JP2006057614A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2006057614A
JP2006057614A JP2004264695A JP2004264695A JP2006057614A JP 2006057614 A JP2006057614 A JP 2006057614A JP 2004264695 A JP2004264695 A JP 2004264695A JP 2004264695 A JP2004264695 A JP 2004264695A JP 2006057614 A JP2006057614 A JP 2006057614A
Authority
JP
Japan
Prior art keywords
exhaust gas
ceramic
oxidation catalyst
balloon
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004264695A
Other languages
Japanese (ja)
Inventor
Masaaki Okazaki
正晃 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004264695A priority Critical patent/JP2006057614A/en
Publication of JP2006057614A publication Critical patent/JP2006057614A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve low pressure loss an high reducing rate by avoiding a clogging phenomenon which is possibly caused by particulate materials containing solid substances, although hydrocarbon and carbon monoxide out of harmful substances in exhaust gas from an internal combustion engine, particularly, a diesel engine, are relatively easily reduced by an effective oxidation catalyst. <P>SOLUTION: A ceramic balloon filled part supporting the oxidation catalyst is provided for combining the oxidation promoting operation of the oxidation catalyst and the burning operation of infrared rays. Ceramic balloons are well responsive to the temperature of exhaust gas to improve the effectiveness of the infrared rays. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、ディーゼルエンジン等の内燃機関から排出される排気ガスに含まれている粒子状物質等を酸化により削減することを目的とする排気ガス浄化装置に関するものである。  The present invention relates to an exhaust gas purifying apparatus for reducing particulate matter contained in exhaust gas discharged from an internal combustion engine such as a diesel engine by oxidation.

ディーゼルエンジン等の排気ガスに含まれている粒子状物質を酸化により浄化するには、酸化触媒を担持させた多孔質のセラミック製ハニカムやメタルハニカムあるいはワイヤメッシュ等を通過させて粒子状物質を燃焼させる方法、もしくは微細孔を有するフィルターで粒子状物質を捕捉し後刻高温度で焼却する方法、もしくは酸化触媒は一切使用せずセラミック製の球体或いは短管を容器内の充填部に充填し排気ガスの高い温度を利用して通過する粒子状物質を自然燃焼させる方法等があった。  In order to purify particulate matter contained in exhaust gas from diesel engines etc. by oxidation, the particulate matter is burned by passing it through a porous ceramic honeycomb, metal honeycomb or wire mesh carrying an oxidation catalyst. Or a method of trapping particulate matter with a filter having fine pores and incineration at a high temperature later, or without using any oxidation catalyst, filling the filling part in the container with a ceramic sphere or short tube and exhausting the exhaust gas There is a method of spontaneously combusting the particulate matter passing by using a high temperature.

酸化触媒を担持させたハニカムやワイヤメッシュあるいは捕捉用の微細孔を有するフィルターを利用する場合には排気ガスの通過部を数ないし数十ミクロンと隘狭にするため、粒子状物質の未燃成分やミネラル成分を多く含むアッシュによって詰まりが徐々に拡大し浄化率の低下と圧力損失の増大が発生して機能低下に至ることが多く、そのような状況になれば継続使用は困難となり取り外しての清浄作業あるいは取換えが必要であった。  When using a honeycomb or wire mesh carrying an oxidation catalyst, or a filter with fine pores for trapping, the exhaust gas passage is narrowed to several to several tens of microns. In many cases, clogging gradually expands due to ash containing a lot of minerals and minerals, resulting in a decrease in purification rate and an increase in pressure loss, leading to a decrease in function. Cleaning work or replacement was necessary.

セラミック製の球体あるいは短管を充填する方法では内部の空隙が粒子状物質に較べて比較的大きいため容易には詰まらないが、浄化率を向上させるには充填量を増やす必要がある。ところが充填量を増やすと排気ガスの流路が長くなり流体抵抗が増して圧力損失が増大することになり、浄化率と圧力損失とがトレードオフの関係になっている。  In the method of filling ceramic spheres or short tubes, the internal voids are relatively large compared to the particulate matter, so they are not easily clogged. However, in order to improve the purification rate, it is necessary to increase the filling amount. However, when the filling amount is increased, the flow path of the exhaust gas becomes longer, the fluid resistance increases and the pressure loss increases, and the purification rate and the pressure loss are in a trade-off relationship.

ディーゼルエンジンの場合、排気管中を流れる排気ガスの流速は排気ガス温度の低〜中域に於いては排気ガス温度の約2乗、中〜高域では排気ガス温度とほぼ直線的な関係で増大するのが一般的な傾向である。一方、圧力損失は圧縮性気体の場合流速の約1.7乗で増大する関係にあり、排気ガスの流速はエンジン出力とほぼ比例する関係にある。また充填部を有する排気ガス浄化装置に発生する圧力損失は流路の形状変化や排気ガスの方向変化によるものに較べ充填部の流体摩擦によるものが支配的である。この結果、圧力損失は排気ガス温度の低〜中域では排気ガス温度の約3.4乗、中〜高域ではほぼ1.7乗に比例すると言える。これは排気ガスの浄化率向上を目的として充填量を増やす、あるいは排気ガス温度を高めると必ず圧力損失が増大することを意味しており、圧力損失が増大することは燃焼効率の低下とエンジン出力の低下をもたらすことになる。  In the case of a diesel engine, the flow rate of the exhaust gas flowing in the exhaust pipe is approximately square of the exhaust gas temperature in the low to middle range of the exhaust gas temperature, and is almost linearly related to the exhaust gas temperature in the middle to high range. It is a general trend to increase. On the other hand, in the case of a compressible gas, the pressure loss has a relationship that increases at about 1.7th power of the flow rate, and the flow rate of the exhaust gas has a relationship that is substantially proportional to the engine output. Further, the pressure loss generated in the exhaust gas purifying apparatus having the filling portion is more dominant due to fluid friction in the filling portion than due to the change in the shape of the flow path or the change in the direction of the exhaust gas. As a result, it can be said that the pressure loss is proportional to the approximately 3.4th power of the exhaust gas temperature in the low to mid range of the exhaust gas, and approximately 1.7th power in the mid to high range. This means that increasing the filling amount for the purpose of improving the exhaust gas purification rate or increasing the exhaust gas temperature always increases the pressure loss, which increases the combustion efficiency and engine output. Will result in a decline.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、上記実情に鑑みてなされたものであり、その解決しようとする課題はディーゼルエンジン等の排気ガス浄化装置に於いて、粒子状物質による装置の詰まりを起こさせずしかも比較的低い圧力損失で高い浄化率を可能にする排気ガス浄化装置を提供することにある。  The present invention has been made in view of the above circumstances, and the problem to be solved is an exhaust gas purifying apparatus such as a diesel engine, which does not cause clogging of the apparatus due to particulate matter and has a relatively low pressure. An object of the present invention is to provide an exhaust gas purification device that enables a high purification rate with loss.

課題を解決するための手段Means for solving the problem

本発明の排気ガス浄化装置は次の手段を採用する。  The exhaust gas purification apparatus of the present invention employs the following means.

セラミック製球体の一種であるセラミックバルーンを用いることとし、それらは小粒でほぼ均一の直径を有するものとする。セラミックバルーンの表面には粒子状物質用の酸化触媒を担持させた上多数のセラミックバルーンを容器内の充填部に充填し、通過する排気ガス中の粒子状物質を残存酸素で酸化燃焼させる構造とする。  Ceramic balloons, which are a kind of ceramic spheres, are used, and they are small and have a substantially uniform diameter. A structure in which an oxidation catalyst for particulate matter is supported on the surface of the ceramic balloon and a large number of ceramic balloons are filled in a filling portion in the container, and the particulate matter in the passing exhaust gas is oxidized and burned with residual oxygen. To do.

ディーゼルエンジンの排気管を経てこの容器に流入する排気ガスは通常高温であり、負荷の変動等によりその温度は変化する。  The exhaust gas flowing into this container through the exhaust pipe of a diesel engine is usually at a high temperature, and the temperature changes due to load fluctuations and the like.

ディーゼルエンジンの排気ガスに含まれている粒子状物質の成分は燃料性状、エンジンタイプ、運転条件等により異なるが煤が過半近くを占めており、未燃燃料や未燃潤滑油からなる可溶性有機成分及び燃料中の硫黄分が酸化された硫酸塩、更には微量ながら潤滑油に添加されているミネラル分由来の灰分等からなっている。  The components of particulate matter contained in the exhaust gas of diesel engines vary depending on the fuel properties, engine type, operating conditions, etc., but soot is the majority and soluble organic components consisting of unburned fuel and unburned lubricating oil And a sulfate obtained by oxidizing sulfur in the fuel, and an ash derived from a mineral added to the lubricating oil in a small amount.

粒子状物質に対して酸化触媒の機能を発揮させるにはまず粒子状物質が触媒に接触する必要があり、触媒を担持させたセラミックバルーンから離れて通過する粒子状物質には酸化作用は及ばない。また、排気ガスの流速が早いと接触の機会も減少するため流速は遅い方が、更に整流より乱流が望ましい。  In order to exert the function of the oxidation catalyst for the particulate matter, the particulate matter must first come into contact with the catalyst, and the particulate matter passing away from the ceramic balloon carrying the catalyst has no oxidizing effect. . In addition, when the exhaust gas flow rate is high, the chance of contact is reduced, so that a slower flow rate is more desirable than rectification.

酸化触媒が全く使用されていない例えばセラミックバルーンのみを充填した装置に於いても、走行モードにより異なるが粒子状物質が60〜90%低減されることが報告されている。市街地走行程度の低出力走行域における酸化反応は、着火温度が200〜300℃の可溶性有機成分がまず着火しその高温の赤外線の影響および炭化水素系燃料の燃焼に伴うOH、H、Oなどのラジカルの作用で煤が着火燃焼を始めると考えられている。  It has been reported that even in an apparatus in which only an oxidation catalyst is not used, for example, filled only with a ceramic balloon, the particulate matter is reduced by 60 to 90% depending on the running mode. Oxidation reaction in low-power running areas, such as urban driving, is caused by the fact that soluble organic components with an ignition temperature of 200 to 300 ° C. are first ignited, and the effects of high-temperature infrared rays and OH, H, O, etc. associated with combustion of hydrocarbon fuels It is believed that soot begins to ignite and burn under the action of radicals.

この場合にはセラミックバルーンが互いに接して形成する空間が超微細な燃焼炉の役割を果たしており、燃焼により発生した赤外線の一部は直接粒子状物質に吸収されるほか、周囲のセラミックバルーンに一旦吸収され改めて放射された赤外線の一部も粒子状物質に吸収され更に昇温効果をもたらすが、赤外線照射を受けた物質の最小着火エネルギーは低下するため一層燃え易くなる。他方排気ガス中に主成分として存在する窒素や酸素は赤外線の吸収と放射には関与せず不活性であるため、燃焼により発生した赤外線による排ガス温度の上昇は限定されたものとなる。  In this case, the space formed by the ceramic balloons in contact with each other plays the role of an ultra-fine combustion furnace, and part of the infrared rays generated by the combustion is absorbed directly by the particulate matter, and once in the surrounding ceramic balloon Part of the infrared rays that have been absorbed and re-emitted are also absorbed by the particulate matter, which further raises the temperature rising effect. However, since the minimum ignition energy of the material that has been irradiated with infrared rays is reduced, it becomes more easily burnable. On the other hand, nitrogen and oxygen present as main components in the exhaust gas are inactive without being involved in the absorption and emission of infrared rays, so that the rise in exhaust gas temperature due to infrared rays generated by combustion is limited.

充実型セラミック球体とセラミックバルーンとを比較するに当たりその材質、形状、寸法を同じとした場合、セラミックバルーンはその内部が中空のため全体としての比熱が小さく排気ガスの温度の変化に対して応答性がよいといえる。このため特に酸化触媒による燃焼の低温側の境界温度領域で効果を発揮することになる。  When comparing solid ceramic spheres and ceramic balloons, if the material, shape, and dimensions are the same, the ceramic balloon is hollow and the overall specific heat is small and responsive to changes in exhaust gas temperature. Is good. Therefore, the effect is exhibited particularly in the boundary temperature region on the low temperature side of the combustion by the oxidation catalyst.

ディーゼルエンジン車の運転状態が市街地走行程度の場合、マフラー部に於ける排気ガスの温度は大略100〜400℃の幅で激しく変動するが、酸化触媒の活性度が比較的高くなる300℃前後以上になる頻度は少なく、300℃前後以上の排気ガスが発生した時には機を逸することなくその熱を活用することが排気ガスの浄化率向上に繋がる。そのため、温度応答性の良いセラミックバルーンが充実型セラミック球体より優れているといえる。  When the driving state of a diesel engine car is about the level of urban driving, the exhaust gas temperature in the muffler section fluctuates roughly in the range of about 100 to 400 ° C, but the oxidation catalyst activity is relatively high, around 300 ° C or higher. When exhaust gas of about 300 ° C. or higher is generated, utilizing the heat without losing the machine leads to an improvement in the exhaust gas purification rate. Therefore, it can be said that a ceramic balloon with good temperature responsiveness is superior to a solid ceramic sphere.

以下、本発明の実施の形態として一実施例を添付した図に基づいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に排気ガス浄化装置の全体構造を概略示す。  FIG. 1 schematically shows the overall structure of the exhaust gas purification device.

エンジンから排出された高温の排気ガスは筒状の容器1の前方にある排気ガス入口2より入り整流板3に開けられた多数の穴を通ることにより進行方向に対してほぼ均一な流速となるように調整される。  The high-temperature exhaust gas discharged from the engine passes through the exhaust gas inlet 2 in front of the cylindrical container 1 and passes through a number of holes opened in the rectifying plate 3, so that the flow velocity becomes substantially uniform with respect to the traveling direction. To be adjusted.

HC・CO酸化触媒4はセラミックハニカムに酸化触媒を担持させたものであり、排気ガス中の炭化水素HCや一酸化炭素COを酸化させて水や炭酸ガスとするが、その時の反応熱により排気ガスの温度は幾分上昇する。  The HC / CO oxidation catalyst 4 has an oxidation catalyst supported on a ceramic honeycomb and oxidizes hydrocarbon HC and carbon monoxide CO in the exhaust gas to form water and carbon dioxide gas. The gas temperature will rise somewhat.

次に排気ガスはセラミックバルーン6が充填されているバルーン充填部7に向かうが、電気ヒータ付整流板5によりその流れがバルーン仕切板8に均等になるよう調整される。  Next, the exhaust gas is directed to the balloon filling portion 7 filled with the ceramic balloon 6, and the flow is adjusted by the rectifying plate 5 with an electric heater so that the flow is equal to the balloon partition plate 8.

バルーン充填部7にはセラミックバルーン6が充填されており、排気ガスが容易に通過できる微小な穴を多数有するパンチングプレート製のバルーン仕切板8によってその前後を囲われた構造となっている。排気ガスの通過面積を増すことにより流体抵抗を減らす目的でバルーン仕切板8は筒状の容器1内で傾斜して設置されているが、本発明は傾斜して設置することに限定しているものではない。  The balloon filling portion 7 is filled with a ceramic balloon 6 and has a structure surrounded by a balloon partition plate 8 made of a punching plate having a number of minute holes through which exhaust gas can easily pass. In order to reduce the fluid resistance by increasing the passage area of the exhaust gas, the balloon partition plate 8 is installed in an inclined manner in the cylindrical container 1, but the present invention is limited to the installation in an inclined manner. It is not a thing.

バルーン充填部7では粒子状物質の酸化が行われ、浄化された排気ガスは排気ガス出口9より外部に放出される。  In the balloon filling portion 7, the particulate matter is oxidized, and the purified exhaust gas is discharged to the outside through the exhaust gas outlet 9.

バルーン充填部7に於いて何らかの事情で粒子状物質の堆積が進み排気ガスの排出に支障を来たす状況に至った場合には、電気ヒータ付整流板5の電気ヒータに外部電源より電気を供給し、アイドリング状態で運転中の排気ガスを昇温させることにより堆積している粒子状物質を燃焼させることができる。  If for some reason the accumulation of particulate matter in the balloon filling section 7 causes a problem in exhaust gas discharge, electricity is supplied from an external power source to the electric heater of the rectifying plate 5 with electric heater. The accumulated particulate matter can be combusted by raising the temperature of the exhaust gas in operation in the idling state.

図2は充填されているセラミックバルーン6の状態を拡大してバルーン間空隙11を示したものである。  FIG. 2 shows the space 11 between the balloons by enlarging the state of the filled ceramic balloon 6.

セラミックバルーン6の表面は粒子状物質酸化触媒担持層10で覆われており、排気ガスに含まれている粒子状物質はまず排気ガスの高温により活性化した酸化触媒の働きにより排気ガス中の残存酸素と結合し燃焼する。  The surface of the ceramic balloon 6 is covered with a particulate matter oxidation catalyst support layer 10, and the particulate matter contained in the exhaust gas first remains in the exhaust gas by the action of the oxidation catalyst activated by the high temperature of the exhaust gas. Combines with oxygen and burns.

充填されているセラミックバルーン6はほぼ均一な直径を有する球形のものとするが、相互に隣接しているセラミックバルーン6a、6b、6cの間にはバルーン間空隙11が存在し、バルーン充填部7に流入した排気ガスはこのバルーン間空隙11を通過していくことになる。  The filled ceramic balloon 6 has a spherical shape having a substantially uniform diameter. However, an inter-balloon space 11 exists between the ceramic balloons 6a, 6b, and 6c adjacent to each other, and the balloon filling portion 7 is formed. The exhaust gas flowing into the air passes through the space 11 between the balloons.

ディーゼルエンジンの排気ガスに含まれている粒子状物質の粒径は微小粒子といわれる1ミクロン以下のものの他、粗粒子の範囲に入る1〜2ミクロンから10ミクロン程度の間に分布しており一様ではない。  The particle size of the particulate matter contained in the exhaust gas of diesel engines is distributed within the range of 1 to 2 microns to 10 microns, which is within the range of coarse particles, in addition to those of 1 micron or less, which are called fine particles. Not like that.

粒子状物質を燃焼により低減させる排ガス浄化装置を装置として評価する場合、その評価項目は浄化率、効果を発揮する排気ガス温度の範囲、圧力損失及び保守性の他、装置寸法、消音性能、価格等があるが健康被害に大きく関与していると言われている微小粒子の除去性能も評価の対象といえる。  When an exhaust gas purification device that reduces particulate matter by combustion is evaluated as a device, the evaluation items include purification rate, effective exhaust gas temperature range, pressure loss and maintainability, as well as device dimensions, noise reduction performance, and price. The removal performance of fine particles, which are said to be greatly involved in health hazards, can also be evaluated.

セラミックバルーン6の材質は主としてアルミナとするがこれに限定されるものではない。その大きさは直径2〜4mmのものが適切である。その殻の厚さは加工性、赤外線特性、耐熱衝撃性等の視点より0.3mm前後が適当である。酸化触媒の壁厚は通常加工レベルであれば5〜20ミクロンとなる。  The material of the ceramic balloon 6 is mainly alumina, but is not limited to this. The size is suitably 2 to 4 mm in diameter. The thickness of the shell is suitably around 0.3 mm from the viewpoints of workability, infrared characteristics, thermal shock resistance and the like. The wall thickness of the oxidation catalyst is usually 5 to 20 microns at the processing level.

直径3mmのセラミックバルーン6を採用した場合、概略開口率は7%、表面積は1.4m2/Lとなる。バルーン間の空隙11はバルーンが隙間無く詰まっている場合、一辺約0.85mmの正三角形に近い形状となりバルーン充填部7の中で相互に繋がった三次元の網目状流路を形成する。  When the ceramic balloon 6 having a diameter of 3 mm is adopted, the approximate aperture ratio is 7% and the surface area is 1.4 m 2 / L. When the balloons are clogged with no gaps, the space 11 between the balloons has a shape close to an equilateral triangle having a side of about 0.85 mm, and forms a three-dimensional mesh-like flow path interconnected in the balloon filling portion 7.

バルーン充填部7の厚さは浄化率と圧力損失のバランスから100〜200mmとするのが適切である。  The thickness of the balloon filling portion 7 is suitably 100 to 200 mm from the balance between the purification rate and the pressure loss.

同一直径、同一材料の充実型セラミック球体とセラミックバルーンとを比較すると、充実型セラミック球体はその熱容量が大きいため排気ガス温度の変動に対して表面温度を平準化する傾向が大きい。即ち排気ガス温度が急激に上昇した場合を考えると、充実型セラミック球の内部の温度が低いため表面温度の上昇を阻止する作用が働き、表面温度が排ガスのレベルに上昇する迄にセラミックバルーンに較べ時間が掛かることになる。  Comparing solid ceramic spheres and ceramic balloons of the same diameter and the same material, the solid ceramic spheres have a large heat capacity, and therefore have a large tendency to level the surface temperature against fluctuations in exhaust gas temperature. That is, considering the case where the exhaust gas temperature suddenly rises, the internal temperature of the solid ceramic sphere is low, so that the action to prevent the surface temperature from rising works. It will take more time.

筒状の容器1に於いて排気ガス入口2からバルーン充填部7に至る空間にはディーゼルエンジンの脈動する排気ガスを一時蓄積し圧力を均等化する機能があり、またバルーン充填部7に於いて排気ガスはバルーン間空隙11を幾重にも通過する過程で運動のエネルギーを失うため消音効果が得られることになる。  In the cylindrical container 1, the space from the exhaust gas inlet 2 to the balloon filling part 7 has a function of temporarily accumulating exhaust gas pulsating the diesel engine and equalizing the pressure. Since the exhaust gas loses kinetic energy in the process of passing through the space 11 between the balloons several times, a silencing effect is obtained.

バルーン充填部7に於いては直径3mmのセラミックバルーンの場合、約0.85mm即ち850ミクロンを一辺とする正三角形に近い形状で分岐を持った排気ガスの流路が続いており、最大でも粒径10ミクロン程度の粒子状物質は容易に通過が可能であり蓄積する状況ではないと言える。これによりハニカムの壁貫通型やワイヤメッシュ型の粒子状物質用フィルターに見られる微細部での詰まりの発生がなく保守性に優れた排ガス浄化装置が実現できる。  In the case of a ceramic balloon having a diameter of 3 mm in the balloon filling portion 7, an exhaust gas flow path having a branch shape and a shape close to an equilateral triangle having a side of about 0.85 mm, that is, 850 microns is continued. It can be said that particulate matter having a diameter of about 10 microns can easily pass through and is not in a state of accumulation. As a result, it is possible to realize an exhaust gas purifying apparatus which is free from clogging at a fine portion seen in a honeycomb wall penetration type or wire mesh type particulate matter filter and has excellent maintainability.

バルーン充填部7に発生する流体抵抗による圧力損失は不可避であるがセラミックバルーン6に酸化触媒を担持させることにより酸化反応が促進され、酸化触媒を用いない場合と較べて、バルーン充填部7の流路方向の厚さを薄くすることが可能となり圧力損失を小さく押さえることができる。これによりディーゼルエンジンの高出力域での出力低下を最小限に留めることができるほか、全運転域に於ける燃費の悪化も最小限に押さえることができる。  Although pressure loss due to fluid resistance generated in the balloon filling portion 7 is inevitable, the oxidation reaction is promoted by supporting the oxidation catalyst on the ceramic balloon 6, and the flow of the balloon filling portion 7 is less than that when the oxidation catalyst is not used. The thickness in the road direction can be reduced, and the pressure loss can be reduced. As a result, the output reduction in the high output range of the diesel engine can be minimized, and the deterioration of the fuel consumption in the entire operation range can be suppressed to the minimum.

バルーン充填部7に於いて全量をほぼ均一な直径の酸化触媒担持のセラミックバルーンで充填する方法の他に、セラミックバルーンの容積当たりの表面積を多くすると共にバルーン間空隙11を狭めて粒子状物質の燃焼効率を高める等の目的で異径サイズとなるがより小径の酸化触媒担持のセラミックバルーンを部分的に使用する方法、更にはセラミックバルーンの加工上の制約等により部分的に酸化触媒担持の充実型セラミック球を使用する方法も本発明の範囲である。  In addition to the method of filling the whole amount with a ceramic balloon carrying an oxidation catalyst having a substantially uniform diameter in the balloon filling portion 7, the surface area per volume of the ceramic balloon is increased and the space 11 between the balloons is narrowed to reduce the amount of particulate matter. A method of partially using ceramic balloons with a smaller diameter of an oxidation catalyst supported for the purpose of increasing combustion efficiency, etc., and further supporting the oxidation catalyst partially due to processing restrictions on the ceramic balloon. The method of using a type ceramic sphere is also within the scope of the present invention.

筒状の容器1の表面からの放熱を最小限に抑えて内部の温度を極力維持することを主たる目的として筒状の容器1の内面に断熱材を貼り付けることは一手法である。  It is one method to attach a heat insulating material to the inner surface of the cylindrical container 1 for the main purpose of minimizing heat dissipation from the surface of the cylindrical container 1 and maintaining the internal temperature as much as possible.

発明の効果The invention's effect

上述の通り本発明の排気ガス浄化装置により、ディーゼルエンジンから排出される炭化水素、一酸化炭素及び粒子状物質の除去を行い同時に消音機能をも備えたものが可能となる。  As described above, the exhaust gas purifying apparatus of the present invention can remove hydrocarbons, carbon monoxide and particulate matter discharged from a diesel engine, and at the same time have a silencing function.

粒子状物質用の酸化触媒をセラミックバルーンに担持させることにより、排気ガスの温度が低温から上昇して触媒の活性領域に達した場合敏感に反応して酸化機能を発揮させることが可能となり、併せてメンテナンスフリーかつ比較的低圧力損失の浄化装置とすることができる。  By supporting the oxidation catalyst for particulate matter on the ceramic balloon, it becomes possible to react sensitively and exhibit the oxidation function when the exhaust gas temperature rises from a low temperature and reaches the active region of the catalyst. Thus, it can be a maintenance-free and relatively low pressure loss purification device.

更に、本発明による排気ガス浄化装置は排出ガスのうち人間への健康被害の主原因とされる粒径2.5ミクロン以下の微小粒子を燃焼により効率的に除去できる装置としての可能性を有している。  Furthermore, the exhaust gas purifying apparatus according to the present invention has the potential as an apparatus that can efficiently remove fine particles having a particle size of 2.5 microns or less, which are the main cause of human health damage, by combustion. is doing.

即ち、酸化触媒に接触しないでセラミックバルーン間空隙を通過する微小粒子は粒径が小さければ小さいほど、ラジカル及び周囲のセラミックバルーンあるいは燃焼中の他の粒子状物質より発せられる赤外線を受けて、より容易に燃焼することが考えられるからである。  That is, the smaller the particle size passing through the space between the ceramic balloons without contacting the oxidation catalyst, the smaller the particle size, the more receiving the radicals and the infrared rays emitted from the surrounding ceramic balloons or other particulate matter during combustion. This is because it can be easily burned.

本発明に係る排気ガス浄化装置の構造断面図Cross-sectional view of the structure of an exhaust gas purifying apparatus according to the present invention バルーン間空隙を示す断面図Sectional view showing the space between balloons

符号の説明Explanation of symbols

1 筒状の容器
2 排気ガス入口
3 整流板
4 HC・CO酸化触媒
5 電気ヒータ付整流板
6、6a、6b、6c セラミックバルーン
7 バルーン充填部
8 バルーン仕切板
9 排気ガス出口
10 粒子状物質酸化触媒担持層
11 バルーン間空隙
DESCRIPTION OF SYMBOLS 1 Cylindrical container 2 Exhaust gas inlet 3 Rectifier plate 4 HC / CO oxidation catalyst 5 Rectifier plates 6, 6a, 6b, 6c with electric heater Ceramic balloon 7 Balloon filling part 8 Balloon partition plate 9 Exhaust gas outlet 10 Particulate matter oxidation Catalyst support layer 11 Space between balloons

Claims (1)

筒状の容器内にパンチングプレートあるいは金網によって仕切られた空間部を有し、その空間部の充填物の全量あるいはその一部分が酸化触媒担持のセラミックバルーンであることを特徴とするディーゼルエンジン等の内燃機関用排気ガス浄化装置。An internal combustion engine such as a diesel engine having a space partitioned by a punching plate or a metal mesh in a cylindrical container, and the total amount of the filler in the space or a part thereof is a ceramic balloon carrying an oxidation catalyst Exhaust gas purification device for engines.
JP2004264695A 2004-08-16 2004-08-16 Exhaust emission control device Pending JP2006057614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264695A JP2006057614A (en) 2004-08-16 2004-08-16 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264695A JP2006057614A (en) 2004-08-16 2004-08-16 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2006057614A true JP2006057614A (en) 2006-03-02

Family

ID=36105284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264695A Pending JP2006057614A (en) 2004-08-16 2004-08-16 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2006057614A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099428A (en) * 2009-10-06 2011-05-19 Panasonic Corp Exhaust emission control device
KR101177026B1 (en) * 2010-02-18 2012-08-27 임인권 Device for Cleaning Soot Particle and Method for the Same
WO2016189586A1 (en) * 2015-05-22 2016-12-01 日産自動車株式会社 Internal combustion engine system and control method for internal combustion engine
CN107905875A (en) * 2017-12-18 2018-04-13 北京联飞翔科技股份有限公司 A kind of purification of nitrogen oxides device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099428A (en) * 2009-10-06 2011-05-19 Panasonic Corp Exhaust emission control device
KR101177026B1 (en) * 2010-02-18 2012-08-27 임인권 Device for Cleaning Soot Particle and Method for the Same
US8920531B2 (en) 2010-02-18 2014-12-30 CA Tech Inc. Device for reducing soot particles and method for the same
WO2016189586A1 (en) * 2015-05-22 2016-12-01 日産自動車株式会社 Internal combustion engine system and control method for internal combustion engine
CN107905875A (en) * 2017-12-18 2018-04-13 北京联飞翔科技股份有限公司 A kind of purification of nitrogen oxides device and method

Similar Documents

Publication Publication Date Title
KR100629208B1 (en) Exhaust purifier
US7976801B2 (en) System and method for the processing and incineration of diesel exhaust particulate matter
KR100519218B1 (en) Carbon particle reducing apparatus
JP4556587B2 (en) Exhaust gas purification device
JPS62103410A (en) Cleaning filter for exhaust
RU151051U1 (en) CLEANING DEVICE
JP2004084666A (en) Removal of soot fine particles from exhaust gas of diesel engine
JP2009057922A (en) Exhaust emission control system
CN103670605B (en) A kind of diesel engine and particulate matter trap regenerating unit thereof
PT1336034E (en) Method and device for aftertreatment of exhaust gases from combustion engines
JP4767909B2 (en) Exhaust gas purification device
JP2005535438A (en) Exhaust mechanism for lean burn engine
JP2006207531A (en) Muffler integrated type denitration device, internal combustion engine provided with denitration device and power generation system provided with internal combustion engine
JP4604374B2 (en) Exhaust gas purification device for internal combustion engine
JP2006057614A (en) Exhaust emission control device
JP2012077693A (en) Exhaust emission control device
JP3959611B2 (en) Exhaust gas purification device for internal combustion engine
JP2005288362A (en) Diesel engine exhaust gas purification apparatus
JP2006257920A (en) Exhaust emission control device
JP3600582B2 (en) Method and apparatus for treating engine exhaust gas
JP2007239478A (en) Device and method for exhaust emission control device
KR100335236B1 (en) Engine&#39;s waste gas purification system
JP2005337042A (en) Exhaust gas purification muffler for diesel engine
CN101070768A (en) Diesel-engine self-regenerated efficient tail-gas purifying silencer
JP2005000818A (en) Filter and apparatus for cleaning exhaust gas