JP2006057539A - Air flow rate measuring device and internal combustion engine control system - Google Patents

Air flow rate measuring device and internal combustion engine control system Download PDF

Info

Publication number
JP2006057539A
JP2006057539A JP2004240397A JP2004240397A JP2006057539A JP 2006057539 A JP2006057539 A JP 2006057539A JP 2004240397 A JP2004240397 A JP 2004240397A JP 2004240397 A JP2004240397 A JP 2004240397A JP 2006057539 A JP2006057539 A JP 2006057539A
Authority
JP
Japan
Prior art keywords
air flow
flow rate
measuring device
heating resistor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004240397A
Other languages
Japanese (ja)
Inventor
Chihiro Kobayashi
千尋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004240397A priority Critical patent/JP2006057539A/en
Publication of JP2006057539A publication Critical patent/JP2006057539A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To supply both an air flow rate detection signal having quick response and an air flow detection signal having poor follow-up from an air flow measuring device to an engine control unit. <P>SOLUTION: The air flow rate measuring device 161 comprises a heating resistor for measuring an air flow rate. It has at least two output terminals for the air flow rate detection signals having difference response times for detection values. The output terminals include an output terminal having a smoothing filter circuit 200 laid on the output side of the heating resistor and an output terminal having no smoothing filter circuit laid thereon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は自動車用の内燃機関に吸入される空気流量の測定に用いられる発熱抵抗体式の空気流量測定装置及び内燃機関制御システムに関する。   The present invention relates to a heating resistor type air flow rate measuring device and an internal combustion engine control system used for measuring an air flow rate taken into an internal combustion engine for an automobile.

従来の内燃機関制御に用いている制御システムは、例えば、(特許文献1)に示されるように、発熱抵抗体式の空気流量測定装置からの空気流量検知信号を直接ECU(エンジンコントロールユニット)に入力して空気流量換算等の処理を行なっている。   A control system used for conventional internal combustion engine control, for example, as shown in (Patent Document 1), directly inputs an air flow rate detection signal from a heating resistor type air flow rate measuring device to an ECU (engine control unit). Thus, processing such as air flow rate conversion is performed.

特開平6−288275号公報JP-A-6-288275

上記発熱抵抗体式の空気流量測定装置は、発熱抵抗体の検知値の応答時間が速い空気流量検知では空気流れの乱れを検知し易く出力ノイズが増大し検知値がばらつく原因となる。   In the heating resistor type air flow rate measuring device, air flow turbulence is easy to detect in the air flow rate detection of the response value of the detection value of the heating resistor, and the output noise increases and causes the detection value to vary.

また、逆に発熱抵抗体の検知値の応答時間が遅い空気流量検知では過渡的な流れに対する検出感度の追従性が悪くなってしまう。このため、内燃機関の燃料制御に用いるためには、出力ノイズを含む空気流量検知、または追従性の悪い空気流量検知のどちらかを犠牲にせざるを得ない。   On the contrary, in the air flow rate detection in which the response time of the detection value of the heating resistor is slow, the followability of the detection sensitivity to the transient flow is deteriorated. For this reason, in order to use it for fuel control of an internal combustion engine, either air flow detection including output noise or air flow detection with poor followability must be sacrificed.

上記の問題に鑑み、本発明は、出力ノイズを含む応答の速い空気流量検知信号と追従性の悪い空気流量検知信号との双方を空気流量測定装置からエンジンコントロールユニットに提供できるようにすることを目的とする。   In view of the above problems, the present invention is capable of providing both an air flow rate detection signal having a quick response including output noise and an air flow rate detection signal having poor followability from the air flow rate measuring device to the engine control unit. Objective.

本発明は、空気流量測定用の発熱抵抗体を備えた空気流量測定装置において、検知値の応答時間が異なる空気流量検知信号の出力端子を少なくとも二つ設けたことを特徴とする。   The present invention is characterized in that at least two air flow rate detection signal output terminals having different response times of detection values are provided in an air flow rate measuring device provided with a heating resistor for air flow rate measurement.

さらに具体的には、本発明は、発熱抵抗体式空気流量測定装置からの空気流量検知信号として高速応答出力と、フィルタ回路等により平滑化した平滑出力との2系統の空気流量検知信号を出力し、エンジンコントロールユニット側で必要とする空気流量検知信号の出力値を選択して使うことにした。空気流の状態がほぼ定常状態にあり、主に流量の平均値が必要な場合には、平滑出力の値を使用することで平均値の算出精度を高める。また、過渡的な流量が必要な場合には、高速応答出力を使い過渡的な流量を正確に得る。過渡的な流量か否かの判断については、例えばスロットル開度信号等を使うことにより、エンジンコントロールユニットで判断することができる。   More specifically, the present invention outputs two systems of air flow rate detection signals, a high-speed response output as an air flow rate detection signal from the heating resistor type air flow rate measuring device and a smooth output smoothed by a filter circuit or the like. The output value of the air flow detection signal required on the engine control unit side was selected and used. When the air flow is almost in a steady state and an average value of the flow rate is mainly required, the smoothness output value is used to increase the average value calculation accuracy. In addition, when a transient flow rate is required, the transient flow rate is accurately obtained using a high-speed response output. The determination of whether or not the flow rate is transient can be made by the engine control unit by using, for example, a throttle opening signal.

本発明によれば、吸気管内の空気流の状態が定常状態、過渡状態にも関わらず正確な吸入空気流量検知信号が得られる。このため内燃機関の燃料制御に使う吸入空気流量の計測が今まで以上に精度良く行われ、内燃機関から排気される排気ガスのクリーン化を図ることができる。   According to the present invention, an accurate intake air flow rate detection signal can be obtained regardless of whether the air flow in the intake pipe is in a steady state or a transient state. For this reason, the measurement of the flow rate of intake air used for fuel control of the internal combustion engine is performed with higher accuracy than before, and the exhaust gas exhausted from the internal combustion engine can be cleaned.

本発明は、上述したように発熱抵抗体の出力側にフィルタ回路を介在したり、介在しなかったりする簡単な構成により、一つの流量検知信号から応答時間の異なる2つの流量検知信号を得ることが可能となる。この2つの流量信号を取捨選択して用いることにより、内燃機関の燃料制御を精度よく良好に行うことができる。   As described above, the present invention obtains two flow rate detection signals having different response times from one flow rate detection signal with a simple configuration in which a filter circuit is interposed on the output side of the heating resistor or not. Is possible. By selecting and using these two flow rate signals, the fuel control of the internal combustion engine can be performed accurately and satisfactorily.

以下に本発明の実施例を図面に従い詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

まず、発熱抵抗体式空気流量測定装置の概要から説明する。   First, the outline of the heating resistor type air flow measuring device will be described.

図4は、発熱抵抗体式の空気流量測定装置の概略構成回路図である。発熱抵抗体式の空気流量測定装置の駆動回路は、大きく分けてブリッジ回路とフィードバック回路から成り立っている。   FIG. 4 is a schematic circuit diagram of a heating resistor type air flow rate measuring device. The driving circuit of the heating resistor type air flow rate measuring device is roughly composed of a bridge circuit and a feedback circuit.

ブリッジ回路は、吸入空気流量測定を行うための発熱抵抗体RH、吸入空気温度を補償するための感温抵抗体RC及びR10、R11で有する。   The bridge circuit includes a heating resistor RH for measuring the intake air flow rate, and temperature sensitive resistors RC and R10, R11 for compensating the intake air temperature.

フィードバック回路は、オペアンプOP1を有する。オペアンプOP1を使いフィードバックをかけながら発熱抵抗体RHと感温抵抗体RCの間に一定温度差を保つように発熱抵抗体RHに加熱電流Ihを流して空気流量に応じた出力信号を出力する出力端子(Vout1)を有する。この出力端子(Vout1)にフィルタ回路200を介在した別の出力端子(Vout2)を設ける。   The feedback circuit has an operational amplifier OP1. Output that outputs an output signal corresponding to the air flow rate by supplying a heating current Ih to the heating resistor RH so as to maintain a constant temperature difference between the heating resistor RH and the temperature sensitive resistor RC while applying feedback using the operational amplifier OP1. It has a terminal (Vout1). This output terminal (Vout1) is provided with another output terminal (Vout2) with a filter circuit 200 interposed.

フィルタ回路200は、Vout2の出力端子から出力される出力値を平滑化する平滑回路としての機能を有する。Vbattは電源入力端子、GNDはアース端子である。   The filter circuit 200 has a function as a smoothing circuit that smoothes the output value output from the output terminal of Vout2. Vbatt is a power input terminal, and GND is a ground terminal.

発熱抵抗体RHに流れる加熱電流Ihは、ここに流れる空気流量(空気流速)に応じて変る。つまり、流速の速い(空気流量が多い)場合には、発熱抵抗体RHから奪われる熱量が多いため加熱電流Ihを多く流す。これに対し、流速の遅い(空気流量が少ない)場合には、発熱抵抗体Rhから奪われる熱量が少ないため加熱電流も少なくてすむのである。   The heating current Ih flowing through the heating resistor RH varies depending on the air flow rate (air flow velocity) flowing there. That is, when the flow velocity is fast (the air flow rate is large), a large amount of heat is taken from the heating resistor RH, so that a large heating current Ih is passed. On the other hand, when the flow velocity is slow (the air flow rate is small), the amount of heat taken away from the heating resistor Rh is small, so that the heating current can be reduced.

フィルタ回路200が介在されたVout2の出力端子からの出力は、平滑化された空気流量検知信号の検知値を示す。これに対し、フィルタ回路200が介在されないVout1の出力端子からの出力は、平滑化されない真の空気流量検知信号の検知値を示す。   The output from the output terminal of Vout2 through which the filter circuit 200 is interposed indicates the detection value of the smoothed air flow rate detection signal. On the other hand, the output from the output terminal of Vout1 in which the filter circuit 200 is not interposed indicates the detection value of the true air flow detection signal that is not smoothed.

このように、発熱抵抗体の出力側にフィルタ回路を介在したり、介在しなかったりする簡単な構成により、一つの流量検知信号から検知値の異なる2つの流量検知信号を得ることができる。   Thus, two flow rate detection signals having different detection values can be obtained from one flow rate detection signal with a simple configuration in which a filter circuit is interposed on the output side of the heating resistor or not.

図5は発熱抵抗式の空気流量測定装置の一例を示す横断面である。図6は発熱抵抗式の空気流量測定装置を上流(図5の左側)から見た外観図である。   FIG. 5 is a cross-sectional view showing an example of a heating resistance type air flow measuring device. FIG. 6 is an external view of the heating resistance type air flow rate measuring device as viewed from the upstream (left side in FIG. 5).

発熱抵抗体式の空気流量測定装置は、次の構成部品を有する。駆動回路を構成する回路基板2、この回路基板2を内蔵するハウジング部材1及び非導電性部材により形成される副空気通路構成部材10等である。   The heating resistor type air flow rate measuring device has the following components. A circuit board 2 constituting a drive circuit, a housing member 1 incorporating the circuit board 2, a sub air passage constituting member 10 formed by a non-conductive member, and the like.

副空気通路構成部材10の中には、空気流量検出のための発熱抵抗体3、吸入空気温度を補償するための感温抵抗体4が導電性部材により構成された支持体5を介して回路基板2と電気的に接続されるように配置され、ハウジング、回路基板、副空気通路、発熱抵抗体、感温抵抗体等、これらを発熱抵抗体式空気流量測定装置の一体のモジュールとして構成されている。   In the sub air passage constituting member 10, a heating resistor 3 for detecting the air flow rate and a temperature sensitive resistor 4 for compensating the intake air temperature are circuitized via a support 5 constituted by a conductive member. Arranged so as to be electrically connected to the substrate 2, a housing, a circuit board, a sub air passage, a heating resistor, a temperature sensitive resistor, etc. are configured as an integrated module of the heating resistor type air flow measuring device. Yes.

また、吸気管路を構成する主空気構成部材20の壁面には穴25があけられている。この穴25より、前記発熱抵抗体式の空気流量測定装置の副空気通路部分を外部より挿入して副空気通路構成部材の壁面とハウジング部材1とをネジ7等で機械的強度を保つように固定されている。   A hole 25 is formed in the wall surface of the main air constituting member 20 constituting the intake pipe. Through this hole 25, the auxiliary air passage portion of the heating resistor type air flow measuring device is inserted from the outside, and the wall surface of the auxiliary air passage constituting member and the housing member 1 are fixed with screws 7 or the like so as to maintain the mechanical strength. Has been.

ここで、副空気通路が挿入される主空気通路部分はほぼ円筒管であり、主空気通路の空気の流れる有効断面積は副空気通路の出入口の配置箇所でほぼ同じである。また、副空気通路構成部材10と主空気通路構成部材の間にシール材6を取り付けて、気密性を保っている。   Here, the main air passage portion into which the sub air passage is inserted is a substantially cylindrical tube, and the effective cross-sectional area through which the air flows in the main air passage is substantially the same at the location of the entrance and exit of the sub air passage. Moreover, the sealing material 6 is attached between the sub air passage structural member 10 and the main air passage structural member, and airtightness is maintained.

次に本発明の主要な特徴について更に詳しく説明する。   Next, the main features of the present invention will be described in more detail.

本発明の主要な特徴である発熱抵抗体式の空気流量測定装置の応答性について、図7を使い説明する。   The responsiveness of the heating resistor type air flow measuring device, which is the main feature of the present invention, will be described with reference to FIG.

図7は横軸が時間、縦軸が空気流量である。細線で示したのが真の空気流量であり、図示上の「流量切替」で流量をステップ的に変化させた状態である。   In FIG. 7, the horizontal axis represents time, and the vertical axis represents the air flow rate. A thin line indicates the true air flow rate, and the flow rate is changed stepwise by “flow rate switching” in the drawing.

この図示に示される「高速応答発熱抵抗体応答性」の場合は、真の空気流量に対し追従性が良く、応答遅れが少ない波形が示される。これに対し、この高速応答の発熱抵抗体の出力側にフィルタ回路を介在した出力が図示上に示される「フィルタ後の発熱抵抗体」の出力である。この場合フィルタの定数に応じて応答遅れが大きくなる応答波形となる。   In the case of the “fast response heating resistor responsiveness” shown in this figure, a waveform having good followability with respect to the true air flow rate and less response delay is shown. On the other hand, an output having a filter circuit interposed on the output side of the high-speed response heating resistor is the output of the “filtered heating resistor” shown in the figure. In this case, the response waveform increases in response delay according to the filter constant.

つまり、発熱抵抗体の出力側に平滑用のフィルタ回路を介在したり、介在しなかったりすることにより、空気流量の変化に対する応答時間(速い/遅い)が異なる検知値の空気流量検知信号を取り出すことができる。   That is, an air flow rate detection signal having a detection value with a different response time (fast / slow) with respect to a change in air flow rate is taken out by interposing or not interposing a smoothing filter circuit on the output side of the heating resistor. be able to.

図8は、実際のエンジンに用いた発熱抵抗体式の空気流量測定装置の検知信号波形を示す。この図示より明らかなように、「高速応答発熱抵抗体応答性」の場合は、検出流量の出力電圧が大きく振れてしまい、平均流量を算出するのが非常に困難である。これに対し、「フィルタ後の発熱抵抗体」の場合には、検出流量の出力電圧の振れは半減以下となり、平均流量の算出が非常に容易となる。   FIG. 8 shows a detection signal waveform of a heating resistor type air flow measuring device used in an actual engine. As is clear from this figure, in the case of “fast response heating resistor responsiveness”, the output voltage of the detected flow rate fluctuates greatly, and it is very difficult to calculate the average flow rate. On the other hand, in the case of the “heat generating resistor after filtering”, the fluctuation of the output voltage of the detected flow rate becomes half or less, and the calculation of the average flow rate becomes very easy.

このように発熱抵抗体式の空気流量測定装置は、応答時間の速い高速応答の出力と、応答時間の遅い出力を出力する。この2系統の空気流量検知信号をエンジンコントロールユニット側で取捨選択して必要とする空気流量検知信号を使う。すなわち、空気流の状態がほぼ定常状態にあり、主に流量の平均値が必要な場合には、平滑出力の値を使用することで平均値の算出精度を高める。また、過渡的な流量が必要な場合には、高速応答出力を使い過渡的な流量を正確に得る。過渡的な流量か否かの判断については、例えばスロットル開度信号等を使うことにより、エンジンコントロールユニットで判断することができる。   As described above, the heating resistor type air flow rate measuring device outputs a fast response output with a fast response time and an output with a slow response time. These two air flow detection signals are selected on the engine control unit side and the necessary air flow detection signals are used. That is, when the air flow is almost in a steady state and the average value of the flow rate is mainly required, the average value calculation accuracy is increased by using the smooth output value. In addition, when a transient flow rate is required, the transient flow rate is accurately obtained using a high-speed response output. The determination of whether or not the flow rate is transient can be made by the engine control unit by using, for example, a throttle opening signal.

図1は内燃機関における吸気管の構成要素を示した図である。   FIG. 1 is a diagram showing components of an intake pipe in an internal combustion engine.

空気の流れる上流側から説明する。エアクリーナは、エアクリーナダーティサイドケース150と、エアクリーナクリーンサイドケース151とでエアクリーナエレメント152を挟むようにして構成される。エアクリーナの下流側には発熱抵抗体式の空気流量測定装置161が取り付けられるボディ部材160が設けられる。そして、インテークマニホールド155とボディ部材160とを吸気ダクト158により接続し、吸気管全体を構成している。   It demonstrates from the upstream side into which air flows. The air cleaner is configured such that the air cleaner element 152 is sandwiched between the air cleaner dirty side case 150 and the air cleaner clean side case 151. A body member 160 to which a heating resistor type air flow measuring device 161 is attached is provided downstream of the air cleaner. And the intake manifold 155 and the body member 160 are connected by the intake duct 158, and the whole intake pipe is comprised.

内燃機関における各種センサ等からの信号処理及び制御はエンジンコントロールユニット(ECU)100により行われる。ECU100には入力回路部101、出力回路部102、中央演算処理装置(CPU)103、及びメモリ104を有している。ECU100内部構成要素間の情報の交換は矢印105a及び105bにより示した部分で行われる。吸気管を流れる吸入空気流量は発熱抵抗体3により計測され、更に吸気ダクト152に装着される吸気温度センサ157からの吸気温度信号Ta、回転センサ(図示無し)からの回転数信号等がそれぞれがECU100に送られる。このECUに送られた各種センサ信号等を基に演算処理し求められた結果に対して、燃料噴射のための制御信号Tpがインジェクタ154に出力される。   Signal processing and control from various sensors in the internal combustion engine are performed by an engine control unit (ECU) 100. The ECU 100 includes an input circuit unit 101, an output circuit unit 102, a central processing unit (CPU) 103, and a memory 104. Exchange of information between the internal components of the ECU 100 is performed at the portions indicated by the arrows 105a and 105b. The flow rate of the intake air flowing through the intake pipe is measured by the heating resistor 3, and an intake air temperature signal Ta from an intake air temperature sensor 157 attached to the intake duct 152, a rotation speed signal from a rotation sensor (not shown), etc. It is sent to ECU100. A control signal Tp for fuel injection is output to the injector 154 with respect to the result obtained by performing arithmetic processing based on various sensor signals and the like sent to the ECU.

図2は、フィルタ回路200を備えた発熱抵抗体式の空気流量測定装置161の回路とECU100の回路を併せて示す。この空気流量測定装置の回路は出力端子を二つ有するが、発熱抵抗体の出力側にフィルタ定数が異なる複数の平滑用のフィルタ回路を並列に介在した複数の出力端子と、フィルタ回路を介さない出力端子を併せて設けることで、三つの出力端子を備えることが可能である。   FIG. 2 shows a circuit of the heating resistor type air flow measuring device 161 provided with the filter circuit 200 and a circuit of the ECU 100 together. The circuit of this air flow rate measuring device has two output terminals, but does not go through a plurality of output terminals in which a plurality of smoothing filter circuits having different filter constants are arranged in parallel on the output side of the heating resistor and the filter circuit. By providing output terminals together, it is possible to provide three output terminals.

図3は、フィルタ回路を備えない発熱抵抗体式の空気流量測定装置161の回路とECU100の回路を併せて示す。ここでは、フィルタ回路200がECU100側に設けられるので、空気流量測定装置161の出力端子は一つである。出力端子が一つになるので、コストを抑えることができる。   FIG. 3 shows a circuit of the heating resistor type air flow measuring device 161 not provided with a filter circuit and a circuit of the ECU 100 together. Here, since the filter circuit 200 is provided on the ECU 100 side, the air flow measuring device 161 has one output terminal. Since there is only one output terminal, the cost can be reduced.

図9は、図6の端子ホルダー(コネクタ)210を拡大して示す。この端子ホルダー210には、出力端子(Vout1)、出力端子(Vout2)、電源入力端子(Vbatt)、アース端子(GND)がまとまって設けられるので、端子ホルダーの接続が容易である。   FIG. 9 shows an enlarged view of the terminal holder (connector) 210 of FIG. Since the terminal holder 210 is provided with an output terminal (Vout1), an output terminal (Vout2), a power input terminal (Vbatt), and a ground terminal (GND), the terminal holder can be easily connected.

上記実施例で述べたフィルタ回路はハード、ソフトの回路を含むが、ハードの回路を用いることでコストを抑えることができる。   Although the filter circuit described in the above embodiment includes a hardware circuit and a software circuit, the cost can be reduced by using the hardware circuit.

本発明の実施例に係わるもので、内燃機関の制御システムを示す図。The figure which concerns on the Example of this invention and shows the control system of an internal combustion engine. 本発明の実施例に係わるもので、フィルタ回路を備えた発熱抵抗体式の空気流量測定装置の回路とECUの回路を併せて示す図。The figure concerning the Example of this invention, and the figure which shows the circuit of the heating flow resistor type air flow measuring device provided with the filter circuit, and the circuit of ECU together. 本発明の他の実施例に係わるもので、フィルタ回路を備えない発熱抵抗体式の空気流量測定装置の回路とECUの回路を併せて示す図。The figure which concerns on the other Example of this invention, and shows the circuit of the heating flow resistor type air flow measuring device which is not provided with a filter circuit, and the circuit of ECU. 本発明の実施例に係わるもので、発熱抵抗体式の空気流量測定装置の駆動回路を示す図。The figure which concerns on the Example of this invention, and shows the drive circuit of a heating resistor type air flow measuring device. 本発明の実施例に係わるもので、発熱抵抗体式の空気流量測定装置の横断面図。発熱抵抗体式の空気流量測定装置を上流側より見た図。The cross-sectional view of a heating resistor type air flow rate measuring apparatus according to an embodiment of the present invention. The figure which looked at the heating resistor type air flow measuring device from the upstream side. 本発明の実施例に係わるもので、図5に示す発熱抵抗体式の空気流量測定装置を上流側より見た図。FIG. 6 is a view of the heating resistor type air flow rate measuring device shown in FIG. 5 as viewed from the upstream side according to the embodiment of the present invention. 本発明の実施例に係わるもので、発熱抵抗体の応答性を示す図。The figure which concerns on the Example of this invention and shows the responsiveness of a heating resistor. 本発明の実施例に係わるもので、エンジン装着したときの発熱抵抗体の検知信号波形を示す図。The figure which concerns on the Example of this invention and shows the detection signal waveform of a heating resistor when an engine is mounted | worn. 図6のイ部拡大図。FIG.

符号の説明Explanation of symbols

3…発熱抵抗体、161…空気流量測定装置、210…端子ホルダー、Vout1…出力端子、Vout2…出力端子。   3 ... heating resistor, 161 ... air flow rate measuring device, 210 ... terminal holder, Vout1 ... output terminal, Vout2 ... output terminal.

Claims (6)

空気流量測定用の発熱抵抗体を備えた空気流量測定装置において、
空気流量の変化に対する前記発熱抵抗体の検知値の応答時間が異なる空気流量検知信号の出力端子を少なくとも二つ設けたことを特徴とする空気流量測定装置。
In the air flow measurement device equipped with a heating resistor for air flow measurement,
An air flow rate measuring apparatus comprising at least two output terminals for air flow rate detection signals having different response times of detection values of the heating resistors with respect to changes in air flow rate.
請求項1記載の空気流量測定装置において、
前記出力端子は、平滑用のフィルタ回路を前記発熱抵抗体の出力側に介在した出力端子と、前記平滑用のフィルタ回路を介在しない出力端子を含むことを特徴とする空気流量測定装置。
The air flow rate measuring device according to claim 1,
The air flow rate measuring apparatus, wherein the output terminal includes an output terminal having a smoothing filter circuit interposed on an output side of the heating resistor, and an output terminal not having the smoothing filter circuit interposed.
請求項1記載の空気流量測定装置において、
前記出力端子は、前記発熱抵抗体の出力側にフィルタ定数が異なる複数の平滑用のフィルタ回路を並列に介在した複数の出力端子を含むことを特徴とする空気流量測定装置。
The air flow rate measuring device according to claim 1,
The air flow rate measuring apparatus according to claim 1, wherein the output terminal includes a plurality of output terminals in which a plurality of smoothing filter circuits having different filter constants are disposed in parallel on the output side of the heating resistor.
請求項2または3記載の空気流量測定装置において、
前記出力端子に加えて電源入力端子、アース端子を有し、かつ出力端子、電源入力端子、およびアース端子が端子ホルダーにまとめたことを特徴とする空気流量測定装置。
In the air flow measuring device according to claim 2 or 3,
An air flow rate measuring apparatus having a power input terminal and a ground terminal in addition to the output terminal, wherein the output terminal, the power input terminal and the ground terminal are collected in a terminal holder.
空気流量測定用の発熱抵抗体を具備した空気流量測定装置と、前記空気流量測定装置の空気流量検知信号を入力するエンジンコントロールユニットとを有する内燃機関制御システムにおいて、
前記エンジンコントロールユニットは、前記空気流量測定装置が出力する二つの空気流量検知信号により内燃機関の燃焼制御を行うことを特徴とする内燃機関制御システム。
In an internal combustion engine control system having an air flow rate measuring device provided with a heating resistor for air flow rate measurement, and an engine control unit for inputting an air flow rate detection signal of the air flow rate measuring device,
The internal combustion engine control system, wherein the engine control unit performs combustion control of the internal combustion engine based on two air flow rate detection signals output from the air flow rate measuring device.
請求項5記載の内燃機関制御システムにおいて、
前記二つの空気流量検知信号は、空気流量の変化に対して前記発熱抵抗体の検知値の応答時間が異なることを特徴とする内燃機関制御システム。
The internal combustion engine control system according to claim 5, wherein
The internal combustion engine control system according to claim 2, wherein the two air flow rate detection signals have different response times of detection values of the heating resistors with respect to changes in the air flow rate.
JP2004240397A 2004-08-20 2004-08-20 Air flow rate measuring device and internal combustion engine control system Pending JP2006057539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240397A JP2006057539A (en) 2004-08-20 2004-08-20 Air flow rate measuring device and internal combustion engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240397A JP2006057539A (en) 2004-08-20 2004-08-20 Air flow rate measuring device and internal combustion engine control system

Publications (1)

Publication Number Publication Date
JP2006057539A true JP2006057539A (en) 2006-03-02

Family

ID=36105222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240397A Pending JP2006057539A (en) 2004-08-20 2004-08-20 Air flow rate measuring device and internal combustion engine control system

Country Status (1)

Country Link
JP (1) JP2006057539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048148A (en) * 2008-08-21 2010-03-04 Hitachi Ltd Internal combustion engine control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048148A (en) * 2008-08-21 2010-03-04 Hitachi Ltd Internal combustion engine control device

Similar Documents

Publication Publication Date Title
JP4416012B2 (en) Intake air flow rate measuring device
US9964422B2 (en) Airflow meter
JP2008309623A (en) Air flow rate measuring device
US7775104B2 (en) Thermal flowmeter in which relationship among length of heat resistor, heating temperature for the heat resistor, and power supplied to the heat resistor is prescribed
JP5226933B2 (en) Flow sensor and air flow measurement method
US20060162442A1 (en) Thermal type flow measurement apparatus
JP6073489B2 (en) Air mass flow meter with sensor element
EP1742025A2 (en) Thermal type flow measuring apparatus
JP5223708B2 (en) Air flow measurement device
JPH06273435A (en) Heat-generating resistor element and heat-type air flowmeter
JP4470743B2 (en) Flow sensor
JP2007155435A (en) Air flowrate measurement device
JP4279130B2 (en) Heating resistor type fluid flow measuring device
JP2006057539A (en) Air flow rate measuring device and internal combustion engine control system
JP5477446B2 (en) Air flow measurement device
JP2012247266A (en) Thermal flow rate measuring apparatus
JP5272801B2 (en) Air flow measurement device
WO2002103301A1 (en) Heating resistor flow rate measuring instrument
JP5370114B2 (en) Air flow measurement device
JP2010190715A (en) Air flow rate measuring apparatus
JP2533479B2 (en) Heating resistance type air flow meter
JPH1123334A (en) Heating resistor type apparatus for measuring air flow rate and method and apparatus for correcting measurement error thereof
JP2009063391A (en) Intake-system component mounted with heating resistor type air flow rate measuring device
JP6784316B2 (en) Air flow meter
JPH08285651A (en) Air flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060522

A977 Report on retrieval

Effective date: 20081219

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421