JP2006055766A - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP2006055766A
JP2006055766A JP2004240971A JP2004240971A JP2006055766A JP 2006055766 A JP2006055766 A JP 2006055766A JP 2004240971 A JP2004240971 A JP 2004240971A JP 2004240971 A JP2004240971 A JP 2004240971A JP 2006055766 A JP2006055766 A JP 2006055766A
Authority
JP
Japan
Prior art keywords
liquid
flocculant
treated
separation
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004240971A
Other languages
Japanese (ja)
Other versions
JP4412657B2 (en
Inventor
Kenji Honjo
賢治 本城
Katsuyuki Yanone
勝行 矢ノ根
Hiromi Yasunaga
博美 保永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004240971A priority Critical patent/JP4412657B2/en
Publication of JP2006055766A publication Critical patent/JP2006055766A/en
Application granted granted Critical
Publication of JP4412657B2 publication Critical patent/JP4412657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which predicts a deterioration in separability of liquid to be treated to improve the separability beforehand when the solid-liquid separation of organic wastewater is carried out by using a separation membrane. <P>SOLUTION: In the organic wastewater treatment method, when the solid-liquid separation of the organic wastewater is carried out by using the separation membrane installed in a microbiological treatment tank, a coagulant is added at the time when 10 to 40-day moving average temperature difference between water temperature in the microbiological treatment tank equipped with the separation membrane and air temperature in environment where the tank is installed is increased to 4°C or higher. In the organic wastewater treatment method, the coagulant is added when the filtration flow rate of the liquid to be treated by using filter paper reaches 10 ml/5 min or lower, or when a sugar concentration in the liquid to be treated reaches 30 mg/L or higher. In the organic wastewater treatment method, the coagulant is continuously or intermittently added into the microbiological treatment tank so that its concentration in 1-day treatment waste water reaches 1 mg/L or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微生物処理槽内に設置した分離膜によって固液分離を行う、有機性排水の処理方法に関するものである。   The present invention relates to an organic wastewater treatment method in which solid-liquid separation is performed by a separation membrane installed in a microorganism treatment tank.

従来、有機性の排水処理には、微生物を用いた浄化(活性汚泥処理)を行い、さらに、固形分を分離して浄化を行う方法が、広く用いられている。固液分の分離には、砂濾過や重力沈殿等が行われている。しかし、これらの方法による固液分離は、得られる処理水のSS濃度が高くなり易いことや、広大な敷地を要するといった不都合を有する。   Conventionally, in organic wastewater treatment, a method of performing purification using activated microorganisms (activated sludge treatment) and further separating and purifying solid content has been widely used. For separation of the solid and liquid components, sand filtration, gravity precipitation, and the like are performed. However, solid-liquid separation by these methods has disadvantages that the SS concentration of the treated water to be obtained tends to be high and a large site is required.

このような不都合を解決する方法として、近年、精密濾過膜、限外濾過膜等の分離膜を配設した分離膜モジュールを用いて、被処理液の固液分離を行う方法が種々検討されている。分離膜を用いて被処理液の濾過処理を行うと、SSをほとんど含まない処理水を得ることができる。   As a method for solving such inconvenience, in recent years, various methods for performing solid-liquid separation of a liquid to be treated using a separation membrane module provided with a separation membrane such as a microfiltration membrane and an ultrafiltration membrane have been studied. Yes. When the treatment liquid is filtered using the separation membrane, treated water containing almost no SS can be obtained.

しかし、以下のような場合において、分離膜での固液分離が困難となる場合がある。すなわち、(1)分画孔径の小さな精密濾過膜、限外濾過膜を用いて処理を行う場合、長期間の膜分離処理により、少しずつ膜面上の堆積物が蓄積され、差圧上昇が発生する。(2)BOD(生物化学的酸素要求量)負荷が急激に増大した場合や、冬季等の低温期など微生物に環境ストレスがかかる場合において、一時的に微生物による被処理液の分解が充分に行われず、分離膜の濾過阻害成分が残ったままとなり、被処理液の分離性が悪化する場合である。   However, in the following cases, solid-liquid separation with a separation membrane may be difficult. That is, (1) When processing using microfiltration membranes and ultrafiltration membranes with a small fractional pore size, deposits on the membrane surface are accumulated little by little by long-term membrane separation treatment, and the differential pressure rises. appear. (2) When the BOD (biochemical oxygen demand) load suddenly increases or when environmental stresses are applied to microorganisms, such as during low temperatures such as in winter, the liquid to be treated is sufficiently decomposed temporarily by microorganisms. This is a case where the filtration inhibiting component of the separation membrane remains and the separation property of the liquid to be treated deteriorates.

上述の(1)のような場合では、分離膜の薬品洗浄等を定期的に行う必要がある。上述の(2)のような、濾過阻害成分が被処理液中に存在する場合においては、濾過処理を濾過阻害成分が存在しない場合と同様な条件で行うと、分離膜の閉塞が進行し、急激な差圧上昇が見られる為、分離膜の濾過性能回復の為の洗浄作業を頻繁に行う必要が生じてくる。分離膜の濾過速度を低下させれば、分離膜の閉塞を緩和させ、急激な差圧上昇を抑えることは可能であるが、その場合、処理能力が減少してしまうという問題が発生する。   In the case of (1) above, it is necessary to periodically perform chemical cleaning of the separation membrane. In the case where the filtration inhibiting component is present in the liquid to be treated as in (2) above, when the filtration treatment is performed under the same conditions as in the case where the filtration inhibiting component is not present, clogging of the separation membrane proceeds, Since a rapid increase in the differential pressure is observed, it is necessary to frequently perform a cleaning operation for recovering the filtration performance of the separation membrane. If the filtration speed of the separation membrane is lowered, it is possible to alleviate the clogging of the separation membrane and suppress a sudden increase in the differential pressure, but in this case, there arises a problem that the processing capacity is reduced.

被処理液の分離性を改善する目的で、活性炭等の吸着剤を添加し、濾過性阻害成分を吸着除去することが知られているが(特許文献1参照)、有機性排水のように雑多な物質を含む系に活性炭のような吸着剤を添加しても、濾過性を阻害する物質のみを除去することは困難であるため、十分な効果を得るためには非常に大量の吸着剤が必要となる傾向にあった。また、吸着剤の吸着能力は飽和するため、効果を持続するためには、この頻繁な更新を必要とし、経済的に不利であった。
濾過阻害成分の除去方法としては、凝集剤によって、被処理液を懸濁成分と濾過阻害成分を含む液体とに分離することが知られているが(特許文献2参照)が、凝集剤添加の適切な時期を決めるのが困難であった。
In order to improve the separability of the liquid to be treated, it is known to add an adsorbent such as activated carbon to adsorb and remove filterability-inhibiting components (see Patent Document 1), but it is not as common as organic wastewater. Even if an adsorbent such as activated carbon is added to a system containing various substances, it is difficult to remove only substances that impede filterability, so a very large amount of adsorbent is necessary to obtain a sufficient effect. There was a tendency to become necessary. Further, since the adsorption capacity of the adsorbent is saturated, this frequent renewal is necessary to maintain the effect, which is economically disadvantageous.
As a method for removing the filtration inhibiting component, it is known that the liquid to be treated is separated into a suspension component and a liquid containing the filtration inhibiting component by a flocculant (see Patent Document 2). It was difficult to decide the right time.

特開平10−309567号公報JP-A-10-309567 特開2002−1333号公報JP 2002-1333 A

本発明は、このような不具合を解決するためになされたものであり、分離膜を用いて有機性排水の固液分離処理を行う際に、濾過阻害成分の存在による被処理液の分離性の悪化を予測し、事前にこれを改善する方法を提供するものである。   The present invention has been made in order to solve such problems. When performing solid-liquid separation treatment of organic wastewater using a separation membrane, the separation property of the liquid to be treated due to the presence of a filtration inhibiting component is improved. It provides a way to predict deterioration and improve it in advance.

本発明者らは鋭意検討の結果、微生物処理槽内の水温と槽の設置環境の気温との関係が、凝集剤の適切な添加時期と密接な関係にあることを見出し、本発明を完成した。
すなわち、本発明は、微生物処理槽内に設置した分離膜による固液分離を行う場合において、分離膜を設置した微生物処理槽内の水温と槽の設置環境の気温との10〜40日間移動平均温度差が、4℃以上に拡大した時に凝集剤を添加する、有機性排水の処理方法に関するものである。
As a result of intensive studies, the present inventors have found that the relationship between the water temperature in the microorganism treatment tank and the temperature of the installation environment of the tank is closely related to the appropriate addition timing of the flocculant, and completed the present invention. .
That is, in the present invention, when performing solid-liquid separation using a separation membrane installed in a microorganism treatment tank, a moving average of the water temperature in the microorganism treatment tank in which the separation membrane is installed and the temperature of the environment in which the tank is installed is 10 to 40 days. The present invention relates to a method for treating organic wastewater in which a flocculant is added when a temperature difference is increased to 4 ° C. or more.

本発明によれば、分離膜を用いて有機性排水の固液分離処理を行う際に、濾過阻害成分の存在による分離性の悪化を予測し、事前にこれを改善することができるため、分離膜の閉塞による膜差圧の上昇や廃水処理量の低下を防ぐことができ、凝集剤を必要以上に添加することを避けることができる。
複数の生物反応槽を有する場合、嫌気槽や無酸素槽を有する場合等、被処理液の性状が悪化しやすい工程を有する廃水処理において、本発明は、特に有効である。
According to the present invention, when performing solid-liquid separation treatment of organic wastewater using a separation membrane, it is possible to predict deterioration of separability due to the presence of a filtration inhibiting component and improve it in advance. It is possible to prevent an increase in the differential pressure of the membrane and a reduction in the amount of wastewater treated due to the blockage of the membrane, and it is possible to avoid adding a flocculant more than necessary.
In the case of having a plurality of biological reaction tanks, in the case of having an anaerobic tank or an anaerobic tank, etc., the present invention is particularly effective in wastewater treatment having a process in which the properties of the liquid to be treated are likely to deteriorate.

以下、本発明を一実施形態による図面を参照して説明する。   Hereinafter, the present invention will be described with reference to the drawings according to an embodiment.

図1は、本実施形態による有機性排水の処理方法を示す概略図である。
微生物処理槽1において、被処理液は、活性汚泥による浄化処理がなされる。微生物処理槽1は、その目的に応じて複数設置することも可能である。
FIG. 1 is a schematic view showing a method for treating organic waste water according to the present embodiment.
In the microorganism treatment tank 1, the liquid to be treated is subjected to purification treatment with activated sludge. A plurality of microbial treatment tanks 1 can be installed according to the purpose.

次いで、微生物処理槽1内部に設置された膜分離装置2によって、固液分離処理がなされる。微生物処理槽1内の活性汚泥の濃度(MLSS)は、3,000〜15,000mg/Lの範囲とするのが好ましい。これは、3,000mg/L以上とすることによって、未分解成分による分離膜の早期閉塞を防ぐことができる傾向にあるためである。より好ましくは、5,000mg/L以上であり、さらに好ましくは、7,000mg/L以上である。また、15,000mg/L以下とすることによって、活性汚泥の粘度上昇に起因する、分離膜へのエアーバブリングの不均一や、分離膜の早期閉塞を避けることができる傾向にあるためである。より好ましくは12,000mg/L以下であり、さらに好ましくは、10,000mg/L以下である。   Next, a solid-liquid separation process is performed by the membrane separation device 2 installed inside the microorganism treatment tank 1. The activated sludge concentration (MLSS) in the microorganism treatment tank 1 is preferably in the range of 3,000 to 15,000 mg / L. This is because by setting it as 3,000 mg / L or more, it exists in the tendency which can prevent the early obstruction | occlusion of the separation membrane by an undecomposed component. More preferably, it is 5,000 mg / L or more, and still more preferably 7,000 mg / L or more. Moreover, it is because it exists in the tendency which can avoid the nonuniformity of the air bubbling to a separation membrane and the early obstruction | occlusion of a separation membrane resulting from the viscosity increase of activated sludge by setting it as 15,000 mg / L or less. More preferably, it is 12,000 mg / L or less, More preferably, it is 10,000 mg / L or less.

本発明で使用される分離膜の形状としては、平膜タイプ、中空糸膜タイプ、管状膜タイプ、袋状膜タイプ等を挙げることができる。これらの形状は、必要に応じて適宜選択することができるが、ユニット化した際の、ユニット容積当たりの膜面積を多く採れる点から、中空糸膜タイプが好ましい。   Examples of the shape of the separation membrane used in the present invention include a flat membrane type, a hollow fiber membrane type, a tubular membrane type, and a bag-like membrane type. These shapes can be appropriately selected according to need, but the hollow fiber membrane type is preferable from the viewpoint that a large membrane area per unit volume can be obtained when unitized.

本発明で使用される分離膜の材質としては、セルロース系、ポリオレフィン系、ポリスルフォン系、ポリビニルアルコール系、ポリメチルメタクリレート系、ポリビニリデンフルオライド、ポリ4フッ化エチレン、セラミック等を挙げることができる。これらの材質は、加工性、薬品耐性等の点から、必要に応じて適宜選択することができる。   Examples of the material of the separation membrane used in the present invention include cellulose, polyolefin, polysulfone, polyvinyl alcohol, polymethyl methacrylate, polyvinylidene fluoride, polytetrafluoroethylene, and ceramic. . These materials can be appropriately selected as necessary from the viewpoint of processability, chemical resistance, and the like.

本発明で使用される分離膜の孔径は、適宜選択することができ、特に限定されるものではないが、0.001〜1μmの範囲とするのが好ましい。これは、孔径を0.001μm以上とすることによって、濾過時の圧力を高くしなくても充分な濾過流量が得られる傾向にあるためである。より好ましくは、0.1μm以上である。また、孔径を1μm以下とすることによって、不純物が膜を透過しにくくなり、高い水質の濾過液を得ることができる傾向にあるためである。
本発明においては、一般に精密濾過膜と呼ばれる膜を使用するのが好ましい。
The pore diameter of the separation membrane used in the present invention can be appropriately selected and is not particularly limited, but is preferably in the range of 0.001 to 1 μm. This is because by setting the pore diameter to 0.001 μm or more, a sufficient filtration flow rate tends to be obtained without increasing the pressure during filtration. More preferably, it is 0.1 μm or more. Further, by setting the pore diameter to 1 μm or less, impurities are difficult to permeate the membrane, and a high water quality filtrate tends to be obtained.
In the present invention, it is preferable to use a membrane generally called a microfiltration membrane.

微生物処理槽1内で微生物処理が良好に機能している間は、膜分離処理も良好に機能し、水処理を安定して実施できるが、先に述べたような原因によって、微生物処理槽1の被処理液の性状が悪化すると、分離膜の急速な閉塞とともに膜差圧が急激に上昇し、固液分離処理に支障が生じる。   While the microbial treatment is functioning well in the microbial treatment tank 1, the membrane separation process also works well and the water treatment can be carried out stably. However, due to the above-mentioned causes, the microbial treatment tank 1 When the property of the liquid to be treated deteriorates, the membrane differential pressure rises rapidly with rapid clogging of the separation membrane, causing trouble in the solid-liquid separation treatment.

しかし、早期に凝集剤添加の適切な時期を把握することによって、被処理液の分離性を維持、改善することができる。これによって、分離膜の閉塞を抑えることができ、分離膜の閉塞による廃水処理量の低下を防ぐことができる。また、凝集剤が有効に作用する時期に、これを添加することができるので、凝集剤の過剰な使用を抑えることが可能となる。   However, the separability of the liquid to be treated can be maintained and improved by grasping the appropriate timing for adding the flocculant at an early stage. As a result, the clogging of the separation membrane can be suppressed, and a reduction in the amount of wastewater treated due to the clogging of the separation membrane can be prevented. Further, since the flocculant can be added at a time when the flocculant acts effectively, excessive use of the flocculant can be suppressed.

本発明における凝集剤の添加時期は、分離膜を設置した微生物処理槽内の水温と槽の設置環境の気温との10〜40日間移動平均温度差が、4℃以上に拡大した時である。   The addition time of the flocculant in the present invention is when the moving average temperature difference between the water temperature in the microorganism treatment tank provided with the separation membrane and the temperature of the installation environment of the tank is expanded to 4 ° C. or more.

本発明における10〜40日間移動平均温度差は、分離膜を設置した微生物処理槽内の10〜40日間移動平均水温と、槽の設置環境の10〜40日間移動平均気温との差である。それぞれの移動平均は、基準となる期間は同じであり、水温あるいは気温の日平均データを基に算出されるものである。特定の日においてデータの欠落がある場合は、欠落部を無視して移動平均を求めることができる。しかし、大きな欠落があると、温度差の判定が難しくなり、凝集剤添加の適切な時期の確認が遅れる可能性があるため、連続したデータの欠落は10日までとするのが好ましい。   The moving average temperature difference for 10 to 40 days in the present invention is the difference between the moving average water temperature for 10 to 40 days in the microorganism treatment tank provided with the separation membrane and the moving average temperature for 10 to 40 days in the setting environment of the tank. Each moving average has the same reference period, and is calculated based on daily average data of water temperature or air temperature. When data is missing on a specific day, the moving average can be obtained by ignoring the missing part. However, if there is a large omission, it is difficult to determine the temperature difference and there is a possibility that confirmation of an appropriate timing for adding the flocculant may be delayed.

本発明における移動平均は、10〜40日間の値とする必要がある。これは、10日間未満であると、日ごとの温度のばらつきを吸収できないために、上述の平均温度差を求めるのが難しくなる傾向にあるためである。好ましくは、20日間以上である。また、40日間を越えると、温度変化が過剰に平均化されるために、凝集剤添加の適切な時期の確認が遅れる傾向にあるからである。好ましくは30日間以下である。   The moving average in the present invention needs to be 10 to 40 days. This is because, if it is less than 10 days, it is difficult to obtain the above-mentioned average temperature difference because the temperature variation from day to day cannot be absorbed. Preferably, it is 20 days or longer. Further, if it exceeds 40 days, the temperature change is excessively averaged, and therefore, confirmation of an appropriate timing for adding the flocculant tends to be delayed. Preferably it is 30 days or less.

本発明における移動平均温度は、微生物処理槽内の水温が20℃以下であるときのデータに基づくのが好ましい。これは、微生物処理槽内の水温が20℃以下のときにおいて、被処理液の性状悪化による分離膜の閉塞が進行しやすいために、凝集剤の添加がより有効となる傾向にあるためである。   The moving average temperature in the present invention is preferably based on data obtained when the water temperature in the microorganism treatment tank is 20 ° C. or lower. This is because when the water temperature in the microorganism treatment tank is 20 ° C. or lower, the clogging of the separation membrane due to deterioration of the properties of the liquid to be treated tends to proceed, so that the addition of the flocculant tends to be more effective. .

本発明においては、上述の平均温度差が4℃以上に拡大した時に凝集剤を添加する必要がある。
これは、この温度差が4℃未満である時点では、被処理液の性状はそれほど悪化しておらず、分離膜の閉塞も進行していない傾向にあるため、凝集剤の添加は効率的ではなく、未反応の凝集剤によって膜閉塞が発生し、膜差圧の上昇の原因となる場合もあるからである。好ましくは、4〜7℃に拡大した時である。上述の平均温度差を7℃以下とすることによって、被処理液の性状悪化が顕著になる前に凝集剤を添加できる傾向にあるためである。
In the present invention, it is necessary to add a flocculant when the above average temperature difference is expanded to 4 ° C. or more.
This is because when the temperature difference is less than 4 ° C., the properties of the liquid to be treated do not deteriorate so much and the clogging of the separation membrane does not progress, so the addition of the flocculant is not efficient. This is because the membrane clogging may occur due to the unreacted flocculant, which may increase the membrane differential pressure. Preferably, it is when it expands to 4-7 degreeC. This is because by setting the above-mentioned average temperature difference to 7 ° C. or less, the coagulant tends to be added before the deterioration of the properties of the liquid to be treated becomes significant.

本発明における凝集剤の添加時期は、微生物処理槽内の移動平均水温と槽の設置環境の移動平均気温が下降している期間が好ましい。
また、本発明実施後における次回の凝集剤添加時期は、微生物処理槽内の水温が20℃を越える期間を経て、再度、水微生物処理槽内の移動平均水温と槽の設置環境の移動平均気温が下降している期間が好ましく、上述の平均温度差が4℃以上に拡大した時が好ましい。
例えば、未使用の分離膜を微生物処理槽内に設置し、固液分離を新規に開始した時において、微生物処理槽内の水温が20℃以下であるとともに、上述の移動平均水温と移動平均気温の差が既に4℃以上となっている場合には、これを確認した時点で凝集剤を添加しても良い。
The addition time of the flocculant in the present invention is preferably a period in which the moving average water temperature in the microorganism treatment tank and the moving average temperature in the installation environment of the tank are decreasing.
In addition, the next flocculant addition time after the implementation of the present invention passes through a period in which the water temperature in the microbial treatment tank exceeds 20 ° C., and again the moving average water temperature in the water microbial treatment tank and the moving average temperature in the installation environment of the tank. Is preferable, and the above-mentioned average temperature difference is preferably expanded to 4 ° C. or more.
For example, when an unused separation membrane is installed in a microorganism treatment tank and solid-liquid separation is newly started, the water temperature in the microorganism treatment tank is 20 ° C. or lower, and the above-mentioned moving average water temperature and moving average air temperature When the difference is already 4 ° C. or higher, a flocculant may be added when the difference is confirmed.

被処理液の濾紙による濾過流量や、被処理液中の糖濃度は、被処理液の分離性悪化の目安とすることができるものである。本発明においては、被処理液の濾紙による濾過流量が10ml/5min以下、または被処理液中の糖濃度が30mg/L以上となった時に凝集剤を添加するのが好ましい。   The filtration flow rate of the liquid to be processed by the filter paper and the sugar concentration in the liquid to be processed can be used as a standard for deterioration of the separation performance of the liquid to be processed. In the present invention, it is preferable to add a flocculant when the flow rate of the liquid to be treated is 10 ml / 5 min or less, or the sugar concentration in the liquid to be treated is 30 mg / L or more.

濾過流量は、ひだ折りした5C185mm濾紙にサンプル50mlを流し込んだ時の、5分後の濾過量の測定値である(「浸漬型分離活性汚泥法における汚泥の濾過性に関する研究」(第32回水環境学会:2−A−11−1)に記載されている方法に準拠)。   The filtration flow rate is a measured value of the filtration amount after 5 minutes when a sample of 50 ml is poured into a folded 5C185 mm filter paper ("Study on sludge filterability in submerged separation activated sludge method" (32nd Water According to the method described in Environmental Society: 2-A-11-1).

濾紙による濾過流量によって、分離膜による濾過のしやすさを判断することができ、上述の数値未満になると、濾過差圧が上昇する傾向にある。
また、糖濃度によって、濾過流量の低下や、活性汚泥の粘度上昇を判断することができ、上述の数値を超えると、分離膜の差圧が急激に上昇しやすくなる傾向にある。
The ease of filtration by the separation membrane can be judged by the filtration flow rate by the filter paper, and when it becomes less than the above numerical value, the filtration differential pressure tends to increase.
Moreover, a decrease in the filtration flow rate or an increase in the viscosity of the activated sludge can be determined depending on the sugar concentration. If the above numerical value is exceeded, the differential pressure of the separation membrane tends to increase rapidly.

本発明においては、1日の処理廃水中の濃度が1mg/L以上となる量の凝集剤を連続的あるいは間欠的に微生物処理槽内に添加するのが好ましい。
これは、凝集剤の濃度を1mg/L以上とすることによって、被処理液の分離性が良好に維持、改善される傾向にあるためである。より好ましくは5mg/L以上である。また、凝集剤の濃度は30mg/L以下とするのが好ましい。これは、濃度を過剰に高くしても凝集剤添加による効果は変わらない傾向にあり、コスト的にも不利となる傾向にあるためである。
In this invention, it is preferable to add the coagulant | flocculant of the quantity from which the density | concentration in the processing waste water of 1 day becomes 1 mg / L or more continuously or intermittently in a microorganism treatment tank.
This is because by setting the concentration of the flocculant to 1 mg / L or more, the separability of the liquid to be treated tends to be maintained and improved. More preferably, it is 5 mg / L or more. The concentration of the flocculant is preferably 30 mg / L or less. This is because even if the concentration is excessively increased, the effect of adding the flocculant tends not to change, and the cost tends to be disadvantageous.

また、凝集剤を連続的あるいは間欠的に添加することによって、凝集剤がより有効に作用し、凝集剤の使用量を低減できる傾向にあるためである。1日の処理廃水中の濃度が1mg/L以上となる量の凝集剤を1日かけて連続添加、もしくは間欠添加するのがより好ましい。必要に応じて、初期に凝集剤をある程度多量に添加し、その後、少量での連続添加や間欠添加を行うこともできる。   In addition, by adding the flocculant continuously or intermittently, the flocculant acts more effectively, and the amount of the flocculant used tends to be reduced. It is more preferable to add the flocculant in an amount such that the concentration in the daily treatment wastewater is 1 mg / L or more continuously or intermittently over 1 day. If necessary, the flocculant can be initially added in a large amount to a certain extent, and then a continuous addition or an intermittent addition in a small amount can be performed.

凝集剤の添加は、濾紙濾過流量の回復、糖濃度の低下および分離膜の差圧安定等が見られ、被処理液の分離性が改善された時点まで行うことが好ましい。1日の処理廃水中の濃度が1mg/L以上となる量の凝集剤を1日当たりの添加量とするのが、より好ましい。凝集剤の添加期間に特に制限はなく、使用環境や排水の種類によって、適宜選択することができるものであるが、余剰汚泥の発生量への影響、コストの問題、余剰凝集剤による水質および分離膜の差圧への影響等も考慮すると、1〜4週間の添加を目安とするのが好ましい。   The addition of the flocculant is preferably carried out until the separation of the liquid to be treated is improved, such as the recovery of the filter paper filtration flow rate, the reduction of the sugar concentration and the stabilization of the differential pressure of the separation membrane. More preferably, the amount of the flocculant in the daily treatment wastewater is 1 mg / L or more to be added per day. There is no particular limitation on the period of addition of the flocculant, and it can be selected as appropriate depending on the use environment and the type of wastewater. In consideration of the influence on the differential pressure of the membrane, etc., it is preferable to add 1 to 4 weeks as a guide.

例えば、間欠タイマー3と送液ポンプ4を繋げたチューブが接続された凝集剤タンク5を用いることによって、膜分離装置2が設置された微生物処理槽1内に凝集剤を間欠的に添加することができる。この場合、分離膜での濾過運転はそのまま継続し、濾過運転を停止することなくオンラインで分離性改善を行うことができる。連続添加を行う場合は、間欠タイマー3を省略することができる。   For example, by using a flocculant tank 5 to which a tube connecting the intermittent timer 3 and the liquid feeding pump 4 is connected, the flocculant is intermittently added to the microorganism treatment tank 1 in which the membrane separation device 2 is installed. Can do. In this case, the filtration operation at the separation membrane is continued as it is, and the separability can be improved online without stopping the filtration operation. When continuous addition is performed, the intermittent timer 3 can be omitted.

本発明で使用することができる凝集剤としては、例えば、市販の塩化第二鉄溶液(塩化鉄)、ポリ硫酸鉄溶液(ポリ鉄)、ポリ塩化アルミニウム溶液(PAC)等の無機系凝集剤やカチオン系、アニオン系、両性の高分子凝集剤等を挙げることができる。これらは1種以上を適宜選択して使用することができるが、汎用性が高く、簡便に使用できる無機系凝集剤を用いるのが好ましい。   Examples of flocculants that can be used in the present invention include inorganic flocculants such as commercially available ferric chloride solution (iron chloride), polyiron sulfate solution (polyiron), and polyaluminum chloride solution (PAC). Examples thereof include cationic, anionic and amphoteric polymer flocculants. One or more of these can be appropriately selected and used, but it is preferable to use an inorganic flocculant that has high versatility and can be used easily.

以下、実施例により本発明を具体的に説明する。
(実施例1)
図1に示した装置を用いて、以下の条件で生活系排水の処理を、三菱レイヨン(株)排水試験場にて行った。
1.平均孔径0.4μmの精密濾過用ポリビニリデンフルオライド製中空糸膜
をスクリーン状に展開固定したエレメントを複数枚積層した膜分離装置
(膜面積43.5m)2を準備した。
2.微生物処理槽1(長さ1000mm×幅1100mm×高さ4600mm)
内に設置された膜分離装置2の2次側を吸引し、膜濾過流束LV=0.8
/m/Dayにて生活排水系の排水を処理した。
この際、濾過装置の下方に設置している散気管6からの散気を常時実施
した。散気量は、中空糸膜部の投影面積当たり150Nm/m・hrと
した。
3.濾過運転の間欠間隔を7分吸引−1分停止として濾過を実施した。
4.試験スタート時の被処理液のMLSSは10000mg/L、濾紙濾過
量は25ml/5min、糖濃度は20mg/Lであった。
上記条件で試験を開始し、微生物処理槽1内の水温と、微生物処理槽1の設置環境の気温を測定するとともに、微生物処理槽1内の40日間移動平均水温と、微生物処理槽1の設置環境の40日間移動平均気温を求めた。その結果を図2に示す。
試験開始時から水温、気温とも低下し、それぞれの移動平均温度の差が拡大する傾向にあったが、膜間の差圧の上昇も見られず、順調に廃水処理を継続することができた。
移動平均温度差が4℃に拡大した時点(図2中の矢印の時点)で、被処理液をサンプリングした結果、濾紙による濾過流量が18ml/5min、糖濃度が35mg/Lであり、非処理液の性状が悪化し始めてきていることが確認された。
そこで、1日の処理廃水中の濃度が5mg/Lとなる量のPACを一日当たり使用し、これを10分に1回30秒間の条件で、間欠タイマー3と送液ポンプ4を繋げたチューブが接続された凝集剤タンク5を用いて間欠添加を行う操作を4週間継続した。その結果、被処理液の濾紙濾過量が30ml/5min、糖濃度が20mg/Lとなり、被処理液の性状の回復が確認された。その間、試験開始時の濾過条件のままで差圧は上昇せず、廃水処理を継続することができた。
Hereinafter, the present invention will be described specifically by way of examples.
Example 1
Using the apparatus shown in FIG. 1, the treatment of domestic wastewater was performed at Mitsubishi Rayon Co., Ltd. Drainage Experiment Station under the following conditions.
1. A membrane separation device (membrane area 43.5 m 2 ) 2 was prepared in which a plurality of elements in which hollow fiber membranes made of polyvinylidene fluoride for microfiltration having an average pore size of 0.4 μm were developed and fixed in a screen shape were laminated.
2. Microbial treatment tank 1 (length 1000 mm x width 1100 mm x height 4600 mm)
The secondary side of the membrane separation device 2 installed inside is sucked, and the membrane filtration flux LV = 0.8
The wastewater of the domestic wastewater system was treated at m 3 / m 2 / Day.
At this time, air diffused from the air diffuser 6 installed below the filtration device was always carried out. The amount of air diffused was 150 Nm 3 / m 2 · hr per projected area of the hollow fiber membrane part.
3. Filtration was performed with the intermittent interval of the filtration operation set to 7 minutes suction to 1 minute stop.
4). The MLSS of the liquid to be treated at the start of the test was 10,000 mg / L, the filter paper filtration amount was 25 ml / 5 min, and the sugar concentration was 20 mg / L.
The test is started under the above conditions, the water temperature in the microorganism treatment tank 1 and the temperature of the installation environment of the microorganism treatment tank 1 are measured, the moving average water temperature in the microorganism treatment tank 1 and the installation of the microorganism treatment tank 1 are measured. The 40-day moving average temperature of the environment was determined. The result is shown in FIG.
Although the water temperature and air temperature both decreased from the beginning of the test and the difference between the moving average temperatures tended to increase, there was no increase in the differential pressure between the membranes, and the wastewater treatment was able to continue smoothly. .
When the moving average temperature difference expanded to 4 ° C. (indicated by the arrow in FIG. 2), the sample liquid was sampled. As a result, the filtration flow rate through the filter paper was 18 ml / 5 min, and the sugar concentration was 35 mg / L. It was confirmed that the properties of the liquid began to deteriorate.
Therefore, a tube in which the intermittent timer 3 and the liquid feed pump 4 are connected under the condition that the concentration of PAC in the daily treatment wastewater is 5 mg / L per day and used once every 10 minutes for 30 seconds. The operation of intermittent addition using the flocculant tank 5 connected to was continued for 4 weeks. As a result, the filter paper filtration amount of the liquid to be treated was 30 ml / 5 min, the sugar concentration was 20 mg / L, and the recovery of the properties of the liquid to be treated was confirmed. Meanwhile, the pressure difference did not increase under the filtration conditions at the start of the test, and the wastewater treatment could be continued.

(実施例2)
実施例1において、30日間移動平均水温と30日間移動平均気温を求めた結果を図3に示す。平均温度差が4℃となるのが、実施例1とほぼ同じ時期(矢印の時点)であり、この条件下でも、適切な時期に凝集剤を添加できることを確認した。
(Example 2)
In Example 1, the result of calculating | requiring 30 day moving average water temperature and 30 day moving average air temperature is shown in FIG. The average temperature difference was 4 ° C. at substantially the same time as that of Example 1 (at the time indicated by the arrow), and it was confirmed that the flocculant could be added at an appropriate time even under this condition.

(実施例3)
実施例1において、20日間移動平均水温と20日間移動平均気温を求めた結果を図4に示す。平均温度差が4℃となるのが、実施例1とほぼ同じ時期(矢印の時点)であり、この条件下でも、適切な時期に凝集剤を添加できることを確認した。
(Example 3)
In Example 1, the result of having calculated | required 20 day moving average water temperature and 20 day moving average air temperature is shown in FIG. The average temperature difference was 4 ° C. at substantially the same time as that of Example 1 (at the time indicated by the arrow), and it was confirmed that the flocculant could be added at an appropriate time even under this condition.

(実施例4)
実施例1において、10日間移動平均水温と10日間移動平均気温を求めた結果を図5に示す。平均温度差が4℃となるのが、実施例1とほぼ同じ時期(矢印の時点)であり、この条件下でも、適切な時期に凝集剤を添加できることを確認した。
Example 4
FIG. 5 shows the results of obtaining the 10-day moving average water temperature and the 10-day moving average air temperature in Example 1. The average temperature difference was 4 ° C. at substantially the same time as that of Example 1 (at the time indicated by the arrow), and it was confirmed that the flocculant could be added at an appropriate time even under this condition.

(比較例1)
実施例1において、50日間移動平均水温と50日間移動平均気温を求めた結果を図6に示す。平均温度差が4℃となるのが、実施例1〜4における時点より遅く(矢印の時点)、この時点では既に非処理液の性状の悪化が顕著であり(濾紙濾過量が10ml/5min、糖濃度が40 mg/L)、差圧の上昇によって、試験開始時の膜濾過流束(LV=0.8m/m/Day)を維持できない状態であった。
(Comparative Example 1)
In Example 1, the result of calculating | requiring 50 day moving average water temperature and 50 day moving average air temperature is shown in FIG. The average temperature difference becomes 4 ° C. later than the time point in Examples 1 to 4 (at the time of the arrow), and at this time point, the deterioration of the properties of the untreated liquid is already remarkable (filter paper filtration amount is 10 ml / 5 min, The membrane filtration flux (LV = 0.8 m 3 / m 2 / Day) at the start of the test could not be maintained due to the increase in the differential pressure with a sugar concentration of 40 mg / L.

(比較例2)
実施例1において、5日間移動平均水温と5日間移動平均気温を求めた結果を図7に示す。データのばらつきが激しいために、温度差が4℃となる時点を決めることができなかった。
(Comparative Example 2)
FIG. 7 shows the results of obtaining the 5-day moving average water temperature and the 5-day moving average air temperature in Example 1. Due to the large variation in data, the point in time when the temperature difference reached 4 ° C. could not be determined.

本発明の処理方法の一例を示す概略のフロー図である。It is a general | schematic flowchart which shows an example of the processing method of this invention. 実施例1における、移動平均温度の推移を示すグラフである。3 is a graph showing the transition of the moving average temperature in Example 1. 実施例2における、移動平均温度の推移を示すグラフである。It is a graph which shows transition of the moving average temperature in Example 2. 実施例3における、移動平均温度の推移を示すグラフである。It is a graph which shows transition of the moving average temperature in Example 3. 実施例4における、移動平均温度の推移を示すグラフである。It is a graph which shows transition of the moving average temperature in Example 4. 比較例1における、移動平均温度の推移を示すグラフである。It is a graph which shows transition of the moving average temperature in the comparative example 1. 比較例2における、移動平均温度の推移を示すグラフである。It is a graph which shows transition of the moving average temperature in the comparative example 2.

符号の説明Explanation of symbols

1 微生物処理層
2 膜分離装置
3 間欠タイマー
4 送液ポンプ
5 凝集剤ポンプ
6 散気管
DESCRIPTION OF SYMBOLS 1 Microbial processing layer 2 Membrane separator 3 Intermittent timer 4 Liquid feed pump 5 Coagulant pump 6 Air diffuser

Claims (3)

微生物処理槽内に設置した分離膜による固液分離を行う場合において、分離膜を設置した微生物処理槽内の水温と槽の設置環境の気温との10〜40日間移動平均温度差が、4℃以上に拡大した時に凝集剤を添加する、有機性排水の処理方法。 In the case of performing solid-liquid separation using a separation membrane installed in the microorganism treatment tank, the moving average temperature difference between the water temperature in the microorganism treatment tank in which the separation membrane is installed and the temperature of the installation environment of the tank is 4 ° C. A method for treating organic wastewater, in which a flocculant is added when expanded above. 被処理液の濾紙による濾過流量が10ml/5min以下、または被処理液中の糖濃度が30mg/L以上となった時に凝集剤を添加する、請求項1記載の有機性排水の処理方法。 The method for treating organic waste water according to claim 1, wherein the flocculant is added when the flow rate of the liquid to be treated is 10 ml / 5 min or less or the sugar concentration in the liquid to be treated is 30 mg / L or more. 1日の処理廃水中の濃度が1mg/L以上となる量の凝集剤を連続的あるいは間欠的に微生物処理槽内に添加する、請求項1または2記載の有機性排水の処理方法。

The processing method of the organic waste water of Claim 1 or 2 which adds the coagulant | flocculant of the quantity which the density | concentration in 1 day of treatment wastewater becomes 1 mg / L or more continuously or intermittently in a microorganism treatment tank.

JP2004240971A 2004-08-20 2004-08-20 Organic wastewater treatment method Active JP4412657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240971A JP4412657B2 (en) 2004-08-20 2004-08-20 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240971A JP4412657B2 (en) 2004-08-20 2004-08-20 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2006055766A true JP2006055766A (en) 2006-03-02
JP4412657B2 JP4412657B2 (en) 2010-02-10

Family

ID=36103687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240971A Active JP4412657B2 (en) 2004-08-20 2004-08-20 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4412657B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097269A1 (en) * 2006-02-23 2007-08-30 Asahi Kasei Chemicals Corporation Method of treating wastewater
JP2008068199A (en) * 2006-09-14 2008-03-27 Kurita Water Ind Ltd Flocculation device and flocculation method
JP2009297688A (en) * 2008-06-17 2009-12-24 Kurita Water Ind Ltd Biological treatment method for organic matter containing water
JP2010503527A (en) * 2006-09-13 2010-02-04 ナルコ カンパニー Method for improving membrane bioreactor performance
JP2015058413A (en) * 2013-09-20 2015-03-30 水ing株式会社 Method and apparatus for organic waste water treatment and method and apparatus for production of chemical fertilizer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097269A1 (en) * 2006-02-23 2007-08-30 Asahi Kasei Chemicals Corporation Method of treating wastewater
KR101030480B1 (en) 2006-02-23 2011-04-25 아사히 가세이 케미칼즈 가부시키가이샤 Method of treating wastewater
JP5399065B2 (en) * 2006-02-23 2014-01-29 旭化成ケミカルズ株式会社 Wastewater treatment method
JP2010503527A (en) * 2006-09-13 2010-02-04 ナルコ カンパニー Method for improving membrane bioreactor performance
JP2008068199A (en) * 2006-09-14 2008-03-27 Kurita Water Ind Ltd Flocculation device and flocculation method
JP2009297688A (en) * 2008-06-17 2009-12-24 Kurita Water Ind Ltd Biological treatment method for organic matter containing water
JP2015058413A (en) * 2013-09-20 2015-03-30 水ing株式会社 Method and apparatus for organic waste water treatment and method and apparatus for production of chemical fertilizer

Also Published As

Publication number Publication date
JP4412657B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP4233479B2 (en) Method and system for treatment of wastewater containing organic compounds
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
KR101804555B1 (en) WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
JP6743352B2 (en) Humin-containing wastewater treatment method and humin-containing wastewater treatment device
JP4997724B2 (en) Organic wastewater treatment method
JPH0470958B2 (en)
JP2009154114A (en) Method and apparatus for biological treatment of water containing organic matter
JP2011173040A (en) Waste water treatment method and apparatus
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JP4412657B2 (en) Organic wastewater treatment method
CN107265752A (en) A kind of Gas production wastewater desulfurization purification pretreatment technology
JP4958384B2 (en) Biological treatment water treatment method for organic carbon-containing water discharged from semiconductor manufacturing process
JP2008510619A (en) Anoxic biological reduction systems and methods
JP5105608B2 (en) Waste water treatment system and operation method thereof
JP2012206039A (en) Treatment apparatus of organic matter containing wastewater
JP3552580B2 (en) Method and apparatus for treating human wastewater
JP2009189943A (en) Water treatment method and apparatus
JP4925403B2 (en) Waste water treatment apparatus and waste water treatment method
JP6467886B2 (en) Waste water treatment method and waste water treatment system
WO2015002121A1 (en) Process for purification treatment of wastewater and apparatus for purification treatment of wastewater
JP3697938B2 (en) Wastewater treatment equipment
JP2001047089A (en) Method and apparatus for treating sewage
JP2005013937A (en) Organic waste water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4412657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250