JP2006057115A - METHOD FOR RECONDITIONING Ni-BASED SINGLE CRYSTAL SUPERALLOY MATERIAL - Google Patents

METHOD FOR RECONDITIONING Ni-BASED SINGLE CRYSTAL SUPERALLOY MATERIAL Download PDF

Info

Publication number
JP2006057115A
JP2006057115A JP2004237220A JP2004237220A JP2006057115A JP 2006057115 A JP2006057115 A JP 2006057115A JP 2004237220 A JP2004237220 A JP 2004237220A JP 2004237220 A JP2004237220 A JP 2004237220A JP 2006057115 A JP2006057115 A JP 2006057115A
Authority
JP
Japan
Prior art keywords
single crystal
phase
based single
crystal superalloy
superalloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004237220A
Other languages
Japanese (ja)
Other versions
JP4483474B2 (en
Inventor
Kazuyoshi Chikugo
一義 筑後
Satoshi Takahashi
聡 高橋
Takakazu Suzuki
孝和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004237220A priority Critical patent/JP4483474B2/en
Publication of JP2006057115A publication Critical patent/JP2006057115A/en
Application granted granted Critical
Publication of JP4483474B2 publication Critical patent/JP4483474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reconditioning a Ni-based single crystal superalloy material with acicular harmful precipitates in the matrix. <P>SOLUTION: The method for reconditioning the Ni-based single crystal superalloy material includes heat-treating the Ni-based single crystal superalloy material 10 with the harmful precipitates in the matrix at a temperature range of a decomposition temperature of the harmful precipitates or higher and a partial-melting temperature of the Ni-based single crystal superalloy material or lower (step A), to decompose the harmful precipitates. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マトリックス中に有害析出物が析出したNi基単結晶超合金材を再生する方法に関するものである。   The present invention relates to a method for regenerating a Ni-based single crystal superalloy material in which harmful precipitates are precipitated in a matrix.

ジェットエンジンやガスタービンエンジンのタービンブレードなどの部品の構成材として、一般的にNi基合金が用いられている。このNi基合金で構成されるタービンブレードを、高温、高応力下で長時間使用すると、γ′相(Ni3Al)が粗大化してしまい、強度特性が劣化するという問題があった。 Ni-based alloys are generally used as components for components such as turbine blades of jet engines and gas turbine engines. When a turbine blade composed of this Ni-based alloy is used for a long time under high temperature and high stress, the γ ′ phase (Ni 3 Al) becomes coarse, resulting in a problem that strength characteristics deteriorate.

そこで、強度特性が劣化したタービンブレードの強度再生を図る方法が、以下に示すように提案されている。   Therefore, a method for regenerating the strength of a turbine blade having deteriorated strength characteristics has been proposed as described below.

(1) Ni基合金鋳物で構成されるタービンブレードに対して、その合金のγ′相が完全に溶解する温度より若干高く、合金のデンドライトの溶融温度より低い温度で溶体化処理を施す。その後、1100〜1150℃で保持して1次γ′相を析出させる半溶体化処理を施し、次いで、1次γ′相より小さい2次γ′相を析出させる時効処理を施す(特許文献1参照)。   (1) A solution treatment is performed on a turbine blade composed of a Ni-base alloy casting at a temperature slightly higher than the temperature at which the γ 'phase of the alloy is completely dissolved and lower than the melting temperature of the alloy dendrite. Thereafter, it is held at 1100 to 1150 ° C. and subjected to a semi-solution treatment for precipitating a primary γ ′ phase, and then an aging treatment for precipitating a secondary γ ′ phase smaller than the primary γ ′ phase (Patent Document 1). reference).

(2) Ni基超耐熱結晶合金材料に、溶体化処理及び時効処理を施す。溶体化処理は、例えば、1345℃×0.5hであり、時効処理は、例えば、1080℃×5h→空冷→870℃×20h→空冷という2段時効である(特許文献2参照)。   (2) Solution treatment and aging treatment are applied to the Ni-based super heat resistant crystal alloy material. The solution treatment is, for example, 1345 ° C. × 0.5 h, and the aging treatment is, for example, two-stage aging of 1080 ° C. × 5 h → air cooling → 870 ° C. × 20 h → air cooling (see Patent Document 2).

特開2000−80455号公報JP 2000-80455 A 特開平9−78212号公報JP-A-9-78212

ところで、近年、タービンブレードにおいては、耐熱温度の向上が求められており、Ni基単結晶超合金で構成したタービンブレードが使用され始めている。   By the way, in recent years, in turbine blades, improvement in heat-resistant temperature has been demanded, and turbine blades composed of a Ni-based single crystal superalloy have begun to be used.

このタービンブレードを、高温、高応力下で長時間使用すると、マトリックス中にTCP(Topologically Close-Packed)相と呼ばれる針状(又は板状、塊状)の有害析出物が析出することが知られている。タービンブレードのマトリックス中にTCP相が析出すると、タービンブレードのクリープ寿命が低下する。このため、マトリックス中にTCP相が析出したタービンブレードの、クリープ寿命を回復させる方法が求められている。   It is known that when this turbine blade is used for a long time under high temperature and high stress, needle-like (or plate-like, massive) harmful precipitates called TCP (Topologically Close-Packed) phase are precipitated in the matrix. Yes. The precipitation of the TCP phase in the turbine blade matrix reduces the creep life of the turbine blade. Therefore, there is a demand for a method for recovering the creep life of a turbine blade in which a TCP phase is precipitated in a matrix.

しかしながら、(1),(2)のいずれの方法を用いても、TCP相析出タービンブレードのTCP相を消失させることはできず、TCP相が析出したタービンブレードについては、新品材と交換する以外に方法がないというのが現状であった。   However, using either of the methods (1) and (2), the TCP phase of the TCP phase precipitation turbine blade cannot be lost, and the turbine blade on which the TCP phase is precipitated can be replaced with a new material. The current situation is that there is no way.

以上の事情を考慮して創案された本発明の目的は、マトリックス中に有害析出物が析出したNi基単結晶超合金材を再生する方法を提供することにある。   An object of the present invention created in view of the above circumstances is to provide a method for regenerating a Ni-based single crystal superalloy material in which harmful precipitates are precipitated in a matrix.

上記目的を達成すべく本発明に係るNi基単結晶超合金材の再生方法は、マトリックス中に有害析出物が析出したNi基単結晶超合金材を再生する方法において、上記Ni基単結晶超合金材に、上記有害析出物の分解温度以上、かつ、Ni基単結晶超合金材の部分溶融温度以下の温度範囲で熱処理を施し、有害析出物を分解させるものである。   In order to achieve the above object, a method for regenerating a Ni-based single crystal superalloy material according to the present invention is a method for regenerating a Ni-based single crystal superalloy material in which harmful precipitates are precipitated in a matrix. The alloy material is heat-treated in a temperature range not lower than the decomposition temperature of the harmful precipitate and not higher than the partial melting temperature of the Ni-based single crystal superalloy material to decompose the harmful precipitate.

熱処理は、有害析出物の分解温度が、主にNi3Alで構成されるγ′相の再析出温度よりも低いNi基単結晶超合金材に施される。ここで、熱処理を、γ′相の再析出温度以上、かつ、Ni基単結晶超合金材の部分溶融温度以下の温度範囲で行うことが好ましい。 The heat treatment is applied to a Ni-based single crystal superalloy material in which the decomposition temperature of harmful precipitates is lower than the reprecipitation temperature of the γ ′ phase mainly composed of Ni 3 Al. Here, the heat treatment is preferably performed in a temperature range not lower than the reprecipitation temperature of the γ ′ phase and not higher than the partial melting temperature of the Ni-based single crystal superalloy material.

また、熱処理は、有害析出物の分解温度が、Ni3Alで構成されるγ′相の再析出温度よりも高いNi基単結晶超合金材に施される。 Further, the heat treatment is performed on the Ni-based single crystal superalloy material in which the decomposition temperature of the harmful precipitate is higher than the reprecipitation temperature of the γ ′ phase composed of Ni 3 Al.

一方、本発明に係るNi基単結晶超合金材は、上述した再生方法を用い、マトリックス中に析出していた有害析出物を分解させたものである。   On the other hand, the Ni-based single crystal superalloy material according to the present invention is obtained by decomposing harmful precipitates precipitated in the matrix using the above-described regeneration method.

本発明によれば、マトリックス中に有害析出物が析出したNi基単結晶超合金材のクリープ寿命を再生、回復させることができるという優れた効果を発揮する。   According to the present invention, it is possible to regenerate and recover the creep life of the Ni-based single crystal superalloy material in which harmful precipitates are precipitated in the matrix.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係るNi基単結晶超合金材の再生方法は、高温、高応力下で長時間使用(経時使用)され、マトリックス中に針状(又は板状、塊状)のTCP相(有害析出物)が析出したNi基単結晶超合金材を対象とするものである。このマトリックスの結晶組織は、母相であるγ相内に、微細なγ′相(Ni3Al)が格子状に析出した2相組織である。 The method for regenerating a Ni-based single crystal superalloy material according to a preferred embodiment of the present invention is used for a long time under high temperature and high stress (used over time), and is in the form of needles (or plates or blocks) in the matrix. It is intended for a Ni-based single crystal superalloy material in which a TCP phase (hazardous precipitate) is deposited. The crystal structure of this matrix is a two-phase structure in which fine γ ′ phase (Ni 3 Al) is precipitated in a lattice form in the γ phase which is the matrix phase.

ここで、Ni基単結晶超合金材の構成材は、ジェットエンジンやガスタービンエンジンのタービンブレード用材料として慣用的に用いられているものが全て適用可能であり、特に限定するものではない。具体的には、Al-Ta-W-Co-Cr-Mo-Hf-Re-Ni系合金、Al-Ta-W-Co-Cr-Mo-Hf-Re-Ru-Ni系合金が挙げられ、例えば、第2世代Ni基単結晶超合金(TMS-82+、ReneN5(いずれも登録商標))、第3世代Ni基単結晶超合金(TMS-75、CMSX-10(いずれも登録商標))、第4世代Ni基単結晶超合金(TMS-138(登録商標))などが挙げられる。   Here, as the constituent material of the Ni-based single crystal superalloy material, any material conventionally used as a turbine blade material of a jet engine or a gas turbine engine can be applied, and is not particularly limited. Specifically, Al-Ta-W-Co-Cr-Mo-Hf-Re-Ni alloy, Al-Ta-W-Co-Cr-Mo-Hf-Re-Ru-Ni alloy, For example, 2nd generation Ni-based single crystal superalloy (TMS-82 +, ReneN5 (both registered trademarks)), 3rd generation Ni-based single crystal superalloy (TMS-75, CMSX-10 (both registered trademarks)) 4th generation Ni-based single crystal superalloy (TMS-138 (registered trademark)) and the like.

図1に示すように、先ず、マトリックス中に針状のTCP相が析出したNi基単結晶超合金材10を準備する。このNi基単結晶超合金材10は、クリープ破壊の起点となるTCP相が析出しているため、クリープ寿命が著しく低下している。   As shown in FIG. 1, first, a Ni-based single crystal superalloy material 10 in which a needle-like TCP phase is precipitated in a matrix is prepared. This Ni-based single crystal superalloy material 10 has a significantly reduced creep life because the TCP phase that is the starting point of creep fracture is precipitated.

そこで、このNi基単結晶超合金材10のクリープ寿命を再生、回復すべく、Ni基単結晶超合金材10に、TCP相の分解(又は固溶)温度以上、かつ、Ni基単結晶超合金材の部分溶融温度以下の温度範囲で熱処理を施す(stepA)。この熱処理は、図2に示すように、温度T0(=常温)から温度T1まで昇温した後、温度T1で一定時間(t2−t1)保持し、その後、冷却して温度T0まで戻すという一連の工程を含む。   Therefore, in order to regenerate and restore the creep life of the Ni-based single crystal superalloy material 10, the Ni-based single crystal superalloy material 10 has a temperature higher than the decomposition (or solid solution) temperature of the TCP phase. Heat treatment is performed in a temperature range below the partial melting temperature of the alloy material (step A). In this heat treatment, as shown in FIG. 2, the temperature is increased from the temperature T0 (= normal temperature) to the temperature T1, and then held at the temperature T1 for a certain time (t2-t1), and then cooled and returned to the temperature T0. These steps are included.

Ni基単結晶超合金材10は、TCP相の分解温度(TTCP相)が、Ni3Alで構成されるγ′相の再析出温度(Tγ'相)より低いものと、高いものとがある。図3に、TCP相の分解温度がγ′相の再析出温度より低い場合(TTCP相<Tγ'相)の例を挙げて説明する。図3に示すように、TCP相の分解温度(=T31)未満で熱処理を行った場合、当然ながらTCP相は分解せず、熱処理によるTCP相の分解効果が見込めない。また、Ni基単結晶超合金材10の部分溶融温度(=T33)を超えて熱処理を行った場合、Ni基単結晶超合金材10自体が部分溶融してしまい、形状を保つことができなくなるため、使用不可能となってしまう。 The Ni-based single crystal superalloy material 10 has a TCP phase decomposition temperature (T TCP phase ) lower than a γ ′ phase reprecipitation temperature (T γ ′ phase ) composed of Ni 3 Al and a higher one. There is. FIG. 3 illustrates an example in which the decomposition temperature of the TCP phase is lower than the reprecipitation temperature of the γ ′ phase (T TCP phase <T γ ′ phase ). As shown in FIG. 3, when the heat treatment is performed at a temperature lower than the decomposition temperature (= T31) of the TCP phase, the TCP phase is naturally not decomposed, and the effect of decomposing the TCP phase by the heat treatment cannot be expected. In addition, when the heat treatment is performed above the partial melting temperature (= T33) of the Ni-based single crystal superalloy material 10, the Ni-based single crystal superalloy material 10 itself is partially melted and the shape cannot be maintained. Therefore, it becomes unusable.

これに対して、T31〜T32の温度範囲(領域31)で熱処理を行うと、熱処理の結果、マトリックス中に析出していたTCP相が分解して(γ+γ′)相に変態し、消失する。一方、T32〜T33の温度範囲(領域32)で熱処理を行うと、熱処理の結果、TCP相が分解すると共に、γ′相の再析出が生じる。これによって、マトリックス中に析出していたTCP相が消失すると共に、γ′相が更に均一、微細化(例えば、1μm未満に微細化)される。   In contrast, when heat treatment is performed in the temperature range T31 to T32 (region 31), as a result of the heat treatment, the TCP phase precipitated in the matrix is decomposed and transformed into a (γ + γ ′) phase and disappears. On the other hand, when the heat treatment is performed in the temperature range of T32 to T33 (region 32), the TCP phase is decomposed and the γ ′ phase is reprecipitated as a result of the heat treatment. As a result, the TCP phase precipitated in the matrix disappears, and the γ ′ phase is further uniformly and refined (for example, refined to less than 1 μm).

以上より、TTCP相<Tγ'相のNi基単結晶超合金材10には、領域31,32、好ましくは領域32で熱処理が施される。また、熱処理温度及び熱処理時間は、Ni基単結晶超合金材10の種類に応じて、適宜決定されるものであり、特に限定するものではない。例えば、熱処理温度は、1200〜1400℃、好ましくは1230〜1380℃とされ、また、熱処理時間は、5h以上、好ましくは12〜48h、より好ましくは20〜30hとされる。この熱処理条件において、熱処理温度が高温の場合、熱処理時間は短く、逆に、熱処理温度が低温の場合、熱処理時間は長くされる。 From the above, the Ni-based single crystal superalloy material 10 of T TCP phase <T γ ′ phase is subjected to heat treatment in the regions 31 and 32, preferably in the region 32. The heat treatment temperature and the heat treatment time are appropriately determined according to the type of the Ni-based single crystal superalloy material 10, and are not particularly limited. For example, the heat treatment temperature is 1200 to 1400 ° C., preferably 1230 to 1380 ° C., and the heat treatment time is 5 hours or more, preferably 12 to 48 hours, more preferably 20 to 30 hours. Under these heat treatment conditions, when the heat treatment temperature is high, the heat treatment time is short. Conversely, when the heat treatment temperature is low, the heat treatment time is long.

熱処理後のNi基単結晶超合金材に、適宜時効処理を施し(stepB)、TCP相が分解されたNi基単結晶超合金材15が得られる。この時効処理は、Ni基単結晶超合金材10の種類に応じて、加熱パターンが適宜決定される。例えば、加熱パターンとしては、1次時効のみ、1次時効+2次時効、又は1次時効+2次時効+3次時効などが挙げられる。   The Ni-based single crystal superalloy material 15 after the heat treatment is appropriately subjected to an aging treatment (step B) to obtain the Ni-based single crystal superalloy material 15 in which the TCP phase is decomposed. In this aging treatment, the heating pattern is appropriately determined according to the type of the Ni-based single crystal superalloy material 10. For example, the heating pattern includes only primary aging, primary aging + secondary aging, or primary aging + secondary aging + third-order aging.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

TCP相<Tγ'のNi基単結晶超合金材10に、図3に示した領域31で熱処理を施すと、マトリックス中に析出していたTCP相が分解して(γ+γ′)相に変態し、消失する。TCP相は、クリープ破壊の起点となるものであるため、TCP相が消失することにより、Ni基単結晶超合金材15のクリープ寿命の低下が回避される。 When the Ni-based single crystal superalloy material 10 with T TCP phase <T γ ′ is subjected to heat treatment in the region 31 shown in FIG. 3, the TCP phase precipitated in the matrix is decomposed into (γ + γ ′) phase. It transforms and disappears. Since the TCP phase is a starting point of creep rupture, the disappearance of the TCP phase avoids a decrease in the creep life of the Ni-based single crystal superalloy material 15.

すなわち、本実施の形態に係るNi基単結晶超合金材の再生方法は、マトリックス中に針状のTCP相が析出したNi基単結晶超合金材10に対して、領域31の温度範囲で熱処理を施すことにより、TCP相が分解されたNi基単結晶超合金材15を得ることができる。このNi基単結晶超合金材15のクリープ寿命は、新品のNi基単結晶超合金材とほぼ同等のレベルまで再生、回復されている。   That is, in the method for regenerating a Ni-based single crystal superalloy material according to the present embodiment, the Ni-based single crystal superalloy material 10 in which a needle-like TCP phase is precipitated in the matrix is heat-treated in the temperature range of the region 31. Is applied to obtain the Ni-based single crystal superalloy material 15 in which the TCP phase is decomposed. The creep life of this Ni-based single crystal superalloy material 15 has been regenerated and recovered to a level almost equivalent to that of a new Ni-based single crystal superalloy material.

一方、TTCP相<Tγ'のNi基単結晶超合金材10に、図3に示した領域32で熱処理を施すと、TCP相が分解、消失すると共に、γ′相の再析出(再結晶)が生じる。TCP相は、クリープ破壊の起点となるものであるため、TCP相が消失することにより、Ni基単結晶超合金材15のクリープ寿命の低下が回避される。また、γ′相が再析出することにより、マトリックスの結晶組織が更に均一、微細化される。その結果、マトリックス自体の強度向上、延いてはNi基単結晶超合金材15自体の強度向上がなされ、クリープ寿命自体が向上する。 On the other hand, when the Ni-based single crystal superalloy material 10 with T TCP phase <T γ ′ is subjected to heat treatment in the region 32 shown in FIG. 3, the TCP phase decomposes and disappears, and γ ′ phase reprecipitation (re-precipitation) Crystal). Since the TCP phase is a starting point of creep rupture, the disappearance of the TCP phase avoids a decrease in the creep life of the Ni-based single crystal superalloy material 15. Further, the γ 'phase is reprecipitated, so that the crystal structure of the matrix is further uniformed and refined. As a result, the strength of the matrix itself is improved, and further, the strength of the Ni-based single crystal superalloy material 15 itself is improved, and the creep life itself is improved.

すなわち、本実施の形態に係るNi基単結晶超合金材の再生方法は、マトリックス中に針状のTCP相が析出したNi基単結晶超合金材10に対して、領域32の温度範囲で熱処理を施すことにより、TCP相が分解し、かつ、γ′相が再析出したNi基単結晶超合金材15を得ることができる。このNi基単結晶超合金材15のクリープ寿命は、新品のNi基単結晶超合金材と同等(又はほぼ同等)のレベルまで再生、回復されている。   That is, in the method for regenerating a Ni-based single crystal superalloy material according to the present embodiment, the Ni-based single crystal superalloy material 10 in which needle-like TCP phases are precipitated in the matrix is heat-treated in the temperature range of the region 32. As a result, it is possible to obtain the Ni-based single crystal superalloy material 15 in which the TCP phase is decomposed and the γ ′ phase is reprecipitated. The creep life of the Ni-based single crystal superalloy material 15 is regenerated and recovered to a level equivalent to (or nearly equal to) that of a new Ni-based single crystal superalloy material.

その結果、Ni基単結晶超合金材のマトリックス中に針状のTCP相が析出したとしても、本実施の形態に係るNi基単結晶超合金材の再生方法を適用することで、そのクリープ寿命を、新品のNi基単結晶超合金材と同等のレベルまで再生、回復させることができる。ここで、本実施の形態に係るNi基単結晶超合金材は、主にタービンブレードとして使用されるものであり、その製品コストは一般的に非常に高い。本実施の形態に係るNi基単結晶超合金材の再生方法は、経時使用に伴い、TCP相が析出したNi基単結晶超合金材を、新品と交換することなく、そのクリープ寿命を再生、回復させることができるため、大幅にコストダウンを図ることができる。   As a result, even if the acicular TCP phase is precipitated in the matrix of the Ni-based single crystal superalloy material, by applying the method for regenerating the Ni-based single crystal superalloy material according to this embodiment, its creep life Can be regenerated and recovered to the same level as a new Ni-based single crystal superalloy material. Here, the Ni-based single crystal superalloy material according to the present embodiment is mainly used as a turbine blade, and its product cost is generally very high. The regeneration method of the Ni-based single crystal superalloy material according to the present embodiment regenerates its creep life without replacing the Ni-based single crystal superalloy material, on which the TCP phase is deposited, with a new one, with the passage of time. Since it can be recovered, the cost can be greatly reduced.

また、従来、経時使用に伴い、TCP相が析出したNi基単結晶超合金材は、主に廃棄処分とされていたが、本実施の形態に係るNi基単結晶超合金材の再生方法を適用することで再生が可能となるため、廃棄コストの低減も図ることができる。つまり、本実施の形態に係るNi基単結晶超合金材の再生方法は、ゴミの減量化に優れた環境に優しい方法でもある。   In addition, conventionally, Ni-based single crystal superalloy material in which a TCP phase is precipitated with use over time has been mainly disposed of, but the method for regenerating Ni-based single crystal superalloy material according to the present embodiment is used. Since it becomes possible to regenerate by applying, it is possible to reduce the disposal cost. That is, the method for recycling the Ni-based single crystal superalloy material according to the present embodiment is also an environmentally friendly method that is excellent in reducing dust.

次に、本発明の他の実施の形態を添付図面に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

前実施の形態に係るNi基単結晶超合金材の再生方法は、TCP相の分解温度(TTCP相)が、Ni3Alで構成されるγ′相の再析出温度(Tγ'相)より低いもの(TTCP相<Tγ'相)に関するものであった。 In the regeneration method of the Ni-based single crystal superalloy material according to the previous embodiment, the decomposition temperature of the TCP phase (T TCP phase ) is the reprecipitation temperature of the γ ′ phase composed of Ni 3 Al (T γ ′ phase ). For lower (T TCP phase <T γ ′ phase ).

これに対して、本実施の形態に係るNi基単結晶超合金材の再生方法は、TCP相の分解温度(TTCP相)が、Ni3Alで構成されるγ′相の再析出温度(Tγ'相)より高いもの(TTCP相>Tγ'相)に関するものである。 On the other hand, in the method for regenerating the Ni-based single crystal superalloy material according to the present embodiment, the reprecipitation temperature of the γ ′ phase in which the decomposition temperature of the TCP phase (T TCP phase ) is composed of Ni 3 Al T γ 'phase) high than (T TCP phase> T γ' relates to a phase).

具体的には、前実施の形態に係る再生方法と同様に、先ず、マトリックス中に針状のTCP相が析出したNi基単結晶超合金材10を準備する。このNi基単結晶超合金材10のクリープ寿命を再生、回復すべく、Ni基単結晶超合金材10に、TCP相の分解温度以上、かつ、Ni基単結晶超合金材の部分溶融温度以下の温度範囲で熱処理を施す。   Specifically, similarly to the regeneration method according to the previous embodiment, first, a Ni-based single crystal superalloy material 10 in which a needle-like TCP phase is precipitated in a matrix is prepared. In order to regenerate and recover the creep life of the Ni-based single crystal superalloy material 10, the Ni-based single crystal superalloy material 10 is made to have a decomposition temperature of the TCP phase or more and a partial melting temperature of the Ni-based single crystal superalloy material or less. The heat treatment is performed in the temperature range.

図4に示すように、γ′相の再析出温度(=T41)未満で熱処理を行った場合、当然ながらγ′相は再析出せず、熱処理によるγ′相の再析出効果が見込めない。また、Ni基単結晶超合金材10の部分溶融温度(=T43)を超えて熱処理を行った場合、Ni基単結晶超合金材10自体が部分溶融してしまい、形状を保つことができなくなるため、熱処理不可能となってしまう。一方、T41〜T42の温度範囲(領域41)で熱処理を行うと、熱処理の結果、γ′相の再析出(再結晶)が生じる。これによって、マトリックス中のγ′相が更に均一、微細化される。この熱処理では、マトリックス自体の強度向上により、クリープ寿命自体をある程度向上させることができる。しかし、Ni基単結晶超合金材10の、TCP相によるクリープ寿命の低下は、回避することができない。   As shown in FIG. 4, when the heat treatment is performed at a reprecipitation temperature lower than the γ ′ phase (= T41), the γ ′ phase does not reprecipitate, and the reprecipitation effect of the γ ′ phase by the heat treatment cannot be expected. In addition, when the heat treatment is performed beyond the partial melting temperature (= T43) of the Ni-based single crystal superalloy material 10, the Ni-based single crystal superalloy material 10 itself is partially melted and the shape cannot be maintained. Therefore, heat treatment becomes impossible. On the other hand, when heat treatment is performed in the temperature range of T41 to T42 (region 41), reprecipitation (recrystallization) of the γ ′ phase occurs as a result of the heat treatment. As a result, the γ 'phase in the matrix is further uniformly and refined. In this heat treatment, the creep life itself can be improved to some extent by improving the strength of the matrix itself. However, a decrease in the creep life due to the TCP phase of the Ni-based single crystal superalloy material 10 cannot be avoided.

これに対して、T42〜T43の温度範囲(領域42)で熱処理を行うと、熱処理の結果、γ′相が再析出すると共に、マトリックス中に析出していたTCP相が分解して(γ+γ′)相に変態し、消失する。   In contrast, when heat treatment is performed in the temperature range T42 to T43 (region 42), as a result of the heat treatment, the γ 'phase is reprecipitated, and the TCP phase precipitated in the matrix is decomposed (γ + γ' ) It transforms into a phase and disappears.

以上より、TTCP相>Tγ'相のNi基単結晶超合金材10には、領域42で熱処理が施される。また、熱処理温度及び熱処理時間は、Ni基単結晶超合金材10の種類に応じて、適宜決定されるものであり、特に限定するものではない。例えば、熱処理温度は、1300〜1400℃、好ましくは1320〜1380℃とされ、また、熱処理時間は、5h以上、好ましくは12〜48h、より好ましくは20〜30hとされる。この熱処理条件において、熱処理温度が高温の場合、熱処理時間は短く、逆に、熱処理温度が低温の場合、熱処理時間は長くされる。 As described above, the Ni-based single crystal superalloy material 10 in which the T TCP phase > T γ ′ phase is subjected to heat treatment in the region 42. The heat treatment temperature and the heat treatment time are appropriately determined according to the type of the Ni-based single crystal superalloy material 10, and are not particularly limited. For example, the heat treatment temperature is 1300 to 1400 ° C., preferably 1320 to 1380 ° C., and the heat treatment time is 5 hours or longer, preferably 12 to 48 hours, more preferably 20 to 30 hours. Under these heat treatment conditions, when the heat treatment temperature is high, the heat treatment time is short. Conversely, when the heat treatment temperature is low, the heat treatment time is long.

熱処理後のNi基単結晶超合金材には、適宜時効処理が施され、これによって、TCP相が分解されたNi基単結晶超合金材15が得られる(図1参照)。   The Ni-based single crystal superalloy material after heat treatment is appropriately subjected to an aging treatment, whereby a Ni-based single crystal superalloy material 15 in which the TCP phase is decomposed is obtained (see FIG. 1).

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

TCP相>Tγ'のNi基単結晶超合金材10に、図4に示した領域42で熱処理を施すと、γ′相の再析出(再結晶)が生じると共に、TCP相が分解、消失する。γ′相が再析出することにより、マトリックスの結晶組織が更に均一、微細化される。その結果、マトリックス自体の強度向上、延いてはNi基単結晶超合金材15自体の強度向上がなされ、クリープ寿命自体が向上する。また、TCP相は、クリープ破壊の起点となるものであるため、TCP相が消失することにより、Ni基単結晶超合金材15のクリープ寿命の低下が回避される。 When the Ni-base single crystal superalloy material 10 with T TCP phase > T γ ′ is subjected to heat treatment in the region 42 shown in FIG. 4, reprecipitation (recrystallization) of the γ ′ phase occurs and the TCP phase decomposes. Disappear. By reprecipitation of the γ 'phase, the crystal structure of the matrix is made more uniform and refined. As a result, the strength of the matrix itself is improved, and further, the strength of the Ni-based single crystal superalloy material 15 itself is improved, and the creep life itself is improved. In addition, since the TCP phase is a starting point of creep fracture, the disappearance of the TCP phase avoids a decrease in the creep life of the Ni-based single crystal superalloy material 15.

つまり、本実施の形態に係るNi基単結晶超合金材の再生方法においても、前実施の形態に係るNi基単結晶超合金材の再生方法における領域32(図3参照)で熱処理した場合と、同様の作用効果が得られる。   That is, also in the method for regenerating the Ni-based single crystal superalloy material according to the present embodiment, the heat treatment is performed in the region 32 (see FIG. 3) in the method for regenerating the Ni-based single crystal superalloy material according to the previous embodiment. The same effect can be obtained.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明について、実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

TMS-138(5.9Al-5.9Ta-5.9W-5.8Co-2.9Cr-2.9Mo-0.1Hf-4.9Re-2.0Ru-Ni(Bal.);wt%)を用い、Ni基単結晶超合金材(試験材)を3つ作製した。各試験材を用い、1100℃×200hというプロファイルで模擬運転を行い、マトリックス中に針状のTCP相を析出させた(TCP相析出材)。   Ni-based single crystal superalloy material using TMS-138 (5.9Al-5.9Ta-5.9W-5.8Co-2.9Cr-2.9Mo-0.1Hf-4.9Re-2.0Ru-Ni (Bal.); Wt%) Three (test materials) were produced. Using each test material, a simulated operation was performed with a profile of 1100 ° C. × 200 h, and a needle-like TCP phase was precipitated in the matrix (TCP phase-deposited material).

各TCP相析出材に、それぞれ1200℃×24h、1250℃×24h、1300℃×24hの熱処理を施した(試験材1a〜1c)。熱処理後の各試験材1a〜1cにおけるTCP相の変態の程度を観察した。   Each TCP phase-deposited material was heat-treated at 1200 ° C. × 24 h, 1250 ° C. × 24 h, and 1300 ° C. × 24 h (test materials 1a to 1c). The degree of transformation of the TCP phase in each of the test materials 1a to 1c after the heat treatment was observed.

その結果、図5(a)、図5(b)に示すように、1200℃×24hの熱処理を施した試験材1aにおいては、マトリックス中に依然として針状のTCP相(図5(b)中、矢印で図示)が析出したままであり、TCP相の変態はほぼ全く観察されなかった。また、図5(a)、図5(b)中、白色模様で示される母相であるγ相内に、黒色模様で示されるγ′相が格子状に析出しているが、これらのγ′相は数μm程度と粗大であった。   As a result, as shown in FIGS. 5 (a) and 5 (b), in the test material 1a subjected to heat treatment at 1200 ° C. × 24 h, the needle-like TCP phase (in FIG. 5 (b)) is still in the matrix. , As indicated by the arrows) remained precipitated, and almost no transformation of the TCP phase was observed. Further, in FIGS. 5A and 5B, the γ ′ phase indicated by the black pattern is precipitated in a lattice form in the γ phase that is the parent phase indicated by the white pattern. The 'phase was as coarse as several μm.

これに対して、図6(a)、図6(b)に示すように、1250℃×24hの熱処理を施した試験材1bにおいては、マトリックス中のTCP相の一部が分解して、(γ+γ′)相に変態、分解していた(図6(b)中、矢印で図示)。また、図6(a)、図6(b)中、白色模様で示されるγ相内に、黒色模様で示される微細な(1μm未満の)γ′相が、不均一ながら格子状に析出し始めている様子が観察された。   On the other hand, as shown in FIGS. 6A and 6B, in the test material 1b subjected to the heat treatment of 1250 ° C. × 24 h, a part of the TCP phase in the matrix is decomposed and ( It was transformed and decomposed into a (γ + γ ′) phase (indicated by an arrow in FIG. 6B). In addition, in FIGS. 6A and 6B, fine (less than 1 μm) γ ′ phase shown by a black pattern precipitates in a lattice pattern in a non-uniform manner in the γ phase shown by a white pattern. The beginning was observed.

また、図7(a)、図7(b)に示すように、1300℃×24hの熱処理を施した試験材1cにおいては、マトリックス中のTCP相がほぼ完全に分解しており、TCP相はほぼ全く観察されなかった。また、図7(a)、図7(b)中、白色模様で示されるγ相内に、黒色模様で示される微細な(1μm未満の)γ′相が、均一に、かつ、格子状に再析出している様子が観察された。   In addition, as shown in FIGS. 7A and 7B, in the test material 1c subjected to the heat treatment of 1300 ° C. × 24 h, the TCP phase in the matrix is almost completely decomposed, and the TCP phase is Almost no observation was made. Further, in FIGS. 7A and 7B, the fine (less than 1 μm) γ ′ phase shown by the black pattern is uniformly and lattice-like in the γ phase shown by the white pattern. Reprecipitation was observed.

以上より、TCP相が析出したTMS-138材に対して、本発明に係るNi基単結晶超合金材の再生方法を適用する際、1250℃×24hの熱処理を施すと、TCP相の分解のみが生じ、1300℃×24hの熱処理を施すと、TCP相の分解及びγ′相の再析出が生じることが確認できた。   From the above, when applying the Ni-based single crystal superalloy material regeneration method according to the present invention to the TMS-138 material in which the TCP phase is precipitated, if the heat treatment at 1250 ° C. × 24 h is performed, only the decomposition of the TCP phase will occur. It was confirmed that when the heat treatment at 1300 ° C. × 24 h was performed, decomposition of the TCP phase and reprecipitation of the γ ′ phase occurred.

[実施例1]における試験材、TCP相析出材、試験材1a〜1cに対して、1100℃、137MPaの条件でクリープ試験を行った。歪みが0.01の時の経過時間(クリープ変形量が1%の時のクリープ寿命)の評価を行った。   A creep test was performed on the test material, TCP phase precipitation material, and test materials 1a to 1c in [Example 1] under the conditions of 1100 ° C. and 137 MPa. The elapsed time when the strain was 0.01 (creep life when the creep deformation was 1%) was evaluated.

図8中、○印で示す試験材(新品材)は、クリープ寿命が約400hであった。これに対して、図8中、□印で示す模擬運転後のTCP相析出材は、クリープ寿命が約80hであり、試験材のクリープ寿命と比べると約80%も低下していた。   In FIG. 8, the test material (new material) indicated by a circle has a creep life of about 400 hours. In contrast, the TCP phase-deposited material after the simulated operation indicated by □ in FIG. 8 has a creep life of about 80 hours, which is about 80% lower than the creep life of the test material.

TCP相析出材に1200℃×24hの熱処理を施してなる試験材1a(図8中、△印で図示)は、クリープ寿命が約100h強しかなく、熱処理によるクリープ寿命の再生、回復効果は殆ど得られなかった。   The test material 1a (shown by Δ in FIG. 8) obtained by subjecting the TCP phase-deposited material to a heat treatment of 1200 ° C. × 24 h has a creep life of only about 100 h, and has almost no effect on regeneration and recovery of the creep life by the heat treatment. It was not obtained.

これに対して、TCP相析出材に1250℃×24hの熱処理を施してなる試験材1b(図8中、黒丸印で図示)は、クリープ寿命が約240hであり、TCP相析出材のクリープ寿命と比べると約3倍に回復していた。また、TCP相析出材に1300℃×24hの熱処理を施してなる試験材1c(図8中、◇印で図示)は、クリープ寿命が約300hであり、TCP相析出材のクリープ寿命と比べると約4倍弱に回復していた。   In contrast, the test material 1b (shown by a black circle in FIG. 8) obtained by subjecting the TCP phase-deposited material to a heat treatment of 1250 ° C. × 24 h has a creep life of about 240 h, and the creep life of the TCP phase-deposited material. Compared to, it recovered about 3 times. In addition, the test material 1c (shown by ◇ in FIG. 8) obtained by subjecting the TCP phase-deposited material to a heat treatment of 1300 ° C. × 24 h has a creep life of about 300 h, which is compared with the creep life of the TCP phase-deposited material. It had recovered to about 4 times.

以上より、TCP相が析出したTMS-138材に対して、本発明に係るNi基単結晶超合金材の再生方法を適用することで、そのクリープ寿命を大幅に再生、回復させることができることが確認できた。また、TCP相を分解させただけの試験材1bより、TCP相を分解させると共にγ′相を再析出させた試験材1cの方が、クリープ寿命がより再生、回復されることが確認できた。   From the above, by applying the Ni-based single crystal superalloy material regeneration method according to the present invention to the TMS-138 material in which the TCP phase is precipitated, its creep life can be greatly regenerated and recovered. It could be confirmed. In addition, it was confirmed that the test material 1c in which the TCP phase was decomposed and the γ ′ phase was reprecipitated was regenerated and recovered more than the test material 1b in which the TCP phase was only decomposed. .

CMSX-10(5.7Al-8.4Ta-5.5W-3.3Co-2.3Cr-0.4Mo-0.3Ti-0.1Nb-0.03Hf-6.3Re-Ni(Bal.);wt%)を用い、Ni基単結晶超合金材(試験材)を2つ作製した。各試験材を用い、1200℃×24hというプロファイルで模擬運転を行い、マトリックス中に針状のTCP相を析出させた(TCP相析出材)。   CMSX-10 (5.7Al-8.4Ta-5.5W-3.3Co-2.3Cr-0.4Mo-0.3Ti-0.1Nb-0.03Hf-6.3Re-Ni (Bal.); Wt%) and Ni-based single crystal Two superalloy materials (test materials) were prepared. Using each test material, a simulated operation was performed with a profile of 1200 ° C. × 24 h, and a needle-like TCP phase was precipitated in the matrix (TCP phase-deposited material).

各TCP相析出材に、それぞれ1300℃×24h→ガスファン冷却(GFC)、1350℃×24h→ガスファン冷却を施した(試験材3a,3b)。熱処理後の各試験材3a,3bにおけるTCP相の変態の程度を観察した。   Each TCP phase precipitate was subjected to 1300 ° C. × 24 h → gas fan cooling (GFC) and 1350 ° C. × 24 h → gas fan cooling (test materials 3a and 3b). The degree of transformation of the TCP phase in each of the test materials 3a and 3b after the heat treatment was observed.

その結果、図9(a)、図9(b)に示すように、1300℃×24hの熱処理を施した試験材3aにおいては、マトリックス中に依然として針状のTCP相(図9(a)、図9(b)中、91で図示)が析出したままであり、TCP相の変態はほぼ全く観察されなかった。しかし、図9(a)、図9(b)中、白色模様で示されるγ相内に、黒色模様で示される微細な(1μm未満の)γ′相が、不均一ながら格子状に析出し始めている様子が観察された。   As a result, as shown in FIGS. 9 (a) and 9 (b), in the test material 3a subjected to the heat treatment of 1300 ° C. × 24 h, the needle-like TCP phase (FIG. 9 (a), In FIG. 9 (b), as indicated by 91) remained precipitated, and almost no transformation of the TCP phase was observed. However, in FIGS. 9 (a) and 9 (b), the fine (less than 1 μm) γ ′ phase indicated by the black pattern precipitates in a lattice pattern in a non-uniform manner within the γ phase indicated by the white pattern. The beginning was observed.

また、図10(a)、図10(b)に示すように、1350℃×24hの熱処理を施した試験材3bにおいては、マトリックス中のTCP相が完全に分解して、(γ+γ′)相に変態、分解しており(図10(b)中、101で図示)、TCP相はほぼ全く観察されなかった。また、図10(a)、図10(b)中、白色模様で示されるγ相内に、黒色模様で示される微細な(1μm未満の)γ′相が、均一に、かつ、格子状に再析出している様子が観察された。   Further, as shown in FIGS. 10 (a) and 10 (b), in the test material 3b subjected to the heat treatment of 1350 ° C. × 24 h, the TCP phase in the matrix is completely decomposed and the (γ + γ ′) phase is obtained. It was transformed and decomposed (indicated by 101 in FIG. 10B), and almost no TCP phase was observed. 10A and 10B, the fine (less than 1 μm) γ ′ phase shown by the black pattern is uniformly and lattice-like in the γ phase shown by the white pattern. Reprecipitation was observed.

以上より、TCP相が析出したCMSX-10材に対して、本発明に係るNi基単結晶超合金材の再生方法を適用する際、1300℃×24hの熱処理を施すと、γ′相の再析出のみが生じ、1350℃×24hの熱処理を施すと、TCP相の分解及びγ′相の再析出が生じることが確認できた。   As described above, when the heat treatment of 1300 ° C. × 24 h is applied to the CMSX-10 material in which the TCP phase is precipitated, when the Ni-based single crystal superalloy material regeneration method according to the present invention is applied, the γ ′ phase is regenerated. Only precipitation occurred, and it was confirmed that when heat treatment at 1350 ° C. × 24 h was performed, decomposition of the TCP phase and reprecipitation of the γ ′ phase occurred.

本発明の好適一実施の形態に係るNi基単結晶超合金材の再生方法のフローを示す図である。It is a figure which shows the flow of the reproduction | regeneration method of the Ni base single crystal superalloy material which concerns on suitable one embodiment of this invention. 図1における熱処理のプロファイルを示す図である。It is a figure which shows the profile of the heat processing in FIG. 熱処理時におけるTCP相の分解温度(TTCP相)とγ′相の再析出温度(Tγ'相)との関係を示す図であり、TTCP相<Tγ'相である。It is a figure which shows the relationship between the decomposition temperature of a TCP phase at the time of heat processing (T TCP phase ), and the reprecipitation temperature of a γ ′ phase (T γ ′ phase ), and T TCP phase <T γ ′ phase . 熱処理時におけるTCP相の分解温度(TTCP相)とγ′相の再析出温度(Tγ'相)との関係を示す図であり、TTCP相>Tγ'相である。It is a figure which shows the relationship between the decomposition temperature (T TCP phase ) of the TCP phase at the time of heat processing, and the reprecipitation temperature (T γ 'phase ) of the γ' phase , where T TCP phase > T γ 'phase . [実施例1]における試験材1aの、結晶組織観察図である。図5(b)は、図5(a)の部分拡大図である。It is a crystal structure observation figure of the test material 1a in [Example 1]. FIG. 5B is a partially enlarged view of FIG. [実施例1]における試験材1bの、結晶組織鏡観察図である。図6(b)は、図6(a)の部分拡大図である。It is a crystal structure mirror observation figure of the test material 1b in [Example 1]. FIG. 6B is a partially enlarged view of FIG. [実施例1]における試験材1cの、結晶組織鏡観察図である。図7(b)は、図7(a)の部分拡大図である。It is a crystal structure mirror observation figure of the test material 1c in [Example 1]. FIG. 7B is a partially enlarged view of FIG. [実施例2]における試験材、TCP相析出材、試験材1a〜1cの、クリープ試験結果を示す図である。図8中の横軸は時間、縦軸は歪みを示している。It is a figure which shows the creep test result of the test material in [Example 2], a TCP phase precipitation material, and the test materials 1a-1c. In FIG. 8, the horizontal axis indicates time, and the vertical axis indicates distortion. [実施例3]における試験材3aの、結晶組織鏡観察図である。図9(b)は、図9(a)の部分拡大図である。It is a crystal structure mirror observation figure of the test material 3a in [Example 3]. FIG. 9B is a partially enlarged view of FIG. [実施例3]における試験材3bの、結晶組織観察図である。図10(b)は、図10(a)の部分拡大図である。It is a crystal structure observation figure of the test material 3b in [Example 3]. FIG. 10B is a partially enlarged view of FIG.

符号の説明Explanation of symbols

10 TCP相(有害析出物)が析出したNi基単結晶超合金材
stepA 熱処理
10 Ni-based single crystal superalloy material with TCP phase (hazardous precipitate) deposited
stepA heat treatment

Claims (5)

マトリックス中に有害析出物が析出したNi基単結晶超合金材を再生する方法において、上記Ni基単結晶超合金材に、上記有害析出物の分解温度以上、かつ、Ni基単結晶超合金材の部分溶融温度以下の温度範囲で熱処理を施し、有害析出物を分解させることを特徴とするNi基単結晶超合金材の再生方法。   In a method for regenerating a Ni-based single crystal superalloy material in which harmful precipitates are precipitated in a matrix, the Ni-based single crystal superalloy material has a decomposition temperature of the harmful precipitates or higher and a Ni-based single crystal superalloy material. A method for reclaiming a Ni-based single crystal superalloy material, wherein heat treatment is performed in a temperature range equal to or lower than the partial melting temperature of to decompose harmful precipitates. 上記有害析出物の分解温度が、主にNi3Alで構成されるγ′相の再析出温度よりも低い上記Ni基単結晶超合金材に、上記熱処理を施す請求項1記載のNi基単結晶超合金材の再生方法。 The Ni-based single crystal according to claim 1, wherein the heat treatment is performed on the Ni-based single crystal superalloy material having a decomposition temperature of the harmful precipitate lower than a reprecipitation temperature of a γ 'phase mainly composed of Ni 3 Al. A method for regenerating a crystalline superalloy material. 上記熱処理を、上記γ′相の再析出温度以上、かつ、Ni基単結晶超合金材の部分溶融温度以下の温度範囲で行う請求項2記載のNi基単結晶超合金材の再生方法。   The method for regenerating a Ni-based single crystal superalloy material according to claim 2, wherein the heat treatment is performed in a temperature range not lower than the reprecipitation temperature of the γ 'phase and not higher than a partial melting temperature of the Ni-based single crystal superalloy material. 上記有害析出物の分解温度が、Ni3Alで構成されるγ′相の再析出温度よりも高い上記Ni基単結晶超合金材に、上記熱処理を施す請求項1記載のNi基単結晶超合金材の再生方法。 2. The Ni-based single crystal superalloy according to claim 1, wherein the heat treatment is performed on the Ni-based single crystal superalloy material having a decomposition temperature of the harmful precipitate higher than a reprecipitation temperature of the γ ′ phase composed of Ni 3 Al. Recycle method of alloy material. 請求項1から4いずれかに記載の再生方法を用い、マトリックス中に析出していた有害析出物を分解させたことを特徴とするNi基単結晶超合金材。
5. A Ni-based single crystal superalloy material characterized by decomposing harmful precipitates precipitated in a matrix using the regeneration method according to claim 1.
JP2004237220A 2004-08-17 2004-08-17 Regeneration method of Ni-based single crystal superalloy material Active JP4483474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237220A JP4483474B2 (en) 2004-08-17 2004-08-17 Regeneration method of Ni-based single crystal superalloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237220A JP4483474B2 (en) 2004-08-17 2004-08-17 Regeneration method of Ni-based single crystal superalloy material

Publications (2)

Publication Number Publication Date
JP2006057115A true JP2006057115A (en) 2006-03-02
JP4483474B2 JP4483474B2 (en) 2010-06-16

Family

ID=36104839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237220A Active JP4483474B2 (en) 2004-08-17 2004-08-17 Regeneration method of Ni-based single crystal superalloy material

Country Status (1)

Country Link
JP (1) JP4483474B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180060994A (en) * 2016-11-28 2018-06-07 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Nickel-based alloy recycled member and manufacturing method of the recycled member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180060994A (en) * 2016-11-28 2018-06-07 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Nickel-based alloy recycled member and manufacturing method of the recycled member
KR102033830B1 (en) 2016-11-28 2019-10-17 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Nickel-based alloy recycled member and manufacturing method of the recycled member

Also Published As

Publication number Publication date
JP4483474B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US7632363B2 (en) Method for refurbishing a service-degraded component of a gas turbine
JP5235383B2 (en) Ni-based single crystal alloy and casting
US20200277692A1 (en) Turbine rotor blade and member of turbine rotor blade
JP2008274314A (en) Gas turbine blade and manufacturing method thereof
KR20200036082A (en) Method of heat treatment of additive manufactured ni-base superalloy containing niobium for enhancing interfacial properties of grain boundaries and ni-base superalloy heat-treated thereby
JP2018059184A (en) Grain refinement in in706 using laves phase precipitation
CN110042334A (en) Life-prolonging method based on the Crystal Nickel-based Superalloy blade that heat treatment is repaired
CN102652179B (en) A kind of method manufacturing the chromium ferronickel alloy of resistance to heat etching 718 type nickel superalloy
US6171417B1 (en) Property recovering method for Ni-base heat resistant alloy
US8906174B2 (en) Ni-base alloy and method of producing the same
EP1540026B1 (en) Property recovering method for nickel superalloy
JP3559709B2 (en) Material deterioration recovery method for gas turbine parts and gas turbine parts subjected to this treatment
JP4483474B2 (en) Regeneration method of Ni-based single crystal superalloy material
KR20110106352A (en) Ni-based single crystal superalloy
JP2000063969A (en) Nickel base superalloy, its production and gas turbine part
JP3538106B2 (en) Gas turbine component reprocessing method
JP4167242B2 (en) Method for recovering performance of Ni-base heat-resistant alloy
JP6826821B2 (en) Manufacturing method of metal parts
JP2001055928A (en) Repair and regeneration treatment method for gas turbine high-temperature component
CN113957364B (en) Thermal strain damage repair method for nickel-based single crystal alloy
JP5038990B2 (en) Heat treatment method and repair method for gas turbine parts and gas turbine parts
JP6245728B2 (en) Fatigue life recovery heat treatment method
JP2000080455A (en) Gas turbine moving vane and reproducing heat treating method therefor
JPH06240427A (en) Production of precipitation hardening superalloy
WO2023243146A1 (en) Ni-based alloy member manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R151 Written notification of patent or utility model registration

Ref document number: 4483474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250