、前記冷却部材は、冷却媒体を流通するための冷却流路を有し、前記冷却流路が、複数形成されていることを特徴としている。
このような構成によると、冷却部材に複数の冷却流路が形成されているので、ペルチェ素子の放熱面を十分に冷却することができる。そのため、ペルチェ素子の冷却能力をより良好に発揮させることができる。
The invention according to claim 2 is the invention according to claim 1, wherein the cooling member has a cooling channel for circulating a cooling medium, and a plurality of the cooling channels are formed. It is characterized by that.
According to such a configuration, a plurality of cooling flow paths are formed in the cooling member, so that the heat dissipation surface of the Peltier element can be sufficiently cooled. Therefore, the cooling capacity of the Peltier element can be exhibited better.

また、請求項3に記載の発明は、請求項2に記載の発明において、前記通液流路および/または前記冷却流路が、断面H型形状に形成されていることを特徴としている。
このような構成によると、通液流路が断面H型形状に形成されていれば、通液流路を流れる液体と通液部材との間での熱交換効率を向上させることができる。そのため、ペルチェ素子からの冷熱によって、通液流路を流れる液体をより低温に冷却することができる。
According to a third aspect of the present invention, in the second aspect of the present invention, the liquid flow path and / or the cooling flow path are formed in an H-shaped cross section.
According to such a configuration, if the liquid passage is formed in an H-shaped cross section, the heat exchange efficiency between the liquid flowing through the liquid passage and the liquid passage member can be improved. Therefore, the liquid flowing through the liquid passage can be cooled to a lower temperature by the cold heat from the Peltier element.

また、冷却流路が断面H型形状に形成されていれば、冷却流路を流れる冷却媒体と冷却部材との間での熱交換効率を向上させることができる。そのため、ペルチェ素子の放熱面を十分に冷やすことができ、ペルチェ素子の冷却能力を一層良好に発揮させることができる。よって、通液流路を流れる液体をより低温に冷却することができる。   Further, if the cooling channel is formed in an H-shaped cross section, the heat exchange efficiency between the cooling medium flowing through the cooling channel and the cooling member can be improved. Therefore, the heat dissipation surface of the Peltier element can be sufficiently cooled, and the cooling ability of the Peltier element can be exhibited more satisfactorily. Therefore, the liquid flowing through the liquid passage can be cooled to a lower temperature.

請求項1に記載の発明によれば、ペルチェ素子への通電開始直後から液体を冷却することができながら、装置の小型化を図ることもできる。
請求項2に記載の発明によれば、ペルチェ素子の冷却能力をより良好に発揮させることができる。
請求項3に記載の発明によれば、通液流路を流れる液体をより低温に冷却することができる。
According to the first aspect of the present invention, the apparatus can be reduced in size while the liquid can be cooled immediately after the start of energization of the Peltier element.
According to invention of Claim 2, the cooling capability of a Peltier device can be exhibited more favorably.
According to invention of Claim 3, the liquid which flows through a liquid flow path can be cooled to low temperature.

以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、本発明の冷却液体製造装置としての冷水製造装置の一実施形態を示す斜視図であり、図2は、その冷水製造装置を図1に示す切断線A−Aで切断したときの断面図である。
この冷水製造装置1は、水道水などを瞬間的に冷却して冷水を製造する装置であり、冷却されるべき水が通水される略矩形板状の通液部材としての通水部材2と、通水部材2の一方面2Aおよび他方面2Bにそれぞれ接触するように配置されるペルチェ素子3と、ペルチェ素子3を挟んで通水部材2の厚み方向における一方面2Aおよび他方面2Bに対してそれぞれ対向配置される略矩形板状の冷却部材4とを備えている。すなわち、冷水製造装置1は、通水部材2を挟んで、その通水部材2の一方面2Aおよび他方面2B側にそれぞれペルチェ素子3が配置され、各ペルチェ素子3に対して、通水部材2の反対側にそれぞれ冷却部材4が配置された構成を有している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view showing an embodiment of a cold water production apparatus as a cooling liquid production apparatus of the present invention, and FIG. 2 is a view when the cold water production apparatus is cut along a cutting line AA shown in FIG. It is sectional drawing.
The cold water production apparatus 1 is an apparatus for producing cold water by instantaneously cooling tap water or the like, and a water passage member 2 as a substantially rectangular plate-like liquid passage member through which water to be cooled is passed. The Peltier element 3 disposed so as to be in contact with the one surface 2A and the other surface 2B of the water passage member 2, respectively, and the one surface 2A and the other surface 2B in the thickness direction of the water passage member 2 with the Peltier element 3 interposed therebetween And a substantially rectangular plate-like cooling member 4 disposed to face each other. That is, the chilled water production apparatus 1 has the water passing member 2 sandwiched between the Peltier elements 3 on the one surface 2A side and the other surface 2B side of the water passing member 2, and the water passing member is connected to each Peltier element 3. 2, the cooling member 4 is arranged on the opposite side.

通水部材2は、略矩形板状の本体部5と、この本体部5と積層状に嵌合される略矩形薄板状の蓋部6とを備え、その内部に、水を流通するための断面略H型形状の通液流路としての通水流路7が形成されている。
本体部5には、図3に示すように、蓋部6と接触する一方面において、その周縁に沿った所定幅の周縁部8と、この周縁部8よりも一段低く窪み、周縁部8に囲まれる略矩形状の溝形成部9とが形成されている。また、周縁部8の互いに対向する1対の両側辺部8A,8Bには、その対向方向(以下「横方向」という。)に延びる凹部10が、溝形成部9の中心に対して互いに反対側となる端部(角部)において、溝形成部9よりもさらに一段低く窪んで形成されている。そして、溝形成部9には、両側辺部8A,8Bにそれぞれ形成された凹部10間を連絡し、蓋部6との間に通水流路7を形成するための通水流路形成溝11が、その底面が凹部10の底面と面一になる深さに窪んで形成されている。
The water flow member 2 includes a substantially rectangular plate-like main body portion 5 and a substantially rectangular thin plate-like lid portion 6 that is fitted to the main body portion 5 in a laminated manner, and for flowing water therein. A water passage 7 as a liquid passage having a substantially H-shaped cross section is formed.
As shown in FIG. 3, the main body part 5 has a peripheral part 8 having a predetermined width along the peripheral edge on one surface contacting the lid part 6, and is recessed one step lower than the peripheral part 8. A substantially rectangular groove forming portion 9 is formed. In addition, in a pair of opposite side portions 8A and 8B of the peripheral edge portion 8 that are opposed to each other, a recess 10 extending in the facing direction (hereinafter referred to as “lateral direction”) is opposite to the center of the groove forming portion 9. At the end portion (corner portion) on the side, it is formed to be depressed one step lower than the groove forming portion 9. The groove forming portion 9 has a water flow passage forming groove 11 for communicating between the concave portions 10 formed in the side portions 8A and 8B, respectively, and forming a water flow passage 7 between the lid portion 6 and the groove forming portion 9. The bottom surface of the recess 10 is recessed to a depth that is flush with the bottom surface of the recess 10.

通水流路形成溝11は、溝形成部9を横方向にほぼ等しい幅を有する3つの領域に分割したときの各領域9A,9B,9Cにおいて、横方向に延びる直線溝12と略コ字状の折返溝13とが互いに交互に連続する葛折状に形成されることにより、3つの葛折状部11A,11B,11Cを有している。側辺部8Aに隣接する領域9Aに形成された葛折状部11Aと、その領域9Aと隣接する領域9Bに形成された葛折状部11Bとは、横方向と直交する方向(以下「縦方向」という。)における一方側最端部において、それぞれの直線溝12が接続されることにより連続している。また、葛折状部11Bと、側辺部8Bに隣接する領域9Cに形成された葛折状部11Cとは、縦方向における他方側最端部において、それぞれの直線溝12が接続されることにより連続している。さらに、葛折状部11Aの他方側最端部の直線溝12は、側辺部8Aに形成された凹部10に連続し、葛折状部11Cの一方側最端部の直線溝12は、側辺部8Bに形成された凹部10に連続している。これによって、通水流路形成溝11は、両側辺部8A,8Bにそれぞれ形成された凹部10間を連絡する1本の溝をなしている。   The water flow passage forming groove 11 is substantially U-shaped with the linear groove 12 extending in the horizontal direction in each of the regions 9A, 9B, 9C when the groove forming portion 9 is divided into three regions having substantially the same width in the horizontal direction. The folding grooves 13 are formed in a twisted pattern that is alternately continuous with each other, thereby having three twisted sections 11A, 11B, and 11C. A twisted portion 11A formed in the region 9A adjacent to the side portion 8A and a twisted portion 11B formed in the region 9B adjacent to the region 9A are perpendicular to the horizontal direction (hereinafter referred to as “vertical”). It is continuous by connecting the respective linear grooves 12 at the one endmost side in “direction”. Also, the straight groove 12 is connected to the twisted portion 11B and the twisted portion 11C formed in the region 9C adjacent to the side portion 8B at the other end in the vertical direction. Is continuous. Furthermore, the linear groove 12 at the other end of the other side of the folded portion 11A is continuous with the recess 10 formed in the side portion 8A, and the straight groove 12 at the one end of the folded portion 11C is It is continuous with the recess 10 formed in the side part 8B. As a result, the water flow passage forming groove 11 forms a single groove that communicates between the recesses 10 formed on both side portions 8A and 8B.

また、通水流路形成溝11の底面には、その全長にわたって、1本の断面矩形状をなすリブ状の本体側対向壁14が通水流路形成溝11の幅方向(通水路形成溝11の通水方向に直交する方向)両側面とそれぞれ間隔を隔てて立設されている。この本体側対向壁14は、先端面(後述する蓋側対向壁17との対向面)が通水流路形成溝11の深さ方向中間部よりも少し低い位置に達するような高さに形成されている。   In addition, on the bottom surface of the water flow passage forming groove 11, a rib-like main body-side facing wall 14 having a rectangular cross section extends over the entire length of the water flow passage forming groove 11 in the width direction of the water flow passage forming groove 11. The direction perpendicular to the water flow direction) is erected with a distance from both side surfaces. The main body side facing wall 14 is formed to have a height such that the front end surface (facing surface with a lid side facing wall 17 described later) reaches a position slightly lower than the intermediate portion in the depth direction of the water flow passage forming groove 11. ing.

一方、蓋部6は、図4に示すように、その周縁に沿った所定幅の周縁部15と、この周縁部15よりも厚く形成され、本体部5の溝形成部9に嵌合する略矩形状の嵌合部16とを備えている。そして、嵌合部16が溝形成部9に嵌合した状態において、周縁部15は、本体部5の周縁部8の表面に接合し、両側辺部8A,8Bの凹部10をその接合方向から閉鎖し、嵌合部16は、溝形成部9の表面に接合して、溝形成部9の通水流路形成溝11をその接合方向から閉鎖する。また、嵌合部16には、嵌合部16が溝形成部9に嵌合した状態において、通水流路形成溝11内の本体側対向壁14に対して、その全長にわたって本体部5と蓋部6との接合方向(嵌合部16と溝形成部9との嵌合方向)に対向し、本体側対向壁14との間に所定間隔の隙間を形成するリブ状の蓋側対向壁17が形成されている。   On the other hand, as shown in FIG. 4, the lid portion 6 is formed with a peripheral portion 15 having a predetermined width along the periphery thereof, and is thicker than the peripheral portion 15, and is fitted to the groove forming portion 9 of the main body portion 5. And a rectangular fitting portion 16. And in the state which the fitting part 16 fitted to the groove formation part 9, the peripheral part 15 joined to the surface of the peripheral part 8 of the main-body part 5, and the recessed part 10 of both sides 8A and 8B from the joining direction. It closes and the fitting part 16 joins to the surface of the groove formation part 9, and closes the water flow path formation groove | channel 11 of the groove formation part 9 from the joining direction. In addition, the fitting portion 16 has a body portion 5 and a lid over the entire length of the main body-side facing wall 14 in the water flow passage forming groove 11 in a state where the fitting portion 16 is fitted in the groove forming portion 9. A rib-like lid-side facing wall 17 that opposes the joining direction with the portion 6 (the fitting direction between the fitting portion 16 and the groove forming portion 9) and forms a gap with a predetermined interval between the body-side facing wall 14. Is formed.

これにより、通水部材2の横方向両側面には、本体部5の凹部10と蓋部6の周縁部15とによって、水を流入または流出させるための水流入出口18(図1に、その一方のみを示す。)が形成され、通水部材2の内部には、両水流入出口18を連絡する1本の断面略H型形状の通水流路7が形成される。
図1および図2を参照して、各冷却部材4は、通水部材2とほぼ同じ外形に形成されており、略矩形板状の本体部19と、この本体部19と積層状に嵌合される略矩形薄板状の蓋部20とを一体的に備えている。また、各冷却部材4の内部には、ペルチェ素子3を冷却するための冷却水が流通する断面略H型形状の冷却流路21が形成されている。
As a result, the water inflow / outflow port 18 (in FIG. 1 shows the water inlet / outlet port 18) for allowing water to flow into or out of the lateral side surfaces of the water passage member 2 by the concave portion 10 of the main body portion 5 and the peripheral edge portion 15 of the lid portion 6. Only one side is shown), and inside the water passing member 2, a water passage 7 having a substantially H-shaped cross section is formed inside the water passing member 2 so as to communicate both the water inlet / outlet ports 18.
Referring to FIGS. 1 and 2, each cooling member 4 is formed in substantially the same outer shape as water-permeable member 2, and is fitted with a substantially rectangular plate-like main body portion 19 and this main body portion 19 in a laminated manner. And a substantially rectangular thin plate-shaped lid portion 20. A cooling channel 21 having a substantially H-shaped cross section through which cooling water for cooling the Peltier element 3 flows is formed inside each cooling member 4.

本体部19には、図5に示すように、蓋部20と接触する一方面において、その周縁に沿った所定幅の周縁部22と、この周縁部22よりも一段低く窪み、周縁部22に囲まれる略矩形状の溝形成部23とが形成されている。また、本体部19には、横方向にほぼ等しい幅を有する3つの領域に分割したときの各領域19A,19B,19Cに、蓋部20との間に冷却流路21を形成するための冷却流路形成溝24がそれぞれ独立して設けられている。   As shown in FIG. 5, the main body 19 has a peripheral portion 22 having a predetermined width along the periphery of the one surface that contacts the lid portion 20, and is recessed one step lower than the peripheral portion 22. A substantially rectangular groove forming portion 23 is formed. The main body 19 is cooled to form a cooling channel 21 between the lid portion 20 in each of the regions 19A, 19B, and 19C when divided into three regions having substantially the same width in the lateral direction. The flow path forming grooves 24 are provided independently of each other.

各冷却流路形成溝24は、溝形成部23の表面から窪む凹状をなし、横方向に延びる直線溝25と略コ字状の折返溝26とが互いに交互に連続する葛折状に形成されている。また、各冷却流路形成溝24の両端部は、それぞれ直線溝12から屈曲して、縦方向に延び、本体部19の縦方向両端面に達している。さらに、各冷却流路形成溝24の底面には、それそれ全長にわたって、1本の断面矩形状をなすリブ状の本体側対向壁27が冷却流路形成溝24の幅方向(冷却流路形成溝24の通水方向に直交する方向)両側面とそれぞれ間隔を隔てて立設されている。この本体側対向壁27は、先端面(後述する蓋側対向壁30との対向面)が冷却流路形成溝24の深さ方向中間部よりも少し低い位置に達するような高さに形成されている。   Each cooling flow path forming groove 24 has a concave shape that is recessed from the surface of the groove forming portion 23, and is formed in a spiral shape in which linear grooves 25 that extend in the lateral direction and substantially U-shaped folding grooves 26 are alternately continued. Has been. In addition, both end portions of each cooling flow path forming groove 24 are bent from the straight groove 12, extend in the vertical direction, and reach both end surfaces of the main body portion 19 in the vertical direction. Further, on the bottom surface of each cooling channel forming groove 24, a rib-like main body-side facing wall 27 having a rectangular cross section is formed in the width direction of the cooling channel forming groove 24 (cooling channel forming). A direction perpendicular to the water flow direction of the groove 24) is provided upright on both sides. The main body-side facing wall 27 is formed at such a height that the front end surface (the surface facing the lid-side facing wall 30 described later) reaches a position slightly lower than the intermediate portion in the depth direction of the cooling flow path forming groove 24. ing.

一方、蓋部20は、図6に示すように、その周縁に沿った所定幅の周縁部28と、この周縁部28よりも厚く形成され、本体部19の溝形成部23に嵌合する略矩形状の嵌合部29とを備えている。そして、嵌合部29が溝形成部23に嵌合した状態において、周縁部28は、本体部19の周縁部22の表面に接合して、各冷却流路形成溝24の両端部をその接合方向から閉鎖し、嵌合部29は、溝形成部23の表面に接合して、各冷却流路形成溝24の直線溝25および折返溝26をその接合方向から閉鎖する。また、嵌合部29には、嵌合部29が溝形成部23に嵌合した状態において、各冷却流路形成溝24内の本体側対向壁27に対して、その全長にわたって本体部19と蓋部20との接合方向(嵌合部29と溝形成部23との嵌合方向)に対向し、本体側対向壁27との間に所定間隔の隙間を形成する断面矩形状をなすリブ状の蓋側対向壁30が、各冷却流路形成溝24に対応してそれぞれ独立して形成されている。   On the other hand, as shown in FIG. 6, the lid part 20 is formed with a peripheral part 28 having a predetermined width along the peripheral edge thereof, and is thicker than the peripheral part 28, and is fitted to the groove forming part 23 of the main body part 19. And a rectangular fitting portion 29. And in the state which the fitting part 29 fitted to the groove formation part 23, the peripheral part 28 joined to the surface of the peripheral part 22 of the main-body part 19, and the both ends of each cooling flow path formation groove | channel 24 are joined. The fitting part 29 is joined to the surface of the groove forming part 23, and closes the linear groove 25 and the return groove 26 of each cooling flow path forming groove 24 from the joining direction. In addition, the fitting portion 29 is connected to the main body portion 19 over the entire length with respect to the main body-side facing wall 27 in each cooling channel forming groove 24 in a state where the fitting portion 29 is fitted to the groove forming portion 23. A rib shape having a rectangular cross section that is opposed to the joining direction with the lid portion 20 (the fitting direction between the fitting portion 29 and the groove forming portion 23) and forms a gap with a predetermined interval between the main body-side facing wall 27. The lid-side facing walls 30 are independently formed corresponding to the respective cooling flow path forming grooves 24.

これにより、各冷却部材4には、各冷却流路形成溝24の両端部と蓋部20の周縁部28とによって、その縦方向両側面に、冷却水を流入または流出させるための3つの冷却水流入出口31(図1に、各冷却部材4の縦方向一方側面に形成された冷却水流入出口31のみを示す。)がそれぞれ形成される。また、各冷却部材4の内部には、各冷却部材4の縦方向一方側面の冷却水流入出口31と他方側面の冷却水流入出口31とを連絡する断面略H型形状の冷却流路21が形成される。   Thereby, each cooling member 4 is provided with three coolings for allowing cooling water to flow into or out of the longitudinal both side surfaces by the both end portions of each cooling flow path forming groove 24 and the peripheral edge portion 28 of the lid portion 20. Water inflow / outflow ports 31 (only the cooling water inflow / outflow ports 31 formed on one longitudinal side surface of each cooling member 4 are shown in FIG. 1). Further, in each cooling member 4, there is a cooling channel 21 having a substantially H-shaped cross section that connects the cooling water inflow / outflow port 31 on one side surface in the vertical direction and the cooling water inflow / outflow port 31 on the other side surface of each cooling member 4. It is formed.

図2および図7を参照して、ペルチェ素子3は、多数のP型半導体とN型半導体とを交互に直列接続して形成された半導体デバイスであり、P型半導体およびN型半導体への直流電流の通電によって相関的に吸熱(冷却)現象および放熱現象を生じる吸熱面3Aおよび放熱面3Bを有している。そして、この冷水製造装置1では、通水部材2と各冷却部材4との各間に、24個のペルチェ素子3が、吸熱面3Aを通水部材2に接触させ、放熱面3Bを各冷却部材4に接触させた状態で配置されている。より具体的には、図7に示すように、冷却部材4の各領域19A,19B,19C(通水部材2における各領域9A,9B,9C)上において、それぞれ8個のペルチェ素子3が4行×2列の行列状に配置されている。   2 and 7, Peltier element 3 is a semiconductor device formed by alternately connecting a large number of P-type semiconductors and N-type semiconductors in series, and direct current to P-type semiconductors and N-type semiconductors. It has an endothermic surface 3A and a heat radiating surface 3B that generate an endothermic (cooling) phenomenon and a heat radiating phenomenon in correlation with current flow. And in this cold water manufacturing apparatus 1, 24 each Peltier device 3 makes the heat absorption surface 3A contact the water supply member 2 between each water flow member 2 and each cooling member 4, and each heat radiation surface 3B is each cooled. They are arranged in contact with the member 4. More specifically, as shown in FIG. 7, each of the eight Peltier elements 3 is four on each of the regions 19 </ b> A, 19 </ b> B, 19 </ b> C (each region 9 </ b> A, 9 </ b> B, 9 </ b> C in the water passage member 2) of the cooling member 4. They are arranged in rows and columns.

以上のような構成によると、通水部材2の一方側面の水流入出口18に水を供給するための給水管(図示せず)を接続し、他方側面の水流入出口18に冷水を排出するための冷水配管(図示せず)を接続して、通水部材2の通水流路7に水を流通させる一方で、各ペルチェ素子3に直流電流を通電させることによって、通水流路7を流れる水を冷却することができる。また、各冷却部材4の一方側面の3つの冷却水流入出口31に冷却水を供給するための冷却水供給管(図示せず)をそれぞれ接続し、他方側面の3つの冷却水流入出口に冷却水を排出するための冷却水排出管(図示せず)をそれぞれ接続して、冷却部材4の冷却流路21に冷却水を流通させることによって、各ペルチェ素子3の放熱面3Bを冷却することができる。   According to the above configuration, a water supply pipe (not shown) for supplying water is connected to the water inlet / outlet 18 on one side surface of the water passage member 2, and cold water is discharged to the water inlet / outlet port 18 on the other side surface. For this purpose, a chilled water pipe (not shown) is connected to circulate water through the water flow path 7 of the water flow member 2, while a DC current is passed through each Peltier element 3 to flow through the water flow path 7. The water can be cooled. In addition, cooling water supply pipes (not shown) for supplying cooling water to the three cooling water inflow / outflow ports 31 on one side surface of each cooling member 4 are respectively connected, and cooling is performed on the three cooling water inflow / outflow ports on the other side surface. Cooling the heat radiating surface 3B of each Peltier element 3 by connecting a cooling water discharge pipe (not shown) for discharging water and circulating the cooling water through the cooling flow path 21 of the cooling member 4. Can do.

そして、各ペルチェ素子3が通水部材2を挟んでそれぞれ配置されているので、通水流路7を流通する水を各ペルチェ素子3の吸熱面3Aによって、その対向方向両側から冷却(吸熱)することができる。しかも、各ペルチェ素子3の放熱面3Bを各冷却部材4によってそれぞれ冷却することができるので、ペルチェ素子3の冷却能力を良好に発揮させることができる。そのため、通水流路7を流通する水の効率的な冷却を達成することができ、各ペルチェ素子3への通電開始直後から通水流路7を流通する水を十分に冷却することができる。その結果、各ペルチェ素子3への常時通電を不要とすることができるので、ランニングコストの低減化を図ることができる。また、冷熱を蓄えておくための蓄熱材を不要とすることができので、装置の小型化を図ることもできる。   Since each Peltier element 3 is arranged with the water passage member 2 interposed therebetween, the water flowing through the water flow passage 7 is cooled (heat absorption) from both sides in the opposite direction by the heat absorption surface 3A of each Peltier element 3. be able to. Moreover, since the heat radiating surface 3B of each Peltier element 3 can be cooled by each cooling member 4, the cooling ability of the Peltier element 3 can be exhibited well. Therefore, efficient cooling of the water flowing through the water flow channel 7 can be achieved, and the water flowing through the water flow channel 7 can be sufficiently cooled immediately after the start of energization of each Peltier element 3. As a result, since it is not necessary to energize each Peltier element 3 at all times, the running cost can be reduced. Moreover, since the heat storage material for storing cold heat can be made unnecessary, the apparatus can be downsized.

また、この冷水製造装置1では、各冷却部材4に複数(3本)の冷却流路21が形成されているので、各ペルチェ素子3の放熱面3Bを十分に冷却することができる。そのため、各ペルチェ素子3の冷却能力をより良好に発揮させることができる。
さらに、通水部材2に本体側対向壁14および蓋側対向壁17が設けられることによって、通水流路7が断面H型形状に形成されているので、通水流路7を流れる水と本体側対向壁14および蓋側対向壁17との間においても熱交換を達成することができる。そのため、通水流路7において広い伝熱面積を確保することができ、通水流路7を流れる水と通水部材2との間での熱交換効率を向上させることができる。その結果、ペルチェ素子3からの冷熱によって、通水流路7を流れる水をより低温に冷却することができる。
Moreover, in this cold water manufacturing apparatus 1, since the multiple (three) cooling flow paths 21 are formed in each cooling member 4, the heat radiation surface 3B of each Peltier element 3 can be sufficiently cooled. Therefore, the cooling capacity of each Peltier element 3 can be exhibited more satisfactorily.
Further, since the water flow member 7 is provided with the main body side facing wall 14 and the lid side facing wall 17, the water flow channel 7 is formed in an H-shaped cross section, so that the water flowing through the water flow channel 7 and the main body side Heat exchange can also be achieved between the facing wall 14 and the lid-side facing wall 17. Therefore, a wide heat transfer area can be ensured in the water flow channel 7, and the efficiency of heat exchange between the water flowing through the water flow channel 7 and the water flow member 2 can be improved. As a result, the water flowing through the water flow passage 7 can be cooled to a lower temperature by the cold heat from the Peltier element 3.

また、冷却部材4に本体側対向壁27および蓋側対向壁30が設けられることによって、冷却流路21が断面H型形状に形成されているので、冷却流路21を流れる冷却水と本体側対向壁27および蓋側対向壁30との間においても熱交換を達成することができる。そのため、冷却流路21において広い伝熱面積を確保することができ、冷却流路21を流れる冷却水と冷却部材4との間での熱交換効率を向上させることができる。その結果、各ペルチェ素子3の放熱面3Bを各冷却部材4によって十分に冷やすことができ、ペルチェ素子3の冷却能力を一層良好に発揮させることができる。よって、通水流路7を流れる水をより低温に冷却することができる。   Further, since the cooling member 4 is provided with the main body side facing wall 27 and the lid side facing wall 30, the cooling flow path 21 is formed in an H-shaped cross section, so that the cooling water flowing through the cooling flow path 21 and the main body side Heat exchange can also be achieved between the facing wall 27 and the lid-side facing wall 30. Therefore, a wide heat transfer area can be secured in the cooling channel 21, and the efficiency of heat exchange between the cooling water flowing in the cooling channel 21 and the cooling member 4 can be improved. As a result, the heat radiation surface 3B of each Peltier element 3 can be sufficiently cooled by each cooling member 4, and the cooling ability of the Peltier element 3 can be exhibited more satisfactorily. Therefore, the water flowing through the water flow passage 7 can be cooled to a lower temperature.

さらにまた、ペルチェ素子3への通電開始直後から通水流路7を流通する水を十分に冷却することができる小型の冷水製造装置1は、家庭用や小規模業務用の飲料水の製造装置として好適に用いることができる。
なお、この実施形態では、冷却部材4の各領域19A,19B,19C(通水部材2の各領域9A,9B,9C)上において、それぞれ8個のペルチェ素子3を4行×2列の行列状に配置したが、ペルチェ素子3の個数および配置は、水が効率的に冷却されるように適宜変更されるとよい。たとえば、通水部材2の各領域9A,9B,9Cごとに、通水流路7を流れる水の冷却目標温度を設定し(たとえば、領域9Aにおける冷却目標温度を20℃、領域9Bにおける冷却目標温度を10℃、領域9Cにおける冷却目標温度5℃に設定し)、その各冷却目標温度が達成されるように、ペルチェ素子3の個数および配置を決定してもよい。また、通水部材2(溝形成部9)を3つの領域9A,9B,9Cに分割し、各領域9A,9B,9Cにおいて通水流路7(通水流路形成溝11)を葛折状に形成したが、通水部材2を4つ以上の領域に分割し、各領域において通水流路7を葛折状に形成して、その各領域ごとに、通水流路7を流れる水の冷却目標温度を設定し、その冷却目標温度が達成されるように、ペルチェ素子3の個数および配置を決定してもよい。
Furthermore, the small-sized cold water production apparatus 1 that can sufficiently cool the water flowing through the water flow path 7 immediately after the start of energization to the Peltier element 3 is a drinking water production apparatus for home use or small-scale business. It can be used suitably.
In this embodiment, on each region 19A, 19B, 19C of the cooling member 4 (each region 9A, 9B, 9C of the water passage member 2), eight Peltier elements 3 are each arranged in a matrix of 4 rows × 2 columns. However, the number and arrangement of the Peltier elements 3 may be appropriately changed so that water is efficiently cooled. For example, the cooling target temperature of the water flowing through the water flow path 7 is set for each of the regions 9A, 9B, 9C of the water flow member 2 (for example, the cooling target temperature in the region 9A is 20 ° C., and the cooling target temperature in the region 9B is set). Is set to 10 ° C. and the target cooling temperature in the region 9C is 5 ° C.), and the number and arrangement of the Peltier elements 3 may be determined so that the respective cooling target temperatures are achieved. Further, the water flow member 2 (groove forming portion 9) is divided into three regions 9A, 9B, 9C, and the water flow channel 7 (water flow channel forming groove 11) is formed in a twisted manner in each of the regions 9A, 9B, 9C. Although formed, the water flow member 2 is divided into four or more areas, and the water flow paths 7 are formed in a twisted manner in each area, and the cooling target of the water flowing through the water flow paths 7 for each area The number and arrangement of the Peltier elements 3 may be determined so that the temperature is set and the cooling target temperature is achieved.

また、上記の実施形態では、水を冷却する構成を取り上げたが、冷却が必要な水以外の液体を冷却するために本発明を適用することもできる。
さらには、ペルチェ素子3の冷却のために、冷却流路21に冷却水を流通させたが、水以外の液体状の冷媒を冷却流路21に流通させてもよい。
In the above embodiment, the configuration for cooling water is taken up. However, the present invention can also be applied to cool a liquid other than water that needs to be cooled.
Furthermore, for cooling the Peltier element 3, the cooling water is circulated through the cooling channel 21, but a liquid refrigerant other than water may be circulated through the cooling channel 21.

本発明の冷却液体製造装置としての冷水製造装置の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the cold water manufacturing apparatus as a cooling liquid manufacturing apparatus of this invention. 図1に示す冷水製造装置を切断線A−Aで切断したときの断面図である。It is sectional drawing when the cold water manufacturing apparatus shown in FIG. 1 is cut | disconnected by cutting line AA. 図1に示す通水部材の本体部の斜視図である。It is a perspective view of the main-body part of the water flow member shown in FIG. 図1に示す通水部材の蓋部の斜視図である。It is a perspective view of the cover part of the water flow member shown in FIG. 図1に示す冷却部材の本体部の斜視図である。It is a perspective view of the main-body part of the cooling member shown in FIG. 図1に示す冷却部材の蓋部の斜視図である。It is a perspective view of the cover part of the cooling member shown in FIG. 図2に示すペルチェ素子の配置例を示す平面図である。It is a top view which shows the example of arrangement | positioning of the Peltier device shown in FIG.

符号の説明Explanation of symbols

1 冷水製造装置
2 通水部材
3 ペルチェ素子
3A 吸熱面
3B 放熱面
4 冷却部材
7 通水流路
21 冷却流路
DESCRIPTION OF SYMBOLS 1 Cold water manufacturing apparatus 2 Water flow member 3 Peltier element 3A Endothermic surface 3B Heat radiation surface 4 Cooling member 7 Water flow channel 21 Cooling channel

Claims (3)

冷却するための液体を流通するための通液流路を有する通液部材と、
吸熱面および放熱面を有し、前記吸熱面が前記通液部材と接触するように配置されるペルチェ素子と、
前記放熱面に接触するように配置され、前記放熱面を冷却するための冷却部材とを備え、
前記ペルチェ素子が、前記通液部材を挟んで配置され、
前記冷却部材が、前記通液部材を挟んで配置される各前記ペルチェ素子に対して、前記通液部材の反対側にそれぞれ配置されていることを特徴とする、冷却液体製造装置。
A fluid-permeable member having a fluid-flow path for circulating a liquid for cooling;
A Peltier element having an endothermic surface and a heat dissipating surface, the endothermic surface being disposed so as to be in contact with the liquid passing member;
A cooling member arranged to contact the heat radiating surface, and for cooling the heat radiating surface;
The Peltier element is disposed across the liquid-permeable member,
The cooling liquid manufacturing apparatus, wherein the cooling member is arranged on the opposite side of the liquid passing member with respect to the Peltier elements arranged with the liquid passing member interposed therebetween.
前記冷却部材は、冷却媒体を流通するための冷却流路を有し、
前記冷却流路が、複数形成されていることを特徴とする、請求項1に記載の冷却液体製造装置。
The cooling member has a cooling channel for circulating a cooling medium,
The cooling liquid manufacturing apparatus according to claim 1, wherein a plurality of the cooling flow paths are formed.
前記通液流路および/または前記冷却流路が、断面H型形状に形成されていることを特徴とする、請求項2に記載の冷却液体製造装置。
The cooling liquid manufacturing apparatus according to claim 2, wherein the liquid flow path and / or the cooling flow path are formed in an H-shaped cross section.
JP2004238778A 2004-08-18 2004-08-18 Cooling liquid manufacturing device Pending JP2006057891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004238778A JP2006057891A (en) 2004-08-18 2004-08-18 Cooling liquid manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004238778A JP2006057891A (en) 2004-08-18 2004-08-18 Cooling liquid manufacturing device

Publications (1)

Publication Number Publication Date
JP2006057891A true JP2006057891A (en) 2006-03-02

Family

ID=36105506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238778A Pending JP2006057891A (en) 2004-08-18 2004-08-18 Cooling liquid manufacturing device

Country Status (1)

Country Link
JP (1) JP2006057891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106958A (en) * 2006-10-23 2008-05-08 Toshiba Corp Heat exchanger
JP2010038530A (en) * 2008-07-07 2010-02-18 Tekkusu Iijii:Kk Device for adjusting drink temperature
JP2012073018A (en) * 2010-09-29 2012-04-12 Ind Technol Res Inst Thermoelectric drinking apparatus, and thermoelectric heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106958A (en) * 2006-10-23 2008-05-08 Toshiba Corp Heat exchanger
JP2010038530A (en) * 2008-07-07 2010-02-18 Tekkusu Iijii:Kk Device for adjusting drink temperature
JP2012073018A (en) * 2010-09-29 2012-04-12 Ind Technol Res Inst Thermoelectric drinking apparatus, and thermoelectric heat pump
US9310110B2 (en) 2010-09-29 2016-04-12 Industrial Technology Research Institute Thermoelectric drinking apparatus and thermoelectric heat pump

Similar Documents

Publication Publication Date Title
RU2527505C2 (en) Control system of temperature fluid
US5493864A (en) Apparatus for cooling or heating liquids and method of using same
US9310110B2 (en) Thermoelectric drinking apparatus and thermoelectric heat pump
CN107940889A (en) For producing the equipment and water purifier of cold water
KR101898639B1 (en) Water tank structure for cold water supplying device
JP2006057891A (en) Cooling liquid manufacturing device
CN101261056A (en) Semiconductor refrigeration heat converter
KR101262719B1 (en) Fluid cooling unit using a thermoelectric element for purifier
KR101501071B1 (en) Cooling Device for Water Purifier
JP2006064281A (en) Plate type heat exchanger
EP3172509B1 (en) Apparatus for the cooling of a drinking liquid, in particular drinking water, with innovative cooling system with peltier effect
KR20170134017A (en) Wwater purifier cooling device
KR20180080022A (en) Apparatus of Cold and Hot Mat
JP5993884B2 (en) Plate heat exchanger
KR20180080019A (en) Apparatus of Cold and Hot Mat
JP2013142485A (en) Plate type heat exchanger
JP4022278B2 (en) Thermoelectric converter
JPH10206063A (en) Multiplate type heat exchanger
KR101291269B1 (en) Heating and cooling system using heat sink
KR20180080020A (en) Apparatus of Cold and Hot Mat
JP2008032382A (en) Heat exchanger, refrigeration cycle unit, and hot water supply unit
KR20090009487A (en) Heat exchanger
JPH0377439B2 (en)
JP2005030659A (en) Heat pump type water heater
JP2003343992A (en) Laminated type heat exchanger

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060112