JP2006055835A - Method for treating waste water - Google Patents

Method for treating waste water Download PDF

Info

Publication number
JP2006055835A
JP2006055835A JP2005172242A JP2005172242A JP2006055835A JP 2006055835 A JP2006055835 A JP 2006055835A JP 2005172242 A JP2005172242 A JP 2005172242A JP 2005172242 A JP2005172242 A JP 2005172242A JP 2006055835 A JP2006055835 A JP 2006055835A
Authority
JP
Japan
Prior art keywords
adsorption
boron
amount
fluorine
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005172242A
Other languages
Japanese (ja)
Other versions
JP4674854B2 (en
Inventor
Satoshi Kudo
聡 工藤
Seiichi Oyama
聖一 大山
Hitoshi Osumi
仁 大隅
Masahiro Sakata
昌弘 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005172242A priority Critical patent/JP4674854B2/en
Publication of JP2006055835A publication Critical patent/JP2006055835A/en
Application granted granted Critical
Publication of JP4674854B2 publication Critical patent/JP4674854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent method for treating waste water which, for waste water containing at least one of boron and fluorine, can highly adsorb and remove these adsorbates. <P>SOLUTION: Waste water containing at least one of boron and fluorine as an adsorbate is brought into contact with a porous material composed mainly of a transition metal to adsorb and remove the adsorbate. The porous material is preferably porous zirconium having a hexagonal structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排水の処理方法に関する。さらに詳しくは、本発明はホウ素とフッ素の少なくともいずれか一方を含む排水の処理方法に関するものである。   The present invention relates to a wastewater treatment method. More specifically, the present invention relates to a method for treating waste water containing at least one of boron and fluorine.

環境中の微量元素が人の健康や生態系へ与える影響に対する関心が高まっている。これを背景として、平成11年2月に水質環境基準,ホウ素=1.0mg・dm−3(=ppm),フッ素=0.80mg・dm−3 が示され、平成13年7月より陸域でホウ素=10mg・dm−3、フッ素=8mg・dm−3、海域でホウ素=230mg・dm−3、フッ素=15mg・dm−3の排水基準値が施行された。 There is a growing interest in the effects of trace elements in the environment on human health and ecosystems. This background, water quality standards February 1999, boron = 1.0mg · dm -3 (= ppm ), fluorine = 0.80 mg · dm -3 are shown, terrestrial from July 2001 The wastewater standard values of boron = 10 mg · dm −3 , fluorine = 8 mg · dm −3 and boron = 230 mg · dm −3 and fluorine = 15 mg · dm −3 were enforced in the sea area.

ホウ酸、ホウ砂、ホウ酸塩等のホウ素化合物およびフッ化水素酸、フッ化ナトリウム、フッ化カルシウム等のフッ素化合物は工業的に有用な物質であることから工業製品などに多用されており、その製造工程でホウ素およびフッ素含有排水が生じる。また、工業製品にホウ素化合物およびフッ素化合物を含有するものがあることから、ごみ焼却場洗煙排水やごみ焼却灰の埋立処分場浸出水にホウ素およびフッ素が含まれることがある。また、排水中には、ホウ素の他にフッ素が含まれることもある。例えば石炭火力発電所の排煙脱硫装置排水においてはホウ素の他にフッ素も含まれる。そこで、排水中のホウ素並びにフッ素の微量元素を効率的に処理するため、これらホウ素並びにフッ素について吸着性能に優れた排水の処理方法の開発が求められている。   Boron compounds such as boric acid, borax, and borate and fluorine compounds such as hydrofluoric acid, sodium fluoride, and calcium fluoride are industrially useful substances and are widely used in industrial products. Boron and fluorine containing wastewater is produced in the manufacturing process. In addition, since some industrial products contain boron compounds and fluorine compounds, there are cases where boron and fluorine are contained in the waste incineration sewage effluent and waste incineration ash landfill disposal water. The drainage may contain fluorine in addition to boron. For example, flue gas desulfurization apparatus waste water from a coal-fired power plant contains fluorine in addition to boron. Accordingly, in order to efficiently treat boron and fluorine trace elements in wastewater, development of a wastewater treatment method having excellent adsorption performance for these boron and fluorine is required.

ところで、ホウ素含有排水の処理方法としては、従来、凝集剤を添加してホウ素を不溶性沈殿物して除去する凝集沈殿処理、ホウ素を吸着剤に吸着させる吸着除去方法、有機溶媒で抽出する溶媒抽出処理、逆浸透膜を利用する逆浸透膜処理、排水を蒸発・乾固させる蒸発処理及びこれらの組み合わせ等のさまざまの処理方法が提案されている。中でも、吸着除去方法は、汚泥が発生しない優れたホウ素含有排水の処理方法と考えられる。この吸着除去方法は、排水中のホウ素を吸着剤に吸着させるもので、ホウ素処理用の吸着剤としてホウ素選択性イオン交換樹脂、活性炭、活性アルミナ等が知られている。   By the way, as a treatment method of boron-containing wastewater, conventionally, a coagulation precipitation treatment in which a coagulant is added and boron is removed as an insoluble precipitate, an adsorption removal method in which boron is adsorbed on an adsorbent, and solvent extraction extracted with an organic solvent. Various treatment methods such as treatment, reverse osmosis membrane treatment using a reverse osmosis membrane, evaporation treatment for evaporating and drying waste water, and combinations thereof have been proposed. Among these, the adsorption removal method is considered to be an excellent treatment method for boron-containing wastewater that does not generate sludge. This adsorption removal method is to adsorb boron in waste water to an adsorbent, and boron-selective ion exchange resin, activated carbon, activated alumina, and the like are known as adsorbents for boron treatment.

特開平08−238478号JP 08-238478 A 特開平08−89956号JP 08-89956 A

しかしながら、無機吸着剤は、耐熱性や耐酸化性等に優れるため、低コスト化が期待できるものの、その吸着性能は活性炭や活性アルミナではイオン交換樹脂に比べて著しく低いという問題を有している。他方、イオン交換樹脂は活性アルミナなどの無機吸着剤よりも比較的高いホウ素吸着性能を示すものの、吸着容量に限度があるため、高濃度の排水に適用する場合、吸着塔などの装置が大きくなる問題がある。しかも、高分子材料であるため、高温での使用や樹脂の分解などに起因する性能低下が懸念される。   However, although inorganic adsorbents are excellent in heat resistance, oxidation resistance, etc., cost reduction can be expected, but the adsorption performance of activated carbon and activated alumina is significantly lower than that of ion exchange resins. . On the other hand, although ion exchange resins exhibit relatively higher boron adsorption performance than inorganic adsorbents such as activated alumina, there is a limit to the adsorption capacity, so when applied to high-concentration wastewater, an apparatus such as an adsorption tower becomes larger There's a problem. In addition, since it is a polymer material, there is a concern about performance degradation due to use at high temperatures or resin decomposition.

本発明は、ホウ素とフッ素の少なくともいずれか一方を含む排水について、これらの被吸着物質を吸着して除去する性能に優れた排水の処理方法を提供することを目的とする。   An object of the present invention is to provide a wastewater treatment method excellent in performance for adsorbing and removing these substances to be adsorbed with respect to wastewater containing at least one of boron and fluorine.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、遷移金属を主成分とする多孔質体がホウ素とフッ素の吸着性能に優れていること、更にはこの多孔質体がヘキサゴナル構造である場合にはより吸着性能に優れることを見出すに至った。また、本発明者等は、遷移金属の多孔質体を界面活性剤を鋳型として製造する際に、通常除去される界面活性剤を孔内に残留させる場合に、より良好な吸着性能を呈することを知見するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a porous body mainly composed of a transition metal is excellent in boron and fluorine adsorption performance. In the case of a hexagonal structure, it has been found that the adsorption performance is more excellent. In addition, when the present inventors produce a transition metal porous material using a surfactant as a template, when the surfactant that is usually removed remains in the pores, the present inventors exhibit better adsorption performance. It came to know.

本発明は、かかる知見に基づくものであって、請求項1記載の排水の処理方法は、ホウ素とフッ素の少なくともいずれか一方を被吸着物質とし、被吸着物質を含む排水を遷移金属を主成分とする多孔質体に接触させて被吸着物質を吸着し除去するものである。   The present invention is based on such knowledge, and the wastewater treatment method according to claim 1 is characterized in that at least one of boron and fluorine is an adsorbed substance, and the wastewater containing the adsorbed substance is mainly composed of a transition metal. The adsorbed substance is adsorbed and removed by contacting with the porous body.

ここで、本発明は、多孔質体がヘキサゴナル構造を有するものであることが好ましく、すなわち遷移金属は、ヘキサゴナル構造をとるジルコニウム、チタン、バナジウム、マンガン、鉄、ガリウム、タンタル、ニオブ、ハフニウムのいずれかであることが好ましく、なかでもジルコニウムであることがより好ましい。   Here, in the present invention, the porous body preferably has a hexagonal structure, that is, the transition metal is any one of zirconium, titanium, vanadium, manganese, iron, gallium, tantalum, niobium, and hafnium having a hexagonal structure. Of these, zirconium is preferable, and zirconium is more preferable.

また、請求項5記載の排水の処理方法は、多孔質体は界面活性剤を鋳型としたものであり、孔内に界面活性剤を保持した状態で排水と接触させるようにしている。尚、請求項6に記載したように、孔内の前記界面活性剤をアルカリにより除去し、酸により処理した後に前記排水と接触させるようにしてもよい。また、請求項7記載の排水の処理方法は、被吸着物質の酸解離定数(Ka)の逆対数値pKaとほぼ等しいpH領域で吸着反応を起こさせるようにしている。   In the wastewater treatment method according to the fifth aspect, the porous body uses a surfactant as a template, and is brought into contact with the wastewater while the surfactant is held in the pores. In addition, as described in claim 6, the surfactant in the pores may be removed with alkali and treated with an acid, and then contacted with the waste water. In the wastewater treatment method according to the seventh aspect of the present invention, the adsorption reaction is caused to occur in a pH region substantially equal to the inverse logarithm value pKa of the acid dissociation constant (Ka) of the substance to be adsorbed.

さらに、請求項8記載の排水の処理方法は、被吸着物質を吸着した多孔質体を酸により再生し、再利用するようにしている。   Further, in the wastewater treatment method according to claim 8, the porous body adsorbing the adsorbed substance is regenerated with an acid and reused.

しかして、本発明方法によれば、遷移金属を主成分とした多孔質体がイオン交換樹脂よりも高いホウ素並びにフッ素に対する吸着性能を示し、尚かつ大きな吸着容量を呈するので、ホウ素とフッ素を良好に吸着し、排水中に含まれるホウ素とフッ素を長期間にわたって良好に除去することができる。したがって、高濃度の排水に適用する場合にも、大きな吸着塔などの除去装置を必要としないか、あるいは大きな除去装置を使用する場合には長期間の安定除去が可能となる。   Therefore, according to the method of the present invention, the porous body mainly composed of a transition metal exhibits higher adsorption performance for boron and fluorine than the ion exchange resin, and exhibits a large adsorption capacity. The boron and fluorine contained in the waste water can be satisfactorily removed over a long period of time. Therefore, even when applied to high-concentration wastewater, if a removal device such as a large adsorption tower is not required or a large removal device is used, long-term stable removal is possible.

また、吸着剤が遷移金属によって構成されているため、イオン交換樹脂よりも低コスト化が期待できると共にイオン交換樹脂のような高温での使用や樹脂の分解などに起因する性能低下の懸念がない。しかも、使用後の多孔質体の再生が可能であるため、経済的である。   Moreover, since the adsorbent is composed of a transition metal, the cost can be expected to be lower than that of an ion exchange resin, and there is no concern about performance degradation due to use at a high temperature such as an ion exchange resin or decomposition of the resin. . Moreover, since the porous body after use can be regenerated, it is economical.

本発明の排水処理方法は、被吸着物質を含む排水を遷移金属を主成分とする多孔質体に接触させて被吸着物質を吸着し除去するものである。ここで、排水中の吸着対象となる被吸着物質は、ホウ素とフッ素の少なくともいずれか一方であり、処理の対象となる排水は、被吸着物質を含むものであれば如何なる由来の排水であっても良い。即ち、ホウ素とフッ素のうち、ホウ素のみを被吸着物質として含む排水でも、フッ素のみを被吸着物質として含む排水でも、ホウ素とフッ素の両方を被吸着物質として含む排水でも良い。そして、排水には、例えば石炭火力発電所など火力発電所の排煙脱硫排水、半導体工業などの産業において排出される排水、ごみ焼却場洗煙排水などの排水だけでなく、ホウ素とフッ素の少なくともいずれか一方を含む水であれば、水道水、地下水、河川湖沼水なども含まれるが、これらに限定されるものではない。   In the wastewater treatment method of the present invention, wastewater containing an adsorbed substance is brought into contact with a porous body mainly composed of a transition metal to adsorb and remove the adsorbed substance. Here, the adsorbed substance to be adsorbed in the wastewater is at least one of boron and fluorine, and the wastewater to be treated is a wastewater of any origin as long as it contains the adsorbed substance. Also good. That is, among boron and fluorine, wastewater containing only boron as an adsorbed substance, wastewater containing only fluorine as an adsorbed substance, or wastewater containing both boron and fluorine as an adsorbed substance may be used. In addition, wastewater includes, for example, exhaust gas desulfurization wastewater from thermal power plants such as coal-fired power plants, wastewater discharged from industries such as the semiconductor industry, wastewater from waste incineration plants, and at least boron and fluorine. As long as the water contains any one of them, tap water, groundwater, river lake water, and the like are included, but are not limited thereto.

また、多孔質体としてはヘキサゴナル構造を有するものが好ましい。ヘキサゴナル構造を有する多孔質体(例えば、多孔質ジルコニウム:Zr−S)は、ヘキサゴナル構造を有しない多孔質(例えば、オキシ硝酸ジルコニウムの熱分解物:Zr−N)に比べてホウ素とフッ素の吸着量が多い(図5参照)。   Moreover, what has a hexagonal structure as a porous body is preferable. Porous materials having a hexagonal structure (for example, porous zirconium: Zr-S) adsorb boron and fluorine compared to porous materials having no hexagonal structure (for example, a thermal decomposition product of zirconium oxynitrate: Zr-N). The amount is large (see FIG. 5).

遷移金属としては多孔質体を作りうるものであれば良く、例えば、ジルコニウム(Zr)、チタン(Ti)、バナジウム(V)、マンガン(Mn)、鉄(Fe)、ガリウム(Ga)、タンタル(Ta)、ニオブ(Nb)、ハフニウム(Hf)のいずれかの使用が可能である。なかでも、ヘキサゴナル構造をとる多孔質体を構成する遷移金属例えばジルコニウムは高いホウ素とフッ素の吸着量を呈することから、その使用が好ましい。   Any transition metal may be used as long as it can form a porous body. For example, zirconium (Zr), titanium (Ti), vanadium (V), manganese (Mn), iron (Fe), gallium (Ga), tantalum ( Any of Ta), niobium (Nb), and hafnium (Hf) can be used. Among these, transition metals constituting a porous body having a hexagonal structure, such as zirconium, exhibit high adsorption amounts of boron and fluorine, and therefore their use is preferable.

多孔質体は界面活性剤を鋳型として製造される。例えば、ジルコニウム・ソースと界面活性剤とを混合し、100℃に加熱保持して沈殿物を48時間熟成させる。得られた沈殿物を濾過し、乾燥させることで多孔質体を得る。ジルコニウム・ソースとしては、例えば、硫酸ジルコニウム、硫酸塩(硫酸ジルコニウム(IV)四水和物 Zr(SO4)2・4H2O)、フッ化物塩(フッ化ジルコニウム(III)ZrF3, フッ化ジルコニウム(IV)ZrF4)、塩化物塩(塩化ジルコニウム(III) ZrCl3,塩化ジルコニウム(IV) ZrCl4) 、硝酸塩(硝酸ジルコニウム(IV)五水和物 Zr(NO3)4・5H2O)、酸化物(酸化ジルコニウム ZrO2)、オキシ塩化物(二塩化酸化ジルコニウム(IV)八水和物 ZrCl2O・8H2O)、オキシ硝酸物(二硝酸酸化ジルコニウム(IV)二水和物 Zr(NO3)2O・8H2O)、酢酸塩(酢酸ジルコニウム Zr(CHCOO)4)などが挙げられるが、中でも硫酸ジルコニウムの使用が好ましい。また、界面活性剤としては、アルキルトリメチルアンモニウム[CnH2n+1N+(CH3)3]を含むのものが好ましく、電荷を中性にするための陰イオンはCl-, Br-, OH-などが挙げられる。アルキル鎖の炭素数(n)としては8〜20が好ましく、さらにはn=16であるヘキサデシルトリメチルアンモニウムブロミド([CH(CH15N(CH]Br)の使用がより好ましい。界面活性剤の添加量は、臨界ミセル濃度よりも大きく、液晶相の生成濃度より小さくなるようにすることが好ましく、ヘキサデシルトリメチルアンモニウムブロミドの場合0.03〜26wt%とすることが好ましく、さらには25wt%にすることがより好ましい。 The porous body is manufactured using a surfactant as a mold. For example, a zirconium source and a surfactant are mixed, heated to 100 ° C., and the precipitate is aged for 48 hours. The obtained precipitate is filtered and dried to obtain a porous body. Examples of the zirconium source include zirconium sulfate, sulfate (zirconium sulfate (IV) tetrahydrate Zr (SO 4 ) 2 · 4H 2 O), fluoride salt (zirconium fluoride (III) ZrF 3 , fluoride Zirconium (IV) ZrF 4 ), chloride salt (zirconium chloride (III) ZrCl 3 , zirconium chloride (IV) ZrCl 4 ), nitrate (zirconium nitrate (IV) pentahydrate Zr (NO 3 ) 4 · 5H 2 O ), Oxide (zirconium oxide ZrO 2 ), oxychloride (zirconium dichloride (IV) octahydrate ZrCl 2 O · 8H 2 O), oxynitrate (zirconium dinitrate (IV) dihydrate dihydrate) Zr (NO 3 ) 2 O · 8H 2 O), acetate salt (zirconium acetate Zr (CHCOO) 4 ), and the like can be mentioned. Among them, use of zirconium sulfate is preferable. The surfactant preferably contains alkyltrimethylammonium [C n H 2n + 1 N + (CH 3 ) 3 ], and the anion for neutralizing the charge is Cl , Br , OH- and the like. The carbon number (n) of the alkyl chain is preferably 8 to 20, and more preferably hexadecyltrimethylammonium bromide ([CH 3 (CH 2 ) 15 N (CH 3 ) 3 ] Br) in which n = 16 is used. preferable. The addition amount of the surfactant is preferably larger than the critical micelle concentration and smaller than the production concentration of the liquid crystal phase, and in the case of hexadecyltrimethylammonium bromide, preferably 0.03 to 26 wt%, and further 25 wt% It is more preferable to use%.

次に、界面活性剤を鋳型として多孔質体を製造する際に、本発明者等は、界面活性剤を孔内にそのまま残留させておいても吸着性能を呈することを知見するに至った。   Next, when producing a porous body using a surfactant as a template, the present inventors have found that the adsorption performance is exhibited even if the surfactant is left in the pores as it is.

勿論、界面活性剤を除去してから用いてもよい。多孔質体の細孔構造と吸着能力を維持しながら細孔内の界面活性剤を除去すれば、多孔質体の吸着性能が向上する。   Of course, it may be used after removing the surfactant. If the surfactant in the pores is removed while maintaining the pore structure and adsorption capacity of the porous body, the adsorption performance of the porous body is improved.

具体的には、多孔質体中の界面活性剤を、アルカリにて除去した後に酸にて処理するようにすればよい。   Specifically, the surfactant in the porous body may be removed with an alkali and then treated with an acid.

ここで、アルカリとは、被処理水のpHをアルカリ性領域に調節するものであり、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水酸化カルシウム等が挙げられ、好ましくは水酸化ナトリウムであるが、これらに限られるものではない。   Here, the alkali is to adjust the pH of the water to be treated to the alkaline region, and examples thereof include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, and preferably sodium hydroxide. There are, but are not limited to these.

また、酸とは、硫酸(H2SO4)、塩酸(HCl)、硝酸(HNO3)、リン酸(H3PO4)、酢酸(CH3COOH)が挙げられ、好ましくは硫酸(H2SO4)であるが、これらに限られるものではない。 Examples of the acid include sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCI), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), and acetic acid (CH 3 COOH), preferably sulfuric acid (H 2 SO 4 ), but is not limited to these.

ここで、Zr−Sの場合を例として以下に具体的に説明する。Zr−Sをアルカリ性溶液中に接触させると、溶液のpHを下げる方向に反応が進行する。つまり、溶液中からOHイオンを減少させるか、もしくはHイオンを増加させる方向に反応が進行する。従って、アルカリ性溶液中のOHとZr−S吸着剤の硫酸イオン(SO4 2−)が交換しやすくなり、この陰イオン交換反応の際に界面活性剤が細孔内から押し出されることで除去される。尚、この場合のアルカリ性溶液のpHは8〜13であればよいが、好ましくは9〜12、さらに好ましくは10〜12である。 Here, the case of Zr-S will be specifically described below as an example. When Zr-S is brought into contact with an alkaline solution, the reaction proceeds in the direction of lowering the pH of the solution. That is, the reaction proceeds in the direction of decreasing OH ions or increasing H + ions from the solution. Thus, OH alkaline solution - removed by the Zr-S adsorbent Sulfate ion (SO 4 2-) is easily replaced, surfactants during the anion exchange reaction is forced out the pores Is done. In this case, the pH of the alkaline solution may be 8 to 13, but is preferably 9 to 12, and more preferably 10 to 12.

このようにして界面活性剤の除去が可能である。しかしながら、この際に陰イオン交換反応も同時に生じるため、Zr−S吸着剤の硫酸イオン(HSO4 2-、SO4 2-)は減少する。この硫酸イオンは排水中のホウ素およびフッ素を除去する際の陰イオン交換サイトとして機能するので、酸により処理することで、陰イオン交換サイトを補充して吸着性能を高めるようにする。 In this way, the surfactant can be removed. However, since an anion exchange reaction also occurs at this time, the sulfate ions (HSO 4 2− and SO 4 2− ) in the Zr—S adsorbent are reduced. Since this sulfate ion functions as an anion exchange site when removing boron and fluorine in the waste water, the anion exchange site is supplemented by treatment with an acid to enhance the adsorption performance.

尚、被吸着物質を吸着していない多孔質体の吸着活性が小さい場合にも、酸により処理して、陰イオン交換サイトを補充するようにすることで吸着活性が向上する場合がある。   Even if the adsorption activity of the porous material that does not adsorb the substance to be adsorbed is small, the adsorption activity may be improved by treating with an acid and supplementing the anion exchange site.

次に、多孔質体による吸着反応は、被吸着物質の酸解離定数(Ka)の逆対数値pKaとほぼ等しいpH領域で起こさせることが好ましい。ホウ素を例にとると、ホウ素はB(OH) の形態で無機系吸着剤に吸着するため、pHが高くなるほどB(OH) 濃度が増大し、それにしたがってホウ素吸着量が増え、pH10を超えるとOH濃度も増大し、吸着がB(OH) とOHの競争反応になるため、ホウ素吸着量が低下する。より具体的には、ホウ素が単独で含まれる場合には、pH8〜12の範囲の領域で吸着量が多くなり、なかでもpH8〜10の範囲の領域でホウ素の吸着量がより多くなることからこの範囲の領域で吸着処理を行うことがより好ましい。つまり、被吸着物質の酸解離定数(Ka)の逆対数値pKaとほぼ等しいpH領域で吸着反応を起こさせることが最も吸着量を増加させると考えられ、ホウ素についてはpH9前後で吸着反応を起こさせることで吸着量を最も増加させることができる。 Next, the adsorption reaction by the porous body is preferably caused to occur in a pH region substantially equal to the inverse logarithm value pKa of the acid dissociation constant (Ka) of the adsorbed substance. Taking boron as an example, boron B (OH) 4 - to adsorb to the inorganic adsorbent in the form, pH is higher B (OH) 4 high - and concentration increases, it boron adsorption amount increases accordingly When the pH exceeds 10, the OH concentration also increases, and the adsorption becomes a competitive reaction of B (OH) 4 and OH , so that the boron adsorption amount decreases. More specifically, when boron is contained alone, the amount of adsorption increases in the range of pH 8-12, and in particular, the amount of boron adsorbed increases in the range of pH 8-10. It is more preferable to perform the adsorption treatment in this range. In other words, it is considered that the adsorption reaction increases most when the adsorption reaction is caused in the pH range approximately equal to the inverse logarithm value pKa of the acid dissociation constant (Ka) of the substance to be adsorbed. By doing so, the amount of adsorption can be increased most.

上述の多孔質体はホウ素とフッ素の吸着剤であり、この吸着剤を排水に接触させることで排水中の被吸着物質を吸着し除去する。例えば、吸着剤をペレット状、粒状、粉末状等に調製し、吸着剤を充填した吸着塔に排水を通過させることで、排水中に含まれるホウ素やフッ素の吸着除去処理を行う。   The porous body described above is an adsorbent for boron and fluorine, and adsorbed substances in the wastewater are adsorbed and removed by bringing the adsorbent into contact with the wastewater. For example, the adsorbent is prepared in pellets, granules, powders, etc., and the wastewater is passed through an adsorption tower filled with the adsorbent, thereby performing adsorption removal treatment of boron and fluorine contained in the wastewater.

尚、上述の多孔質体はホウ素とフッ素の除去に限られるものではなく、排水中で陰イオンの形態を取り得る物質であれば、吸着可能であると考えられる。例えば、排水中に存在する有害な重金属等も、陰イオンの形態を取り得るならば吸着可能であり、ホウ素とフッ素を除去する際に、同時に有害な重金属等も除去できるようになり、非常に有用である。   The porous body described above is not limited to removing boron and fluorine, but can be adsorbed as long as it is a substance that can take the form of anions in waste water. For example, harmful heavy metals present in wastewater can be adsorbed if they can take the form of anions, and when removing boron and fluorine, harmful heavy metals can be removed at the same time. Useful.

使用後の吸着剤、即ち被吸着物質を吸着した多孔質体を酸により再生し、再利用しても良い。多孔質体を酸によって洗浄することで吸着したホウ素とフッ素を除去しつつ、陰イオン交換サイトを補充することができるので、多孔質体を再利用することができ、大変経済的である。   The adsorbent after use, that is, the porous material that adsorbs the adsorbed substance may be regenerated and reused with an acid. Since the anion exchange site can be replenished while removing the adsorbed boron and fluorine by washing the porous body with an acid, the porous body can be reused, which is very economical.

ここで、酸としては、硫酸(H2SO4)、塩酸(HCl)、硝酸(HNO3)、リン酸(H3PO4)、酢酸(CH3COOH)が挙げられれ、好ましくは硫酸(H2SO4)であるが、これらに限られるものではない。 Examples of the acid include sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCI), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), and acetic acid (CH 3 COOH), preferably sulfuric acid (H 2 SO 4 ), but not limited to these.

次に、ジルコニウム多孔質体の再生において、硫酸(H2SO4)を用いた場合には、その溶液濃度を、1.0×10−2mol/lより大きく1.0mol/l未満にするのがよく、好ましくは7.5×10−2mol/l〜0.75mol/l、より好ましくは5.0×10−2mol/l〜0.5mol/l、さらに好ましくは0.25×10−2mol/l〜0.25mol/l、最も好ましくは0.1mol/lである。尚、1.0mol/l以上ではジルコニウム多孔質体が溶出してしまい、1.0×10−2mol/l以下ではほとんど再生ができない。0.1mol/lのときに良好な再生効果が得られる。 Next, in the regeneration of the porous zirconium body, when sulfuric acid (H 2 SO 4 ) is used, the concentration of the solution is made larger than 1.0 × 10 −2 mol / l and smaller than 1.0 mol / l. good to have, preferably 7.5 × 10 -2 mol / l~0.75mol / l, more preferably 5.0 × 10 -2 mol / l~0.5mol / l, more preferably 0.25 × 10 −2 mol / l to 0.25 mol / l, most preferably 0.1 mol / l. In addition, a porous zirconium body elutes at 1.0 mol / l or more, and almost no regeneration is possible at 1.0 × 10 −2 mol / l or less. A good regeneration effect can be obtained at 0.1 mol / l.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[実施例1]
(1)実験
(1.1)供試した吸着剤
本実験では、市販の無機吸着剤2種(モレキュラシーブ13X(MS−13X),活性炭(AC))および試作したジルコニウム系無機吸着剤3種を吸着剤として使用した。また、ホウ素吸着性能を比較するため、ホウ素選択性イオン交換樹脂(アンバーライトIRA743)を用いた。
[Example 1]
(1) Experiment (1.1) Tested Adsorbent In this experiment, two types of commercially available inorganic adsorbents (molecular sieve 13X (MS-13X) and activated carbon (AC)) and three prototype zirconium-based adsorbents were used. Used as an adsorbent. Further, in order to compare the boron adsorption performance, a boron selective ion exchange resin (Amberlite IRA743) was used.

(1.2)ジルコニウム(Zr)系吸着剤の調製
Zr系無機吸着剤は、以下に示す3種類の方法で調製した。試薬は和光純薬工業(株)製を使用した。
(a)Zr−S(水熱合成、未焼成)
焼成処理ならびにリン酸処理を施さずにジルコニウム多孔質体(Zr−S)を調製した。蒸留水85gに界面活性剤としてヘキサデシルトリメチルアンモニウムブロミド([CH(CH15N(CH]Br,CTMABr)2.5gを溶解した溶液と、蒸留水15gに硫酸ジルコニウム(IV)四水和物(Zr(SO・4HO)4.55gを溶解した溶液を混合し、室温で2時間撹拌した。その後、373Kにおいて48時間、加熱保持することにより沈殿物を熟成させた。得られた沈殿物を濾過後、373Kにて一晩乾燥した。乾燥固形物を粉砕し白色粉末を得た。
(1.2) Preparation of Zirconium (Zr) Adsorbent Zr inorganic adsorbent was prepared by the following three methods. A reagent manufactured by Wako Pure Chemical Industries, Ltd. was used.
(A) Zr-S (hydrothermal synthesis, unfired)
A zirconium porous body (Zr-S) was prepared without performing the firing treatment and the phosphoric acid treatment. A solution of 2.5 g of hexadecyltrimethylammonium bromide ([CH 3 (CH 2 ) 15 N (CH 3 ) 3 ] Br, CTMBr)) as a surfactant in 85 g of distilled water and zirconium sulfate (IV) in 15 g of distilled water ) A solution in which 4.55 g of tetrahydrate (Zr (SO 4 ) 2 .4H 2 O) was dissolved was mixed and stirred at room temperature for 2 hours. Thereafter, the precipitate was matured by heating and maintaining at 373 K for 48 hours. The resulting precipitate was filtered and dried overnight at 373K. The dried solid was pulverized to obtain a white powder.

(b)Zr−M(水熱合成、焼成)
手順(a)で一晩乾燥して得られる乾燥固形物中に含有するCTMABrを酸化分解により除去し、細孔をつくる目的で、空気中733Kで5時間、焼成(酸化分解処理)を行った。得られた焼成固形物を粉砕し、白色粉末を得た。
(B) Zr-M (hydrothermal synthesis, firing)
For the purpose of removing the CTMABr contained in the dry solid obtained by drying overnight in the procedure (a) by oxidative decomposition and creating pores, firing (oxidative decomposition treatment) was performed at 733 K in air for 5 hours. . The obtained fired solid was pulverized to obtain a white powder.

(c)Zr−N(硝酸塩分解)
オキシ硝酸ジルコニウム(ZrO(NO)を空気中、773Kで3時間焼成し、酸化分解した。得られた焼成固形物を粉砕し、白色粉末を得た。
(C) Zr-N (nitrate decomposition)
Zirconium oxynitrate (ZrO (NO 3 ) 2 ) was calcined in air at 773 K for 3 hours to undergo oxidative decomposition. The obtained fired solid was pulverized to obtain a white powder.

(1.3)吸着実験
吸着実験には所定量のホウ酸(HBO)、フッ化ナトリウム(NaF)を蒸留水に溶解した溶液を使用した。溶液100cmを三角フラスコに採取し、これに所定量(0.2〜0.5g)の吸着剤を添加した後、室温にて48〜139時間振とうした。なお、ホウ素の吸着実験においては、水酸化ナトリウム(NaOH)水溶液もしくは硝酸(HNO)を用いて実験中の溶液が所定のpHで一定となるように制御した。一方、フッ素の吸着実験ではpH制御は行わなかった。
(1.3) Adsorption Experiment A solution in which a predetermined amount of boric acid (H 3 BO 3 ) and sodium fluoride (NaF) were dissolved in distilled water was used for the adsorption experiment. 100 cm 3 of the solution was collected in an Erlenmeyer flask, and a predetermined amount (0.2 to 0.5 g) of an adsorbent was added thereto, followed by shaking at room temperature for 48 to 139 hours. In the boron adsorption experiment, an aqueous solution of sodium hydroxide (NaOH) or nitric acid (HNO 3 ) was used to control the solution in the experiment to be constant at a predetermined pH. On the other hand, pH control was not performed in the fluorine adsorption experiment.

吸着実験開始後、所定時間経過した吸着溶液1cmを0.45μmのフィルターを通過させて採取した。これを蒸留水で希釈(50〜100倍)し、ICP発光分析装置にて吸着質等の濃度を測定した。一部の溶液試料についてはイオンクロマトグラフ法によって溶液中イオンを同定、定量した。吸着性能の指標として、以下に示す吸着剤重量あたりの吸着量と分配係数(Kd)を用いた。 After the start of the adsorption experiment, 1 cm 3 of the adsorbed solution after a predetermined time was collected by passing through a 0.45 μm filter. This was diluted with distilled water (50 to 100 times), and the concentration of adsorbate and the like was measured with an ICP emission spectrometer. For some solution samples, ions in the solution were identified and quantified by ion chromatography. As an index of adsorption performance, the following adsorption amount per adsorbent weight and distribution coefficient (Kd) were used.

吸着剤単位重量あたりの吸着量は、吸着実験前後の溶液の吸着質濃度より数式1から算出した。   The amount of adsorption per unit weight of the adsorbent was calculated from Equation 1 from the adsorbate concentration of the solution before and after the adsorption experiment.

Figure 2006055835
ここで、C:吸着実験前の溶液中の微量元素濃度(mg・dm−3)、C:吸着実験後の溶液中の微量元素濃度(mg・dm−3)、V:使用した溶液量(cm)、W:使用した吸着剤量(g)である。
Figure 2006055835
Here, C 0 : Trace element concentration in the solution before the adsorption experiment (mg · dm −3 ), C 1 : Trace element concentration in the solution after the adsorption experiment (mg · dm −3 ), V: Solution used Amount (cm 3 ), W: amount of adsorbent used (g).

分配係数(Kd)は数式2により算出した。

Figure 2006055835
ここで、q:吸着剤単位重量あたりの微量元素吸着量(mg・g−1)、c:吸着平衡時における溶液1cm中の吸着質濃度(mg・dm−3)である。 The distribution coefficient (Kd) was calculated by Equation 2.
Figure 2006055835
Here, q is the amount of the trace element adsorbed per unit weight of the adsorbent (mg · g −1 ), and c is the adsorbate concentration (mg · dm −3 ) in 1 cm 3 of the solution at the time of adsorption equilibrium.

(1.4)吸着剤の物性測定
吸着剤のBET比表面積は、流通式一点法によって測定した。キャリヤーガス中(N/He=30/70)で573K、1時間保持して試料中の吸着水分を除去した後に液体窒素温度でNの吸着測定を行った。また、細孔径分布の測定では,試料の脱気処理はZr−SおよびIRA743については373K、一晩の条件で行った。
(1.4) Measurement of physical properties of adsorbent The BET specific surface area of the adsorbent was measured by a flow-type single point method. Adsorption measurement of N 2 was performed at liquid nitrogen temperature after removing adsorbed moisture in the sample by holding at 573 K in carrier gas (N 2 / He = 30/70) for 1 hour. In the measurement of the pore size distribution, the sample was degassed for Zr-S and IRA743 at 373 K overnight.

吸着剤のFTIR分析は,KBr錠剤法による透過吸収測定を行った。   The FTIR analysis of the adsorbent was measured for permeation absorption by KBr tablet method.

吸着剤の結晶構造解析(XRD)にはマック・サイエンス社のMXP18を用い線源としてCuKα、管電圧40kV、管電流100mA、走査速度4.0°min−1の条件で分析を行った。なお、2θ=10°以下の低角度の分析はFT法を用いて、ステップ幅0.002〜0.006°、計数時間4secの条件で行った。 For the crystal structure analysis (XRD) of the adsorbent, analysis was carried out under the conditions of CuKα, tube voltage 40 kV, tube current 100 mA, scanning speed 4.0 ° min −1 , using MXP18 manufactured by Mac Science. The analysis at a low angle of 2θ = 10 ° or less was performed using the FT method under the conditions of a step width of 0.002 to 0.006 ° and a counting time of 4 sec.

(2)実験結果
(2.1)Zr−S、Zr−Mの構造
調製したZr−SのXRDパターンを図1に示す。高角度側(10−70°)のXRDにおいては、シャープな回折線は観察されず、20.3、28.0、57.8°にブロードなピークが観察された。観察されたピークは全てZr(SOもしくはZrOに帰属された。
(2) Experimental results (2.1) Structure of Zr-S and Zr-M The XRD pattern of the prepared Zr-S is shown in FIG. In XRD on the high angle side (10-70 °), no sharp diffraction lines were observed, and broad peaks were observed at 20.3, 28.0, and 57.8 °. All observed peaks were assigned to Zr (SO 4 ) 2 or ZrO 2 .

また、Zr−Sの低角度側のXRDパターンにおいては、1本のシャープな回折線(2θ=2.200°)と3本のブロードな回折線(2θ=3.672、4.210、5.531°)が観察され、格子面間隔(d−spacing)はそれぞれ4.01、2.40、2.10、1.60nmであった。Zr−Mのホウ素除去性能と比較した結果から、Zr−Sが代表的なメソポーラスシリカのMCM41と同様のヘキサゴナル構造(六角形の細孔構造)を有すると仮定すると、観察された回折線はそれぞれ(100)、(110)、(200)、(200)の反射に帰属される。   In the XRD pattern on the low angle side of Zr-S, one sharp diffraction line (2θ = 2.200 °) and three broad diffraction lines (2θ = 3.672, 4.210, 5.531 °) are observed, The lattice spacing (d-spacing) was 4.01, 2.40, 2.10, and 1.60 nm, respectively. As a result of comparison with the boron removal performance of Zr-M, assuming that Zr-S has a hexagonal structure (hexagonal pore structure) similar to MCM41 of typical mesoporous silica, the observed diffraction lines are It is attributed to the reflection of (100), (110), (200), (200).

図2にZr−MのXRDパターンを示す。高角度側ではZr−Sと異なり、明確なピークが、2θ=30、35、50および60°に認められた。2θ=30および35°のピークはそれぞれ、Zr(SO、Zr(SO・5HOに帰属し、2θ=50および60°のピークはZrOに帰属する。低角度側においてはZr−Sで認められた4本の回折線は消失した。これは、未焼成の場合には存在していたヘキサゴナル構造が焼成によって崩壊しZrOなどに変化したために、ヘキサゴナルに帰属するピークが消失した結果と考えられる。つまり、ヘキサゴナル構造は消失したと考えられる。 FIG. 2 shows an XRD pattern of Zr-M. On the high angle side, different from Zr-S, clear peaks were observed at 2θ = 30, 35, 50 and 60 °. The peaks at 2θ = 30 and 35 ° belong to Zr (SO 4 ) 2 and Zr (SO 4 ) 2 .5H 2 O, respectively, and the peaks at 2θ = 50 and 60 ° belong to ZrO 2 . On the low angle side, the four diffraction lines observed with Zr-S disappeared. This is considered to be a result of the disappearance of the peak attributed to hexagonal because the hexagonal structure that had existed in the case of unfired collapsed by firing and changed to ZrO 2 or the like. That is, it is considered that the hexagonal structure has disappeared.

図3にZr−SのN吸着等温線と細孔径分布を示す。また、表1にはZr−SおよびIRA743の物理的性質をまとめた。調製直後のZr−Sの細孔内には合成時に使用した界面活性剤が充填された状態にあると考えられるが、細孔構造を保持したまま細孔内の界面活性剤を除去する前処理条件が不明であった。このため、Zr−SのN吸着測定においては、前処理を373Kで行ったが、データの信頼性に多少難があると考えられる。それを考慮しても、Zr−Sは市販のIRA743に比べ、細孔容積は小さいものの、表面積は10倍程度大きく、細孔径も大きいことがわかった。 FIG. 3 shows the N 2 adsorption isotherm and pore diameter distribution of Zr—S. Table 1 summarizes the physical properties of Zr-S and IRA743. The Zr-S pores immediately after preparation are considered to be filled with the surfactant used at the time of synthesis, but pretreatment to remove the surfactant in the pores while maintaining the pore structure The condition was unknown. For this reason, in the N 2 adsorption measurement of Zr—S, pretreatment was performed at 373 K, but it is considered that there is some difficulty in data reliability. Considering this, it was found that although Zr-S has a smaller pore volume than the commercially available IRA743, the surface area is about 10 times larger and the pore diameter is larger.

Figure 2006055835
Figure 2006055835

(2.2)ホウ素吸着量のpH依存性
ホウ素濃度200mg・dm−3における各種吸着剤の分配係数KdのpH依存性を図4に示す。
(2.2) pH dependence of boron adsorption amount The pH dependence of the partition coefficient Kd of various adsorbents at a boron concentration of 200 mg · dm −3 is shown in FIG.

IRA743のKdは強アルカリ(pH12)領域で若干低下するものの、酸性領域から弱アルカリ性領域までほぼ等しい値を示した。一方、各無機系吸着剤のKdは、酸・アルカリ領域では低い値であるが、pH9前後で最大値を示し、特にZr−Sの場合、pH9〜10にかけて、IRA743の値を上回る値を示した。   Although Kd of IRA743 slightly decreased in the strong alkali (pH 12) region, it showed almost the same value from the acidic region to the weakly alkaline region. On the other hand, Kd of each inorganic adsorbent is a low value in the acid / alkali region, but shows a maximum value around pH 9, and particularly in the case of Zr-S, it shows a value exceeding the value of IRA743 over pH 9-10. It was.

(2.3)ホウ素の吸着等温線
各吸着剤について、ホウ素濃度10、70、100、200および500mg・dm−3の模擬排水を用いてホウ素吸着量を測定し、室温、pH9の条件における吸着等温線を得た。得られた結果を、数式3(Langmuir式)および数式4(Freundlich式)で近似した結果とともに図5、6に示した。
(2.3) Boron adsorption isotherm For each adsorbent, the boron adsorption amount was measured using simulated waste water with boron concentrations of 10, 70, 100, 200 and 500 mg · dm −3 , and adsorption under conditions of room temperature and pH 9 An isotherm was obtained. The obtained results are shown in FIGS. 5 and 6 together with results approximated by Equation 3 (Langmuir equation) and Equation 4 (Freundlich equation).

Figure 2006055835
Figure 2006055835
ここで、q:吸着剤への吸着量、qs:飽和吸着量、a:吸着平衡定数、C:ホウ素濃度、kおよび1/n:吸着定数である。
Figure 2006055835
Figure 2006055835
Here, q: adsorption amount to the adsorbent, qs: saturated adsorption amount, a: adsorption equilibrium constant, C: boron concentration, k and 1 / n: adsorption constant.

MS−13X以外の吸着剤は、Langmuir型およびFreundlich型の吸着等温式にほぼ従うことがわかった。平衡吸着濃度が100mg・dm−3を越える濃度範囲では、Zr−Sが最も高いホウ素吸着量を示した。この濃度範囲での吸着量の序列はZr−S>IRA743>Zr−N≒Zr−M>ACとなった。 It was found that adsorbents other than MS-13X almost follow the Langmuir type and Freundlich type adsorption isotherms. In the concentration range where the equilibrium adsorption concentration exceeds 100 mg · dm −3 , Zr—S showed the highest boron adsorption amount. The order of adsorption amount in this concentration range was Zr-S>IRA743>Zr-N≈Zr-M> AC.

Zr−MとZr−Nは、異なる出発物質を酸化分解した試料であるが、両者のホウ素吸着量は大きな差がないことから、調製の出発物質の差異によるホウ素吸着量への効果は小さいと考えられる。一方、Zr−SとZr−Mとでは、X線回折の結果に見られるように、構造に大きな違いがあり、かつ、ホウ素吸着量に大きな違いが認められる。ホウ素吸着量の相違は、ヘキサゴナル構造の有無も寄与している可能性があると考えられる。   Zr-M and Zr-N are samples obtained by oxidative decomposition of different starting materials, but since there is no significant difference in the amount of boron adsorbed between them, the effect on the amount of boron adsorbing due to the difference in the starting materials of preparation is small. Conceivable. On the other hand, between Zr-S and Zr-M, as seen in the results of X-ray diffraction, there is a large difference in structure and a large difference in boron adsorption amount. It is considered that the difference in the amount of adsorbed boron may contribute to the presence or absence of the hexagonal structure.

(2.4)ホウ素含有水処理能力の比較
Freundlich型吸着等温線から得られた吸着定数を基に、ホウ素処理に必要な吸着剤量の推算を、Zr−SおよびIRA743を用いた場合について試みた。推算にあたって、図7に示すような処理システムを仮定した。このシステムでは、1)各反応器ではバッチ処理を行う、2)処理する水は一段目反応器から二段目反応器へと送られる、3)二段目反応器に新しい吸着剤が添加され、一段目反応器に、二段目反応器で吸着済みとなった吸着剤が添加される、ことを想定した。
(2.4) Comparison of treatment capacity for boron-containing water
Based on the adsorption constant obtained from the Freundlich type adsorption isotherm, an estimation of the amount of adsorbent necessary for the boron treatment was attempted in the case of using Zr-S and IRA743. In the estimation, a processing system as shown in FIG. 7 was assumed. In this system, 1) batch processing is performed in each reactor, 2) water to be processed is sent from the first stage reactor to the second stage reactor, and 3) a new adsorbent is added to the second stage reactor. It was assumed that the adsorbent that had been adsorbed in the second-stage reactor was added to the first-stage reactor.

このシステムの各段の物質収支から、数式5〜7が導き出せる。

Figure 2006055835
Figure 2006055835
Figure 2006055835
ここで、Q:処理水量、W:吸着剤量、C:ホウ素濃度、q:吸着剤への吸着量である。但し、添字は各段を出たものを示す。 Equations 5-7 can be derived from the material balance of each stage of the system.
Figure 2006055835
Figure 2006055835
Figure 2006055835
Here, Q is the amount of treated water, W is the amount of adsorbent, C is the boron concentration, and q is the amount adsorbed on the adsorbent. However, the subscripts indicate those that have gone out of each stage.

各反応器での吸着量は、数式4から数式8のように表される。

Figure 2006055835
=0であることから、数式6、7および8から数式9が得られる。
Figure 2006055835
は、この式に原水および処理水のホウ素濃度(C、C)を代入することにより求められる。さらに、数式7、8から導かれる以下の数式10から、必要吸着剤量が求められる。 The amount of adsorption in each reactor is expressed as Equation 4 to Equation 8.
Figure 2006055835
Since q 3 = 0, Expression 9 is obtained from Expressions 6, 7, and 8.
Figure 2006055835
C 1 is obtained by substituting the boron concentration (C 0 , C 2 ) of raw water and treated water into this equation. Furthermore, the necessary adsorbent amount is obtained from the following formula 10 derived from formulas 7 and 8.

Figure 2006055835
一段処理を仮定した場合について、同様にして必要吸着剤量を求める式を導出すると、数式11のようになる。
Figure 2006055835
When a single-stage process is assumed, an equation for obtaining the necessary adsorbent amount in the same manner is derived as shown in Equation 11.

Figure 2006055835
Figure 2006055835

300mg・dm−3から200mg・dm−3にまで除去する場合について推算を行った。推算に用いた吸着係数とともに、得られた結果を表2に示した。一段処理によって300mg・dm−3から200mg・dm−3にまで除去する場合の吸着剤必要量は、Zr−Sで3.68Q、IRA743で8.84Qであることから、Zr−SはIRA743の約0.4倍の量で処理が可能であることがわかる。また、二段処理で同様に除去する場合、Zr−Sでは吸着剤の必要量が3.68Qから2.84Qまで減り、一段処理で除去する場合の約20%少ない量で処理することができる。 The estimation was made for the case of removal from 300 mg · dm −3 to 200 mg · dm −3 . The obtained results are shown in Table 2 together with the adsorption coefficient used for the estimation. Adsorbent requirement when removed from 300 mg · dm -3 by one stage process until the 200 mg · dm -3 is, 3.68Q in Zr-S, because it is 8.84Q in IRA743, Zr-S is the IRA743 It can be seen that processing is possible with an amount of about 0.4 times. In addition, when removing in the same manner in the two-stage treatment, the necessary amount of the adsorbent is reduced from 3.68Q to 2.84Q in Zr-S, and the treatment can be performed in an amount about 20% less than that in the case of removing in the one-stage treatment. .

Figure 2006055835
Figure 2006055835

(2.5)Zr−Sの吸着特性
無機系吸着剤の中で、ホウ素吸着で優れた結果を示したZr−Sについて、フッ素(F)の吸着性能を評価した。
(2.5) Adsorption characteristics of Zr-S Among the inorganic adsorbents, the adsorption performance of fluorine (F) was evaluated for Zr-S which showed excellent results in boron adsorption.

表3には各元素の吸着試験結果をまとめた。 Table 3 summarizes the adsorption test results of each element.

Figure 2006055835
Figure 2006055835

吸着開始後に溶液のpHは低下し、その挙動は吸着質の種類によって異なった。フッ素吸着の場合、吸着前のpH5.9〜6.2が吸着後には最大でpH2.7まで低下した。初期吸着濃度が高いほど平衡吸着時のpHが高くなる傾向を示した。なお、ホウ素吸着の場合は、NaOHによって実験中の溶液のpHを10に制御した。   The pH of the solution decreased after the start of adsorption, and the behavior varied depending on the type of adsorbate. In the case of fluorine adsorption, pH 5.9 to 6.2 before adsorption decreased to pH 2.7 at the maximum after adsorption. The higher the initial adsorption concentration, the higher the pH during equilibrium adsorption. In the case of boron adsorption, the pH of the solution under experiment was controlled at 10 with NaOH.

図8に298Kにおける吸着等温線を示す。吸着量はいずれもLangmuir型の吸着等温式で整理することができた。ホウ素に対する飽和吸着量は、56mg−Bg−1であり、市販のイオン交換樹脂(IRA743、23mg−Bg−1)の2倍の吸着量を示した。また、フッ素に対する飽和吸着量はそれぞれ101mg−Fg−1となり、分配係数はホウ素吸着の場合(10程度)よりも一桁以上高かった(10〜10)。 FIG. 8 shows an adsorption isotherm at 298K. The amount of adsorption could be arranged by Langmuir type adsorption isotherm. The saturated adsorption amount for boron was 56 mg-Bg −1 , which was twice as much as that of a commercially available ion exchange resin (IRA743, 23 mg-Bg −1 ). The saturation adsorption amount to fluorine Each 101 mg-Fg -1, and the partition coefficient was higher by more than one order of magnitude than that of boron adsorption (10 2 about) (10 3 to 10 4).

吸着実験においてZr−Sから放出されたイオウ量と各種微量元素吸着量の相関を図9に示す。グラフには、イオウ量と吸着量の関係が1:1および1:2になるラインも示した。ICP−AESで測定したイオウ量とイオンクロマトグラフで測定したSO 2−量がほぼ一致したため、Zr−Sから放出されたイオウは溶液中で硫酸イオン(SO 2−およびHSO )として存在することがわかった。 FIG. 9 shows the correlation between the amount of sulfur released from Zr-S and the amount of various trace elements adsorbed in the adsorption experiment. The graph also shows lines where the relationship between the amount of sulfur and the amount of adsorption is 1: 1 and 1: 2. Since the sulfur content measured by ICP-AES and SO 4 2-amount determined by ion chromatography were almost the same, Zr-S sulfur released from the sulfate ion in solution (SO 4 2-and HSO 4 -) as I found it.

図より明らかにように、吸着質の種類によらず、イオウ放出量が多いほど微量元素の吸着量が増大した。ホウ素吸着の場合にはデータのばらつきが大きかったが、イオウ放出量が小さいときにはイオウ量とホウ素吸着量の関係は1:1であるのに対し、イオウ放出量が大きいときは1:2の関係となる傾向が認められた。一方、フッ素吸着の場合には、放出されるイオウ量と吸着量が、ほぼ1:2の関係にあることがわかった。   As is clear from the figure, regardless of the type of adsorbate, the amount of trace elements increased as the amount of sulfur released increased. In the case of boron adsorption, the data variation was large, but when the amount of released sulfur is small, the relationship between the amount of sulfur and the amount of adsorbed boron is 1: 1, whereas when the amount of released sulfur is large, the relationship is 1: 2. The tendency to become was recognized. On the other hand, in the case of fluorine adsorption, it was found that the amount of sulfur released and the amount of adsorption are in a relationship of approximately 1: 2.

以上より、巨視的には、フッ素吸着の場合は、Zr−S中のイオウとフッ素が1:2で交換し、一方、ホウ素の場合は、イオウの放出量に依存して、1:1もしくは1:2でホウ素とイオウが交換することが示唆された。   From the above, macroscopically, in the case of fluorine adsorption, sulfur and fluorine in Zr—S are exchanged at a ratio of 1: 2, whereas in the case of boron, it is 1: 1 or depending on the amount of released sulfur. It was suggested that boron and sulfur exchange at 1: 2.

本実験の実験条件においては、ホウ素およびフッ素は、モノアニオン(それぞれ、B(OH) 、F)として存在する。このため、フッ素の場合はFイオンがSO 2−イオンと2:1で交換することが示唆される。ホウ素については、イオウ放出量が小さいときにはB(OH) とHSO が1:1で交換し、イオウ放出量が大きいときにはB(OH) とSO 2−による1:2の交換が優勢になると解釈される。 Under the experimental conditions of this experiment, boron and fluorine are present as monoanions (B (OH) 4 and F , respectively). For this reason, in the case of fluorine, it is suggested that F ions exchange with SO 4 2− ions at a ratio of 2: 1. Regarding boron, B (OH) 4 and HSO 4 are exchanged by 1: 1 when the amount of released sulfur is small, and 1: 2 due to B (OH) 4 and SO 4 2− when the amount of released sulfur is large. It is interpreted that the exchange will prevail.

上記推測の妥当性を検証するために、ホウ素吸着実験の前後においてZr−Sの赤外吸収分析を行った。図10にそのFTIRスペクトルを示す。吸着前のスペクトル(図10(a))には、SO 2−に帰属される吸収(1100cm−1)およびHSO に帰属される吸収(1240、1140、1000cm−1)が観察された。すなわち、Zr−S中にはSを含有する官能基として、SO 2−とHSO が存在することを確認された。また、メチル基(CH )およびメチレン基(CH )に帰属される吸収(2930、2850、1640、1480cm−1)が観察されたことから、Zr−Sの合成時にメソ細孔を形成する鋳型として使用した界面活性剤(CTMABr)がZr−Sに残留していることがわかった。 In order to verify the validity of the above estimation, an infrared absorption analysis of Zr-S was performed before and after the boron adsorption experiment. FIG. 10 shows the FTIR spectrum. In the spectrum before adsorption (FIG. 10 (a)), absorption attributed to SO 4 2− (1100 cm −1 ) and absorption attributed to HSO 4 (1240, 1140, 1000 cm −1 ) were observed. . That is, as the functional group containing S during Zr-S, SO 4 2- and HSO 4 - was confirmed that there. Also, methyl group (CH 3 -) and a methylene group (- CH 2 -) from the absorption (2930,2850,1640,1480cm -1) was observed to be attributable to mesopores during synthesis of Zr-S It was found that the surfactant (CTMBr) used as a template for forming sapphire remained in Zr-S.

一方、ホウ素を吸着させた後のZr−Sのスペクトル(図10(b))では、CTMABrに帰属される吸収(2930、2850、1640、1480cm−1)が減少し、吸着実験によってCTMABrの一部がZr−S中から溶解して脱離することを示した。これは吸着実験前後のZr−SのCNS分析によっても裏付けられた。従って、Zr−S細孔に鋳型であるCTMABrが残留していても、被吸着物質を吸着させることが可能であることが確認された。 On the other hand, the absorption (2930, 2850, 1640, 1480 cm −1 ) attributed to CTMABr is reduced in the spectrum of Zr—S after adsorbing boron (FIG. 10B). Part was dissolved and desorbed from Zr-S. This was supported by CNS analysis of Zr-S before and after the adsorption experiment. Therefore, it was confirmed that the substance to be adsorbed can be adsorbed even if CTMBr as a template remains in the Zr-S pores.

尚、吸着実験によってSO 2−およびHSO に帰属される吸収が減少するとともに、B−O伸縮振動に帰属されるブロードな吸収(1350cm−1)が出現した。このことから、HSO およびSO 2−がB(OH) とイオン交換することが示唆される。すなわち、水中に存在する陰イオンのZr−Sへの吸着は、Zr−S細孔表面の硫酸イオンと陰イオン交換によって進行することが示唆された。 In addition, the absorption attributed to SO 4 2− and HSO 4 decreased by the adsorption experiment, and broad absorption (1350 cm −1 ) attributed to the B—O stretching vibration appeared. This suggests that HSO 4 and SO 4 2− exchange ions with B (OH) 4 . That is, it was suggested that the adsorption of anions present in water to Zr—S proceeds by anion exchange with sulfate ions on the Zr—S pore surface.

[実施例2]
実施例1と同一ロットのZr−S吸着剤を用いて、0.5gずつ量りとり、一方はそのまま使用し(供試体A)、一方は蒸留水で2度洗浄し、界面活性剤を除去した後使用した(供試体B)。ホウ素濃度200ppm,pH9の条件で48時間反応させた結果、単位重量あたりのホウ素吸着量はA=11.8mg/g、B=8.5mg/gであり、有意差は見られなかった。この結果から、Zr−S吸着剤を蒸留水で洗浄した程度では孔内の界面活性剤は除去できたとしてもごく僅かであるということが確認された。また、細孔内に界面活性剤が存在しても、吸着能力にとくに影響はないことが確認された。
[Example 2]
Using the same lot of Zr-S adsorbent as in Example 1, 0.5 g was weighed, one was used as it was (Sample A), and one was washed twice with distilled water to remove the surfactant. Used later (Specimen B). As a result of reaction for 48 hours under the conditions of boron concentration of 200 ppm and pH of 9, boron adsorption amount per unit weight was A = 11.8 mg / g, B = 8.5 mg / g, and no significant difference was observed. From this result, it was confirmed that the surfactant in the pores could be removed even if the Zr—S adsorbent was washed with distilled water. Further, it was confirmed that even if the surfactant is present in the pores, the adsorption ability is not particularly affected.

[実施例3]
実施例1でホウ素およびフッ素の吸着特性を調査したが、調査対象とした陰イオン濃度範囲が非常に小さかった。そこで、実施例1で得られた結果を確認し、さらに信頼性の高いデータを得ることを目的として、本実施例にてさらに陰イオン濃度およびpHを広範囲にして調査した。
[Example 3]
In Example 1, the adsorption characteristics of boron and fluorine were investigated, but the anion concentration range to be investigated was very small. Therefore, in order to confirm the results obtained in Example 1 and to obtain data with higher reliability, the present Example was further investigated in a wide range of anion concentrations and pH.

(1).吸着実験
吸着実験には所定量のホウ酸(HBO)、フッ化ナトリウム(NaF)を蒸留水に溶解した溶液を使用した。飽和吸着量を精度良く測定するために、陰イオン濃度は50〜1500mgdm−3の範囲で変化させた。溶液100cmをプラスチック製サンプル容器に採取し、これに所定量(0.1〜1.0g)のZr-Sを添加した後、室温(293〜298K)にて24〜48時間振とうした。尚、ホウ素の吸着実験においては、水酸化ナトリウム(NaOH)水溶液もしくは硝酸(HNO)を用いて実験中の溶液が所定のpHで一定となるように制御した。一方、フッ素の吸着実験ではpH制御は行わなかった。
さらに、ホウ酸(HBO)、フッ化ナトリウム(NaF)濃度を500mgdm−3として、pH2〜12、pH2〜9の場合の吸着特性についてそれぞれ調査した。
(1). Adsorption Experiment A solution prepared by dissolving a predetermined amount of boric acid (H 3 BO 3 ) and sodium fluoride (NaF) in distilled water was used for the adsorption experiment. In order to accurately measure the saturated adsorption amount, the anion concentration was changed in the range of 50 to 1500 mgdm −3 . 100 cm 3 of the solution was collected in a plastic sample container, and a predetermined amount (0.1 to 1.0 g) of Zr—S was added thereto, followed by shaking at room temperature (293 to 298 K) for 24 to 48 hours. In the boron adsorption experiment, an aqueous solution of sodium hydroxide (NaOH) or nitric acid (HNO 3 ) was used to control the solution in the experiment at a predetermined pH. On the other hand, pH control was not performed in the fluorine adsorption experiment.
Furthermore, boric acid (H 3 BO 3), as sodium fluoride (NaF) 500mgdm concentration -3, PH2~12, it was examined respectively for the adsorption characteristics when PH2~9.

吸着実験開始後、所定時間経過した吸着溶液1cmを0.45μmのフィルターを通過させて採取した。これを蒸留水で希釈(25〜100倍)し、ICP発光分析装置にて吸着質等の濃度を測定した。一部の溶液試料についてはイオンクロマトグラフ法によって溶液中イオンを同定、定量した。吸着時の陰イオン濃度の経時変化を追跡することにより、得られたデータの整合性と再現性を確認した。 After the start of the adsorption experiment, 1 cm 3 of the adsorbed solution after a predetermined time passed was collected by passing through a 0.45 μm filter. This was diluted with distilled water (25 to 100 times), and the concentration of adsorbate and the like was measured with an ICP emission spectrometer. For some solution samples, ions in the solution were identified and quantified by ion chromatography. By tracking the time course of the anion concentration during adsorption, the consistency and reproducibility of the obtained data were confirmed.

次に、ホウ素およびフッ素吸着実験前後のZr−Sについて、FTIR分析(KBr錠剤法による透過吸収測定)を行った。   Next, FTIR analysis (permeation absorption measurement by KBr tablet method) was performed on Zr-S before and after boron and fluorine adsorption experiments.

(2).実験結果(ホウ素)
図11に、pH9〜10におけるホウ素の吸着等温線を示す。吸着等温線はLangmuir型の吸着式で整理することができ、飽和吸着量は80mg−Bg−1と見積もられた。このとき、ホウ素吸着量とZr−Sから放出される硫酸イオンはモル比でほぼ1:1であることが見積もられた。
図12にpH2〜12におけるホウ素の吸着量を示す。ホウ素吸着量は、pH8〜11で最大となり、それよりも酸性側およびアルカリ性側では、著しく低下した。ホウ酸のpKaは9.24であり、これを境に低pH側では、H3BO3が、高pH側ではB(OH)4 -が優勢な化学種となる。このため、Zr−S中の硫酸イオンと交換可能なホウ酸イオンが生成し始めるpH8〜11において高いKdを示すと解釈される。一方、これより高pHでは、B(OH)4 -とOH-の競争吸着となるために吸着量が低下すると理解される。
図13には、図12に示した実験結果から、ホウ素吸着量、Zr−SからのSO4 2-放出量、ならびにホウ素吸着量とSO4 2-放出量のモル比(B/SO4 2-)をまとめた。ホウ素吸着量はpH8〜11で最大値を示し、その前後のpHで著しく低下したのに対し、Zr-Sから放出される硫酸イオン量はpHと共に増加し、pH9付近からほぼ一定となった。
図14に吸着実験前後のZr−SのFTIRスペクトルを示す。吸着実験によってSO 2−に帰属される吸収(1100、640cm−1)およびHSO に帰属される吸収(1240、1140、1000cm−1)が減少するとともに、B−O伸縮振動に帰属されるブロードな吸収(1350cm−1)が出現した。このことから、HSO およびSO 2−がB(OH) とイオン交換することが示唆された。実施例1にて、ホウ素については、イオウ放出量が小さいときにはB(OH) とHSO が1:1で交換し、イオウ放出量が大きいときにはB(OH) とSO 2−による1:2の交換が優勢になると解釈された。すなわち、この結果より、Zr−Sは、ホウ酸イオンを硫酸イオンとの陰イオン交換により吸着することが示され、B(OH) とHSO の場合は1:1、B(OH) とSO 2−の場合には1:2で陰イオン交換が生じることが示唆された。
(2). Experimental results (boron)
FIG. 11 shows an adsorption isotherm of boron at pH 9-10. Adsorption isotherm can be organized by adsorption of Langmuir type, saturated adsorption amount was estimated at 80 mg-Bg -1. At this time, it was estimated that the amount of boron adsorbed and the sulfate ions released from Zr-S were approximately 1: 1 in molar ratio.
FIG. 12 shows the amount of boron adsorbed at pH 2-12. The amount of boron adsorbed was maximum at pH 8 to 11, and decreased significantly on the acidic side and alkaline side. Boric acid has a pKa of 9.24, and at this point, H 3 BO 3 is the dominant chemical species on the low pH side, and B (OH) 4 is the dominant chemical species on the high pH side. For this reason, it is interpreted that a high Kd is exhibited at pH 8 to 11 where borate ions exchangeable with sulfate ions in Zr-S start to be generated. On the other hand, in this higher-pH, B (OH) 4 - and OH - adsorption amount to the competitive adsorption of it is understood that reduced.
From the experimental results shown in FIG. 12, the boron adsorption amount, the SO 4 2− release amount from Zr—S, and the molar ratio between the boron adsorption amount and the SO 4 2− release amount (B / SO 4 2 - ) The amount of boron adsorbed showed the maximum value at pH 8-11 and decreased significantly at the pH before and after that, whereas the amount of sulfate ion released from Zr-S increased with pH and became almost constant from around pH 9.
FIG. 14 shows FTIR spectra of Zr-S before and after the adsorption experiment. Absorption attributed to SO 4 2− (1100, 640 cm −1 ) and absorption attributed to HSO 4 (1240, 1140, 1000 cm −1 ) are decreased by the adsorption experiment and attributed to B—O stretching vibration. Broad absorption (1350 cm −1 ) appeared. This suggested that HSO 4 and SO 4 2− exchanged ions with B (OH) 4 . In Example 1, for boron, B (OH) 4 and HSO 4 are exchanged at 1: 1 when the amount of released sulfur is small, and B (OH) 4 and SO 4 2 when the amount of released sulfur is large. - According to the 1: 2 of the exchange has been interpreted to be the predominant. That is, from this result, Zr-S is a borate ions shown to adsorb by anion exchange with sulfate ion, B (OH) 4 - and HSO 4 - For 1: 1, B (OH ) 4 - when the SO 4 2-one: the anion exchange occurs was suggested by two.

(3).実験結果(フッ素)
図15に298K、pH2〜8におけるフッ素の吸着等温線を示す。実験中にpH調整を行わなかったため、吸着平衡時のpHは2〜8の間で変動した。フッ素吸着もホウ素の場合と同様にLangmuir型の吸着式に従い、飽和吸着量は115mg−Fg−1と見積もられた。尚、吸着時にZr−Sから放出される硫酸イオン量とフッ素の吸着量はモル比でほぼ1:2であった。
図6にpH2〜9におけるフッ素吸着量を示す。ホウ素の場合と同様に、酸解離定数付近で吸着量が最大となる山型の分布を示した。
フッ素吸着前後のZr−SのFTIRスペクトル(図示は省略)では、フッ素吸着量の増加とともに硫酸イオンに帰属される吸収が減少したため、フッ素と硫酸イオンが陰イオン交換したと考えられる。フッ素結合に起因する赤外吸収は1200〜1400cm−1に存在すると考えられるものの、おそらくは吸収強度が小さいことに起因してその確認は困難であった。
(3). Experimental results (fluorine)
FIG. 15 shows the adsorption isotherm of fluorine at 298 K and pH 2-8. Since the pH was not adjusted during the experiment, the pH at the time of adsorption equilibrium varied between 2 and 8. According If the fluorine adsorption also boron as well as Langmuir-type adsorption, saturated adsorption amount was estimated at 115 mg-Fg -1. The amount of sulfate ions released from Zr-S during adsorption and the amount of fluorine adsorbed were approximately 1: 2.
FIG. 6 shows the amount of fluorine adsorption at pH 2-9. Similar to the case of boron, it showed a mountain-shaped distribution in which the adsorption amount was maximum near the acid dissociation constant.
In the FTIR spectra (not shown) of Zr-S before and after fluorine adsorption, the absorption attributed to sulfate ions decreased with an increase in the amount of adsorbed fluorine. Therefore, it is considered that fluorine and sulfate ions were anion exchanged. Although the infrared absorption due to the fluorine bond is considered to exist at 1200 to 1400 cm −1 , the confirmation was difficult due to the small absorption intensity.

以上、実施例3の実験結果から以下の知見を得た。
(a)実施例1にて得られた結果と同様に、多孔質ジルコニウム化合物Zr−Sは、水中のホウ素、フッ素に対して高い吸着性能を示し、実施例1よりもさらに広範囲な陰イオン濃度で実験を行った結果、Langmuir型の吸着等温式より見積もられた飽和吸着量はそれぞれ80mg−Bg−1、115mg−Fg−1となった。
(b)陰イオンの吸着は、Zr−S中の硫酸イオンとの陰イオン交換によって進行することが確認された。
As described above, the following knowledge was obtained from the experimental results of Example 3.
(A) Similar to the results obtained in Example 1, the porous zirconium compound Zr-S exhibits high adsorption performance for boron and fluorine in water, and a wider range of anion concentrations than in Example 1. As a result, the saturated adsorption amounts estimated from the Langmuir type adsorption isotherm were 80 mg-Bg −1 and 115 mg-Fg −1 , respectively.
(B) It was confirmed that anion adsorption proceeds by anion exchange with sulfate ions in Zr-S.

[実施例4]
(1)実験
実施例1において、水中に存在する陰イオンのZr−Sへの吸着は、Zr−S細孔内表面の硫酸イオンと陰イオンの交換によって進行することが示唆された。そこで、濃度を変えた4種の硫酸溶液および1種の硫酸ナトリウム溶液を用いて、ホウ素が吸着したZr−Sの再生条件を検討した。
[Example 4]
(1) Experiment In Example 1, it was suggested that the adsorption of anions present in water to Zr-S proceeds by exchange of sulfate ions and anions on the inner surface of Zr-S pores. Therefore, the conditions for regeneration of Zr-S on which boron was adsorbed were examined using four types of sulfuric acid solutions and one type of sodium sulfate solution with different concentrations.

(1.1)Zr−Sの吸着・再生実験
Zr−Sの吸着・再生実験として、ホウ酸溶液によるホウ素吸着実験およびホウ素吸着後のZr−Sからホウ素を脱離して再生するための各種再生溶液の検討をおこなった。Zr−Sの再生溶液には、濃度の異なる4種類の硫酸溶液(1×10−3mol/l、1×10−2mol/l、0.1mol/lおよび1.0mol/l)並びに1.0mol/lの硫酸ナトリウム溶液を使用した。ホウ素の吸着は、Zr−Sを100cmの500mg/lホウ酸溶液に添加し、室温で24時間振とうさせておこなった。一方、Zr−S再生実験は、ホウ素吸着後のZr−Sを濾過分別して乾燥させた後に100cmの再生溶液に添加し、室温で3時間振とうさせておこない、ホウ素吸着とZr−Sの再生サイクルを2回実施した(1吸着→2再生→3吸着→4再生)。尚、吸着実験開始時にはZr−Sを1g供した。
ホウ素吸着脱離特性データは以下のようにして得た。まず、所定の時間を経過した吸着溶液1cmを0.45μmのフィルターを透過させて採取した。これを蒸留水で希釈(50〜100倍)し、ICP発光分析装置にて吸着質等の濃度を測定した。尚、吸着剤単位重量あたりの吸着量および放出量は、実施例1にて記載した数式1を用いて計算した。尚、再生をおこなった場合についても数式1を適用でき、この場合は、C:再生実験前の溶液中の微量元素濃度(mg・dm−3)、C:再生実験後の溶液中の微量元素濃度(mg・dm−3)、V:使用した溶液量(cm)、W:使用した吸着剤量(g)とした。
また、吸着剤の重量変化の測定は、吸着あるいは再生処理の前後で、吸着剤を90℃で一晩乾燥して得た乾燥吸着剤を秤量することにより行った。
(1.1) Zr-S adsorption / regeneration experiments As Zr-S adsorption / regeneration experiments, boron adsorption experiments using a boric acid solution and various regenerations for desorbing and regenerating boron from Zr-S after boron adsorption The solution was examined. Zr-S regeneration solutions include four types of sulfuric acid solutions (1 × 10 −3 mol / l, 1 × 10 −2 mol / l, 0.1 mol / l and 1.0 mol / l) having different concentrations and 1 A 0.0 mol / l sodium sulfate solution was used. Adsorption of boron was performed by adding Zr-S to a 100 mg 3 500 mg / l boric acid solution and shaking at room temperature for 24 hours. On the other hand, Zr-S regeneration experiment was performed by filtering and drying Zr-S after boron adsorption, adding it to 100 cm 3 regeneration solution, and shaking for 3 hours at room temperature. Two regeneration cycles were performed (1 adsorption → 2 regeneration → 3 adsorption → 4 regeneration). In addition, 1 g of Zr—S was provided at the start of the adsorption experiment.
Boron adsorption / desorption characteristic data was obtained as follows. First, 1 cm 3 of the adsorbed solution that had passed a predetermined time was collected through a 0.45 μm filter. This was diluted with distilled water (50 to 100 times), and the concentration of adsorbate and the like was measured with an ICP emission spectrometer. In addition, the amount of adsorption and the amount of release per unit weight of the adsorbent were calculated using Formula 1 described in Example 1. It should be noted that Formula 1 can also be applied to the case where regeneration is performed. In this case, C o : the concentration of trace elements in the solution before the regeneration experiment (mg · dm −3 ), C 1 : in the solution after the regeneration experiment Trace element concentration (mg · dm −3 ), V: amount of solution used (cm 3 ), W: amount of adsorbent used (g).
The change in the weight of the adsorbent was measured by weighing the dry adsorbent obtained by drying the adsorbent overnight at 90 ° C. before and after the adsorption or regeneration treatment.

(1.2)物性分析
ホウ素吸着後のZr−Sとこれを1×10−3mol/l、1×10−2mol/l、0.1mol/lおよび1.0mol/lの硫酸溶液で再生したZr−Sについて、FTIR分析(KBr錠剤法による透過吸収測定)を行った。
(1.2) Physical property analysis Zr-S after boron adsorption and this with 1 × 10 −3 mol / l, 1 × 10 −2 mol / l, 0.1 mol / l and 1.0 mol / l sulfuric acid solutions The regenerated Zr-S was subjected to FTIR analysis (permeation absorption measurement by KBr tablet method).

(1.3)Zr−S細孔内のCHN分析
Zr−Sの合成においては,Zr−S中に均一な細孔構造を形成するために、細孔形成の鋳型として界面活性剤(CTMABr)を使用する 。このため、調製直後のZr−Sは細孔内にCTMABrが充填された状態にあると考えられる。これを確認するため、Zr−Sの炭素、水素、窒素分析(CHN分析:CHNSアナライザーPE2400、パーキンエルマー社)を行った。
(1.3) CHN analysis in Zr-S pores In the synthesis of Zr-S, in order to form a uniform pore structure in Zr-S, a surfactant (CTMBr) is used as a template for pore formation. Use. For this reason, it is thought that Zr-S immediately after preparation is in a state in which CTMABr is filled in the pores. In order to confirm this, carbon, hydrogen, and nitrogen analysis (CHN analysis: CHNS analyzer PE2400, Perkin Elmer) of Zr-S was performed.

(1.4)Zr−S細孔内からの界面活性剤の溶出挙動
Zr−S吸着剤を蒸留水で洗浄した程度では界面活性剤をほとんど除去できないということが実施例2で確認された。そこで、Zr−SからのCTMABrの溶出の挙動を確認するために、Zr−Sを100cmの純水中に分散させ、そのpHを種々変化させてICP発光分析により硫酸イオンを、全有機炭素計によりCTMABrの溶出量を測定した。尚、pHは水酸化ナトリウム(NaOH)水溶液もしくは硝酸(HNO3)を用いて変化させた。
(1.4) Elution behavior of surfactant from inside Zr-S pore It was confirmed in Example 2 that the surfactant could hardly be removed by washing the Zr-S adsorbent with distilled water. Therefore, in order to confirm the behavior of elution of CTMABr from Zr-S, Zr-S was dispersed in 100 cm 3 of pure water, the pH was changed variously, and sulfate ions were converted into total organic carbon by ICP emission analysis. The elution amount of CTMABr was measured with a meter. In addition, pH was changed using sodium hydroxide (NaOH) aqueous solution or nitric acid (HNO 3 ).

(2)実験結果
(2.1)Zr−Sへの吸着・脱離実験
表5にZr−Sのホウ素吸着・再生実験結果を、図11に各種濃度の硫酸溶液および硫酸ナトリウム溶液1.0mol/lの再生溶液を用いた場合のホウ素吸着・再生実験結果を示す。低濃度硫酸溶液(1×10−3,1×10−2mol/l)は、吸着剤再生時のホウ素脱離量が少なかった。また、1.0mol/l硫酸ナトリウム溶液を用いた場合にも、吸着剤再生時のホウ素脱着量が少なかった。一方、1.0mol/l硫酸溶液を用いた場合はホウ素脱着量は多いものの、Zr−Sの構成元素であるジルコニウムも同時に溶出した。これに対し、0.1 mol/l硫酸溶液を用いた場合は1.0mol/l硫酸溶液に匹敵するホウ素脱着量を示し、かつジルコニウムの溶出が認められなかった。従って、使用済み吸着剤の再生においては、1×10−2〜1.0mol/lに最適な硫酸溶液の濃度値が存在することが考えられ、0.1 mol/l硫酸溶液を用いれば、良好な再生特性が得られることが確認された。尚、1.0mol/l HSO溶液および1.0mol/l NaSO溶液を使った再生実験では、SO 2-濃度が高く測定範囲を超えたためにデータが欠損している。
(2) Experimental results (2.1) Adsorption / desorption experiment on Zr-S Table 5 shows the results of Zr-S boron adsorption / regeneration experiment, and FIG. 11 shows various concentrations of sulfuric acid solution and sodium sulfate solution 1.0 mol. The results of the boron adsorption / regeneration experiment using a / l regeneration solution are shown. The low concentration sulfuric acid solution (1 × 10 −3 , 1 × 10 −2 mol / l) had a small amount of boron desorption during adsorbent regeneration. Further, even when a 1.0 mol / l sodium sulfate solution was used, the amount of boron desorption during regeneration of the adsorbent was small. On the other hand, when a 1.0 mol / l sulfuric acid solution was used, although the amount of boron desorption was large, zirconium which is a constituent element of Zr—S was also eluted at the same time. On the other hand, when a 0.1 mol / l sulfuric acid solution was used, a boron desorption amount comparable to that of a 1.0 mol / l sulfuric acid solution was exhibited, and no elution of zirconium was observed. Therefore, in the regeneration of the used adsorbent, it is considered that there is an optimum concentration value of the sulfuric acid solution in 1 × 10 −2 to 1.0 mol / l. If a 0.1 mol / l sulfuric acid solution is used, It was confirmed that good reproduction characteristics can be obtained. In a regeneration experiment using a 1.0 mol / l H 2 SO 4 solution and a 1.0 mol / l Na 2 SO 4 solution, the data is missing because the SO 4 2− concentration is high and exceeds the measurement range.

Figure 2006055835
Figure 2006055835

(2.2)Zr−Sの重量評価
図11に示したように1回目の吸着実験後に回収されるZr−Sの重量は実験前の60%程度であった。さらに、吸着・再生をそれぞれ1回行った後に回収されるZr−Sの重量は実験前の10〜30%まで低下した。検討した再生溶液の中では0.1mol/l硫酸溶液を用いた場合が最も回収率が高かった。
(2.2) Weight evaluation of Zr-S As shown in FIG. 11, the weight of Zr-S recovered after the first adsorption experiment was about 60% before the experiment. Furthermore, the weight of Zr—S recovered after each adsorption / regeneration was reduced to 10-30% before the experiment. Of the reconstituted solutions examined, the recovery rate was highest when a 0.1 mol / l sulfuric acid solution was used.

(2.3)FTIR分析結果
図12に0.1mol/l硫酸溶液を用いた再生実験における再生前後のZr−SのFTIRスペクトルを示す。吸着実験では硫酸イオンに帰属される吸収(1240、1140、1100、1000、640cm−1)が減少してホウ素に帰属される吸収(1350cm−1)が生成した。これに対し、再生実験では、ホウ素の吸収が消失して硫酸イオンの吸収が著しく増大することが観察され、再生処理によってZr−Sに硫酸イオンが導入されることがわかった。1.0mol/l硫酸を用いた場合も同様に再生処理によってZr−Sに硫酸イオンが導入された。一方、1×10−3mol/lおよび1×10−2mol/lの硫酸溶液を用いた場合は、処理後のZr−Sの硫酸イオンの吸収が完全には回復しなかった。以上のことからも、使用済み吸着剤の再生においては、1×10−2〜1.0mol/lに最適な硫酸溶液の濃度値が存在し、0.1 mol/l硫酸溶液を用いれば、良好な再生特性が得られることが確認された。
(2.3) FTIR Analysis Results FIG. 12 shows FTIR spectra of Zr—S before and after regeneration in a regeneration experiment using a 0.1 mol / l sulfuric acid solution. In the adsorption experiment, the absorption attributed to sulfate ions (1240, 1140, 1100, 1000, 640 cm −1 ) decreased and the absorption attributed to boron (1350 cm −1 ) was generated. On the other hand, in the regeneration experiment, it was observed that the absorption of boron disappeared and the absorption of sulfate ions increased remarkably, and it was found that sulfate ions were introduced into Zr-S by the regeneration treatment. Similarly, when 1.0 mol / l sulfuric acid was used, sulfate ions were introduced into Zr-S by the regeneration treatment. On the other hand, when 1 × 10 −3 mol / l and 1 × 10 −2 mol / l sulfuric acid solutions were used, absorption of sulfate ions of Zr—S after treatment was not completely recovered. From the above, in the regeneration of the used adsorbent, there is an optimum sulfuric acid solution concentration value of 1 × 10 −2 to 1.0 mol / l, and if a 0.1 mol / l sulfuric acid solution is used, It was confirmed that good reproduction characteristics can be obtained.

(2.4)Zr−S細孔内のCHN分析結果
Zr−Sの炭素、水素、窒素分析(CHN分析)を行った結果を表6に示す。調製後のZr−Sは炭素を31.0wt%、窒素を1.9wt%含有しており、その炭素/窒素比(C/N比)はCTMABrのそれと一致した。一方、炭素/水素比(C/H比)は4.6であり、CTMABrの値と多少異なったが、これは水素測定の感度がそれほど高くないことに起因すると考えられる。以上より、Zr−S中の含有炭素はCTMABrによるものと結論し、これに基づいてZr−S中のCTMABr含有量は49.5wt%と見積もられた。
(2.4) CHN analysis results in Zr—S pores Table 6 shows the results of Zr—S carbon, hydrogen, and nitrogen analysis (CHN analysis). The prepared Zr-S contained 31.0 wt% carbon and 1.9 wt% nitrogen, and the carbon / nitrogen ratio (C / N ratio) was consistent with that of CTMABr. On the other hand, the carbon / hydrogen ratio (C / H ratio) is 4.6, which is slightly different from the value of CTMABr, which is considered to be due to the fact that the sensitivity of hydrogen measurement is not so high. From the above, it was concluded that the carbon content in Zr-S was due to CTMABr, and based on this, the content of CTMABr in Zr-S was estimated to be 49.5 wt%.

Figure 2006055835
Figure 2006055835

(2.5)Zr−S細孔内からの界面活性剤の溶出挙動
次に、Zr−SからのCTMABrの溶出の挙動を確認した結果を図13に示す。図中において、符号○がCTMABr、符号△がSO 2−である。溶液のpHを上げることによってCTMABrと硫酸イオンの溶出量が増大することが確認された。また、溶出した硫酸イオンとCTMABrのモル比(SO 2−/CTMABr)はその溶出量に依らず2.5〜3程度であったことから、CTMABrは硫酸イオンに同伴して水中に溶出すると推測された。pH10〜12ではCTMABrの溶出量は0.8〜0.9mmolg−1に達し、Zr−S 1gに対して0.3gのCTMABrを放出すると見積もられた。
この結果について確認するために、吸脱着実験において溶出した炭素濃度を全有機炭素計により測定した。溶出した炭素をCTMABrと仮定して、実験前後のZr−Sの重量減に対するCTMABrの溶出とホウ素と硫酸イオンの間のアニオン交換の寄与を評価した。その結果を表4の右側に示す。表中の最初の吸着・再生サイクル(1吸着→2再生)においては,観察されたZr−Sの重量減少の70〜80%が界面活性剤の溶出と吸脱着にともなうイオン交換に起因すると見積もられた。実験操作に起因するZr−Sの回収損失も考慮すれば、吸着実験によるZr−Sの重量減少は界面活性剤であるCTMABrがZr−S細孔内から溶出したものであることが推測される。したがって、Zr−Sの細孔構造と吸着能力を維持しながら、細孔内に充填されたCTMABrを除去できれば、細孔内の被吸着物質が吸着するための面積が広くなり、また、CTMABr含有量は49.5wt%であることがCHN分析結果から見積もられたことから、このCTMABr含有量分を除去することで単位重量あたりの吸着性能が2倍に向上することが考えられる。
(2.5) Elution Behavior of Surfactant from Inside Zr-S Pore Next, the result of confirming the elution behavior of CTMABr from Zr-S is shown in FIG. In the figure, the symbol ◯ is CTMABr and the symbol Δ is SO 4 2- . It was confirmed that the elution amount of CTMABr and sulfate ions was increased by raising the pH of the solution. In addition, since the molar ratio of eluted sulfate ion to CTMABr (SO 4 2− / CTMABr) was about 2.5 to 3 regardless of the amount of elution, CTMABr was dissolved in water accompanied by sulfate ions. Was guessed. At pH 10 to 12, the elution amount of CTMABr reached 0.8 to 0.9 mmolg −1 , and it was estimated that 0.3 g of CTMABr was released with respect to 1 g of Zr—S.
In order to confirm this result, the carbon concentration eluted in the adsorption / desorption experiment was measured with a total organic carbon meter. Assuming that the eluted carbon is CTMABr, the contribution of elution of CTMABr and anion exchange between boron and sulfate ions to the weight loss of Zr-S before and after the experiment was evaluated. The results are shown on the right side of Table 4. In the first adsorption / regeneration cycle in the table (1 adsorption → 2 regeneration), it is estimated that 70 to 80% of the observed weight loss of Zr-S is due to ion exchange accompanying elution and adsorption / desorption of the surfactant. It was lost. Considering the recovery loss of Zr-S due to the experimental operation, it is presumed that the decrease in the weight of Zr-S due to the adsorption experiment is due to the elution of the surfactant CTMABr from the Zr-S pores. . Therefore, if the CMABr filled in the pores can be removed while maintaining the pore structure and adsorption capacity of Zr-S, the area for adsorbing the adsorbed substance in the pores is increased, and the CTABr content is also increased. Since it was estimated from the CHN analysis result that the amount was 49.5 wt%, it is conceivable that the adsorption performance per unit weight is improved by a factor of 2 by removing this CTMABr content.

以上、実施例4の実験結果から、以下の知見を得た。
(a)ホウ素吸着した使用済み吸着剤の再生においては、1×10−2〜1.0mol/lに最適な硫酸溶液の濃度値が存在することが考えられ、0.1 mol/l硫酸溶液を用いれば、良好な再生特性が得られた。
(b)ホウ素吸着の場合に、吸着・再生サイクルによってホウ酸イオンと硫酸イオンが可逆的に交換することをZr−SのFTIR測定結果から確認した。
(c)Zr−Sは細孔構造を形成する際の鋳型として界面活性剤を50wt%程度含有する。吸着実験前後で観察されたZr−Sの重量減少は、界面活性剤の溶出とイオン交換に起因することが示唆された。そこで、アルカリ性溶液にZr−Sを接触させた後、硫酸により処理することで、Zr−Sの細孔構造と吸着能力を維持しながら、細孔内に充填されたCTMABrを除去することで、界面活性剤を除去しない場合に比べて吸着能力を向上させることが可能であることが考えられる。
As described above, the following knowledge was obtained from the experimental results of Example 4.
(A) In the regeneration of the used adsorbent adsorbed with boron, it is considered that there is an optimum concentration value of the sulfuric acid solution in the range of 1 × 10 −2 to 1.0 mol / l. Good reproduction characteristics were obtained using.
(B) In the case of boron adsorption, it was confirmed from the FTIR measurement results of Zr—S that borate ions and sulfate ions were reversibly exchanged by the adsorption / regeneration cycle.
(C) Zr-S contains about 50 wt% of a surfactant as a template for forming a pore structure. It was suggested that the weight loss of Zr—S observed before and after the adsorption experiment was attributed to surfactant elution and ion exchange. Therefore, by contacting Zr-S with an alkaline solution and then treating with sulfuric acid, by removing CTMBr filled in the pores while maintaining the pore structure and adsorption ability of Zr-S, It is conceivable that the adsorption capacity can be improved as compared with the case where the surfactant is not removed.

調製したZr−SのXRDパターンを示し、(a)は低角側のXRDパターンを示す図、(b)は高角側のXRDパターンを示す図である。The XRD pattern of prepared Zr-S is shown, (a) is a figure which shows the XRD pattern of the low angle side, (b) is a figure which shows the XRD pattern of the high angle side. 調製したZr−MのXRDパターンを示し、(a)は低角側のXRDパターンを示す図、(b)は高角側のXRDパターンを示す図である。The XRD pattern of prepared Zr-M is shown, (a) is a figure which shows the XRD pattern of the low angle side, (b) is a figure which shows the XRD pattern of the high angle side. (a)はZr−Sの脱着等温線を示す図、(b)はZr−Sの細孔径分布を示す図である。(A) is a figure which shows the desorption isotherm of Zr-S, (b) is a figure which shows pore diameter distribution of Zr-S. 各種吸着剤の分配係数KdのpH依存性を示す図である。なお、符号○は多孔質ジルコニウム(Zr−S)、符号△は市販イオン交換樹脂(IRA−743)、符号□はオキシ硝酸ジルコニウムの熱分解雑(Zr−N)、符号▽はゼオライト(13X)、符号◇は活性炭(AC)である。It is a figure which shows the pH dependence of the distribution coefficient Kd of various adsorbents. The symbol ◯ is porous zirconium (Zr-S), the symbol Δ is a commercially available ion exchange resin (IRA-743), the symbol □ is a thermal decomposition of zirconium oxynitrate (Zr-N), and the symbol ▽ is zeolite (13X). The symbol ◇ is activated carbon (AC). 各吸着剤の吸着等温線を示す図である。なお、符号○は多孔質ジルコニウム(Zr−S)、符号△は市販イオン交換樹脂(IRA−743)、符号□はオキシ硝酸ジルコニウムの熱分解雑(Zr−N)、符号▽はゼオライト(MS−13X)、符号◇は活性炭(AC)、符号●は焼成済み多孔質ジルコニウム(Zr−M)である。It is a figure which shows the adsorption isotherm of each adsorbent. The symbol ◯ is porous zirconium (Zr-S), the symbol Δ is a commercially available ion exchange resin (IRA-743), the symbol □ is thermal decomposition of zirconium oxynitrate (Zr-N), and the symbol ▽ is zeolite (MS- 13X), symbol ◇ is activated carbon (AC), symbol ● is calcined porous zirconium (Zr-M). 各種吸着剤に関する吸着等温線を示す図である。なお、符号○は多孔質ジルコニウム(Zr−S)、符号●焼成済み多孔質ジルコニウム・(Zr−M)、符号□はオキシ硝酸ジルコニウムの熱分解雑(Zr−N)、符号△は市販イオン交換樹脂(IRA−743)、符号▽はゼオライト(MS−13X)、符号◇は活性炭(AC)である。It is a figure which shows the adsorption isotherm regarding various adsorbents. Symbol ○ indicates porous zirconium (Zr-S), symbol ● calcined porous zirconium (Zr-M), symbol □ indicates thermal decomposition of zirconium oxynitrate (Zr-N), and symbol Δ indicates commercially available ion exchange. Resin (IRA-743), symbol ▽ is zeolite (MS-13X), symbol ◇ is activated carbon (AC). 処理システムを示す図である。It is a figure which shows a processing system. Zr−Sにおける液相微量元素の吸着等温線(298K)を示す図である。It is a figure which shows the adsorption isotherm (298K) of the liquid phase trace element in Zr-S. Zr−Sからの硫黄放出量と吸着量の相関を示す図である。It is a figure which shows the correlation of the amount of sulfur discharge | released from Zr-S, and adsorption amount. Zr−SのFTIRスペクトルを示し、(a)は調製直後(ホウ素吸着実験前)の図、(b)はホウ素吸着実験後の図である。The FTIR spectrum of Zr-S is shown, (a) is a figure immediately after preparation (before boron adsorption experiment), (b) is a figure after boron adsorption experiment. Zr−Sにおけるホウ素の吸着等温線(298K)を示す図である。It is a figure which shows the adsorption | suction isotherm (298K) of boron in Zr-S. Zr−Sにおけるホウ素吸着量のpH依存性を示す図である。It is a figure which shows the pH dependence of the boron adsorption amount in Zr-S. Zr−Sにおけるホウ素吸着特性のpH依存性を示す図である。符号○がB吸着量、符号●がSO 2−吸着量、符号□がB/SO 2−比である。It is a figure which shows the pH dependence of the boron adsorption | suction characteristic in Zr-S. Sign ○ and B adsorption amount, code ● is SO 4 2-adsorption, sign □ is B / SO 4 2-ratio. ホウ素吸着実験におけるZr-SのFTIRスペクトルを示す図である。It is a figure which shows the FTIR spectrum of Zr-S in a boron adsorption experiment. Zr−Sにおけるフッ素の吸着等温線(298K)を示す図である。It is a figure which shows the adsorption | suction isotherm (298K) of the fluorine in Zr-S. Zr−Sにおけるフッ素吸着量のpH依存性を示す図である。It is a figure which shows the pH dependence of the fluorine adsorption amount in Zr-S. ホウ素吸着・再生実験結果を示す図である。符号△が試験前重量、符号▽が試験後重量である。It is a figure which shows a boron adsorption | suction and reproduction | regeneration experimental result. The symbol Δ is the weight before the test, and the symbol ▽ is the weight after the test. 0.1mol/l硫酸溶液を用いた再生実験における再生前後のZr−SのFTIRスペクトルを示す図である。It is a figure which shows the FTIR spectrum of Zr-S before and behind reproduction | regeneration in the reproduction | regeneration experiment using a 0.1 mol / l sulfuric acid solution. Zr−Sから溶出する界面活性剤と硫酸イオン量を示す図である。符号○がCTMABr、符号△がSO 2−である。It is a figure which shows the surfactant eluting from Zr-S and the amount of sulfate ions. The symbol ◯ is CTMABr, and the symbol Δ is SO 4 2- .

Claims (8)

ホウ素とフッ素の少なくともいずれか一方を被吸着物質とし、前記被吸着物質を含む排水を遷移金属を主成分とする多孔質体に接触させて前記被吸着物質を吸着し除去することを特徴とする排水の処理方法。   It is characterized in that at least one of boron and fluorine is an adsorbed substance, and waste water containing the adsorbed substance is brought into contact with a porous body mainly composed of a transition metal to adsorb and remove the adsorbed substance. Wastewater treatment method. 前記多孔質体はヘキサゴナル構造を有することを特徴とする請求項1記載の排水の処理方法。   The wastewater treatment method according to claim 1, wherein the porous body has a hexagonal structure. 前記遷移金属は、ジルコニウム、チタン、バナジウム、マンガン、鉄、ガリウム、タンタル、ニオブ、ハフニウムのいずれかであることを特徴とする請求項1又は2記載の排水の処理方法。   The wastewater treatment method according to claim 1 or 2, wherein the transition metal is any one of zirconium, titanium, vanadium, manganese, iron, gallium, tantalum, niobium, and hafnium. 前記遷移金属はジルコニウムであることを特徴とする請求項3記載の排水の処理方法。   The wastewater treatment method according to claim 3, wherein the transition metal is zirconium. 前記多孔質体は界面活性剤を鋳型としたものであり、孔内に前記界面活性剤を保持した状態で前記排水と接触させることを特徴とする請求項1から4のいずれか1つに記載の排水の処理方法。   5. The porous body according to claim 1, wherein the porous body is made of a surfactant as a template, and is brought into contact with the drainage in a state where the surfactant is held in a hole. Wastewater treatment method. 前記多孔質体は界面活性剤を鋳型としたものであり、孔内の前記界面活性剤をアルカリにより除去し、酸により処理した後に前記排水と接触させることを特徴とする請求項1から4のいずれか1つに記載の排水の処理方法。   5. The porous body according to claim 1, wherein the porous body uses a surfactant as a template, and the surfactant in the pores is removed with an alkali, treated with an acid, and then contacted with the waste water. The wastewater treatment method according to any one of the above. 前記被吸着物質の酸解離定数(Ka)の逆対数値pKaとほぼ等しいpH領域で吸着反応を起こさせることを特徴とする請求項1から6のいずれか1つに記載の排水の処理方法。   The wastewater treatment method according to any one of claims 1 to 6, wherein an adsorption reaction is caused in a pH region substantially equal to an inverse logarithm value pKa of the acid dissociation constant (Ka) of the adsorbed substance. 前記被吸着物質を吸着した前記多孔質体を酸により再生し、再利用することを特徴とする排水の処理方法。   A method for treating waste water, wherein the porous material adsorbing the adsorbed substance is regenerated with an acid and reused.
JP2005172242A 2004-07-23 2005-06-13 Wastewater treatment method Expired - Fee Related JP4674854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172242A JP4674854B2 (en) 2004-07-23 2005-06-13 Wastewater treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004215174 2004-07-23
JP2005172242A JP4674854B2 (en) 2004-07-23 2005-06-13 Wastewater treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010198476A Division JP5279094B2 (en) 2004-07-23 2010-09-06 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2006055835A true JP2006055835A (en) 2006-03-02
JP4674854B2 JP4674854B2 (en) 2011-04-20

Family

ID=36103757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172242A Expired - Fee Related JP4674854B2 (en) 2004-07-23 2005-06-13 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4674854B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221148A (en) * 2007-03-13 2008-09-25 Hokkaido Univ Phosphorus recovery method and phosphorus recovery system
JP2008239436A (en) * 2007-03-28 2008-10-09 Tokyo Univ Of Science Porous zirconium oxide and method for producing the same
JP2010227930A (en) * 2009-03-02 2010-10-14 Shinshu Univ Adsorbent
CN113072151A (en) * 2021-04-23 2021-07-06 重庆理工大学 Method for preparing iron-titanium-vanadium ternary polymeric flocculant from vanadium titano-magnetite through one-step method by acid dissolution of hydrochloric acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153940A (en) * 1984-01-25 1985-08-13 Asahi Chem Ind Co Ltd Adsorbent of dissolved fluorine ion
JPH09294931A (en) * 1996-04-30 1997-11-18 Agency Of Ind Science & Technol Porous material having autonomous humidity conditioning function
JP2000176441A (en) * 1998-12-15 2000-06-27 Kurita Water Ind Ltd Method of removing arsenic compound and adsorbing agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153940A (en) * 1984-01-25 1985-08-13 Asahi Chem Ind Co Ltd Adsorbent of dissolved fluorine ion
JPH09294931A (en) * 1996-04-30 1997-11-18 Agency Of Ind Science & Technol Porous material having autonomous humidity conditioning function
JP2000176441A (en) * 1998-12-15 2000-06-27 Kurita Water Ind Ltd Method of removing arsenic compound and adsorbing agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221148A (en) * 2007-03-13 2008-09-25 Hokkaido Univ Phosphorus recovery method and phosphorus recovery system
JP4693128B2 (en) * 2007-03-13 2011-06-01 国立大学法人北海道大学 Phosphorus recovery method and phosphorus recovery system
JP2008239436A (en) * 2007-03-28 2008-10-09 Tokyo Univ Of Science Porous zirconium oxide and method for producing the same
JP2010227930A (en) * 2009-03-02 2010-10-14 Shinshu Univ Adsorbent
CN113072151A (en) * 2021-04-23 2021-07-06 重庆理工大学 Method for preparing iron-titanium-vanadium ternary polymeric flocculant from vanadium titano-magnetite through one-step method by acid dissolution of hydrochloric acid

Also Published As

Publication number Publication date
JP4674854B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4126399B2 (en) Iron oxyhydroxide production method and iron oxyhydroxide adsorbent
He et al. Modulation of coordinative unsaturation degree and valence state for cerium-based adsorbent to boost phosphate adsorption
Awual et al. Mesoporous silica based novel conjugate adsorbent for efficient selenium (IV) detection and removal from water
Cheung et al. Characteristics of chemical modified activated carbons from bamboo scaffolding
US10011503B2 (en) Method for making activated carbon-supported transition metal-based nanoparticles
Ravi et al. Benzene triamido-tetraphosphonic acid immobilized on mesoporous silica for adsorption of Nd3+ ions in aqueous solution
Wang et al. High-efficiency adsorption for acid dyes over CeO2· xH2O synthesized by a facile method
Mondal et al. A comparative study on the batch performance of fluoride adsorption by activated silica gel and activated rice husk ash
Yuan et al. Adsorption performance and mechanism for phosphate removal by cerium hydroxide loaded on molecular sieve
Dhongde et al. Development of nanohybrid adsorbent for defluoridation from aqueous systems
Dash et al. Fluoride removal from aqueous solutions using cerium loaded mesoporous zirconium phosphate
JP4958293B2 (en) Adsorbent for bromate ion
Rajan et al. Study of fluoride affinity by zirconium impregnated walnut shell carbon in aqueous phase: kinetic and isotherm evaluation
KR20170130437A (en) Ruthenium adsorbent in aqueous solution and adsorption treatment method of ruthenium in aqueous solution
Min et al. Adsorption performance and mechanism of bentonite modified by ammonium bromide for gas-phase elemental mercury removal
JP4674854B2 (en) Wastewater treatment method
Klapiszewski et al. Removal of lead (II) ions by an adsorption process with the use of an advanced SiO/lignin biosorbent
WO2017214530A1 (en) Porous decontamination removal composition
JP4576560B2 (en) Phosphorous adsorbent
JP4012975B2 (en) Iron oxyhydroxide production method and iron oxyhydroxide adsorbent
KR20170143313A (en) Method for preparing hto lithium ion adsorbent and lithium ion recovery uses thereof
JP5137232B2 (en) Method for producing porous iron oxide and method for treating water to be treated
CN103721689A (en) Magnetic meso-porous silicon, preparation method of magnetic meso-porous silicon, magnetic meso-porous silicon adsorbent, preparation method and application of magnetic meso-porous silicon adsorbent
JP5279094B2 (en) Wastewater treatment method
Amarray et al. Elaboration of lamellar and nanostructured materials based on manganese: efficient adsorbents for removing heavy metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees