JP2006057436A - Girder type bridge - Google Patents

Girder type bridge Download PDF

Info

Publication number
JP2006057436A
JP2006057436A JP2004316842A JP2004316842A JP2006057436A JP 2006057436 A JP2006057436 A JP 2006057436A JP 2004316842 A JP2004316842 A JP 2004316842A JP 2004316842 A JP2004316842 A JP 2004316842A JP 2006057436 A JP2006057436 A JP 2006057436A
Authority
JP
Japan
Prior art keywords
girder
web
main girder
main
control plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004316842A
Other languages
Japanese (ja)
Inventor
Isao Kurahashi
勲 倉橋
Akihiro Honda
明弘 本田
Shigetaka Hirai
滋登 平井
Atsushi Isoda
厚志 磯田
Akinobu Kishi
明信 岸
Shinsuke Kondo
伸介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004316842A priority Critical patent/JP2006057436A/en
Publication of JP2006057436A publication Critical patent/JP2006057436A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a girder type bridge of an extremely simple composition, which reduces a vibration due to a vortex excitation, a deflection vibration and a torsion vibration and prevents occurrences of vehicle travelling hindrance without increasing in a weight and manufacturing cost nor installing any special members. <P>SOLUTION: The girder type bridge is composed by fixing a plurality of main girders to the undersurface of a floor plate. The main girder has a regulating plate projected on the outer side of a middle portion of its web in a vertical direction, so that a negative pressure is formed by an air stream flowing in the vicinity of the lower part of the main girder in a space enclosed by an undersurface of the regulating plate and the outer side of the web, and thus the air stream can be rectified by the negative pressure. Furthermore, between the adjacent webs of the main girders, a communication pipe is provided so as to let the air of the upstream side of the main girder flow into the under-stream side of the main girder through the communication pipe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、床板の下面に複数の主桁を固定してなる桁式橋梁であって、該主桁の下部周辺を流れる空気流を整流することにより、低風速での渦励振を回避可能とした桁式橋梁に関する。   The present invention is a girder-type bridge in which a plurality of main girders are fixed to the lower surface of a floor board, and vortex excitation at low wind speeds can be avoided by rectifying the air flow flowing around the lower part of the main girder. Related to the girder type bridge.

図9には、床板の下面に複数の主桁を固定してなる桁式橋梁100の一例が示されている。図において、1は上面に車両が通過する車道が設けられる床板、2は該床板1の下面に固定された複数(この例では2個)の主桁、7は該床板1の両端に立設された高欄である。前記主桁2は前記床板1の下面に固定される水平な上部フランジ3、該上部フランジ3の下面に固定されて鉛直方向に延びるウェブ5、及び該ウェブ5の下端に固定された下部フランジ6により構成されている。   FIG. 9 shows an example of a girder bridge 100 in which a plurality of main girders are fixed to the lower surface of a floor board. In the figure, 1 is a floor plate on which a roadway through which a vehicle passes is provided, 2 is a plurality of (in this example, two) main girders fixed to the lower surface of the floor plate 1, and 7 is erected on both ends of the floor plate 1. This is a handrail. The main girder 2 includes a horizontal upper flange 3 fixed to the lower surface of the floor plate 1, a web 5 fixed to the lower surface of the upper flange 3 and extending in the vertical direction, and a lower flange 6 fixed to the lower end of the web 5. It is comprised by.

図9に示されるような桁式橋梁においては、該橋梁に作用する水平風、吹上げ風、吹下し風等の多方向の風による撓み振動あるいは捩れ振動の低減が課題となっており、かかる撓み振動あるいは捩れ振動に対する振動低減手段が種々提案され、その1つに特許文献1(実開平4−108605号公報)の技術がある。
特許文献1の技術においては、桁式橋梁の主桁の上部に連結される水平な床板(鋼床板)の両端に張り出し形成した床板張り出し部の端部に端桁(エッジプレート)を設け、該端桁の下端外側方に水平材(ティッププレート)を形成し、水平風、吹上げ風、吹下し風等の多方向の風に対する捩れフラッタ限界風速の向上、渦励振振幅の低減を実現することにより、橋梁の耐風安定性を向上せしめている。
In the girder type bridge as shown in FIG. 9, reduction of bending vibration or torsional vibration due to multidirectional winds such as horizontal wind, blowing wind, and blowing wind acting on the bridge has been an issue. Various vibration reducing means for flexural vibration or torsional vibration have been proposed, and one of them is a technique disclosed in Japanese Patent Application Laid-Open No. 4-108605.
In the technique of Patent Document 1, an end beam (edge plate) is provided at the end of a floor plate overhanging portion that is formed on both ends of a horizontal floor plate (steel floor plate) connected to the upper part of the main girder of the girder bridge, A horizontal plate (tip plate) is formed on the outer side of the lower end of the end girder to improve the torsional flutter limit wind speed and reduce the vortex excitation amplitude for multi-directional winds such as horizontal winds, blow-up winds, and blow-down winds. This improves the wind resistance stability of the bridge.

実開平4−108605号公報Japanese Utility Model Publication No. 4-108605

前記桁式橋梁100においては、主桁2を吹き抜ける風(空気流)によって、図10に示されるような2つのモードの振動が発生する。
図10(A)は撓み振動の振幅と風速との関係、(B)は捩れ振動の振幅と風速との関係をそれぞれ示す。図10(A)、(B)に示されるように、前記撓み振動及び捩れ振動には、低風速で発生する渦励振Aと高風速で発生する発散振動Bとがある。
このうち、渦励振Aは、図9のように、主桁2の下方をほぼ水平方向に吹き抜ける風(空気流)Vによって、下流側ウェブ5の下流下部に発生する渦流Wによって生成され、かかる渦励振Aと主桁2の固有振動数との共振によって、床板1上方の車道を走行する車両に運行障害の発生をもたらす。
また、前記主桁2の下流側に渦流が形成されると該渦流により橋梁に揚力の変動が発生し、かかる揚力の変動によって橋梁に撓み振動や捩り振動が発生する。
In the girder-type bridge 100, two modes of vibration as shown in FIG. 10 are generated by the wind (air flow) blowing through the main girder 2.
FIG. 10A shows the relationship between the amplitude of the flexural vibration and the wind speed, and FIG. 10B shows the relationship between the amplitude of the torsional vibration and the wind speed. As shown in FIGS. 10A and 10B, the bending vibration and torsional vibration include vortex excitation A generated at a low wind speed and divergent vibration B generated at a high wind speed.
Among these, as shown in FIG. 9, the vortex excitation A is generated by the vortex W generated in the lower part of the downstream web 5 by the wind (air flow) V blown substantially horizontally below the main girder 2 and applied. Resonance between the vortex excitation A and the natural frequency of the main girder 2 causes an operation failure in a vehicle traveling on the roadway above the floor board 1.
Further, when a vortex is formed on the downstream side of the main girder 2, a fluctuation in the lift is generated by the vortex, and the vibration of the lift causes a bending vibration and a torsional vibration.

然るに、前記特許文献1においては、桁式橋梁の主桁の上部に連結される水平な鋼床板の両端に張り出し形成した床板張り出し部の端部に端桁(エッジプレート)を設け、該端桁の下端外側方に水平材(ティッププレート)を形成した構造であるため、前記発散振動Bに対する振動低減効果は奏し得るが、主桁2の下方をほぼ水平方向に吹き抜ける風(空気流)Vに起因する前記渦励振Wに対する振動低減効果は少ない。
また、前記特許文献1の技術にあっては、前記のように、渦励振Wに対する振動低減効果が少ないので、該渦流による揚力の変動によって橋梁に撓み振動や捩り振動が発生し易いという問題点も有している。
さらに、前記特許文献1の技術にあっては、鋼床板の両端部に端桁(エッジプレート及び水平材(ティッププレート)という、強度部材の機能を有さない格別な部材を装着する必要があるため、重量増加及び製品コストの増大を伴うという課題も抱えている。
However, in the above-mentioned Patent Document 1, end girders (edge plates) are provided at the ends of the floor plate overhanging portions formed on both ends of a horizontal steel floor plate connected to the upper part of the main girder of the girder type bridge. Since a horizontal material (tip plate) is formed on the outer side of the lower end of the frame, the vibration reduction effect on the divergent vibration B can be achieved, but the wind (air flow) V blows through the lower part of the main girder 2 in a substantially horizontal direction. There is little vibration reduction effect with respect to the vortex excitation W.
Further, as described above, the technique of Patent Document 1 has a problem that the vibration reduction effect with respect to the vortex excitation W is small, so that bending vibration and torsional vibration are likely to occur in the bridge due to the fluctuation of lift due to the vortex flow. Also have.
Furthermore, in the technique of Patent Document 1, it is necessary to attach special members that do not have the function of strength members, such as end girders (edge plates and horizontal members (tip plates)), to both ends of the steel floor plate. For this reason, there is also a problem of accompanying an increase in weight and an increase in product cost.

本発明はかかる従来技術の課題に鑑み、重量増加及び製品コストの増大を伴うことなくかつ格別な部材を設置することなく、きわめて簡単な構成で以って、渦励振による振動、及び撓み振動や捩り振動を低減して、車両の運行障害の発生を防止した桁式橋梁を提供することを目的とする。   In view of the problems of the prior art, the present invention is not accompanied by an increase in weight and product cost, and without installing a special member, and with a very simple configuration, vibration caused by vortex excitation, bending vibration, An object of the present invention is to provide a girder-type bridge that reduces torsional vibrations and prevents the occurrence of vehicle operation troubles.

本発明はかかる目的を達成するもので、床板の下面に複数の主桁を固定してなる桁式橋梁において、前記主桁は、ウェブの高さ方向中間部の外側面に制御板を突設し、該制御板の下面と前記ウェブの外側面とに囲まれた空間に該主桁の下部周辺を流れる空気流により負圧を形成し該負圧により前記空気流を整流可能に構成したことを特徴とする。
ここで、前記制御板は前記ウェブから水平方向に突設するのが好ましいが、該制御板の先端の位置を水平方向に設ける場合と同一位置とした上で、該先端から前記ウェブの外側面へとある程度傾斜させて設けてもよい。
The present invention achieves such an object. In a girder-type bridge in which a plurality of main girders are fixed to the lower surface of a floor board, the main girder is provided with a control plate projecting on the outer side surface of the intermediate portion in the height direction of the web. In the space surrounded by the lower surface of the control plate and the outer surface of the web, a negative pressure is formed by the air flow flowing around the lower part of the main girder, and the air flow can be rectified by the negative pressure. It is characterized by.
Here, it is preferable that the control plate protrudes in the horizontal direction from the web. However, the position of the front end of the control plate is the same as that provided in the horizontal direction, and the outer surface of the web extends from the front end. You may incline to a certain extent.

かかる発明によれば、主桁の下方をほぼ水平方向に吹き抜ける風(空気流)が、該空気流の上流側に位置する主桁の下方を吹き抜ける際に、該空気流の流速(風速)によって、ウェブの高さ方向中間部の外側面に突設された制御板の下面とウェブの外側面との間に形成される空間の圧力(静圧)が低下して、該空間部及びその近傍に固定渦が形成され負圧が発生する。
かかる負圧によって、主桁の下方を流れる空気流が主桁側に引き寄せられて、下流側の主桁の下方を流れる空気流が整流され滑らかな水平流となる。これにより、下流側の主桁の下流下部における渦流の発生が回避され、該渦流の形成に伴なう渦励振を低減できる。
またかかる発明によれば、前記のように、前記制御板によってウェブの外側面における渦流の形成を防止できるので、該渦流に伴う橋梁の揚力の変動及び該揚力の変動による橋梁の撓み振動や捩り振動を抑制できる。
従って、かかる発明によれば、主桁に強度部材の機能を備えた制御板を装着するというきわめて簡単かつ重量増加を伴わないさらには低コストの手段で以って渦励振による振動及び撓み振動や捩り振動を低減でき、該渦励振による車両の運行障害の発生を防止できる。
According to this invention, when the wind (air flow) blowing through the lower part of the main girder in a substantially horizontal direction blows through the lower part of the main girder located on the upstream side of the air flow, the air flow velocity (wind speed) The pressure (static pressure) of the space formed between the lower surface of the control plate projecting on the outer surface of the intermediate portion in the height direction of the web and the outer surface of the web decreases, and the space portion and its vicinity A fixed vortex is formed on the surface and negative pressure is generated.
By such negative pressure, the air flow flowing under the main girder is drawn toward the main girder, and the air flow flowing under the main girder on the downstream side is rectified to become a smooth horizontal flow. Thereby, generation | occurrence | production of the vortex | eddy_current in the lower downstream part of the downstream main girder is avoided, and the eddy excitation accompanying the formation of this vortex | eddy_current can be reduced.
According to the invention, as described above, the control plate can prevent the formation of vortex on the outer surface of the web. Therefore, the fluctuation of the lift of the bridge caused by the vortex and the bending vibration and torsion of the bridge due to the fluctuation of the lift. Vibration can be suppressed.
Therefore, according to such an invention, vibrations caused by vortex excitation and flexural vibrations can be achieved by a very simple and low-cost means of attaching a control plate having a function of a strength member to the main girder. Torsional vibration can be reduced, and vehicle operation failure due to the vortex excitation can be prevented.

尚、かかる発明において、次の2つの手段のように構成すれば、前記渦励振の低減効果がより顕著に得られる。
即ち第1の手段は、前記制御板は、該制御板の先端と前記ウェブの下端とを結ぶ線と水平線との成す角度(α)が45°±5°に形成される。
第2の手段は、前記制御板の前記ウェブの外側面からの突出長さ(L)と橋梁の床板の幅(B)との比(L/B)を、L/B=3%〜8%に形成する。
発明者らのシミュレーション計算により前記制御板の前記突出長さ(L)と前記床板の幅(B)との比(L/B)と主桁の渦励振の振幅との関係を算出した結果、前記L/B=3%〜8%の範囲において前記渦励振の振幅が許容振幅A以下となり、良好な渦励振低減効果が得られる。
また、かかる発明において、前記主桁を3個以上備えた前記桁式橋梁では、3個以上の主桁のうち両外側の主桁のみに前記制御板を突設すれば、前記と同様な渦励振の低減効果が得られるので、最少限の装備で所要の渦励振低減効果を得ることができる。
In this invention, if the following two means are used, the effect of reducing the vortex excitation can be obtained more remarkably.
That is, the first means is that the control plate is formed such that an angle (α) formed by a line connecting the tip of the control plate and the lower end of the web and a horizontal line is 45 ° ± 5 °.
The second means sets the ratio (L / B) between the length (L) of the control plate protruding from the outer surface of the web and the width (B) of the bridge floor plate, L / B = 3% to 8 % To form.
As a result of calculating the relationship between the ratio (L / B) of the protrusion length (L) of the control plate and the width (B) of the floor plate and the amplitude of vortex excitation of the main girder by the inventors' simulation calculation, In the range of L / B = 3% to 8%, the amplitude of the vortex excitation becomes an allowable amplitude A0 or less, and a good vortex excitation reduction effect can be obtained.
In the invention, in the girder type bridge having three or more main girders, if the control plate protrudes only on the outer main girders of the three or more main girders, the vortex similar to the above is provided. Since the excitation reduction effect is obtained, the required vortex excitation reduction effect can be obtained with a minimum of equipment.

また本発明は、床板の下面に複数の主桁を固定してなる桁式橋梁において、隣合う前記主桁のウェブの間に、内部を空気が通過可能な連通管を架設し、前記主桁の上流側の空気を前記連通管内を通して主桁の下流側に通流するように構成したことを特徴とする。
かかる発明によれば、主桁の上流側の空気が前記連通管内を通して主桁の下流側に通流する際に、前記ウェブの外側の連通管空気出口近傍に形成されている渦が、前記連通管出口の空気流に巻き込まれる、これにより、前記ウェブの外側に空気の渦が形成され難くなる。
またかかる発明によれば、前記主桁のウェブの間に連通管を架設したので、該主桁の剛性が大きくなって、捩りの固有振動数が高風速側にずれて空気流との共振の発生を回避できる。
従って、かかる発明によれば、主桁のウェブの間に強度部材の機能を備えた連通管を装着するというきわめて簡単かつ低コストの手段で以って渦の発生を抑制でき、渦励振による車両の運行障害の発生を防止できる。
Further, the present invention provides a girder-type bridge in which a plurality of main girders are fixed to the lower surface of a floor board, and a communication pipe through which air can pass is installed between adjacent webs of the main girders. It is configured that the air on the upstream side of the gas flows through the inside of the communication pipe to the downstream side of the main girder.
According to this invention, when air on the upstream side of the main girder flows through the inside of the communication pipe to the downstream side of the main girder, a vortex formed in the vicinity of the communication pipe air outlet outside the web is Entrained in the air flow at the tube outlet, this makes it difficult to form air vortices on the outside of the web.
According to the invention, since the communication pipe is installed between the main girder webs, the rigidity of the main girder increases, the torsional natural frequency shifts to the high wind speed side, and resonance with the air flow occurs. Occurrence can be avoided.
Therefore, according to this invention, the generation of vortices can be suppressed by a very simple and low-cost means of installing the communication pipe having the function of the strength member between the webs of the main girders. Can be prevented from occurring.

また本発明は、床板の下面に複数の主桁を固定してなる桁式橋梁において、隣合う前記主桁のウェブの間に、内部を空気が通過可能な連通管を架設して前記主桁の上流側の空気を前記連通管内を通して主桁の下流側に通流するように構成するとともに、前記主桁のウェブの高さ方向中間部の外側面に制御板を突設して該制御板の下面と前記ウェブの外側面とに囲まれた空間に該主桁の下部周辺を流れる空気流により負圧を形成し該負圧により前記空気流を整流可能に構成したことを特徴とする。
かかる発明において、好ましくは、前記連通管を前記ウェブにおける前記制御板の上側部位に設けるとともに、前記制御板の先端と前記ウェブの下端とを結ぶ線と水平線との成す角度(α)を45°±5°に形成する。
Further, the present invention provides a girder-type bridge in which a plurality of main girders are fixed to the lower surface of a floor board, and a communication pipe that allows air to pass therethrough is installed between adjacent webs of the main girders. And a control plate is provided on the outer surface of the intermediate portion in the height direction of the web of the main girder. In the space surrounded by the lower surface of the web and the outer side surface of the web, a negative pressure is formed by the air flow flowing around the lower part of the main girder, and the air flow can be rectified by the negative pressure.
In this invention, preferably, the communication pipe is provided at an upper portion of the control plate in the web, and an angle (α) formed by a line connecting a front end of the control plate and a lower end of the web and a horizontal line is 45 °. Form at ± 5 °.

かかる発明によれば、前記連通管の設置と制御板の設置とを組み合わせた相乗効果を得ることができる。
即ち、かかる発明によれば、
(1)主桁の上流側の空気が連通管内を通して主桁の下流側に通流する際に、前記ウェブの外側の連通管空気出口近傍に形成されている渦が前記連通管出口の空気流に巻き込まれることによりウェブの外側に空気の渦が形成され難くなる。また前記主桁のウェブの間に連通管を架設したことにより該主桁の剛性が大きくなって、捩りの固有振動数が高風速側にずれて空気流との共振の発生を回避できる。
(2)制御板の下面近傍に発生する負圧によって、主桁の下方を流れる空気流が主桁側に引き寄せられて、下流側の主桁の下方を流れる空気流が整流され滑らかな水平流となる。これにより、下流側の主桁の下流下部における渦流の発生が回避され、該渦流の形成に伴なう渦励振を低減できる。
According to this invention, the synergistic effect which combined installation of the said communicating pipe and installation of a control board can be acquired.
That is, according to this invention,
(1) When air on the upstream side of the main girder flows through the communication pipe to the downstream side of the main girder, a vortex formed in the vicinity of the communication pipe air outlet on the outside of the web causes air flow at the communication pipe outlet. It becomes difficult for air vortices to be formed on the outside of the web. Further, since the communication pipe is installed between the main girder webs, the rigidity of the main girder is increased, and the natural frequency of torsion is shifted to the high wind speed side, thereby avoiding the occurrence of resonance with the air flow.
(2) The negative pressure generated in the vicinity of the lower surface of the control plate attracts the airflow flowing below the main girder to the main girder, and the airflow flowing below the main girder on the downstream side is rectified to provide a smooth horizontal flow It becomes. Thereby, generation | occurrence | production of the vortex | eddy_current in the lower downstream part of the downstream main girder is avoided, and the eddy excitation accompanying the formation of this vortex | eddy_current can be reduced.

さらにかかる発明は、床板の両側上面に鋼製の高欄を立設してなる鋼製高欄を備えた桁式橋梁に用いれば、該鋼製高欄と前記制御板とを組み合わせることにより、他の高欄の場合よりも渦励振の低減効果が大きくなることが、発明者らの実験によって確認されている。   Further, when the invention is used for a girder type bridge having a steel rail that is formed by standing steel rails on both upper surfaces of the floor plate, by combining the steel rail and the control plate, It has been confirmed by experiments by the inventors that the effect of reducing vortex excitation is greater than in the case of the above.

本発明によれば、空気流が上流側に位置する主桁の下方を吹き抜ける際に、該空気流の流速(風速)によって、ウェブの高さ方向中間部の外側面に突設された制御板の下面とウェブの外側面との間に形成される空間部及びその近傍に固定渦が形成され負圧が発生し、この負圧によって、主桁の下方を流れる空気流が主桁側に引き寄せられて、下流側の主桁の下方を流れる空気流が整流され滑らかな水平流となる。
これにより、下流側の主桁の下流下部における渦流の発生が回避され、該渦流の形成に伴なう渦励振、撓み振動や捩り振動を低減できて、主桁に強度部材の機能を備えた制御板を装着するというきわめて簡単かつ重量増加を伴うことなくさらには低コストの手段で以って渦励振を低減でき、該渦励振による車両の運行障害の発生を防止できる。
According to the present invention, when the air flow blows under the main girder located upstream, the control plate is provided on the outer surface of the intermediate portion in the height direction of the web by the flow velocity (wind velocity) of the air flow. A fixed vortex is formed in the space formed between the lower surface of the web and the outer surface of the web and in the vicinity thereof, and negative pressure is generated. By this negative pressure, the air flow flowing under the main girder is attracted to the main girder side. Thus, the air flow flowing under the main girder on the downstream side is rectified and becomes a smooth horizontal flow.
As a result, generation of vortex in the lower part of the downstream main girder is avoided, and vortex excitation, bending vibration and torsional vibration associated with the formation of the vortex can be reduced, and the main girder has a function of a strength member. The vortex excitation can be reduced by means of a very simple and low-cost means of mounting the control plate and not accompanied by an increase in weight, and the occurrence of a vehicle operation failure due to the vortex excitation can be prevented.

また、本発明によれば、主桁の上流側の空気が連通管内を通して主桁の下流側に通流する際に、ウェブの外側の連通管空気出口近傍に形成されている渦が、連通管出口の空気流に巻き込まれ、前記ウェブの外側に空気の渦が形成され難くなるとともに、主桁のウェブの間に連通管を架設したことにより、該主桁の剛性が大きくなって、捩りの固有振動数が高風速側にずれて空気流との共振の発生を回避できる。これにより、主桁のウェブの間に強度部材の機能を備えた連通管を装着するという、きわめて簡単かつ低コストの手段で以って渦の発生を抑制でき、渦励振による車両の運行障害の発生を防止できる。   Further, according to the present invention, when the air on the upstream side of the main girder flows through the communication pipe to the downstream side of the main girder, the vortex formed in the vicinity of the communication pipe air outlet outside the web is It is difficult to form an air vortex outside the web because it is caught in the air flow at the outlet, and the communication pipe is installed between the main girder webs to increase the rigidity of the main girder and It is possible to avoid the occurrence of resonance with the air flow because the natural frequency shifts to the high wind speed side. This makes it possible to suppress the generation of vortices by a very simple and low-cost means of installing a communication pipe having the function of a strength member between the webs of the main girder. Occurrence can be prevented.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は本発明の第1実施例に係る桁式橋梁の要部正面図である。図2は前記第1実施例の作用比較図で、(A)は従来技術、(B)は本発明を示す。図3は前記第1実施例における制御板取付角と振動振幅の関係線図である。図4(A)、(B)は前記第1実施例における制御板長さと振動振幅の関係線図及び説明図である。図5は本発明の第2実施例に係る桁式橋梁の要部正面図である。
また、図6は本発明の第3実施例を示す図1対応図である。図7は本発明の第4実施例を示す図1対応図、図8は前記第4実施例における要部斜視図である。
FIG. 1 is a front view of an essential part of a girder bridge according to a first embodiment of the present invention. 2A and 2B are operation comparison diagrams of the first embodiment, wherein FIG. 2A shows the prior art and FIG. 2B shows the present invention. FIG. 3 is a relationship diagram between the control plate mounting angle and the vibration amplitude in the first embodiment. 4A and 4B are a relationship diagram and an explanatory diagram of the control plate length and the vibration amplitude in the first embodiment. FIG. 5 is a front view of an essential part of a girder bridge according to a second embodiment of the present invention.
FIG. 6 is a view corresponding to FIG. 1 showing a third embodiment of the present invention. FIG. 7 is a view corresponding to FIG. 1 showing a fourth embodiment of the present invention, and FIG. 8 is a perspective view of an essential part in the fourth embodiment.

第1実施例を示す図1において、1は上面に車両が通過する車道が設けられる床板、2は該床板1の下面に固定された複数(この例では2個)の主桁、7は該床板1の両端に立設された高欄である。前記主桁2は前記床板1の下面に固定される水平な上部フランジ3、該上部フランジ3の下面に固定されて鉛直方向に延びるウェブ5、及び該ウェブ5の下端に固定された下部フランジ6、さらには前記ウェブ5の高さ方向中間部の外側面に突設された制御板4により構成されている。
前記床板には鋼床板が好適であるが、PC(コンクリート)床板、合成床板等も用いることができる。
前記制御板4は、図1に示されるように、該制御板4の先端と前記ウェブ5の下端5aとを結ぶ線と水平線との成す角度(取付角)αが、後述する根拠により45°±5°になるように、前記ウェブ5に突設されている。
ここで、前記制御板4は、図1のように、前記ウェブ5の外側面から水平方向に突設するのが好ましいが、該制御板4の先端の位置を前記の水平方向に設ける場合と同一位置とした上で、該先端から前記ウェブ5の外側面へとある程度傾斜させて設けてもよい。
また、図4(B)に示すように、前記制御板4の前記ウェブ5の外側面からの突出長さLと橋梁の床板1の幅Bとの比L/Bが、後述する根拠によりL/B=3%〜8%になるように構成する(尚、図4(B)において、図1と同一部材は同一符号で示す)。
In FIG. 1 showing the first embodiment, 1 is a floor plate on which the roadway through which the vehicle passes is provided, 2 is a plurality (two in this example) main girders fixed to the lower surface of the floor plate 1, and 7 is the It is a handrail erected on both ends of the floor board 1. The main girder 2 includes a horizontal upper flange 3 fixed to the lower surface of the floor plate 1, a web 5 fixed to the lower surface of the upper flange 3 and extending in the vertical direction, and a lower flange 6 fixed to the lower end of the web 5. Furthermore, the web 5 is constituted by a control plate 4 protruding from the outer side surface of the intermediate portion in the height direction.
The floor board is preferably a steel floor board, but a PC (concrete) floor board, a synthetic floor board, or the like can also be used.
As shown in FIG. 1, the control plate 4 has an angle (mounting angle) α formed by a line connecting the front end of the control plate 4 and the lower end 5a of the web 5 and a horizontal line of 45 ° on the basis described later. The web 5 is projected so as to be ± 5 °.
Here, as shown in FIG. 1, the control plate 4 preferably protrudes horizontally from the outer surface of the web 5, but the position of the tip of the control plate 4 is provided in the horizontal direction. You may provide it inclining to some extent from this front-end | tip to the outer surface of the said web 5, after setting it as the same position.
Further, as shown in FIG. 4B, the ratio L / B between the protruding length L of the control plate 4 from the outer surface of the web 5 and the width B of the bridge floor plate 1 is L on the basis described later. / B = 3% to 8% (in FIG. 4B, the same members as those in FIG. 1 are denoted by the same reference numerals).

かかる第1実施例において、図2(A)に示される従来技術においては、主桁2の下方をほぼ水平方向に吹き抜ける風(空気流)Vによって、下流側のウェブ5の下流下部に発生する渦流Wによって渦励振が発生し、かかる渦励振と主桁2の固有振動数との共振によって、床板1上方の車道を走行する車両に運行障害の発生をもたらす。
これに対して、図2(B)に示される本発明の実施例(第1実施例)においては、前記主桁2の下方をほぼ水平方向に吹き抜ける風(空気流)Vが該空気流Vの上流側に位置する主桁2の下方を吹き抜ける際に、該空気流Vの流速(風速)によって、ウェブ5の高さ方向中間部の外側面に突設された前記制御板4の下面とウェブ5の外側面との間に形成される空間部2aの圧力(静圧)が低下して、該空間部2a及びその近傍に固定渦Uが形成され負圧が発生する。
In the first embodiment, in the prior art shown in FIG. 2 (A), a wind (air flow) V blown substantially horizontally below the main girder 2 is generated in the lower part of the downstream web 5. The eddy current W generates vortex excitation, and the resonance between the vortex excitation and the natural frequency of the main girder 2 causes an operation failure to the vehicle traveling on the roadway above the floor plate 1.
On the other hand, in the embodiment (first embodiment) of the present invention shown in FIG. 2 (B), the wind (air flow) V blown substantially horizontally below the main girder 2 is the air flow V. The lower surface of the control plate 4 projecting from the outer surface of the intermediate portion in the height direction of the web 5 by the flow velocity (wind velocity) of the air flow V when blowing through the lower part of the main girder 2 located on the upstream side of the web 5 The pressure (static pressure) of the space portion 2a formed between the web 5 and the outer surface is reduced, and a fixed vortex U is formed in the space portion 2a and the vicinity thereof to generate a negative pressure.

そして、かかる第1実施例においては、前記空間部2a及びその近傍に発生する負圧によって、主桁2の下方を流れる空気流Vが主桁2側に引き寄せられて、下流側の主桁2の下方を流れる空気流Vが整流され滑らかな水平流となる。これにより、前記従来技術のような、下流側の主桁2の下流下部における渦流Wの発生が回避され、該渦流Wの形成に伴なう渦励振を低減できる。
従って、かかる第1実施例によれば、前記制御板4は主桁2の強度部材の機能も備える下部フランジの役割を有することから、該主桁2に強度部材の機能を備えた制御板4を装着するというきわめて簡単かつ重量の増加を伴うことなくさらには低コストの手段で以って渦励振を低減することが可能となり、該渦励振による車両の運行障害の発生を防止できる。
なお、制御板は主桁の強度部材機能も備える(下部フランジの役割を有する)ことから、製品コストの増大を伴うことはない。
また、送り出し架設を行う場合には、制御板が主桁ウェブの座屈補強の役割を果たす結果となり合理的である。
In the first embodiment, the air flow V flowing below the main girder 2 is drawn to the main girder 2 side by the negative pressure generated in the space 2a and the vicinity thereof, and the main girder 2 on the downstream side is drawn. The air flow V flowing below is rectified into a smooth horizontal flow. As a result, the generation of the vortex W in the downstream lower portion of the downstream main girder 2 as in the prior art is avoided, and the vortex excitation accompanying the formation of the vortex W can be reduced.
Therefore, according to the first embodiment, the control plate 4 has the role of a lower flange having the function of the strength member of the main girder 2, so that the control plate 4 having the function of the strength member in the main girder 2 is provided. It is possible to reduce the vortex excitation by using a very simple and low-cost means without attaching a weight to the vehicle, and it is possible to prevent the occurrence of a vehicle operation failure due to the vortex excitation.
Note that the control plate also has the strength member function of the main girder (having the role of the lower flange), so there is no increase in product cost.
In addition, in the case of carrying out the delivery construction, it is reasonable that the control plate plays a role of buckling reinforcement of the main girder web.

さらに、前記床板1の両側上面に鋼製の高欄7を立設してなる鋼製高欄を備えた桁式橋梁に前記実施例を適用すれば、該鋼製高欄7と前記制御板4とを組み合わせることにより、他の高欄の場合よりも渦励振の低減効果が大きくなることを、発明者らの実験によって確認している。   Furthermore, if the said Example is applied to the girder type bridge | bridging provided with the steel rail 7 by standing up the steel rail 7 on the both-sides upper surface of the said floor board 1, this steel rail 7 and the said control board 4 will be provided. It has been confirmed by experiments by the inventors that the effect of reducing vortex excitation is greater than that of the other handrails when combined.

ここで、図3は発明者らの実験により得られた前記制御板4の取付角α(図1参照)と主桁2の渦励振の振幅との関係を示す線図である。図に明らかなように、前記制御板4の取付角αが45°近傍において該制御板4の効果が大きく渦励振の振幅が最小となる。従って前記制御板4の取付角αは、45°近傍の45°±5°が好適となる。
また、図4(A)は発明者らのシミュレーション計算により得られた、制御板4の前記突出長さLと前記床板1の幅との比L/Bと主桁2の渦励振の振幅との関係を示す線図である。図に明らかなように、前記L/B=3%〜8%の範囲において前記渦励振の振幅が許容振幅A以下となる。従って、前記突出長さLと床板1の幅Bとの比L/B=3%〜8%が好適となる。
Here, FIG. 3 is a diagram showing the relationship between the mounting angle α (see FIG. 1) of the control plate 4 and the amplitude of vortex excitation of the main beam 2 obtained by the inventors' experiment. As is apparent from the figure, when the mounting angle α of the control plate 4 is around 45 °, the effect of the control plate 4 is large and the amplitude of vortex excitation is minimized. Accordingly, the mounting angle α of the control plate 4 is preferably 45 ° ± 5 ° in the vicinity of 45 °.
4A shows the ratio L / B between the protrusion length L of the control plate 4 and the width of the floor plate 1 and the amplitude of the vortex excitation of the main girder 2 obtained by the inventors' simulation calculation. It is a diagram which shows the relationship of these. As is apparent in FIG., The amplitude of the vortex-induced vibration is allowable amplitude A 0 or less at the L / B = 3% ~8% range. Therefore, a ratio L / B = 3% to 8% of the protruding length L and the width B of the floor board 1 is suitable.

また、前記のように、主桁2の下流側に渦流が形成されると該渦流により橋梁100に揚力の変動が発生し、かかる揚力の変動によって橋梁100に撓み振動や捩り振動が発生する。
然るにかかる第1実施例によれば、前記制御板4によってウェブ5の外側面における渦流の形成を防止できるので、該渦流に伴う橋梁100の揚力の変動を防止できることとなり、これにより該揚力の変動による橋梁100の撓み振動や捩り振動を抑制できる。
Further, as described above, when a vortex is formed on the downstream side of the main girder 2, a fluctuation in lift occurs in the bridge 100 due to the vortex, and a bending vibration and a torsional vibration occur in the bridge 100 due to the fluctuation in the lift.
However, according to the first embodiment, since the control plate 4 can prevent the formation of vortex on the outer surface of the web 5, it is possible to prevent the fluctuation of the lift of the bridge 100 due to the vortex and thereby the fluctuation of the lift. It is possible to suppress bending vibration and torsional vibration of the bridge 100 due to the above.

図5に示される本発明の第2実施例においては、前記主桁2を4個(3個以上であればよい)備えた桁式橋梁において、該主桁2のうち両外側の主桁のみに前記制御板4を突設し、内側の主桁2には該制御板4を設けていない。即ち、前記主桁2が3個以上の桁式橋梁においては、両外側の主桁2のみに前記制御板4を突設すれば、所要の渦励振の低減効果が得られる。   In the second embodiment of the present invention shown in FIG. 5, in the girder-type bridge having four (3 or more) main girder 2, only the main girder on both outer sides of the main girder 2 is used. The control plate 4 is provided in a protruding manner, and the control plate 4 is not provided on the inner main beam 2. That is, in the girder type bridge having three or more main girders 2, if the control plate 4 protrudes only on the main girders 2 on both outer sides, the required effect of reducing vortex excitation can be obtained.

第3実施例を示す図6において、1は上面に車両が通過する車道が設けられる床板、2は該床板1の下面に固定された複数(この例では2個)の主桁、7は該床板1の両端に立設された高欄である。前記主桁2は前記床板1の下面に固定される水平な上部フランジ3、該上部フランジ3の下面に固定されて鉛直方向に延びるウェブ5、及び該ウェブ5の下端に固定された下部フランジ6、さらには隣合う前記ウェブ5の高さ方向中間部に架設された連通管10により構成されている。
前記連通管10は、上流側のウェブ5から流入した空気流Sが該連通管10の内部を通過して下流側ウェブ5へと流出するように形成され、図8に示されるように、橋梁の長手方向(車両の走行方向)に沿って複数個設置されている。
In FIG. 6 showing the third embodiment, 1 is a floor plate on which the roadway through which the vehicle passes is provided, 2 is a plurality (two in this example) main girders fixed to the lower surface of the floor plate 1, and 7 is the It is a handrail erected on both ends of the floor board 1. The main girder 2 includes a horizontal upper flange 3 fixed to the lower surface of the floor plate 1, a web 5 fixed to the lower surface of the upper flange 3 and extending in the vertical direction, and a lower flange 6 fixed to the lower end of the web 5. In addition, it is constituted by a communication pipe 10 installed in the intermediate portion in the height direction of the adjacent webs 5.
The communication pipe 10 is formed such that the air flow S flowing in from the upstream web 5 passes through the communication pipe 10 and flows out to the downstream web 5, and as shown in FIG. Are installed along the longitudinal direction of the vehicle (the traveling direction of the vehicle).

かかる第3実施例によれば、主桁2の上流側の空気が前記連通管10内を通して該主桁2の下流側に通流する際に、前記連通管10下流側のウェブ5の連通管10空気出口近傍に形成されている渦が、エジェクタ効果によって前記連通管10出口を流れる空気流Sに巻き込まれる。これにより、前記連通管10出口近傍に空気の渦が形成され難くなる。
また第3実施例によれば、前記主桁2のウェブ5、5の間に連通管10を架設したので、該主桁2の剛性,特に捩り剛性が大きくなって、捩りの固有振動数が高風速側にずれる。これにより、該主桁2と空気流Sとの共振の発生を回避できる。
According to the third embodiment, when the air on the upstream side of the main beam 2 flows through the communication tube 10 to the downstream side of the main beam 2, the communication tube of the web 5 on the downstream side of the communication tube 10. The vortex formed in the vicinity of the 10 air outlet is entrained in the air flow S flowing through the outlet of the communication pipe 10 by the ejector effect. Thereby, it becomes difficult to form an air vortex in the vicinity of the outlet of the communication pipe 10.
According to the third embodiment, since the communication pipe 10 is installed between the webs 5 and 5 of the main girder 2, the rigidity of the main girder 2, in particular, the torsional rigidity is increased, and the natural frequency of torsion is increased. Shift to high wind speed side. Thereby, the occurrence of resonance between the main beam 2 and the air flow S can be avoided.

図7〜図8に示される第4実施例は、図1に示される第1実施例と図6に示される第3実施例とを組み合わせたものである。
即ち、図7〜8において、1は上面に車両が通過する車道が設けられる床板、2は該床板1の下面に固定された複数(この例では2個)の主桁、7は該床板1の両端に立設された高欄である。前記主桁2は前記床板1の下面に固定される水平な上部フランジ3、該上部フランジ3の下面に固定されて鉛直方向に延びるウェブ5、及び該ウェブ5の下端に固定された下部フランジ6、さらには前記ウェブ5の高さ方向中間部の外側面に突設された制御板4により構成されている。
前記制御板4は、図1に示されるように、該制御板4の先端と前記ウェブ5の下端5aとを結ぶ線と水平線との成す角度(取付角)αが、後述する根拠により45°±5°になるように、前記ウェブ5に突設されている。
前記制御板4の要目、構造等は図1〜図4の第1実施例と同様である。
The fourth embodiment shown in FIGS. 7 to 8 is a combination of the first embodiment shown in FIG. 1 and the third embodiment shown in FIG.
That is, in FIGS. 7 to 8, 1 is a floor plate on which a roadway through which a vehicle passes is provided, 2 is a plurality of (two in this example) main girders fixed to the lower surface of the floor plate 1, and 7 is the floor plate 1. It is a railing erected on both ends of the. The main girder 2 includes a horizontal upper flange 3 fixed to the lower surface of the floor plate 1, a web 5 fixed to the lower surface of the upper flange 3 and extending in the vertical direction, and a lower flange 6 fixed to the lower end of the web 5. Furthermore, the web 5 is constituted by a control plate 4 protruding from the outer side surface of the intermediate portion in the height direction.
As shown in FIG. 1, the control plate 4 has an angle (mounting angle) α formed by a line connecting the front end of the control plate 4 and the lower end 5a of the web 5 and a horizontal line of 45 ° on the basis described later. The web 5 is projected so as to be ± 5 °.
The main points, structure, etc. of the control plate 4 are the same as those of the first embodiment shown in FIGS.

また、10は隣合う前記ウェブ5の高さ方向中間部に架設された連通管10である。前記連通管10は、前記ウェブ5の前記制御板4の上側に設置され、上流側のウェブ5から流入した空気流Sが該連通管10の内部を通過して下流側ウェブ5へと流出するように形成され、図8に示されるように、橋梁の長手方向(車両の走行方向)に沿って複数個設置されている。   Reference numeral 10 denotes a communication pipe 10 installed in the middle in the height direction of the adjacent webs 5. The communication pipe 10 is installed on the upper side of the control plate 4 of the web 5, and the air flow S flowing from the upstream web 5 passes through the communication pipe 10 and flows out to the downstream web 5. As shown in FIG. 8, a plurality of bridges are installed along the longitudinal direction of the bridge (traveling direction of the vehicle).

かかる第4実施例によれば、前記連通管10の設置と制御板4の設置とを組み合わせた相乗効果を得ることができる。即ち、かかる第4実施例によれば、前記主桁2の上流側の空気が前記連通管10内を通して該主桁2の下流側に通流する際に、前記連通管10下流側のウェブ5の連通管10空気出口近傍に形成されている渦が、エジェクタ効果によって前記連通管10出口を流れる空気流Sに巻き込まれる、これにより、前記連通管10出口近傍に空気の渦が形成され難くなる。
また前記主桁2のウェブ5、5の間に連通管10を架設したので、該主桁2の剛性,特に捩り剛性が大きくなって、捩りの固有振動数が高風速側にずれる。これにより、該主桁2と空気流Sとの共振の発生を回避できる。
According to this 4th Example, the synergistic effect which combined installation of the said communicating pipe 10 and installation of the control board 4 can be acquired. That is, according to the fourth embodiment, when the air on the upstream side of the main girder 2 flows through the communication pipe 10 to the downstream side of the main girder 2, the web 5 on the downstream side of the communication pipe 10 is used. The vortex formed in the vicinity of the air outlet of the communication pipe 10 is engulfed in the air flow S flowing through the outlet of the communication pipe 10 by the ejector effect. This makes it difficult to form an air vortex in the vicinity of the outlet of the communication pipe 10. .
Further, since the communication pipe 10 is installed between the webs 5 and 5 of the main girder 2, the rigidity of the main girder 2, in particular, the torsional rigidity increases, and the natural frequency of torsion shifts to the high wind speed side. Thereby, the occurrence of resonance between the main beam 2 and the air flow S can be avoided.

またかかる第4実施例によれば、前記制御板4を設置したことにより、前記第1実施例と同様に、該制御板4の下面近傍に発生する負圧によって、主桁2の下方を流れる空気流Vが主桁2側に引き寄せられることにより、下流側の主桁2の下方を流れる空気流が整流され滑らかな水平流となる。これにより、下流側の主桁2の下流下部における渦流の発生が回避され、該渦流の形成に伴なう渦励振を低減できる。   Further, according to the fourth embodiment, since the control plate 4 is installed, the negative flow generated near the lower surface of the control plate 4 flows under the main girder 2 as in the first embodiment. When the air flow V is attracted to the main beam 2 side, the air flow flowing below the downstream main beam 2 is rectified and becomes a smooth horizontal flow. Thereby, generation | occurrence | production of the vortex | eddy_current in the lower downstream part of the downstream main girder 2 is avoided, and the vortex excitation accompanying formation of this vortex | eddy_current can be reduced.

本発明によれば、重量増加及び製品コストの増大を伴うことなくかつ格別な部材を設置することなく、きわめて簡単な構成で以って、渦励振による振動、及び撓み振動や捩り振動を低減して、車両の運行障害の発生を防止した桁式橋梁を提供できる。   According to the present invention, vibration due to vortex excitation, bending vibration, and torsional vibration can be reduced with a very simple configuration without increasing the weight and increasing the product cost and without installing any special member. Thus, it is possible to provide a girder bridge that prevents the occurrence of vehicle operation troubles.

本発明の第1実施例に係る桁式橋梁の要部正面図である。It is a principal part front view of the girder type bridge concerning the 1st example of the present invention. 前記第1実施例の作用比較図で、(A)は従来技術、(B)は本発明を示す。In the operation comparison diagram of the first embodiment, (A) shows the prior art and (B) shows the present invention. 前記第1実施例における制御板取付角と振動振幅の関係線図である。It is a relationship diagram of the control board attachment angle and vibration amplitude in the first embodiment. (A)、(B)は前記第1実施例における制御板長さと振動振幅の関係線図及び説明図である。(A), (B) is the relationship diagram and explanatory drawing of the control board length and vibration amplitude in the said 1st Example. 本発明の第2実施例に係る桁式橋梁の要部正面図である。It is a principal part front view of the girder-type bridge which concerns on 2nd Example of this invention. 本発明の第3実施例を示す図1対応図である。FIG. 6 is a view corresponding to FIG. 1 showing a third embodiment of the present invention. 本発明の第4実施例を示す図1対応図である。FIG. 6 is a view corresponding to FIG. 1 showing a fourth embodiment of the present invention. 前記第4実施例における要部斜視図である。It is a principal part perspective view in the said 4th Example. 従来技術を示す図1対応図である。It is a figure corresponding to FIG. 1 which shows a prior art. 従来技術に係る風速と振動振幅の関係線図である。It is a related line figure of the wind speed and vibration amplitude concerning a prior art.

符号の説明Explanation of symbols

100 橋梁
1 床板
2 主桁
3 上部フランジ
4 制御板
5 ウェブ
6 下部フランジ
7 高欄
10 連通管
V,S 空気流
U 固定渦
DESCRIPTION OF SYMBOLS 100 Bridge 1 Floor board 2 Main girder 3 Upper flange 4 Control board 5 Web 6 Lower flange 7 Hand rail 10 Communication pipe V, S Air flow U Fixed vortex

Claims (8)

床板の下面に複数の主桁を固定してなる桁式橋梁において、前記主桁は、ウェブの高さ方向中間部の外側面に制御板を突設し、該制御板の下面と前記ウェブの外側面とに囲まれた空間に該主桁の下部周辺を流れる空気流により負圧を形成し該負圧により前記空気流を整流可能に構成したことを特徴とする桁式橋梁。   In a girder-type bridge in which a plurality of main girders are fixed to the lower surface of a floor plate, the main girder has a control plate projecting from the outer side surface of the intermediate portion in the height direction of the web, and the lower surface of the control plate and the web A girder-type bridge, wherein a negative pressure is formed by an air flow flowing around a lower portion of the main girder in a space surrounded by an outer side surface, and the air flow can be rectified by the negative pressure. 前記主桁を3個以上備えた桁式橋梁において、該主桁のうち両外側の主桁のみに前記制御板を突設したことを特徴とする請求項1記載の桁式橋梁。   2. The girder bridge according to claim 1, wherein the control plate is protruded from only the main girder on both outer sides of the girder bridge having three or more main girder. 前記制御板は、該制御板の先端と前記ウェブの下端とを結ぶ線と水平線との成す角度(α)が45°±5°に形成されてなることを特徴とする請求項1記載の桁式橋梁。   2. The girder according to claim 1, wherein the control plate is formed such that an angle (α) formed between a line connecting a front end of the control plate and a lower end of the web and a horizontal line is 45 ° ± 5 °. Type bridge. 前記制御板の前記ウェブの外側面からの突出長さ(L)と橋梁の床板の幅(B)との比(L/B)を、L/B=3%〜8%に形成したことを特徴とする請求項1記載の桁式橋梁。   The ratio (L / B) between the length (L) of the control plate protruding from the outer surface of the web and the width (B) of the bridge floor plate is L / B = 3% to 8%. The girder-type bridge according to claim 1, wherein 前記桁式橋梁が、床板の両側上面に鋼製の高欄を立設してなる鋼製高欄を備えた桁式橋梁であることを特徴とする請求項1記載の桁式橋梁。   The girder-type bridge according to claim 1, wherein the girder-type bridge is a girder-type bridge having a steel rail that is formed by standing steel rails on both upper surfaces of a floor board. 床板の下面に複数の主桁を固定してなる桁式橋梁において、隣合う前記主桁のウェブの間に、内部を空気が通過可能な連通管を架設し、前記主桁の上流側の空気を前記連通管内を通して主桁の下流側に通流するように構成したことを特徴とする桁式橋梁。   In a girder-type bridge in which a plurality of main girders are fixed to the lower surface of a floor plate, a communication pipe that allows air to pass through is installed between adjacent main girder webs, and air on the upstream side of the main girder The girder-type bridge is configured to flow to the downstream side of the main girder through the communication pipe. 床板の下面に複数の主桁を固定してなる桁式橋梁において、隣合う前記主桁のウェブの間に、内部を空気が通過可能な連通管を架設して前記主桁の上流側の空気を前記連通管内を通して主桁の下流側に通流するように構成するとともに、前記主桁のウェブの高さ方向中間部の外側面に制御板を突設して該制御板の下面と前記ウェブの外側面とに囲まれた空間に該主桁の下部周辺を流れる空気流により負圧を形成し該負圧により前記空気流を整流可能に構成したことを特徴とする桁式橋梁。   In a girder-type bridge in which a plurality of main girders are fixed to the lower surface of a floor plate, a communication pipe that allows air to pass through is installed between adjacent main girder webs, and air upstream of the main girder Through the inside of the communication pipe and to the downstream side of the main girder, and a control plate protrudes from the outer side surface of the web of the main girder in the height direction, and the lower surface of the control plate and the web A girder type bridge in which a negative pressure is formed by an air flow flowing around the lower part of the main girder in a space surrounded by an outer surface of the main girder, and the air flow can be rectified by the negative pressure. 前記連通管を前記ウェブにおける前記制御板の上側部位に設けるとともに、前記制御板の先端と前記ウェブの下端とを結ぶ線と水平線との成す角度(α)を45°±5°に形成してなることを特徴とする請求項7記載の桁式橋梁。
The communication pipe is provided at an upper portion of the web on the control plate, and an angle (α) formed between a line connecting a tip of the control plate and a lower end of the web and a horizontal line is formed at 45 ° ± 5 °. The girder bridge according to claim 7, wherein:
JP2004316842A 2004-07-23 2004-10-29 Girder type bridge Pending JP2006057436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316842A JP2006057436A (en) 2004-07-23 2004-10-29 Girder type bridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004215799 2004-07-23
JP2004316842A JP2006057436A (en) 2004-07-23 2004-10-29 Girder type bridge

Publications (1)

Publication Number Publication Date
JP2006057436A true JP2006057436A (en) 2006-03-02

Family

ID=36105136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316842A Pending JP2006057436A (en) 2004-07-23 2004-10-29 Girder type bridge

Country Status (1)

Country Link
JP (1) JP2006057436A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899811A (en) * 2010-07-16 2010-12-01 中国计量学院 Method for reducing vortex-induced vibration of bridge span structure
JP2011196052A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method of preventing flying salinity from adhered to girder of plate girder bridge, box girder bridge, and girder bridge
CN102776835A (en) * 2012-08-13 2012-11-14 长安大学 Underwater damper for arched steel tower in construction condition
CN107034780A (en) * 2017-04-13 2017-08-11 华北水利水电大学 A kind of new bridge Vortex-excited vibration control system and its control method
RU177392U1 (en) * 2017-07-31 2018-02-20 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" DEVICE FOR REDUCING THE OVERVIEW OF BRIDGES OF THE BRIDGE DESIGN CAUSED BY THE WIND
CN108221642A (en) * 2018-01-08 2018-06-29 长安大学 Improve the pneumatic structure of bridge H-type bluff body wind induced structural vibration performance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196052A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method of preventing flying salinity from adhered to girder of plate girder bridge, box girder bridge, and girder bridge
CN101899811A (en) * 2010-07-16 2010-12-01 中国计量学院 Method for reducing vortex-induced vibration of bridge span structure
CN101899811B (en) * 2010-07-16 2012-05-23 中国计量学院 Method for reducing vortex-induced vibration of bridge span structure
CN102776835A (en) * 2012-08-13 2012-11-14 长安大学 Underwater damper for arched steel tower in construction condition
CN102776835B (en) * 2012-08-13 2014-11-26 长安大学 Underwater damper for arched steel tower in construction condition
CN107034780A (en) * 2017-04-13 2017-08-11 华北水利水电大学 A kind of new bridge Vortex-excited vibration control system and its control method
CN107034780B (en) * 2017-04-13 2019-04-30 华北水利水电大学 A kind of bridge Vortex-excited vibration control system and its control method
RU177392U1 (en) * 2017-07-31 2018-02-20 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" DEVICE FOR REDUCING THE OVERVIEW OF BRIDGES OF THE BRIDGE DESIGN CAUSED BY THE WIND
CN108221642A (en) * 2018-01-08 2018-06-29 长安大学 Improve the pneumatic structure of bridge H-type bluff body wind induced structural vibration performance
CN108221642B (en) * 2018-01-08 2023-07-21 长安大学 Pneumatic structure for improving wind vibration performance of H-shaped blunt body structure of bridge

Similar Documents

Publication Publication Date Title
CN112064488B (en) Pneumatic adjusting structure for bridge vortex vibration
KR20090021357A (en) Static mixer comprising a couple of blades for generating an angular momentum in the direction of a duct flow
CN206599863U (en) A kind of beam column of steel structure
JP2006057436A (en) Girder type bridge
CA2582282C (en) Self supporting reinforced header
CN111996902B (en) Pneumatic control structure of slotted box girder bridge
CN110306428B (en) Invisible track structure of bridge maintenance vehicle
JP5271497B2 (en) Bridge
JP2003027414A (en) Wind resisting bridge
JP5619594B2 (en) Damping structure of parallel bridge
JP3663700B2 (en) Wind resistant structure
CN210766378U (en) Invisible track structure of bridge maintenance car
JP2002371516A (en) Main girder of cable stayed bridge having main girder constituted of sheet metal girder and installation method therefor
CN218373307U (en) Guide plate assembly for vortex vibration suppression of bilateral I-shaped pi-shaped beam bridge
JP2001288711A (en) Wind resistant-vibration control structure for suspension bridge with no reinforcing steels
JP5291784B2 (en) Bridge design method
CN112853937B (en) Wind vibration suppression device for large-span straight web steel box girder bridge
JP2007269480A (en) Portal crane and vibration control method for portal crane
JP2001172912A (en) Parallel bridge-damping device
CN109024242B (en) A kind of bridge whirlpool vibration control and generating integrated device
KR101239867B1 (en) Moving Prevention Structure for Slab of Grand Bridge
JPH0765292B2 (en) Aerodynamic vibration prevention structure for box girder bridge
CN112681106B (en) Pneumatic structure for inhibiting wind-induced vibration of steel arch bridge
CN110886193B (en) Pneumatic device for controlling vortex vibration of I-shaped superposed beam bridge and using method thereof
JP2010048449A (en) Air conditioning duct

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060809

RD03 Notification of appointment of power of attorney

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A7423