JP2006057263A - 消波工の安定性評価方法及びシステム - Google Patents

消波工の安定性評価方法及びシステム Download PDF

Info

Publication number
JP2006057263A
JP2006057263A JP2004237953A JP2004237953A JP2006057263A JP 2006057263 A JP2006057263 A JP 2006057263A JP 2004237953 A JP2004237953 A JP 2004237953A JP 2004237953 A JP2004237953 A JP 2004237953A JP 2006057263 A JP2006057263 A JP 2006057263A
Authority
JP
Japan
Prior art keywords
wave
dissipating
dimensional
work
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004237953A
Other languages
English (en)
Other versions
JP4518386B2 (ja
Inventor
Shingo Akiyama
真吾 秋山
Takako Fukuyama
貴子 福山
Takeshi Iketani
毅 池谷
Michio Imai
道男 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2004237953A priority Critical patent/JP4518386B2/ja
Publication of JP2006057263A publication Critical patent/JP2006057263A/ja
Application granted granted Critical
Publication of JP4518386B2 publication Critical patent/JP4518386B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】消波工全体の変形量を精確に計測できる安全性評価方法及びシステムを提供する。
【解決手段】相互識別可能な測定視標3が付された消波ブロック2の群の積み上げにより消波工1を構築し、消波工1の近傍の不動とみなせる3以上の既知三次元座標の基準位置Qにそれぞれ相互識別可能な基準視標7を固定する。消波工1に臨む異なる撮影位置Oから測定視標3及び基準視標7が含まれる画像群を撮影し、その画像中の各指標像の二次元座標と基準位置7の既知三次元座標とから基準位置7に対する各撮影位置Oの三次元座標及び撮影姿勢と各測定視標3の三次元座標とを画像計測法により計測し、各測定視標3の三次元座標から消波工1の三次元形状Kを算出する。消波工1に対する外力作用前後における消波工1の三次元形状Kから、その外力に対する消波工1の変形量を算出する。
【選択図】 図1

Description

本発明は消波工の安定性評価方法及びシステムに関し、とくに複数の消波ブロックの積み上げにより構築した消波工の安定性を評価する方法及びシステムに関する。
港湾施設、海上空港、発電所等の沿岸又は水中構造物を構築する場合に、消波ブロックを用いて防波護岸等の消波工を構築することが多い。例えば図6に示すように、水際に沿って設けた基礎マウンド44上にケーソン41を載置して防波堤を築造し、その防波堤の接水面側に様々な形状の消波ブロック2を多段積みに据え付けて消波工1を構築する。水中の防波堤ではその両側に消波工を構築し、または防波堤なしに消波ブロック2のみを積み上げて消波工とする場合もある。消波ブロックによる消波工は、護岸の崩壊防止及び越波の抑制に有効であって修復も比較的容易であるという利点を有するが、他方でブロック同士の噛み合わせや基礎マウンド44の沈下等に伴って据え付け直後から徐々に沈下して変形を生じる。従って、消波工による護岸崩壊防止機能・越波抑制機能を維持するためには、波浪条件等に応じて変形しにくい安定な消波工の出来型を選択すると共に、その変形を継続的に計測して安定性を評価することが重要である。
従来から消波工の出来型形状を計測する方法として、例えば図6の消波工1の肩部分から適当な定規(1.5m長さ程度の木材等)を用いて海面と接していると思われる仮想線(水切り部分)に至る傾斜角度を計測する直接法、消波工1の肩部分及び水切り部分と対応するラインを陸上ポイントに設置してトランシットにより傾斜角度を計測する間接法等が行なわれている。しかし、消波工1の表面は凹凸があって滑りやすいため、消波工1上で機材等を持ち歩く直接法は作業に危険を伴う問題点がある。また、定規やトランシットによる計測は消波工1のどの部分を対象とするかによって作業員毎に計測値が異なってバラツキが生じやすく、客観的な計測値を得にくい問題点もある。
これに対し特許文献1は、直接法及び間接法のような目視による形状計測に代えて、監視用カメラで消波ブロックの移動を検知するシステムを提案している。特許文献1のシステムは、複数のマーカを設けた消波ブロックを監視用カメラで撮影し、その撮影画像を初期画像として記憶すると共に、監視用カメラの監視画像及び初期画像の比較及び特徴抽出によりマーカの移動ベクトル量を計測して予め設定した許容値と比較し、計測したマーカの移動ベクトル量が許容値以上になったことを検出してアラームを発生するものである。監視用カメラで消波ブロック毎の位置ずれを計測することにより、従来の消波工1の変形計測作業に伴う作業時の危険や計測値のバラツキを軽減することが期待できる。
特開2003−057006号公報 特開2002−156229号公報 特許第3530978号公報
しかし特許文献1の消波ブロックの移動検知システムは、固定式の監視カメラによって消波ブロック毎に位置ずれを計測するので、消波工全体の変形を精確に把握できない場合がある。本発明者等の実験及び経験によれば、個別の消波ブロックは大きく転倒・滑動していないにも拘らず、消波工全体が変形して機能に影響を及ぼす場合がある。特許文献1のシステムでは、そのような個別の消波ブロックの移動量は小さいが消波工全体に影響を与えるような変形を適切に検出できないおそれがある。また、監視カメラの位置は地震等によって移動する場合があり得るが、特許文献1のシステムでは監視カメラが移動すると消波ブロックの移動ベクトル量が計測できなくなり、地震等による消波ブロックの変形計測は従来の直接法又は間接法に頼らざるを得ない問題点もある。
そこで本発明の目的は、消波工全体の変形量を精確に計測できる安全性評価方法及びシステムを提供することにある。
本発明者は、従来からトンネルの形状計測又は変位計測等に使用されているバンドル調整を用いた写真測量技術に注目した(特許文献2参照)。写真測量は、対象点Pとその写真(カメラ画像)上の対象点像pとカメラ撮像中心(撮影位置)Oとの3点が一本の直線(撮影方向)上に存在するという幾何学的原理に基づくものであり、撮影位置Oの三次元座標及び撮影姿勢と画像上の対象点像pの二次元座標とから対象点Pの三次元座標を測量するものである。従って写真測量では撮影位置O及び姿勢を標定する必要があり、一般的に既知三次元座標の3以上の基準点Qを画像に写し込み、画像上の基準点像qの二次元座標と基準点Qの既知三次元座標とから撮影位置O及び姿勢を標定している。但し、基準点Qの三次元座標や基準点像qの二次元座標には誤差が含まれるため、実際には必要な数以上の基準点Qを設けて最小二乗法により標定の精度を高める必要がある。バンドル調整法は、単独の画像毎に撮影位置O及び姿勢を標定するのではなく、複数の画像の撮影位置O及び姿勢を最小二乗法によって同時に標定する方法である。
また本発明者は、従来のバンドル調整法では最小二乗法の初期値として画像毎に撮影時の撮影位置O及び姿勢の近似値を必要としていたが、手間のかかる撮影位置O及び姿勢の近似値計測作業を省略して生産性を高めたバンドル調整法が開発されていることに注目した(特許文献3参照)。
バンドル調整を用いた特許文献3の写真測量方法(画像計測方法)を、本発明の理解に必要な限度において、図9のブロック図及び図10の流れ図を用いて説明する。先ず図9(A)に示すように、計測対象50上の複数の計測点Pにそれぞれ相互識別可能な識別視標Taを取り付け、計測対象50上又は近傍の基準点Qに所定相互間隔Lの基準視標群Tbを固定する(図10のステップS001〜S002)。基準視標群Tbの一例は、同図(B)に示すように、同一直線状にない6以上の基準視標Tb1〜Tb6を含むものである。
可搬型のカメラ(以下、撮像機という)10により、異なる位置・姿勢で、基準視標群Tbと3以上の識別視標Taとが共通に写り込み且つ非共通の識別視標Taが含まれる第1画像Ig1及び第2画像Ig2を撮影する(ステップS003)。3以上の共通の識別視標Taを写し込む理由は、その共通識別視標Taを次に撮影する第3画像Ig3にも写し込むことにより、第3画像Ig3の撮影位置及び姿勢の算出を可能とするためである。ステップS004において、第1画像Ig1及び第2画像Ig2を視標像座標検出手段15(図9(A)参照)に入力し、第1及び第2画像Ig1、Ig2内の視標Ta、Tbの像の二次元座標を検出する。ステップS005において、撮影位置・姿勢算出手段16(図9(A)参照)により、視標Ta、Tbの像の二次元座標と基準視標群Tbの所定相互間隔Lとから、基準点Qを原点とする座標系における第1及び第2画像Ig1、Ig2の撮影位置O及び姿勢と、3以上の識別視標Taの三次元座標とを算出する。視標像座標検出手段15及び撮影位置・姿勢算出手段16の一例は、コンピュータ13の内蔵プログラムである。
更に撮像機10を移動させながら、第n画像Ign(nは3以上の自然数)を、その第n画像Ign内に第(n−1)画像Ig(n-1)内の座標算出済の3以上の識別視標Taと座標未算出の識別視標Taとが共通に写り込み且つ第(n−1)画像Ig(n-1)と非共通の識別視標Taが含まれる位置・姿勢で撮影する(ステップS006〜S007)。ステップS008において、第n画像Ignを視標像座標検出手段15に入力し、第(n−1)画像Ig(n-1)及び第n画像Ign内の視標Taの像の二次元座標を検出する。ステップS009において、撮影位置・姿勢算出手段16により、視標Taの像の二次元座標と座標算出済視標Taの三次元座標とから、基準点Qを原点とする座標系における第n画像Ignの撮影位置O及び姿勢と、座標未算出の識別視標Taの三次元座標とを算出する。
図10のステップS006〜S009の繰り返しにより計測対象50上の全ての識別視標Taの三次元座標を算出できるが(ステップS010)、この三次元座標の算出値には誤差が含まれるので、ステップS011においてバンドル調整により各計測点Pの三次元座標の高精度化を図る。すなわち、視標三次元座標算出手段17によって、全画像Ig1、Ig2……Ig(n-1)、Ign……内の視標Taの像の二次元座標と、全画像Ig1、Ig2……Ig(n-1)、Ign……の撮影位置O及び姿勢と、全識別視標Taの三次元座標の算出値とから、バンドル調整により各計測点Pの三次元座標の精確を高める。視標三次元座標算出手段17の一例も、コンピュータ13の内蔵プログラムである。各計測点Pの精確な三次元座標が求まれば、計測対象50の三次元形状を求めることができる。また、各計測点Pの三次元座標を継続的に求めれば、各計測点Pの変位から計測対象50の変形を計測することができる(ステップS012〜S013)。
特許文献2及び3の画像計測方法を消波工に適用すれば、消波工の僅かな変形をも精確に検出することが期待できる。また、撮影位置O及び姿勢を求める必要がなく、可搬型撮像機を移動させながら複数の画像を撮影すれば足りるので、従来の直接法及び間接法に比し作業員の作業及び測量結果のバラツキの軽減が期待できる。本発明は、この知見に基づく更なる開発研究の結果、完成に至ったものである。
図1の実施例を参照するに、本発明の消波工の安定性評価方法は、相互識別可能な測定視標3が付された消波ブロック2の群の積み上げにより消波工1を構築し、消波工1の近傍の不動とみなせる3以上の既知三次元座標の基準位置Qにそれぞれ相互識別可能な基準視標7を固定し、消波工1に臨む異なる撮影位置Oから測定視標3及び基準視標7が含まれる画像群を撮影し、その画像中の各指標像の二次元座標と基準位置Qの既知三次元座標とから基準位置Qに対する各撮影位置Oの三次元座標及び撮影姿勢と各測定視標3の三次元座標とを画像計測法により計測し、各測定視標3の三次元座標から消波工1の三次元形状K(図4参照)を算出し、消波工1に対する外力作用前後における消波工1の三次元形状Kからその外力に対する消波工1の変形量を算出してなるものである。
好ましくは、各消波ブロック2の向きが異なる複数の外面にそれぞれ測定視標3を付す。更に好ましくは、各基準位置Qの既知三次元座標を対地三次元座標とし、消波工1の対地座標系における三次元形状Kを算出する。消波工1の三次元形状Kには、消波工1の天端高さ及び勾配を含めることができる。また、消波工1の構築形状を変えながら所定外力作用前後における消波工1の三次元形状Kの変形量の算出を繰り返すことによりその所定外力に対して安定な消波工1の構築形状を定めることができる。
また図1のブロック図を参照するに、消波工の安定性評価システムは、消波ブロック2の群の積み上げにより構築した消波工1の安定性を評価するシステムにおいて、消波ブロック2の各々に付すべき相互識別可能な測定視標3、消波工1の近傍の不動とみなせる3以上の既知三次元座標の基準位置Qにそれぞれ固定すべき相互識別可能な基準視標7、消波工1に臨む異なる撮影位置Oに移動可能な可搬型撮像機10、各撮影位置Oで撮影した測定視標3及び基準視標7が含まれる画像群を入力してその画像群中の各指標像の二次元座標と基準位置Qの既知三次元座標とから基準位置Qに対する各撮影位置Oの三次元座標及び撮影姿勢と各測定視標3の三次元座標とを計測する画像計測手段21、各測定視標3の三次元座標を入力して消波工1の三次元形状K(図4参照)を算出する形状算出手段26、消波工1の三次元形状Kの算出値を記録する記憶手段25、並びに消波工1に対する外力作用前後の三次元形状Kの算出値を入力してその外力に対する消波工1の変形量を算出する変形量算出手段27を備えてなるものである。
本発明による消波工の安定性評価方法及びシステムは、消波工に臨む異なる撮影位置から撮影した画像群に基づき消波工の三次元形状を求め、消波工に対する外力作用前後における消波工の三次元形状からその外力に対する消波工の変形量を算出するので、次の顕著な効果を奏する。
(イ)個別の消波ブロックが大きく転倒・滑動しない場合でも、消波工全体の変形を精確に検出して安全性を適切に評価できる。
(ロ)可搬型撮像機を移動させながら複数の画像を撮影すれば足り、撮影位置を求める必要がないので、地震時等においても基準指標の三次元座標を更新するだけで消波工の安全性を適切に評価できる。
(ハ)消波工のリアルタイムでの安全性評価に適用できると共に、現地で撮影した消波工の画像を撮影後に解析して消波工の安全性を評価(バッチ式評価)することも可能であり、消波工の安全性評価作業の大幅な簡易化・省力化に寄与できる。
(ニ)従来方法に比し、作業員の危険作業を軽減できると共に、バラツキのない消波工の安全性の客観的評価が可能となる。
(ホ)各消波ブロックの向きが異なる複数の外面にそれぞれ測定視標を付すことにより、個別ブロックの転倒・滑動等の挙動把握にも利用できる。
(ヘ)変形し難い安定な消波工の構築形状の設計、及び構築後の消波工の安全性管理の何れにも適用できる。
(ト)撮影から安全性評価まで全てをコンピュータで処理することができ、消波工の経時的変位データをコンピュータに蓄積保存して随時参照できる。
図1は本発明による消波工1の安定性評価システムの一例のブロック図を示し、図7はそのシステムを用いた消波工1の安定性評価方法の流れ図の一例を示す。図示例の安定性評価システムは、消波ブロック2の各々に付すべき測定視標3と、消波工1の近傍の基準位置Qの各々に固定すべき基準視標7と、デジタルカメラ等の可搬型撮像機10と、コンピュータ20とを有する。消波工1に臨む異なる撮影位置Oに可搬型撮像機10を移動させつつ測定視標3及び基準視標7が含まれる画像群を撮影し、その画像群をコンピュータ20に入力して消波工1の安定性を評価する。図示例のコンピュータ20は、ディスプレイ・プリンタ等の出力手段31と伝送装置32と記憶手段25とを有し、画像計測手段21、形状算出手段26、変形量算出手段27等のプログラム群を内蔵している。
以下、図7の流れ図を参照して、本発明の安定性評価方法を説明する。先ずステップS101において各消波ブロック2に相互識別可能な測定視標3を付し、ステップS102において測定視標3付き消波ブロック2を積み上げて消波工1を構築する。ただし、消波工1の構築後に各消波ブロック2に測定視標3を付して本発明を適用することも可能である。その場合は、各消波ブロック2の撮影に適した外面(例えば、護岸の法線方向から撮影する場合はその法線と交差又は直交する外面)に基準視標7を設けることが望ましい。相互識別可能な測定視標3の一例は、図3(A)に示すドット分布型、又は同図(B)に示す共心型のものである。
図示例のドット分布型の測定視標3は、適当な基盤上に真円、正方形、正三角形等の点対称の6つの平面状識別マーク4O、4A、4B、5a、5b、5cをドットとして配置したものである。各識別マークは光学的に消波ブロック2と識別容易な材料又は色とし、好ましくは基板を光吸収性(例えば黒色)とし、識別マークを光反射性(例えば白色)又は蛍光性とする。測定視標3はボルト止め、セメント等によって消波ブロック2に取り付け可能であるが、コンクリート製の消波ブロック2の場合は、養生期間終了後に黒色ペンキで下塗りした上で白色ペンキにより識別マークを描いて測定視標3としてもよい。測定視標3は、防水性があり且つ海の生物が付着しにくい材質製とすることが望ましい。
また図示例のドット分布型の測定視標3は、6つの識別マークの重心位置から最も遠い3つの識別マーク4O、4A、4Bを各視標3に共通の座標軸とし、残りの3つの識別マーク5a、5b、5cを視標3毎に固有の識別IDとしたものである。例えば後述する視標像の二次元座標の検出処理(ステップS105)において、各測定視標3上の二次元座標軸を識別マーク4O、4A、4Bに基づき定め、識別マーク5a、5b、5cに基づき測定視標3毎にIDを読み取り、座標軸原点である反射素材4Oの座標を測定視標3の二次元位置として検出する。各識別マーク4、5の形状を点対称とすることにより、撮像機10を光軸回りに回転させた画像上での識別を確実に行うことができる。ドット分布型の測定視標3によれば、500〜600の識別コードを容易に作ることができる。ただし測定視標3は図3の例に限定されず、識別コード数が少ない場合は、図2に示すように形状又は番号付けによって各測定視標3を相互に識別可能とすることができる。
各消波ブロック2には少なくとも1個の測定視標3を付せば足りるが、任意の方向から又は消波ブロック2が回転した場合にも測定視標3が撮影できるように、各消波ブロック2の向きが異なる複数の外面にそれぞれ測定視標3を付すことが好ましい。図2(A)及び(B)は、消波ブロック2の各脚部先端にそれぞれ測定視標3を取り付けた例を示す。同図(A)では、消波ブロック2の一部が欠損しても測定視標3が残るように、脚部の付け根部分等にも測定視標3を設けている。消波ブロック2に複数の測定視標3を設けることにより、消波工1の全体の三次元形状だけでなく、ブロック毎の転倒等・滑動等の挙動を把握することも可能となる。
次にステップS103において、消波工1の近傍に施工や基礎地盤の沈下等によって変位を生じない3以上の基準位置Qを定め、その基準位置Qに相互識別可能な基準視標7を固定する。後述する測定視標3の三次元座標算出時(ステップS106)に鉛直方向の精度を向上するためには、各基準位置Qが同一直線上に並ばないように異なる鉛直方向高さとすることが望ましい。図示例では、防波堤の上部工42(図6参照)に複数の鉛直方向高さが異なる基準位置Qを定め、その各々に基準視標7を撮影に適した向き(撮像しやすい向き)で固定している。基準位置Qの相互間隔及び数は、後述する画像撮影時(ステップS104)において各画像中に少なくとも3つの基準視標7が写り込むように適当に選ぶことができる。基準視標7は測定視標3と明確に識別可能なものとすることが望ましいが、図3のドット分布型視標を基準視標7に固有の識別IDとして用いてもよい。各基準視標7の三次元座標を測量(例えばGPS測量等)により求め、図1のコンピュータ20の画像計測手段21又は記憶手段25に記憶する。
ステップS104において、可搬型撮像機10を消波工1に臨む複数の異なる撮影位置Oに移動させながら、基準視標7と測定視標3とが含まれる画像群を撮影する。例えば、各撮影場所Oにおいて、異なる2方向以上から、3以上の基準視標7と適当数の測定視標3とが共通に写り込むように画像対を撮影する。また特許文献3の場合と同様に、先ず初期撮影位置Oにおいて異なる姿勢で3以上の基準視標7と3以上の測定視標3とが共通に写り込み且つ非共通の測定視標3が含まれる第1画像及び第2画像を撮影し、次に第(n−1)画像内の座標算出済の3以上の測定視標3と座標未算出の測定視標3とが共通に写り込み且つ第(n−1)画像と非共通の測定視標3が含まれる撮影位置O及び姿勢に可搬型撮像機10を移動させながら第n画像を撮影するサイクルを繰り返してもよい。図示例では海上から消波工1の画像群を撮影しているが、陸上又は空から撮影することも可能である。撮影した画像群は、コンピュータ20の画像計測手段21に入力するか又は記憶手段25に記憶する。
ステップS105〜S107は、コンピュータ20の画像計測手段21における処理を示す。図示例の画像計測手段21は、視標像座標検出手段22と撮影位置・姿勢算出手段23と視標三次元座標算出手段24とを含む。検出手段22及び算出手段23、24は、図9を参照して上述した視標像座標検出手段15、撮影位置・姿勢算出手段16、及び視標三次元座標算出手段17と同様のものとすることができる。例えばステップS105において視標像座標検出手段22により、3以上の基準視標7と適当数の測定視標3とが共通に写り込んだ画像対内の基準視標像及び測定視標像の二次元座標を検出し、ステップS106において撮影位置・姿勢算出手段23により、各指標像の二次元座標と各基準視標7の三次元座標とから基準位置Qに対するその画像対の撮影位置O及び姿勢と測定視標3の三次元座標とを算出し、ステップS107において視標三次元座標算出手段24により、バンドル調整により各測定視標3の三次元座標の高精度化を図る。また図10の流れ図と同様に、ステップS105において座標算出済の3以上の測定視標3と座標未算出の測定視標3とが共通に写り込んだ画像対内の各指標像の二次元座標を検出し、ステップS106において各指標像の二次元座標と座標算出済測定視標3の三次元座標とから基準位置Qに対するその画像対の撮影位置O及び姿勢と座標未算出測定視標3の三次元座標とを算出し、ステップS107においてバンドル調整により各測定視標3の三次元座標の高精度化を図ってもよい。
その後ステップS108において、バンドル調整後の各測定視標3の三次元座標を形状算出手段26に入力し、形状算出手段26により消波工1の三次元形状Kを算出する。図4は、隣接する測定視標3の三次元座標を相互に線分で結合することにより作成した消波工1の三次元形状Kの一例を示す。各消波ブロック2に複数の測定視標3を設けた場合は、例えば各消波ブロック2上の特定測定視標3の三次元座標を用いて又は各測定視標3の三次元座標に基づく適当な演算値を用いて、消波工1の三次元形状Kを算出することができる。ただし、三次元形状Kの算出方法は図4の例に限定されない。算出した消波工1の三次元形状Kは、コンピュータ20の記憶手段25に記憶する。
ステップS109において消波工1に対する外力作用後であるか否かを判断し、外力作用前であればステップS104へ戻り、外力作用後に上述したステップS104〜S108を繰り返して消波工1の三次元形状Kを算出する。ステップS110において、消波工1に対する外力作用前後の三次元形状Kの算出値を変形量算出手段27に入力し、変形量算出手段27によりその外力に対する消波工1の変形量を算出する。三次元形状Kの変形量を算出することにより、個別の消波ブロック2が大きく転倒・滑動しない場合でも、消波工1の全体の変形を精確に検出して安全性を適切に評価することができる。
図5は、消波ブロック被覆傾斜堤の水理実験模型に本発明を適用し、その水理実験模型である消波工1に造波を作用させ、変形量算出手段27によって造波前後の消波工1の変形量を算出した結果を示す。同図(A)は図4の三次元形状Kにおける黒丸で表した測線のY−Z方向(平面V)の変形量を表し、同図(B)はその測線のX−Z方向(断面W)の変形量を現す。消波ブロック2の最大移動距離はブロック1個程度(16t型ブロックの場合は幅約3.0m)に過ぎず、消波ブロック2が個別に転倒や滑動していないため目視観測では消波工1の変形の検出が困難であったにも拘らず、同図の実験結果から消波工1の法面全体が前方(Z軸方向)にせり出す形で変形していることが分かる。本発明者は、測定視標3の配置や個数、画像群の枚数等によって異なるものの、本発明により撮影距離の数万分の一程度(撮影距離が1mの場合に約0.05mm)の精度で消波工1の変形を検出することができ、従来の目視観察では問題なしと判定されていた消波工1の僅かな変形をも精確に検出可能であることを確認できた。
こうして本発明の目的である「消波工全体の変形量を精確に計測できる安全性評価方法及びシステム」を提供することができる。
なお図7の流れ図では、ステップS106において基準位置Qを原点とする座標系における各測定視標3の三次元座標を算出し、ステップS107〜S108において基準位置Qを原点とする座標系における消波工1の三次元形状K及び変位量を算出しているが、例えばステップS103において各基準位置Qの対地三次元座標を求めて記憶装置25に記憶しておけば、各基準視標7の対地三次元座標を測量して各測定視標3の対地座標系における三次元座標を算出し、消波工1の対地座標系における三次元形状K及び変位量を算出することができる。但し、対地座標系における消波工1の変位量の算出は本発明に必須のものでない。
本発明による安定性評価システムは、消波工1の変形し難い安定な構築形状の設計、及び構築後の消波工の安全性管理の何れにも有効に適用できる。上述したように、消波工1は安定な出来型を設計することはもちろん,安全面・機能面から構築後の消波工1の三次元形状(天端高さ及び勾配等)の変形を追跡して消波工1を管理することが重要である。図8は、本発明を利用した消波工1の設計方法及び管理方法の流れ図の概略を示したものである。
図8のステップS201〜S206は、水理実験模型を用いた消波工1の設計方法を示す。先ず適当な従来方法を用いて消波工1を構築すべき現地の耐波条件(又は耐震条件)を検討し(ステップS201)、その条件に応じて消波ブロック2の種類及び構築する消波工1の天端高さ及び法勾配等を選定して消波工1の水理実験模型を構築する(ステップS202〜S203)。ステップS204において、構築した水理実験模型に条件に応じた所定造波又は振動(外力)を作用させながら本発明システムにより三次元形状Kの変形量を算出し、水理実験模型の安定性を評価する。ステップS205において安定形状検出手段28により、所定外力の作用に対して消波工1が機能を維持できるか否かを判断し、維持できない場合はステップS203へ戻り、消波工1の構築形状を変えながら所定外力の作用前後における消波工1の三次元形状Kの変形量の算出を繰り返す。安定形状検出手段28は、例えば変形後の消波工1の天端高さ及び勾配が耐波条件を満たすか否かを検出する。ステップS203〜S205の繰り返しにより、その所定外力に対して安定な消波工1の構築形状とその構築形状に応じた消波ブロック2の重量とを設計することができる。ステップS207は、設計重量の消波ブロック2を用いて設計天端高さ及び勾配の消波工1を実際に現地で施工する段階を示す。
図8のステップS208〜S211は、現地で構築した実際の消波工1の安全性管理方法を示す。ステップS208において本発明システムにより消波工1の三次元形状Kの変形量を算出し、ステップS209において消波工1の機能が維持できているか否かを判断する。機能が維持できていないと判断された場合は、ステップS210において消波工1に対し適当な補修を加える。消波工1の安全性をリアルタイムで管理する場合は、必要に応じて、ステップS209で機能不全と判断されたときに警報手段29及び伝送手段32により遠隔の管理室等へ警報を出力してもよい。ステップS211で消波工1の管理を終了するか否かを判断し、管理を継続する場合はステップS208へ戻ってステップS208〜S211を繰り返す。例えば適宜間隔又は地震等の異常発生時にステップS208〜S211を繰り返すことにより、消波工1の護岸崩壊防止機能・越波抑制機能を長期間維持することが期待できる。
図6は、現地における消波工1の安全性管理に本発明を適用した実施例を示す。例えば船等の移動手段8に本発明システムを搭載し、移動手段8を海上で移動させながら消波工1の画像群を撮影して三次元形状の変形量を算出する。陸上に消波工1が見渡せる適当な場所があれば、その場所で本発明システムを徒歩又は適当な移動手段8で移動させながら消波工1の変形量を算出し、陸上及び海上に適当な場所がなければ気球・ラジコン飛行機等の移動手段8に本発明システムを搭載して空から消波工1の変形量を算出することも可能である。鉛直方向における消波工1の変形量の算出精度を高めるためには、同図(B)に示すように、消波工1の同一部分(例えば、図4における同一の平面Vの部分)を低い位置と高い位置とから撮影することが有効である。本発明システムの適用により,現場で消波工1の変形量を容易且つ精度良く求めることができ、従来の直接法・間接法等に比し計測時間の短縮も図ることができ、しかも作業員の熟練度に依存しない客観的なデータが得られる。
本発明の一実施例の説明図である 消波ブロックに対する測定視標の取り付け方法の説明図である 測定視標の一例の説明図である。 本発明による消波工の三次元形状の算出方法の説明図である。 本発明による消波工の三次元形状の算出実験結果を示す図である。 本発明の他の実施例の説明図である。 本発明による安定性評価の流れ図の一例である。 本発明を消波工の設計及び管理に適用した流れ図の一例である。 従来のバンドル調整法を用いた三次元画像計測装置のブロック図である。 図9の計測装置を用いた画像計測方法の流れ図の一例である。
符号の説明
1…消波工 2…消波ブロック
3…測定視標 3、4…識別マーク
7…基準視標 8…移動手段
10…撮像機 11…光源
12…移動手段 13…コンピュータ
14…出力手段 15…視標座標検出手段
16…撮影位置・姿勢算出手段
17…視標三次元座標算出手段
18…撮影機位置・姿勢制御手段
19…記憶手段
20…コンピュータ 21…画像計測手段
22…視標像座標検出手段 23…撮影位置・姿勢算出手段
24…視標三次元座標算出手段
25…記憶手段 26…形状算出手段
27…変化量算出手段 28…安定形状検出手段
29…警報手段
31…出力手段 32…伝送手段
40…海面 41…ケーソン
42…上部工 43…埋立地盤
44…基礎マウンド
50…計測対象
K…消波工の三次元形状 O…撮影位置
P…計測点(計測部位) Q…基準点(基準位置)
Ta…識別視標 Tb…基準視標群

Claims (9)

  1. 相互識別可能な測定視標が付された消波ブロック群の積み上げにより消波工を構築し、前記消波工近傍の不動とみなせる3以上の既知三次元座標の基準位置にそれぞれ相互識別可能な基準視標を固定し、前記消波工に臨む異なる撮影位置から前記測定視標及び基準視標が含まれる画像群を撮影し、前記画像中の各指標像の二次元座標と前記基準位置の既知三次元座標とから基準位置に対する各撮影位置の三次元座標及び撮影姿勢と各測定視標の三次元座標とを画像計測法により計測し、前記各測定視標の三次元座標から消波工の三次元形状を算出し、前記消波工に対する外力作用前後における前記消波工の三次元形状から当該外力に対する消波工の変形量を算出してなる消波工の安定性評価方法。
  2. 請求項1の評価方法において、前記各消波ブロックの向きが異なる複数の外面にそれぞれ前記測定視標を付してなる消波工の安定性評価方法。
  3. 請求項1又は2の評価方法において、前記消波工の構築形状を変えながら所定外力作用前後における消波工の三次元形状の変形量の算出を繰り返すことにより当該所定外力に対して安定な消波工の構築形状を定めてなる消波工の安定性評価方法。
  4. 請求項1から3の何れかの評価方法において、前記消波工の三次元形状に消波工の天端高さ及び勾配を含めてなる消波工の安定性評価方法。
  5. 請求項1から4の何れかの評価方法において、前記各基準位置の既知三次元座標を対地三次元座標とし、前記消波工の対地座標系における三次元形状を算出してなる消波工の安定性評価方法。
  6. 消波ブロック群の積み上げにより構築した消波工の安定性を評価するシステムにおいて、前記ブロックの各々に付すべき相互識別可能な測定視標、前記消波工近傍の不動とみなせる3以上の既知三次元座標の基準位置にそれぞれ固定すべき相互識別可能な基準視標、前記消波工に臨む異なる撮影位置に移動可能な可搬型撮像機、前記各撮影位置で撮影した前記測定視標及び基準視標が含まれる画像群を入力して当該画像群中の各指標像の二次元座標と前記基準位置の既知三次元座標とから基準位置に対する各撮影位置の三次元座標及び撮影姿勢と各測定視標の三次元座標とを計測する画像計測手段、前記各測定視標の三次元座標を入力して消波工の三次元形状を算出する形状算出手段、前記消波工の三次元形状の算出値を記録する記憶手段、並びに前記消波工に対する外力作用前後の前記三次元形状の算出値を入力して当該外力に対する消波工の変形量を算出する変形量算出手段を備えてなる消波工の安定性評価システム。
  7. 請求項6のシステムにおいて、前記形状算出手段により消波工の天端高さ及び勾配を算出してなる消波工の安定性評価システム。
  8. 請求項6又は7のシステムにおいて、前記消波工の異なる構築形状に対する所定外力作用前後の前記変化量算出手段の算出値を入力して当該所定外力に対して安定な消波工の構築形状を検出する安定形状検出手段を設けてなる消波工の安定性評価システム。
  9. 請求項6から8の何れかのシステムにおいて、前記各基準位置の既知三次元座標を対地三次元座標とし、前記画像計測手段により各測定視標の対地座標系における三次元座標を計測し、前記形状算出手段により消波工の対地座標系における三次元形状を算出してなる消波工の安定性評価システム。
JP2004237953A 2004-08-18 2004-08-18 消波工の安定性評価方法及びシステム Expired - Fee Related JP4518386B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237953A JP4518386B2 (ja) 2004-08-18 2004-08-18 消波工の安定性評価方法及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237953A JP4518386B2 (ja) 2004-08-18 2004-08-18 消波工の安定性評価方法及びシステム

Publications (2)

Publication Number Publication Date
JP2006057263A true JP2006057263A (ja) 2006-03-02
JP4518386B2 JP4518386B2 (ja) 2010-08-04

Family

ID=36104966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237953A Expired - Fee Related JP4518386B2 (ja) 2004-08-18 2004-08-18 消波工の安定性評価方法及びシステム

Country Status (1)

Country Link
JP (1) JP4518386B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400283B1 (ko) 2014-04-09 2014-05-27 가부시키가이샤 후도 테트라 소파블록의 거치방법 및 소파블록이 거치된 방파제
JP2015105468A (ja) * 2013-11-28 2015-06-08 東亜建設工業株式会社 護岸構造
KR101704740B1 (ko) * 2015-08-28 2017-02-08 한국해양과학기술원 소파블록 조립체 및 소파블록 모니터링 시스템
CN115110477A (zh) * 2022-06-29 2022-09-27 中交四航局江门航通船业有限公司 一种防波堤槽型方块水下安装可视化系统及操作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057006A (ja) * 2001-08-09 2003-02-26 Toshiba Corp 消波ブロックの移動検知システム
JP2004012395A (ja) * 2002-06-10 2004-01-15 Gis Kyushu:Kk 消波ブロック等の地上敷設定型物の三次元モデリング方法および三次元モデリングプログラムならびにそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP3530978B2 (ja) * 2000-12-28 2004-05-24 鹿島建設株式会社 画像計測方法及び画像計測プログラムを記録した記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530978B2 (ja) * 2000-12-28 2004-05-24 鹿島建設株式会社 画像計測方法及び画像計測プログラムを記録した記録媒体
JP2003057006A (ja) * 2001-08-09 2003-02-26 Toshiba Corp 消波ブロックの移動検知システム
JP2004012395A (ja) * 2002-06-10 2004-01-15 Gis Kyushu:Kk 消波ブロック等の地上敷設定型物の三次元モデリング方法および三次元モデリングプログラムならびにそのプログラムを記録したコンピュータ読み取り可能な記録媒体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105468A (ja) * 2013-11-28 2015-06-08 東亜建設工業株式会社 護岸構造
KR101400283B1 (ko) 2014-04-09 2014-05-27 가부시키가이샤 후도 테트라 소파블록의 거치방법 및 소파블록이 거치된 방파제
KR101704740B1 (ko) * 2015-08-28 2017-02-08 한국해양과학기술원 소파블록 조립체 및 소파블록 모니터링 시스템
CN115110477A (zh) * 2022-06-29 2022-09-27 中交四航局江门航通船业有限公司 一种防波堤槽型方块水下安装可视化系统及操作方法
CN115110477B (zh) * 2022-06-29 2024-04-09 中交四航局江门航通船业有限公司 一种防波堤槽型方块水下安装可视化系统及操作方法

Also Published As

Publication number Publication date
JP4518386B2 (ja) 2010-08-04

Similar Documents

Publication Publication Date Title
CN109357617B (zh) 一种基于无人机的高陡岩质边坡位移变形监测方法
US11226412B2 (en) Use of multi-beam sonar systems to generate point cloud data and models, and data registration in underwater metrology applications
Dai et al. Photogrammetric error sources and impacts on modeling and surveying in construction engineering applications
CN103033132B (zh) 基于单目视觉的平面测量方法及装置
CN104034263B (zh) 一种锻件尺寸的非接触测量方法
Green et al. Underwater archaeological surveying using PhotoModeler, VirtualMapper: different applications for different problems
CN100424466C (zh) 非接触三维测量方法及装置
CN109297426B (zh) 一种大型精密工业设备变形量与伺服角度检测方法
Taşçi Deformation monitoring in steel arch bridges through close-range photogrammetry and the finite element method
CN211012949U (zh) 一种地基激光雷达和航空摄影测量两用配准标靶
KR20210117243A (ko) 시계열 드론 영상을 활용한 연안지역 침식 퇴적 변화 분석 방법
Ortiz et al. Three‐dimensional modelling of archaeological sites using close‐range automatic correlation photogrammetry and low‐altitude imagery
JP4518386B2 (ja) 消波工の安定性評価方法及びシステム
Musumeci et al. 3-D monitoring of rubble mound breakwater damages
JP2003130642A (ja) 遠隔計測方法および装置
CN114136544A (zh) 基于高速视频测量的水下振动模拟测试系统及测试方法
CN116448080B (zh) 一种基于无人机倾斜摄影辅助土方开挖施工的方法
JP4012225B2 (ja) 変位計測方法及び変位計測装置
JP4855547B1 (ja) 定形体群の立体配置状況解析方法
NL2027547B1 (en) Method of and apparatus for determining deformations of quay walls using a photogrammetric system
Cleveland et al. Principles and applications of digital photogrammetry for geotechnical engineering
Hong et al. Tilt Monitoring of Tower Based on Video-photogrammetry.
Šedina et al. Using of photogrammetric methods for deformation measurements and shape analysis
JP3762350B2 (ja) 変位計測方法及び変位計測装置
CN115201518B (zh) 基于无人机rtk定位的图像测流快速标定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070419

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090514

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees