JP2006054148A - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
JP2006054148A
JP2006054148A JP2004236532A JP2004236532A JP2006054148A JP 2006054148 A JP2006054148 A JP 2006054148A JP 2004236532 A JP2004236532 A JP 2004236532A JP 2004236532 A JP2004236532 A JP 2004236532A JP 2006054148 A JP2006054148 A JP 2006054148A
Authority
JP
Japan
Prior art keywords
plasma
matching
processing apparatus
plasma processing
reflection coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004236532A
Other languages
Japanese (ja)
Other versions
JP4695362B2 (en
Inventor
Naoshi Itabashi
直志 板橋
Tsutomu Tetsuka
勉 手束
Atsushi Ito
温司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004236532A priority Critical patent/JP4695362B2/en
Priority to US10/934,510 priority patent/US20060032584A1/en
Publication of JP2006054148A publication Critical patent/JP2006054148A/en
Priority to US12/400,266 priority patent/US20090165951A1/en
Application granted granted Critical
Publication of JP4695362B2 publication Critical patent/JP4695362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment device capable of detecting fluctuation of its treatment characteristics and restraining the fluctuation. <P>SOLUTION: The plasma treatment device provided with a reaction vessel 1 with its inner side wall insulated, a sample stand 5 arranged in the reaction vessel, and an antenna 10, applying plasma treatment on a sample loaded on the sample stand by supplying high-frequency power to the antenna from a plasma-generating power source and plasmolyzing treatment gas introduced in the reaction vessel, is further provided with a matching unit 11 for taking impedance matching between the plasma-generating power source and a load circuit including the antenna. The matching unit, provided with a sensor for measuring impedance characteristics of the load circuit side, changes a matching attainment point and a matching operation locus reaching the matching attainment point as the load side is seen from an input end of the matching unit in accordance with a measurement value of the sensor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラズマ処理装置に係り、特にプラズマ処理装置の処理特性の変動を抑制する技術に関する。   The present invention relates to a plasma processing apparatus, and more particularly to a technique for suppressing fluctuations in processing characteristics of a plasma processing apparatus.

デバイスの微細化、高集積化及び構成材料の多様化に伴い、半導体の製造に用いるプラズマ処理装置においては、処理の高精度化だけでなく、同一装置における処理特性の長期安定化、複数装置間の処理特性差の抑制等、量産性が重要視されている。   With the miniaturization of devices, high integration, and diversification of constituent materials, plasma processing equipment used for semiconductor manufacturing not only improves processing accuracy, but also stabilizes long-term processing characteristics in the same equipment, The importance of mass productivity, such as the suppression of differences in processing characteristics, is being emphasized.

例えば、プラズマエッチング装置では、処理を重ねると、反応室の内壁に堆積物が蓄積したり、内壁が磨耗したりする。このような堆積や磨耗に伴い、ウエハの処理特性は長期に渡って変化を続け、そのうち、微細パターン加工の許容加工特性変動の基準を逸脱して、製造されたデバイスの性能は基準値を満足しなくなる。更に、前記堆積物に剥がれが生じると微小異物を発生させる。また、処理室を構成する部品の磨耗は異常放電等を誘発し、デバイス不良の要因となる。   For example, in a plasma etching apparatus, when processing is repeated, deposits accumulate on the inner wall of the reaction chamber or the inner wall is worn. With such deposition and wear, the wafer processing characteristics continue to change over a long period of time, and the performance of the manufactured device satisfies the standard value, deviating from the standard of allowable processing characteristics fluctuation of fine pattern processing. No longer. Further, when the deposit is peeled off, minute foreign matter is generated. In addition, wear of parts constituting the processing chamber induces abnormal discharge and the like, causing a device failure.

このため、近年のプラズマ処理装置では、処理状態に関係すると考えられる多くのパラメータ(発光スペクトル、バイアス波形のピークtoピーク電圧Vpp、反射波の挙動等)を監視し続けることにより生産続行の可否を判断したり、堆積物を低減するためのプラズマクリーニング等の処理を活用したり、あるいは磨耗を防ぐために新規内壁材料を活用したり、というような施策が検討されている。これにより、製品不良の発生前に処理を止めたり、不良発生迄に要する時間を長期化することが可能となる。   For this reason, in recent plasma processing apparatuses, whether or not production can be continued is continuously monitored by monitoring many parameters (emission spectrum, bias waveform peak-to-peak voltage Vpp, reflected wave behavior, etc.) that are considered to be related to the processing state. Measures such as judging, utilizing a process such as plasma cleaning to reduce deposits, or utilizing a new inner wall material to prevent wear are being studied. As a result, it is possible to stop the processing before the occurrence of a product defect or to lengthen the time required until the defect occurs.

しかしながら、将来的には、微細パターン加工の許容加工特性変動の基準は厳しくなる一方である(例えば45nmノードではゲート長は20nm台となり、2nm以上の変動は許容されない)。このため、装置の種々のパラメータをもとに量産状況を監視し続けても、微妙に処理特性が変化しただけで、許容基準を逸脱してしまうことになる。   However, in the future, the criteria for variation in allowable processing characteristics of fine pattern processing will become stricter (for example, in a 45 nm node, the gate length is on the order of 20 nm and variations of 2 nm or more are not allowed). For this reason, even if the mass production status is continuously monitored based on various parameters of the apparatus, the processing characteristics slightly change, and the allowable standard is deviated.

このような場合には、反応室の全掃作業、あるいは消耗部品交換作業が必要となり、全掃作業の周期が短くなり、また消耗部品交換頻度が高まることになる。結果として、稼働率の低下や消耗部品コスト増大を招く。プラズマクリーニングによるSi系、C系、Al系等の堆積物の除去法も活用されているが、除去したいもののみを完全に除去し、反応室内壁面に余分なものを一切残さないクリーニング、あるいは反応室内壁面を一切削らないクリーニング(パーフェクトなプラズマクリーニング)は不可能であるため、反応室内部状態を完全にリセットすることは困難である。   In such a case, it is necessary to perform a sweeping operation of the reaction chamber or a replacement operation of consumable parts, shortening the cycle of the cleaning operation and increasing the frequency of replacement of the consumable parts. As a result, the operating rate is reduced and the cost of consumable parts is increased. Si-based, C-based, and Al-based deposit removal methods using plasma cleaning are also used, but only those that are to be removed are completely removed, leaving no excess on the reaction chamber walls, or reactions. Since it is impossible to clean the interior wall surface without cutting (perfect plasma cleaning), it is difficult to completely reset the inside of the reaction chamber.

このため、最近では、反応室内壁状態の微妙な変動や装置間の微妙な違いに対し、高精度に状態モニタ及び診断を行い、これに基づいてウエハ処理特性を一定化するための制御を行う技術の開発が重要となってきている。ウエハ処理特性を決定するパラメータには、圧力、ガス流量、壁面やウエハの温度、電源の整合特性等がある。それぞれ個別に高精度化するための開発が進められている。この中で、反応室のモニタ及び診断、並びに電源及び整合器の制御に関する特許文献の例を以下に示す。   For this reason, recently, state monitoring and diagnosis are performed with high accuracy against subtle fluctuations in the reaction chamber wall state and subtle differences between apparatuses, and control is performed based on this to stabilize wafer processing characteristics. Technology development is becoming important. Parameters that determine wafer processing characteristics include pressure, gas flow rate, wall surface and wafer temperature, power supply matching characteristics, and the like. Developments to improve the accuracy of each are underway. Among them, examples of patent documents relating to monitoring and diagnosis of a reaction chamber and control of a power source and a matching unit are shown below.

特許文献1には、予め設定された着火ポイントにインピーダンス整合器のスタブを移動させた後、プラズマの着火を行い、プラズマを確実に着火させた後、プラズマが安定する整合点にスタブを移行させるものである。軌跡制御としては、初期設定点からプラズマ着火点、プラズマ安定点というように動作軌跡を描かせている。   In Patent Document 1, after moving the stub of the impedance matching unit to a preset ignition point, the plasma is ignited, the plasma is ignited securely, and then the stub is moved to a matching point where the plasma is stable. Is. As the trajectory control, the operation trajectory is drawn from the initial set point to the plasma ignition point and the plasma stable point.

特許文献2には、センサを整合器からプラズマ処理装置内の電極に至る経路の途中に取り付けることにより、処理特性やその変動を感度よく検出することが示されている。   Patent Document 2 shows that a sensor is attached in the middle of a path from an aligner to an electrode in a plasma processing apparatus, thereby detecting processing characteristics and variations thereof with high sensitivity.

また、特許文献3には、ウエハの処理中にインピーダンスを測定し、ウエハ処理の情報と共にデータベース化することで経験的な情報を蓄積し、ウエハの処理特性との関連付けを行うことが示されている。
特開平9−260096号公報 特開2003−174015号公報 特開2004−39772号公報
Further, Patent Document 3 shows that impedance is measured during wafer processing, and empirical information is accumulated by creating a database together with wafer processing information and correlated with wafer processing characteristics. Yes.
JP-A-9-260096 JP 2003-174015 A JP 2004-39772 A

プラズマ処理装置においては、同一処理装置において処理特性を長期間にわたって安定化すること、及び異なる反応室間における処理特性差の差異を縮小化することが必須である。しかし、装置内壁の堆積物の増加や内壁の磨耗等により、処理特性は変動してしまう。また、反応室を構成する部品を極めて精度良く製作しても、製作した部品間には微妙な差異が生じる。このため複数装置間の処理特性差が許容値を逸脱することがある。   In the plasma processing apparatus, it is essential to stabilize the processing characteristics over a long period of time in the same processing apparatus and to reduce the difference in the processing characteristics between different reaction chambers. However, the processing characteristics fluctuate due to an increase in deposits on the inner wall of the apparatus and wear of the inner wall. Even if the parts constituting the reaction chamber are manufactured with extremely high accuracy, a subtle difference occurs between the manufactured parts. For this reason, a difference in processing characteristics between a plurality of apparatuses may deviate from an allowable value.

また、メンテナンス時に一旦取り外して再組み立てを行うと、同一の部品であっても、再組み立ての際の組付け状態の差異等により装置の特性が変化する。   Also, once removed and reassembled during maintenance, the characteristics of the apparatus change due to differences in the assembled state during reassembly even for the same parts.

このように、プラズマ処理装置においては、例え、プラズマ密度の一定化、インピーダンスの一定化、あるいは実効的入力パワーの一定化を図ったとしても、必ずしも処理特性の一定化を図ることはできない。   As described above, in the plasma processing apparatus, even if the plasma density is fixed, the impedance is fixed, or the effective input power is fixed, the processing characteristics cannot always be fixed.

本発明はこれらの問題点に鑑み、さらにはプラズマ処理装置の内部状態を一定化して処理特性を一定化するためには、当然の前提として処理用のガスの圧力、流量などの周辺条件を高精度に制御した上で、電源とプラズマとの整合状態を制御することが有効であるとの知見に基づきなされたもので、プラズマ処理装置の処理特性の変動を検出し、さらには変動を抑制することのできるプラズマ処理技術を提供するものである。   In view of these problems, the present invention further enhances the ambient conditions such as the pressure and flow rate of the processing gas as a matter of course in order to stabilize the internal characteristics of the plasma processing apparatus and to stabilize the processing characteristics. It is based on the knowledge that it is effective to control the matching state between the power supply and the plasma while controlling the accuracy, and detects fluctuations in the processing characteristics of the plasma processing apparatus and further suppresses fluctuations. It is an object of the present invention to provide a plasma processing technique that can be used.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

内部側壁を絶縁処理した反応容器と、反応容器内に配置した試料台、アンテナを備え、該アンテナにプラズマ発生用電源から高周波電力を供給して反応容器内に導入した処理ガスをプラズマ化して試料台上に載置した試料にプラズマ処理を施すプラズマ処理装置において、プラズマ発生用電源とアンテナを含む負荷回路との間にインピーダンス整合をとるための整合器を備え、該整合器は、負荷回路側のインピーダンス特性を測定するセンサと、センサの測定値に応じて整合器の入力端より負荷側をみた整合到達点及び該整合到達点に至る整合動作軌跡を変更する。   A reaction vessel in which the inner side wall is insulated, a sample stage disposed in the reaction vessel, and an antenna are provided, and a high-frequency power is supplied to the antenna from a plasma generation power source to convert the treatment gas introduced into the reaction vessel into a plasma and sample A plasma processing apparatus for performing plasma processing on a sample placed on a table includes a matching unit for impedance matching between a plasma generating power source and a load circuit including an antenna. A sensor for measuring the impedance characteristics of the sensor, a matching arrival point when the load side is viewed from the input end of the matching unit, and a matching operation locus reaching the matching reaching point are changed according to the measured value of the sensor.

本発明は、以上の構成を備えるため、プラズマ処理装置の処理特性の変動を検出し、さらには変動を抑制することができる。   Since the present invention has the above-described configuration, it is possible to detect a variation in the processing characteristics of the plasma processing apparatus and further suppress the variation.

〔実施例1〕
図1は第1の実施例に係るプラズマ処理装置の例として、UHF帯の電磁波を用いたプラズマエッチング装置を説明する図である。
[Example 1]
FIG. 1 is a diagram illustrating a plasma etching apparatus using UHF band electromagnetic waves as an example of the plasma processing apparatus according to the first embodiment.

プラズマ処理を行う反応室1には、上部にプラズマ9生成用のUHF帯電磁波を導入するための誘電体真空窓2と、反応性の処理ガスを導入する誘電体製のガス放出板3が設けられる。エッチング処理による反応生成物は反応室1下方の排気口6より真空排気される。反応室1の内壁表面はアルミニウム母材の表面をアルマイト処理して形成した絶縁材質8による保護コーティングが形成されている。エッチング処理されるウエハ4は、試料台5の上面に設けた誘電体(高抵抗体)膜で形成された静電チャック上に載置され、ウエハ4を静電力により吸着する。   A reaction chamber 1 for plasma processing is provided with a dielectric vacuum window 2 for introducing UHF band electromagnetic waves for generating plasma 9 and a dielectric gas discharge plate 3 for introducing reactive processing gas. It is done. The reaction product resulting from the etching process is evacuated from the exhaust port 6 below the reaction chamber 1. The inner wall surface of the reaction chamber 1 is formed with a protective coating made of an insulating material 8 formed by anodizing the surface of an aluminum base material. The wafer 4 to be etched is placed on an electrostatic chuck formed of a dielectric (high resistance) film provided on the upper surface of the sample stage 5 and attracts the wafer 4 by electrostatic force.

ウエハ4と静電吸着膜との間にはヘリウムガスを充填することにより試料台5との熱伝達を確保してウエハ4を効率的に温度制御する。また、試料台5にはウエハ4に高周波バイアスを印加するためのバイアス発生用電源13と、前記静電力により吸着するために必要なDC電源が接続されており、前記ウエハ及び高抵抗体の膜を通して流れる微小なDC電流をモニタできるようになっている。   By filling helium gas between the wafer 4 and the electrostatic adsorption film, heat transfer with the sample stage 5 is ensured and the temperature of the wafer 4 is efficiently controlled. Further, a bias generating power source 13 for applying a high frequency bias to the wafer 4 and a DC power source necessary for adsorption by the electrostatic force are connected to the sample stage 5, and the wafer and the high resistance film are connected. The minute DC current flowing through the terminal can be monitored.

反応室1内には、反応性ガスを0.5Paから10Pa程度の圧力を保持しながらガス放出板3より放出する。この状態で、磁場コイル7により反応室1内に磁場を印加し、プラズマ発生用電源12からのUHF高周波出力を整合器11を通して反応室1の上部に置かれたアンテナ10から反応室1内に電磁波を放射することにより、反応室1内にプラズマ9を生成してエッチング処理を行う。   In the reaction chamber 1, the reactive gas is discharged from the gas discharge plate 3 while maintaining a pressure of about 0.5 Pa to 10 Pa. In this state, a magnetic field is applied to the reaction chamber 1 by the magnetic field coil 7, and the UHF high frequency output from the plasma generating power source 12 is passed through the matching unit 11 to the reaction chamber 1 from the antenna 10 placed on the upper portion of the reaction chamber 1. By radiating electromagnetic waves, plasma 9 is generated in the reaction chamber 1 to perform an etching process.

ここで、図1に示す処理装置に、Cl2ガス、HBrガス、CF4ガスの混合気体を導入して放電を行い、Poly−Si膜を形成したウエハをエッチング処理した。   Here, a mixed gas of Cl 2 gas, HBr gas, and CF 4 gas was introduced into the processing apparatus shown in FIG. 1 to perform discharge, and the wafer on which the Poly-Si film was formed was etched.

図2、3は、このときのウエハのエッチング処理特性の変動を自動的に修正するための処理を説明する図である。なお、図1の整合器11は、各ウエハのプラズマ処理開始ごとに、例えば入力電圧反射係数が所定の値(整合到達点)に至るように回路定数を自動変更する。また、後述するように、整合到達点と整合軌跡を自動変更することが可能である(整合到達点及び整合軌跡の自動変更機能ONの場合)。また、目的とする整合到達点及び整合到達点に至る整合軌跡は、例えば負荷電圧反射係数の推移に対応してデータベースに格納しておくことができ、整合器11はデータベースに格納した値に基づいて整合器の回路定数を変更する。   2 and 3 are diagrams for explaining processing for automatically correcting the variation in the etching processing characteristics of the wafer at this time. Note that the matching unit 11 in FIG. 1 automatically changes the circuit constant so that, for example, the input voltage reflection coefficient reaches a predetermined value (matching arrival point) each time plasma processing of each wafer is started. Further, as will be described later, it is possible to automatically change the matching arrival point and the matching locus (when the automatic change function of the matching arrival point and the matching locus is ON). The target matching arrival point and the matching trajectory to the matching arrival point can be stored in a database corresponding to the transition of the load voltage reflection coefficient, for example, and the matching unit 11 is based on the value stored in the database. Change the circuit constant of the matching unit.

まず、整合到達点及び整合軌跡の自動変更機能をOFFにして、入力電圧反射係数、負荷電圧反射係数をインピーダンス表示できるスミスチャート上に表示した。この状態で、ウエハの連続処理を実施した。その結果、2500枚までは、放電安定状態で処理が続行できた。しかし、ウエハのエッチング処理の結果を調べたところ、1枚目のウエハと比較して、500枚目、1000枚目、1500枚目、‥‥、とウエハの処理枚数を重ねるにつれ、ほんのわずかなからエッチングによる微細パターンの仕上がり寸法が細くなっていっていることがわかった。1枚目の仕上がり寸法は50nmであったのに対し、1500枚目では、47nm、2000枚目では46nm、2500枚目では45nmであった。 また、2250枚目以降に加工されたウエハで作成したLSIデバイスは、特性不良が発生していることが後でわかった。さらに、2500枚を超えたところから、放電安定性が劣化しはじめた。これを認知できないうちに、2600枚までウエハ処理を進めてしまったため、更に100枚の加工不良ウエハを出すという結果に陥り、2600枚時点でウエハ処理を停止した。   First, the automatic change function of the matching arrival point and the matching locus was turned off, and the input voltage reflection coefficient and the load voltage reflection coefficient were displayed on the Smith chart that can display impedance. In this state, the wafer was continuously processed. As a result, up to 2500 sheets could be processed in a stable discharge state. However, when the results of the wafer etching process were examined, as the number of processed wafers overlapped with the 500th, 1000th, 1500th,... Thus, it was found that the finished dimension of the fine pattern by etching was getting thinner. The finished size of the first sheet was 50 nm, whereas the 1500th sheet was 47 nm, the 2000th sheet was 46 nm, and the 2500th sheet was 45 nm. Further, it was later found out that an LSI device made from a wafer processed after the 2250th wafer has a characteristic defect. Furthermore, the discharge stability began to deteriorate from the point where 2500 sheets were exceeded. Since the wafer processing was advanced to 2600 sheets before this could be recognized, the result was that another 100 defective wafers were produced, and the wafer processing was stopped at the time of 2600 sheets.

このとき、2500枚目までの入力電圧反射係数、及び負荷電圧反射係数のチャートを確認した結果、反射波は1枚目と変わらず0Wのままであった。すなわち、図2(a)に示すように、入力電圧反射係数は1枚目と変わらず終始インピーダンスチャートの原点18を表示していた。しかし図2(b)に示すように、負荷電圧反射係数の表示値は、1枚目の位置19と比較して、反時計方向に10°だけシフトした位置20に移動していたことが判明した。   At this time, as a result of confirming the chart of the input voltage reflection coefficient and the load voltage reflection coefficient up to the 2500th sheet, the reflected wave was kept at 0 W as the first sheet. That is, as shown in FIG. 2A, the input voltage reflection coefficient is the same as that of the first sheet, and the origin 18 of the impedance chart is displayed throughout. However, as shown in FIG. 2B, it was found that the display value of the load voltage reflection coefficient was moved to a position 20 shifted by 10 ° counterclockwise as compared with the position 19 of the first sheet. did.

反時計方向のシフトはプラズマ発生用の高周波回路における静電容量が減少したことを示しており、これは、反応室1上部の誘電体部品表面に堆積した絶縁性の被膜の厚みが増していくことを示している。この堆積膜はSF6ガスでプラズマクリーニングを施しても、減少する兆しがみえなかったため、やむなく、反応室を大気開放し、内部の堆積膜を全掃し、反応室を再組み立てしてから、真空状態にした後、ウエハ処理の準備を整えてから、試しに1枚だけ処理を行った。その結果、仕上がり寸法は元通り50nmに戻っており、また、負荷電圧反射係数もチャート上の元の位置19に戻っていることがわかった。しかしながら、この状況のままでは、2回目以降は、安全の余裕をみると、処理枚数をせいぜい2000枚程度迄にとどめるしかないことになる。   The counterclockwise shift indicates that the electrostatic capacity in the high-frequency circuit for plasma generation has decreased, and this is because the thickness of the insulating coating deposited on the surface of the dielectric component above the reaction chamber 1 increases. It is shown that. Even if this deposited film was plasma cleaned with SF6 gas, there was no sign of a decrease, so unavoidably, the reaction chamber was opened to the atmosphere, the internal deposited film was swept out, the reaction chamber was reassembled, and then the vacuum was removed. After making it ready, wafer preparations were made, and only one wafer was processed as a trial. As a result, it was found that the finished size was returned to 50 nm as it was and the load voltage reflection coefficient was returned to the original position 19 on the chart. However, in this situation, from the second time onward, if there is a margin for safety, the number of processed sheets can only be limited to about 2000 at most.

次に、整合到達点と整合軌跡の自動変更機能をONに変更し、再び、ウエハの連続処理を進めた。ここで、自動変更機能の設定として、図3(a)に示すように、負荷電力反射係数が反時計方向にシフトするに従って、図3(b)に示すように、入力電圧反射係数のチャート上における整合到達点をチャート上の0°の方向にシフトさせていくことにした。シフト量として、負荷電圧反射係数の反時計方向のシフト量1°あたり、入力電圧反射係数の整合到達点をチャート上の0°の方向0.01ずつシフトするように設定した。   Next, the automatic change function of the alignment arrival point and alignment locus was changed to ON, and the continuous processing of the wafer was advanced again. Here, as the setting of the automatic change function, as shown in FIG. 3A, as the load power reflection coefficient shifts counterclockwise as shown in FIG. It was decided to shift the alignment arrival point in the direction of 0 ° on the chart. As the shift amount, the matching arrival point of the input voltage reflection coefficient is set to shift by 0.01 in the 0 ° direction on the chart per 1 ° of the counterclockwise shift amount of the load voltage reflection coefficient.

図4は、負荷電圧反射係数がチャート上でシフトした際の入力電圧反射係数のチャート上における整合到達点及び整合到達点に至る整合動作軌跡の変更処理を説明する図である。   FIG. 4 is a diagram illustrating a matching arrival point on the chart of the input voltage reflection coefficient when the load voltage reflection coefficient is shifted on the chart and a process of changing the matching operation locus reaching the matching arrival point.

まず、ステップS1において、整合器近傍に配置したセンサにより負荷インピーダンスを測定する。ステップ2において、この測定値に基づいて負荷電圧反射係数を算出し、この値をチャート(例えば負荷電圧反射係数を表すスミスチャート)上にプロットする。ステップ3において、基準となるチャート上の位置とのずれを判定する。ずれ量が基準値より大である場合は、処理に異常が発生した場合であるから、予め設定した警告の内容を判断するためのデータベース42を参照して、該当する内容の警報を発報し、ステップS6において処理を終了する。   First, in step S1, load impedance is measured by a sensor arranged in the vicinity of the matching unit. In step 2, a load voltage reflection coefficient is calculated based on the measured value, and this value is plotted on a chart (for example, a Smith chart representing the load voltage reflection coefficient). In step 3, a deviation from the position on the chart as a reference is determined. If the amount of deviation is larger than the reference value, it means that an abnormality has occurred in the processing. Therefore, referring to the database 42 for determining the content of a preset warning, an alarm with the corresponding content is issued. In step S6, the process ends.

ステップ3において、ずれ量が基準値以下の場合には、ステップS4において、負荷電圧反射係数の推移に対応して、整合到達点あるいは整合到達点に至る整合軌跡を変更する。なお、整合到達点及び整合到達点に至る整合軌跡の変更に際しては、負荷電圧反射係数の推移に対応して最適な整合到達点あるいは整合到達点に至る整合軌跡を格納したデータベース41を参照することができる。なお、この処理はプログラム等で実現可能である。また、処理部をハードウエアで実現することも可能である。   If the deviation amount is equal to or smaller than the reference value in step 3, the matching arrival point or the matching locus reaching the matching arrival point is changed in step S4 in accordance with the transition of the load voltage reflection coefficient. When changing the matching arrival point and the matching locus to the matching arrival point, refer to the database 41 that stores the optimum matching point or the matching locus to the matching point corresponding to the transition of the load voltage reflection coefficient. Can do. This process can be realized by a program or the like. Also, the processing unit can be realized by hardware.

図4に示すフローに従って処理を進めた場合、入力電圧反射係数を示すチャート上の整合軌跡はその到達点がシフトしていくに伴って少しずつ変化していくことになる。途中経過として、処理が2000枚まで進んだ時点で、ウエハの処理特性を微細パターンの仕上がり寸法で調べたところ、49nmであることがわかった。さらに、連続処理を進めたが、2500枚目でも特に放電安定性の劣化が見られず、結局、5000枚迄安定に処理が進めることができた。また、この時点でウエハの処理特性を微細パターンの仕上がり寸法で調べると47.5nmである。また、この時点でエッチング処理されたウエハを用いて作成したLSIデバイス特性を調べたところ、デバイス動作不良は見出されなかった。   When the processing proceeds according to the flow shown in FIG. 4, the matching locus on the chart indicating the input voltage reflection coefficient changes little by little as the arrival point shifts. As the process progressed, the processing characteristics of the wafer were examined with the finished dimensions of the fine pattern when the processing progressed to 2000 sheets, and it was found to be 49 nm. Furthermore, although continuous processing was advanced, deterioration of discharge stability was not particularly observed even at the 2500th sheet, and as a result, the processing could be stably performed up to 5000 sheets. At this point, the processing characteristics of the wafer are 47.5 nm when examined with the finished dimensions of the fine pattern. Further, when the characteristics of the LSI device prepared using the wafer that was etched at this time were examined, no device malfunction was found.

また5000枚以降は負荷電圧反射係数のシフトも飽和してほとんど止まり、微細パターンの仕上がり寸法も47nmより細くはならなかった。この状況を見届けながら、最終的に8000枚まで処理を継続し、それまでに処理したウエハにはデバイスの動作不良率の増加は見られないことを確認できた。   After 5000 sheets, the load voltage reflection coefficient shift was saturated and almost stopped, and the finished dimension of the fine pattern did not become thinner than 47 nm. While confirming this situation, it was confirmed that the processing was continued up to 8000 sheets finally, and no increase in the device malfunction rate was observed in the wafers processed so far.

このように、プラズマ内部状態をなるべく一定に保つように、整合到達点とそこに至る軌跡を制御することで、微細パターンのエッチング処理の特性変動を抑えることができることがわかった。   As described above, it was found that by controlling the alignment arrival point and the trajectory to reach the plasma so as to keep the internal state of the plasma as constant as possible, it is possible to suppress the characteristic variation of the etching process of the fine pattern.

〔実施例2〕
図5は、第2の実施例に係るプラズマ処理装置の例として、HF帯の電磁波(13.56MHz)を用いたプラズマエッチング装置を説明する図である。
[Example 2]
FIG. 5 is a diagram for explaining a plasma etching apparatus using HF band electromagnetic waves (13.56 MHz) as an example of the plasma processing apparatus according to the second embodiment.

プラズマ処理を行う反応室1は、上部に反応性の処理ガスを導入する導電性(シリコン製)のガス放出板3が設けられており、反応室1の内壁表面はアルミニウム母材の表面をアルマイト処理して形成した絶縁材質8による保護コーティングが形成されている。この導電性のガス放出板は、本実施例では、反応室内の接地電極の役割も果たしている。   The reaction chamber 1 for plasma treatment is provided with a conductive (silicon) gas discharge plate 3 for introducing a reactive processing gas at the top, and the inner wall surface of the reaction chamber 1 is anodized with the surface of an aluminum base material. A protective coating is formed by the insulating material 8 formed by processing. In this embodiment, this conductive gas discharge plate also serves as a ground electrode in the reaction chamber.

エッチング処理されるウエハ4は、試料台5上部に設けた誘電体(高抵抗体)膜で形成された静電チャック上に載置され、ウエハ4を静電力により吸着する。ウエハ4と静電吸着膜との間にはヘリウムガスを充填することで試料台5との熱伝達を確保してウエハを良好に温度制御する。プラズマ9生成用のHF帯の電磁波は、この装置では、整合器11を通してウエハ4を載置している試料台5に印加される。   The wafer 4 to be etched is placed on an electrostatic chuck formed of a dielectric (high resistance) film provided on the upper part of the sample stage 5 and attracts the wafer 4 by electrostatic force. By filling the space between the wafer 4 and the electrostatic adsorption film with helium gas, heat transfer with the sample stage 5 is ensured and the temperature of the wafer is controlled satisfactorily. In this apparatus, the HF band electromagnetic wave for generating the plasma 9 is applied to the sample stage 5 on which the wafer 4 is placed through the matching unit 11.

本実施例2では、第1の実施例と異なり、プラズマ生成用の電磁波を試料台5側より印加するタイプの装置である。このように、本発明はプラズマ生成用の電磁波を反応室上部から印加する場合でも、下部から試料台を通して印加する場合でも適用することができるまた、プラズマ生成用の電磁波の周波数に依らず適用できる。すなわち、プラズマ装置の一般的名称で言えば、反応室上部の誘電体窓を通してプラズマ生成用のパワーを導入する方式としてのマイクロ波プラズマ、誘導結合型プラズマ(ICP)、実施例1に示すUHFプラズマ、及びパワー導入に誘電体窓を通さない方式としての、プラズマ内部に設置された上部電極よりパワーを導入する平行平板型プラズマ、下部試料台よりパワーを導入する平行平板型プラズマ(本実施例2)等種々のプラズマ処理装置に適用できる。   Unlike the first embodiment, the second embodiment is a type of apparatus that applies an electromagnetic wave for plasma generation from the sample stage 5 side. As described above, the present invention can be applied when the electromagnetic wave for plasma generation is applied from the upper part of the reaction chamber or when it is applied through the sample stage from the lower part, and can be applied regardless of the frequency of the electromagnetic wave for plasma generation. . That is, speaking of the general name of the plasma apparatus, microwave plasma, inductively coupled plasma (ICP), or UHF plasma shown in the first embodiment as a system for introducing power for plasma generation through a dielectric window above the reaction chamber. And parallel plate type plasma in which power is introduced from the upper electrode installed inside the plasma, and parallel plate type plasma in which power is introduced from the lower sample stage (this embodiment 2). It can be applied to various plasma processing apparatuses.

図5において、エッチング処理による反応生成物の排気は反応室1下方の排気口6より真空排気される。また、試料台5にはウエハ4に高周波バイアスを印加するためのバイアス発生用電源13と静電吸着するために必要なDC電源が接続されている。反応室1内に反応性ガスを典型的には0.5Paから10Pa程度の圧力を保持しながらガス放出板3より放出する。この状態でプラズマ発生用電源12からのHF高周波出力を整合器11を介して試料台5から反応室1内に放射することで、プラズマ9を生成してエッチング処理を行う。ここで、図5で説明した装置により、CF4ガス、O2ガス、Arガスの混合気体を用いて放電を行い、SiO2膜が形成されたウエハをエッチング処理した。   In FIG. 5, the reaction product exhausted by the etching process is evacuated from the exhaust port 6 below the reaction chamber 1. The sample stage 5 is connected to a bias generating power source 13 for applying a high frequency bias to the wafer 4 and a DC power source necessary for electrostatic adsorption. A reactive gas is typically discharged from the gas discharge plate 3 while maintaining a pressure of about 0.5 Pa to 10 Pa in the reaction chamber 1. In this state, HF high frequency output from the plasma generating power source 12 is radiated from the sample stage 5 into the reaction chamber 1 through the matching unit 11, thereby generating plasma 9 and performing an etching process. Here, discharge was performed using a mixed gas of CF 4 gas, O 2 gas, and Ar gas by the apparatus described with reference to FIG. 5, and the wafer on which the SiO 2 film was formed was etched.

図6は、ウエハのエッチング処理特性の変動を自動的に修正するための処理を説明する図である。   FIG. 6 is a diagram for explaining a process for automatically correcting a variation in etching process characteristics of a wafer.

まず、整合到達点と整合軌跡の自動変更機能をOFFにして、入力電圧反射係数、負荷電圧反射係数をインピーダンスチャート上に表示した。この状態で、ウエハの連続処理を実施した。2500枚まで処理を続行したが、ウエハのエッチング処理の結果を調べたところ、2450枚目まではエッチング形状のシフトは若干あるものの、なんとか許容範囲内におさまっていた。ところが2450枚を超えたところから、放電安定性が劣化しはじめ、気がついたときには、2500枚までウエハ処理を進めてしまっていた。このため、2500枚時点でウエハ処理を停止した。   First, the automatic change function of the matching arrival point and the matching locus was turned off, and the input voltage reflection coefficient and the load voltage reflection coefficient were displayed on the impedance chart. In this state, the wafer was continuously processed. The processing was continued up to 2500 sheets, but when the results of the wafer etching process were examined, there was some shift in the etching shape up to the 2450th sheet, but it was somehow within the allowable range. However, the discharge stability began to deteriorate from the point where the number exceeded 2450, and when it was noticed, the wafer processing was advanced to 2500. For this reason, the wafer processing was stopped at the time of 2500 sheets.

1枚目のウエハエッチング前に入力電圧反射係数のスミスチャート上で放電安定性を調べたときには、図6(b)に示す不安定領域22は、図における「1枚」の表記の領域であり、整合動作の軌跡とは離れた領域にあったが、2500枚時点で不安定領域22を再確認したところ、図6(b)の「2500枚」の表記の領域に移動していることがわかった。この状況では、2回目以降は、安全のため、処理枚数をせいぜい2000枚程度迄にとどめるしかないことになる。   When the discharge stability is examined on the Smith chart of the input voltage reflection coefficient before the first wafer is etched, the unstable region 22 shown in FIG. 6B is a region labeled “one” in the figure. Although it was in a region away from the locus of the alignment operation, when the unstable region 22 was reconfirmed at the time of 2500 sheets, it was moved to the region indicated by “2500 sheets” in FIG. all right. In this situation, for the second and subsequent times, for safety reasons, the number of processed sheets must be limited to about 2000 at most.

そこで、整合到達点と整合軌跡の自動変更機能をONに変え、再び、ウエハの連続処理を進めることにした。ここで、自動変更機能の設定として、図6(a)に示すように、負荷電力反射係数が反時計方向にシフトするに従って、ここでは、入力電圧反射係数のチャート上における、整合到達点は変更せずに、図6(b)に示すように整合軌跡のみを、不安定領域を回避するようにシフトさせていくことにした。   Therefore, the automatic change function of the alignment arrival point and the alignment trajectory is turned on, and the continuous processing of the wafer is advanced again. Here, as the setting of the automatic change function, as shown in FIG. 6A, as the load power reflection coefficient shifts counterclockwise, the matching arrival point on the chart of the input voltage reflection coefficient is changed here. Instead, as shown in FIG. 6B, only the alignment trajectory is shifted so as to avoid the unstable region.

この設定による制御のフローを図4に示す。この設定では、図4におけるステップS4において、不安定域を記憶した「データベース」を参照して、整合軌跡を変更する。この状態で連続処理を進めた結果、2500枚目までの間に、特に放電安定性の劣化は見られず、放電が揺らいで処理特性が大きく劣化してしまう事態には陥らなかった。結局、そのまま続行し、5000枚迄安定に処理が進められ、エッチング処理されたウエハを用いて作成したLSIデバイス特性を調べたところ、デバイス動作不良は見出されなかった。この実施例では、整合到達点を少しずつ変更する制御は行わなかったため、エッチング形状は多少シフトしたが、5000枚でも規格内に入っていた。また、本実施例では、整合動作の軌跡を変えたことで、2450枚目以降の処理において、放電不安定に陥ることなく処理を続行できた点で、軌跡制御による不安定性回避の効果があることが確認できた。   FIG. 4 shows a control flow based on this setting. In this setting, in step S4 in FIG. 4, the matching locus is changed with reference to the “database” storing the unstable region. As a result of proceeding the continuous processing in this state, no deterioration in discharge stability was observed especially up to the 2500th sheet, and there was no situation in which the processing characteristics were greatly deteriorated due to fluctuations in the discharge. Eventually, the process was continued as it was and processing was stably performed up to 5000 wafers. When the characteristics of an LSI device produced using an etched wafer were examined, no device malfunction was found. In this embodiment, since the control for changing the matching arrival point little by little was not performed, the etching shape slightly shifted, but even 5000 sheets were within the standard. Further, in this embodiment, by changing the locus of the alignment operation, in the processing after the 2450th sheet, the processing can be continued without causing instability of discharge, and there is an effect of avoiding instability by trajectory control. I was able to confirm.

〔実施例3〕
図7,8は、反応室内壁の部品が磨耗した場合における負荷電圧反射係数の変化の例を説明する図である。ウエハのエッチングを長期間にわたって実施する場合、反応室内壁の部品が磨耗して処理特性が急激に変化する。この変化をその直前に警告する例を説明する。
Example 3
7 and 8 are diagrams for explaining an example of a change in the load voltage reflection coefficient when the components on the reaction chamber wall are worn. When the wafer is etched for a long period of time, the components on the reaction chamber wall wear and the processing characteristics change rapidly. An example of warning this change immediately before will be described.

まず、図1に示す処理装置を用いて、実施例1に引き続き8000枚以降の処理を続行した。結果として8500枚まで安定に処理を続行できた。しかし、8500〜8600枚まで処理では、負荷電圧反射係数がこれまでの変化とは異なり、図7に示すように、チャートの内側方向に向かって急激に変化しはじめた。また、1〜8600枚迄のウエハをのせる試料台に流れるDC電流を確認したところ、8500枚まではほとんど変化していないが、8600枚時点でこれまでよりも10%程低くなっていることがわかった。   First, using the processing apparatus shown in FIG. 1, the processing for 8000 sheets and after was continued following Example 1. As a result, the processing could be stably continued up to 8500 sheets. However, in the processing from 8500 to 8600 sheets, the load voltage reflection coefficient has changed abruptly toward the inner side of the chart as shown in FIG. In addition, when the DC current flowing through the sample stage on which 1 to 8600 wafers are placed was confirmed, it was almost unchanged up to 8500 wafers, but it was about 10% lower than before at 8600 wafers. I understood.

この時点で連続処理を終了し、反応室を大気開放して内部を全掃する際に注意深く調べたところ、反応室側面の内壁部の下端部付近の絶縁材質8による保護コーティングが磨耗により無くなっていることが判明した。また、8600枚目のウエハの処理特性を調べたところ、微細パターンの仕上がり寸法は49nmであり、なぜか再び寸法が増大しはじめていた。極めて大きな変動とはいえないものの、断面形状を調べると、テーパ形状になっており、形状が変化し始めていることがわかった。   At this point, the continuous treatment was completed, and when the reaction chamber was opened to the atmosphere and the inside was thoroughly cleaned, the protective coating by the insulating material 8 near the lower end of the inner wall on the side of the reaction chamber disappeared due to wear. Turned out to be. Further, when processing characteristics of the 8600th wafer were examined, the finished dimension of the fine pattern was 49 nm, and the dimension began to increase again for some reason. Although it cannot be said that the fluctuation is extremely large, when the cross-sectional shape was examined, it was found that the shape was tapered and the shape started to change.

すなわち、負荷電圧反射係数が、チャートの内側方向に向かって急激に変化した場合には、反応室側面の内壁部の絶縁材質8による保護コーティングが磨耗された場合であり、下地の金属部品がプラズマと接触することで、プラズマ電位が低下し、これに伴いエッチングウエハをのせる試料台に流れる直流電流が減少し、このタイミングで微細パターンの断面形状が劣化し始めていることがわかった。従って、上記の現象に対して、反応室内壁の金属部品表面の絶縁材質8による保護コーティングの磨耗の警告メッセージを発すると好都合である
次いで、反応室側部の内壁部品を新品に交換後、反応室内の全掃を実施した。次に、別のプロセスについても調べるため、エッチングガスをCF4ならびにSF6の混合ガスとし、図5に示す処理装置を用いて連続処理を開始し、4500枚まで処理を進めた。この場合には、4500枚までの処理の間に、エッチングウエハをのせる試料台に流れる直流には大きな変化は無かった。しかし、負荷電圧反射係数が、図8に示すように、チャートを時計回りに変化していく様子がみられた。時計方向のシフトはプラズマ発生用の高周波の回路に対して静電容量が増加したことを示しており、これは、反応室1上部の誘電体部品表面が削れていく方向を示している。そこで、4500枚で処理を中止して、反応室の内部を注意深くしらべたところ、フッ素(F)濃度の高いプラズマを連続したため、反応室上面の石英部品の削れが進んでいることがわかった。
That is, when the load voltage reflection coefficient changes abruptly toward the inner side of the chart, it is a case where the protective coating by the insulating material 8 on the inner wall portion on the side surface of the reaction chamber is worn, and the underlying metal part is plasma. As a result, it was found that the plasma potential was lowered and the direct current flowing through the sample stage on which the etching wafer was placed was reduced, and the cross-sectional shape of the fine pattern began to deteriorate at this timing. Therefore, it is advantageous to issue a warning message about the wear of the protective coating due to the insulating material 8 on the surface of the metal part of the reaction chamber wall against the above phenomenon. A room sweep was performed. Next, in order to investigate another process, the etching gas was a mixed gas of CF4 and SF6, and the continuous processing was started using the processing apparatus shown in FIG. In this case, there was no significant change in the direct current flowing through the sample stage on which the etching wafer was placed during the processing of up to 4500 sheets. However, it was observed that the load voltage reflection coefficient changed clockwise in the chart as shown in FIG. The clockwise shift indicates that the capacitance has increased with respect to the high-frequency circuit for generating plasma, and this indicates the direction in which the surface of the dielectric part above the reaction chamber 1 is scraped. Therefore, when the processing was stopped at 4500 sheets and the inside of the reaction chamber was carefully examined, it was found that the quartz part on the upper surface of the reaction chamber was being scraped because plasma with a high fluorine (F) concentration was continued.

以上により、反応室側部の内壁部品上の絶縁材質の保護コーティングが磨耗した場合と、反応室上部の石英部品の削れが進んだ場合には、スミスチャート上での特性変化が異なる挙動を示すことがわかった。   As described above, when the protective coating of the insulating material on the inner wall part on the side of the reaction chamber is worn, and when the quartz part on the upper part of the reaction chamber is worn away, the change in characteristics on the Smith chart behaves differently. I understood it.

〔実施例4〕
次に、同一反応室における反応室内部品の組付け状態または部品個体の寸法等が微妙に異なる場合にプラズマ状態の一定化を行う例、及びこれより複数の反応室間の特性差を低減する例を図1,2,3を用いて説明する。
Example 4
Next, an example in which the plasma state is made constant when the assembly state of the reaction chamber parts in the same reaction chamber or the size of the individual parts is slightly different, and an example in which the difference in characteristics among a plurality of reaction chambers is reduced Will be described with reference to FIGS.

図1に示す装置の反応室を分解掃除し、更に磨耗部品を新品に取り換えて、再び組み立てた。次いで、反応室を真空にしてから、通常の手順でウエハ処理の放電を開始した。このとき、反応室側を見込んだ負荷インピーダンスを測定したところ、図2(b)の負荷電圧反射係数チャート上の1枚目処理時の位置19と比較すると、反時計方向に5°だけずれている状態であることがわかった。   The reaction chamber of the apparatus shown in FIG. 1 was disassembled and cleaned, and the worn parts were replaced with new ones and reassembled. Then, after the reaction chamber was evacuated, discharge of wafer processing was started by a normal procedure. At this time, when the load impedance with the reaction chamber side taken into account was measured, it was shifted by 5 ° counterclockwise as compared with the position 19 at the time of the first sheet processing on the load voltage reflection coefficient chart of FIG. It turns out that it is in a state.

反応室内部の部品への堆積物はきちんと掃除してあり、また、磨耗していた部品も取り換えたため、堆積や磨耗の点では、初期状態に戻っている。従って、この5°は、反応室内部の部品の組付け状態または部品個体の寸法等の微妙な違いによるものであると考えられる。   The deposits on the components in the reaction chamber have been properly cleaned, and the worn parts have been replaced, so that the initial state is restored in terms of deposition and wear. Therefore, this 5 ° is considered to be due to a subtle difference in the assembly state of the parts inside the reaction chamber or the dimensions of the individual parts.

実施例1では、反応室内部の状態の変化によって、図3(a)の負荷電圧反射係数チャート上の1枚目処理時の位置19に対し反時計方向に1°ずれた場合に、入力電圧反射係数の整合到達点をチャートの0°の方向に0.01シフトする設定で制御した。   In Example 1, when the state inside the reaction chamber changes, the input voltage is shifted by 1 ° counterclockwise with respect to the position 19 at the time of processing the first sheet on the load voltage reflection coefficient chart of FIG. The matching arrival point of the reflection coefficient was controlled by setting to shift by 0.01 in the 0 ° direction of the chart.

これに対して、反応室内部の部品の組付け状態または部品個体の寸法等の違いにより、5°ずれた場合、実施例1の場合と同様に、反応室内部状態のシフトを修正するため入力電圧反射係数の到達値を0°の方向に0.05シフトさせるべきか、あるいは、反応室内部の部品への堆積物は掃除してあり、磨耗部品も取り換えたのであるから0.05シフトさせずに、0、すなわち、原点から始めるべきかを明らかにするために、入力電圧反射係数の到達値を0°の方向に0.05シフトさせる場合と、0のままとする場合の2通りで、ウエハの処理を試行した。   On the other hand, in the case where there is a shift of 5 ° due to the difference in the assembly state of the parts inside the reaction chamber or the size of the individual parts, as in the case of the first embodiment, the input for correcting the shift of the state inside the reaction chamber Should the value of the voltage reflection coefficient be shifted by 0.05 in the direction of 0 °, or the deposits on the components inside the reaction chamber have been cleaned and the worn parts have been replaced, so that they are shifted by 0.05. Instead, in order to clarify whether it should start from 0, that is, the origin, there are two ways: when the arrival value of the input voltage reflection coefficient is shifted by 0.05 in the direction of 0 ° and when it remains 0 Attempted wafer processing.

その結果、0.05シフトさせた場合には、微細パターンの仕上がり寸法は49.4nm、0のまま行った場合には、47.5nmであることがわかった。これにより、反応室内部の部品の組付け状態または部品個体の寸法等の違いにより、インピーダンス特性がずれた場合にも、堆積物や磨耗により反応室の内部状態がシフトしたときと同様に、入力電圧反射係数の到達値をシフトさせた方が、微細パターンの仕上がり寸法のずれが小さいことがわかった。言い換えると、反応室内部の部品の組付け状態または部品個体の寸法等の違いによる影響も、実施例1と同様の制御により抑制できることがわかった。   As a result, it was found that when 0.05 shift was performed, the finished dimension of the fine pattern was 49.4 nm, and when it was kept at 0, it was 47.5 nm. As a result, even when the impedance characteristics shift due to differences in the assembly state of the parts inside the reaction chamber or the size of individual parts, the input is the same as when the internal state of the reaction chamber shifts due to deposits or wear. It was found that the shift in the final dimension of the fine pattern was smaller when the value of the voltage reflection coefficient was shifted. In other words, it has been found that the influence due to the difference in the assembly state of the components in the reaction chamber or the size of the individual components can be suppressed by the same control as in the first embodiment.

そこで、これを、複数の反応室間のウエハ処理特性差の低減、即ち、機差低減に応用できるのかどうかの確認を行うため、A〜Dの4台の処理装置を用意し、反応室内部の部品への堆積物をきちんと掃除し、磨耗していた部品も取り換えた。   Therefore, in order to confirm whether or not this can be applied to reduce the wafer processing characteristic difference among a plurality of reaction chambers, that is, to reduce the machine difference, four processing apparatuses A to D are prepared. The deposits on the parts were properly cleaned and worn parts were replaced.

次いで各処理装置における反応室のインピーダンス特性は、図3(a)の負荷電圧反射係数チャート上の1枚目処理時の位置19に対し、Aが反時計回りに6°、Bが0°、Cが2°、Dは−18°(つまり、時計方向に18°)ずれていることがわかった。ここで、Dのみは、極めてズレが大きく、装置がインピーダンス特性の異常の警告を発したため、反応室周りを分解確認したところ、部品のはめ合い部分に微小な金属のかけらがはさまっていて、組付け不良であることがわかった。再度、組みなおしたところ、Dは反時計方向に4°となったので、微細パターンの仕上がり寸法の確認試験に移行した。   Next, the impedance characteristics of the reaction chamber in each processing apparatus are as follows: A is 6 ° counterclockwise, B is 0 ° with respect to the position 19 at the time of processing the first sheet on the load voltage reflection coefficient chart of FIG. It was found that C was shifted by 2 ° and D was shifted by −18 ° (that is, 18 ° in the clockwise direction). Here, only D is extremely misaligned, and the device issued a warning of an abnormal impedance characteristic. As a result, when the decomposition around the reaction chamber was confirmed, a small piece of metal was caught in the fitting part of the part. It turns out that it is poor. After reassembling, D was 4 ° in the counterclockwise direction, and the test shifted to a confirmation test of the finished dimensions of the fine pattern.

その結果、入力電圧反射係数の整合到達点をシフトさせずに試験した結果は、Aが47nm、Bが50nm、Cが49nm、Dが48nmとなった。一方、入力電圧反射係数の整合到達点を、図3に示すように、0°の方向に向かって、Aでは0.06、Bでは0、Cでは0.02、Dでは0.04だけシフトさせて試験した結果は、Aが49.3nm、Bが50nm、Cが49.8nm、Dが49.5nmとなった。即ち、機差低減に応用できることが確認できた。   As a result, as a result of testing without shifting the matching arrival point of the input voltage reflection coefficient, A was 47 nm, B was 50 nm, C was 49 nm, and D was 48 nm. On the other hand, the matching arrival point of the input voltage reflection coefficient is shifted in the direction of 0 ° by 0.06 for A, 0 for B, 0.02 for C, and 0.04 for D as shown in FIG. As a result of testing, A was 49.3 nm, B was 50 nm, C was 49.8 nm, and D was 49.5 nm. That is, it was confirmed that it can be applied to reduce machine differences.

以上により、一定基準値を逸脱するインピーダンス特性差がある場合に、警告を発することができる。また、一定基準値を逸脱しないインピーダンス特性差がある場合に、この特性差が微細パターンの処理特性に与える影響を抑制することができる。   As described above, a warning can be issued when there is an impedance characteristic difference that deviates from a certain reference value. Further, when there is an impedance characteristic difference that does not deviate from a certain reference value, the influence of this characteristic difference on the processing characteristics of the fine pattern can be suppressed.

なお、実施例1ないし実施例4においては、センサで測定される負荷のインピーダンス、整合器による制御の到達点や軌跡に関わる整合器入力端から見たインピーダンスを、負荷電圧反射係数表示、あるいは入力電圧反射係数表示で、スミスチャート上に表したが、本発明は負荷インピーダンスの変化に伴い、整合動作を制御できれば良いので、スミスチャートで解析することが必須条件ではない。他のインピーダンス表記法、例えばR+jX表記でチャートに表し、処理特性との関連を分析、把握すれば、同様に整合動作の制御が可能であることは言うまでもない。   In the first to fourth embodiments, the load impedance measured by the sensor and the impedance viewed from the matching unit input end related to the arrival point and locus of control by the matching unit are displayed or input to the load voltage reflection coefficient. Although the voltage reflection coefficient display is shown on the Smith chart, it is only necessary that the matching operation can be controlled in accordance with the change in the load impedance in the present invention. Therefore, analysis using the Smith chart is not an essential condition. It goes without saying that the matching operation can be controlled in the same manner if it is represented on a chart by other impedance notation, for example, R + jX notation, and the relationship with the processing characteristics is analyzed and grasped.

また、例えば、反応室内の誘電体部品が磨耗し、厚みが薄くなったときに、チャート上の負荷反射係数が静電容量が大きくなる方向へシフトする場合は、理論に沿った動きであり説明可能である。しかし、複雑な反応室形態やつかみきれない組付け状態の違い、異常放電現象などで、インピーダンスシフト方向に関して論理的に十分な説明ができないケースもある。このような場合においても、あらかじめ傾向をつかんで、データベースに格納しておくことにより、経験的な制御指示を行うことができ、これにより特性変動を抑制することができる。   Also, for example, when the dielectric parts in the reaction chamber are worn and the thickness is reduced, the load reflection coefficient on the chart shifts in the direction of increasing the capacitance, which is a movement in line with the theory. Is possible. However, there are cases where a logically sufficient explanation cannot be given regarding the direction of impedance shift due to a complicated reaction chamber configuration, a difference in assembly state that cannot be grasped, an abnormal discharge phenomenon, and the like. Even in such a case, it is possible to give an empirical control instruction by grasping the tendency in advance and storing it in the database, thereby suppressing characteristic fluctuations.

以上説明したように、複数の反応室の製作時に微妙な特性差が生じていたり、反応室内壁への堆積物の蓄積や、反応室内壁の磨耗等によって、処理特性に微妙な差異が生じても、これを高精度にモニタし、特性がシフトしている方向を認識した上で、特性をそろえる方向に整合特性を変更できるので、反応室間の処理特性差や反応室内壁の長期の変化に対する特性変動を打ち消すことができる。これにより、従来、特性が一定基準値以上に逸脱した場合に行う反応室内部の全掃、あるいは比較的磨耗状況が軽微であってもウエハ処理特性を元の状態に戻す必要性から行う部品交換の周期を長期化することができ、結果として、稼働率が向上し消耗部品コストを低減することができる。   As explained above, there are subtle differences in characteristics when manufacturing multiple reaction chambers, and there are subtle differences in processing characteristics due to accumulation of deposits on the reaction chamber walls and wear of the reaction chamber walls. However, it is possible to monitor this with high accuracy and recognize the direction in which the characteristics are shifting, and then change the matching characteristics in the direction that aligns the characteristics. The characteristic variation with respect to can be canceled. As a result, parts can be replaced from the need to return the wafer processing characteristics to their original state even when the characteristics are deviated beyond a certain reference value. As a result, the operating rate is improved and the cost of consumable parts can be reduced.

また、そのシフトが一定基準値以上に大きくなった場合に警告を発することができるため、LSIデバイスに多くの不良を作りこむ事態をくい止めることができる。また、核反応室毎に装置状態のモニタ、特性の修正、特性逸脱の警告、特性逸脱理由の判別が可能となる。このため、不良発生の防止だけでなく、反応室内の全掃のタイミングや消耗部品の交換タイミングを自動的に示すことができる等、量産管理に対して有用な情報を発することができる。   Further, since a warning can be issued when the shift becomes larger than a certain reference value, it is possible to prevent a situation in which many defects are created in the LSI device. In addition, it is possible to monitor the state of the apparatus, correct characteristics, warn of characteristic deviation, and determine the reason for characteristic deviation for each nuclear reaction chamber. For this reason, not only the occurrence of defects can be prevented, but also information useful for mass production management can be issued such as the timing of sweeping out the reaction chamber and the replacement timing of consumable parts can be automatically indicated.

UHF帯の電磁波を用いたプラズマエッチング装置を説明する図である。It is a figure explaining the plasma etching apparatus using the electromagnetic wave of a UHF band. ウエハのエッチング処理特性の変動を自動的に修正するための処理説明する図である。It is a figure explaining the process for correct | amending automatically the fluctuation | variation of the etching process characteristic of a wafer. ウエハのエッチング処理特性の変動を自動的に修正するための処理説明する図である。It is a figure explaining the process for correct | amending automatically the fluctuation | variation of the etching process characteristic of a wafer. 負荷電圧反射係数がチャート上でシフトした際の入力電圧反射係数のチャート上における整合到達点及び整合到達点に至る整合動作軌跡の変更処理を説明する図である。It is a figure explaining the change process of the matching operation | movement locus | trajectory to the matching arrival point on the chart of the input voltage reflection coefficient when the load voltage reflection coefficient is shifted on the chart, and the matching arrival point. HF帯の電磁波を用いたプラズマエッチング装置を説明する図である。It is a figure explaining the plasma etching apparatus using the electromagnetic wave of HF band. ウエハのエッチング処理特性の変動を自動的に修正するための処理を説明する図である。It is a figure explaining the process for correct | amending automatically the fluctuation | variation of the etching process characteristic of a wafer. 反応室内壁の部品が磨耗した場合における負荷電圧反射係数の変化の例を説明する図である。It is a figure explaining the example of the change of the load voltage reflection coefficient when the components of the reaction chamber wall are worn. 反応室内壁の部品が磨耗した場合における負荷電圧反射係数の変化の例を説明する図である。It is a figure explaining the example of the change of the load voltage reflection coefficient when the components of the reaction chamber wall are worn.

符号の説明Explanation of symbols

1 反応室
2 誘電体真空窓
3 ガス放出板
4 ウエハ
5 試料台
6 排気口
7 磁場コイル
8 絶縁材質
9 プラズマ
10 アンテナ
11 整合器
12 プラズマ発生用電源
13 バイアス発生用電源
18 入力電圧反射係数チャートの原点
19 負荷電圧反射係数チャート上の1枚目処理時の位置
20 反時計方向に10°だけシフトした位置
21 整合動作開始点
22 不安定領域
23 導電性のガス放出板

DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Dielectric vacuum window 3 Gas discharge plate 4 Wafer 5 Sample stand 6 Exhaust port 7 Magnetic coil 8 Insulation material 9 Plasma 10 Antenna 11 Matching device 12 Power source for plasma generation 13 Power source for bias generation 18 Input voltage reflection coefficient chart Origin 19 Position on first load processing on load voltage reflection coefficient chart 20 Position shifted by 10 ° counterclockwise 21 Alignment operation start point 22 Unstable region 23 Conductive gas release plate

Claims (9)

内部側壁を絶縁処理した反応容器と、
反応容器内に配置した試料台、アンテナを備え、該アンテナにプラズマ発生用電源から高周波電力を供給して反応容器内に導入した処理ガスをプラズマ化して試料台上に載置した試料にプラズマ処理を施すプラズマ処理装置において、
プラズマ発生用電源とアンテナを含む負荷回路との間にインピーダンス整合をとるための整合器を備え、
該整合器は、負荷回路側のインピーダンス特性を測定するセンサと、センサの測定値に応じて整合器の入力端より負荷側を見た整合到達点及び該整合到達点に至る整合動作軌跡を変更することを特徴とするプラズマ処理装置。
A reaction vessel with an insulated inner side wall;
A sample stage arranged in the reaction vessel and an antenna are provided, and a high-frequency power is supplied to the antenna from a plasma generating power source to convert the processing gas introduced into the reaction vessel into plasma and plasma treatment is performed on the sample placed on the sample stage. In the plasma processing apparatus for applying
A matching unit is provided for impedance matching between the plasma generation power source and the load circuit including the antenna.
The matching unit changes the impedance characteristics on the load circuit side, the matching arrival point seen from the input side of the matching unit from the input side of the matching unit, and the matching operation locus reaching the matching arrival point according to the measured value of the sensor A plasma processing apparatus.
請求項1記載のプラズマ処理装置において、
測定したインピーダンス特性値の変化が所定値を超えたとき警報を発することを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
A plasma processing apparatus that issues an alarm when a change in a measured impedance characteristic value exceeds a predetermined value.
請求項1記載のプラズマ処理装置において、
測定したインピーダンス特性値の変化の方向をもとに反応容器内部側壁の保護コーティング摩耗あるいは反応容器上部石英部品の削れを判定することを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
A plasma processing apparatus, wherein wear of a protective coating on a reaction vessel inner side wall or scraping of an upper quartz component of a reaction vessel is determined based on a measured change direction of an impedance characteristic value.
請求項1記載のプラズマ処理装置において、
整合到達点に至る整合動作軌跡はプラズマの不安定領域を回避するように設定することを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
A plasma processing apparatus characterized in that an alignment operation locus to an alignment arrival point is set so as to avoid an unstable region of plasma.
請求項4記載のプラズマ処理装置において、
整合器はプラズマの不安定領域を表すデータを、入力電圧反射係数の範囲として格納したデータベースを備えることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 4, wherein
The matching device includes a database that stores data representing an unstable region of plasma as a range of an input voltage reflection coefficient.
請求項1記載のプラズマ処理装置において、
プラズマ発生用電源からの高周波電力は試料台に供給し、試料台をアンテナとして機能させることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
A plasma processing apparatus, wherein high-frequency power from a power source for plasma generation is supplied to a sample stage and the sample stage functions as an antenna.
請求項1記載のプラズマ処理装置において、
センサにより測定する負荷回路側のインピーダンス特性は負荷電力反射係数であり、負荷電力反射係数のスミスチャート上におけるシフトに従って入力電圧反射係数のスミスチャート上における整合到達点をシフトさせることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
The impedance characteristic on the load circuit side measured by the sensor is the load power reflection coefficient, and the matching arrival point on the Smith chart of the input voltage reflection coefficient is shifted according to the shift of the load power reflection coefficient on the Smith chart. Processing equipment.
請求項7記載のプラズマ処理装置において、
負荷電力反射係数のスミスチャート上におけるシフトの方向と量と、入力電圧反射係数のスミスチャート上における整合到達点のシフトの方向と量の対応関係を格納したデータベースを備えたことを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 7, wherein
A plasma having a database storing a correspondence relationship between the shift direction and amount of the load power reflection coefficient on the Smith chart and the shift direction and amount of the matching arrival point on the Smith chart of the input voltage reflection coefficient Processing equipment.
請求項1記載のプラズマ処理装置において、
入力電圧反射係数のスミスチャート上における整合到達点を変更して加工寸法を調整する手段を備えたことを特徴とするプラズマ処理装置。


The plasma processing apparatus according to claim 1,
A plasma processing apparatus comprising means for adjusting a processing dimension by changing a matching arrival point on a Smith chart of an input voltage reflection coefficient.


JP2004236532A 2004-08-16 2004-08-16 Plasma processing apparatus and plasma processing method Expired - Fee Related JP4695362B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004236532A JP4695362B2 (en) 2004-08-16 2004-08-16 Plasma processing apparatus and plasma processing method
US10/934,510 US20060032584A1 (en) 2004-08-16 2004-09-07 Plasma processing apparatus capable of suppressing variation of processing characteristics
US12/400,266 US20090165951A1 (en) 2004-08-16 2009-03-09 Plasma processing apparatus capable of suppressing variation of processing characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236532A JP4695362B2 (en) 2004-08-16 2004-08-16 Plasma processing apparatus and plasma processing method

Publications (2)

Publication Number Publication Date
JP2006054148A true JP2006054148A (en) 2006-02-23
JP4695362B2 JP4695362B2 (en) 2011-06-08

Family

ID=35798875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236532A Expired - Fee Related JP4695362B2 (en) 2004-08-16 2004-08-16 Plasma processing apparatus and plasma processing method

Country Status (2)

Country Link
US (2) US20060032584A1 (en)
JP (1) JP4695362B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250755A (en) * 2006-03-15 2007-09-27 Hitachi High-Technologies Corp Plasma processing device
WO2009120514A3 (en) * 2008-03-23 2009-12-10 Advanced Energy Industries, Inc. Method and apparatus for advanced frequency tuning
WO2011008595A2 (en) * 2009-07-13 2011-01-20 Applied Materials, Inc Plasma reactor with rf generator and automatic impedance match with minimum reflected power-seeking control
JP2016177997A (en) * 2015-03-20 2016-10-06 東京エレクトロン株式会社 Tuner, microwave plasma source, and impedance matching method
KR101669083B1 (en) * 2009-11-27 2016-10-25 주식회사 원익아이피에스 Apparatus for generating plasma
US9748076B1 (en) 2016-04-20 2017-08-29 Advanced Energy Industries, Inc. Apparatus for frequency tuning in a RF generator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902991B2 (en) * 2006-09-21 2011-03-08 Applied Materials, Inc. Frequency monitoring to detect plasma process abnormality
US8674844B2 (en) * 2009-03-19 2014-03-18 Applied Materials, Inc. Detecting plasma chamber malfunction
CN103060778B (en) * 2013-01-23 2015-03-11 深圳市劲拓自动化设备股份有限公司 Flat plate type PECVD (Plasma Enhanced Chemical Vapor Deposition) device
DE102015220847A1 (en) 2015-10-26 2017-04-27 TRUMPF Hüttinger GmbH + Co. KG A method of impedance matching a load to the output impedance of a power generator and impedance matching arrangement

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244739A (en) * 1987-03-31 1988-10-12 Toshiba Corp Detection of cleaning end point in semiconductor manufacturing equipment
JPH01143123U (en) * 1988-03-25 1989-10-02
JPH03263828A (en) * 1990-03-14 1991-11-25 Hitachi Ltd Method and apparatus for plasma treatment
JPH03272136A (en) * 1990-03-22 1991-12-03 Hitachi Ltd Dry etching device
US5195045A (en) * 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
JPH07258853A (en) * 1993-04-14 1995-10-09 Texas Instr Inc <Ti> Method and device for discriminating state of process
JPH11121440A (en) * 1997-10-20 1999-04-30 Toshiba Corp Evaluation of plasma and equipment therefor
JP2000269195A (en) * 1999-03-19 2000-09-29 Toshiba Corp Manufacturing apparatus for semiconductor substrate
JP2001016779A (en) * 1999-06-25 2001-01-19 Matsushita Electric Ind Co Ltd Impedance matching box for plasma device
JP2003282542A (en) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp Plasma treatment apparatus
WO2003083911A1 (en) * 2002-03-28 2003-10-09 Tokyo Electron Limited A system and method for determining the state of a film in a plasma reactor using an electrical property
JP2004088701A (en) * 2002-08-29 2004-03-18 Daihen Corp Automatic impedance matching apparatus
JP2004214609A (en) * 2002-12-18 2004-07-29 Hitachi High-Technologies Corp Method of treating plasma processing apparatus
JP2005056768A (en) * 2003-08-06 2005-03-03 Canon Inc Plasma treatment device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039772A (en) * 2002-07-02 2004-02-05 Renesas Technology Corp Control equipment for plasma treatment apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244739A (en) * 1987-03-31 1988-10-12 Toshiba Corp Detection of cleaning end point in semiconductor manufacturing equipment
JPH01143123U (en) * 1988-03-25 1989-10-02
JPH03263828A (en) * 1990-03-14 1991-11-25 Hitachi Ltd Method and apparatus for plasma treatment
JPH03272136A (en) * 1990-03-22 1991-12-03 Hitachi Ltd Dry etching device
US5195045A (en) * 1991-02-27 1993-03-16 Astec America, Inc. Automatic impedance matching apparatus and method
JPH07258853A (en) * 1993-04-14 1995-10-09 Texas Instr Inc <Ti> Method and device for discriminating state of process
JPH11121440A (en) * 1997-10-20 1999-04-30 Toshiba Corp Evaluation of plasma and equipment therefor
JP2000269195A (en) * 1999-03-19 2000-09-29 Toshiba Corp Manufacturing apparatus for semiconductor substrate
JP2001016779A (en) * 1999-06-25 2001-01-19 Matsushita Electric Ind Co Ltd Impedance matching box for plasma device
JP2003282542A (en) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp Plasma treatment apparatus
WO2003083911A1 (en) * 2002-03-28 2003-10-09 Tokyo Electron Limited A system and method for determining the state of a film in a plasma reactor using an electrical property
JP2004088701A (en) * 2002-08-29 2004-03-18 Daihen Corp Automatic impedance matching apparatus
JP2004214609A (en) * 2002-12-18 2004-07-29 Hitachi High-Technologies Corp Method of treating plasma processing apparatus
JP2005056768A (en) * 2003-08-06 2005-03-03 Canon Inc Plasma treatment device and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250755A (en) * 2006-03-15 2007-09-27 Hitachi High-Technologies Corp Plasma processing device
US8282767B2 (en) 2006-03-15 2012-10-09 Hitachi High-Technologies Corporation Plasma processing apparatus
JP4674177B2 (en) * 2006-03-15 2011-04-20 株式会社日立ハイテクノロジーズ Plasma processing equipment
US7931776B2 (en) 2006-03-15 2011-04-26 Hitachi High-Technologies Corporation Plasma processing apparatus
CN102037789A (en) * 2008-03-23 2011-04-27 先进能源工业公司 Method and apparatus for advanced frequency tuning
WO2009120514A3 (en) * 2008-03-23 2009-12-10 Advanced Energy Industries, Inc. Method and apparatus for advanced frequency tuning
US7839223B2 (en) 2008-03-23 2010-11-23 Advanced Energy Industries, Inc. Method and apparatus for advanced frequency tuning
WO2011008595A2 (en) * 2009-07-13 2011-01-20 Applied Materials, Inc Plasma reactor with rf generator and automatic impedance match with minimum reflected power-seeking control
WO2011008595A3 (en) * 2009-07-13 2011-04-14 Applied Materials, Inc Plasma reactor with rf generator and automatic impedance match with minimum reflected power-seeking control
KR101669083B1 (en) * 2009-11-27 2016-10-25 주식회사 원익아이피에스 Apparatus for generating plasma
JP2016177997A (en) * 2015-03-20 2016-10-06 東京エレクトロン株式会社 Tuner, microwave plasma source, and impedance matching method
US9748076B1 (en) 2016-04-20 2017-08-29 Advanced Energy Industries, Inc. Apparatus for frequency tuning in a RF generator
US10026595B2 (en) 2016-04-20 2018-07-17 Advanced Energy Industries, Inc. Apparatus for frequency tuning in a RF generator

Also Published As

Publication number Publication date
JP4695362B2 (en) 2011-06-08
US20060032584A1 (en) 2006-02-16
US20090165951A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
US20090165951A1 (en) Plasma processing apparatus capable of suppressing variation of processing characteristics
US10332760B2 (en) Method for controlling plasma processing apparatus
US7931776B2 (en) Plasma processing apparatus
JP4914119B2 (en) Plasma processing method and plasma processing apparatus
JP5901887B2 (en) Cleaning method for plasma processing apparatus and plasma processing method
US7430496B2 (en) Method and apparatus for using a pressure control system to monitor a plasma processing system
US6197116B1 (en) Plasma processing system
JP3689732B2 (en) Monitoring device for plasma processing equipment
US6916396B2 (en) Etching system and etching method
JP2013105923A (en) Plasma processing apparatus and plasma processing method
JP2007258417A (en) Plasma treatment method
JP2010177480A (en) Plasma processing device and plasma processing method
JP2007214254A (en) Manufacturing method for semiconductor device and plasma treatment equipment
KR101089951B1 (en) Plasma processing apparatus
JP2008287999A (en) Plasma treatment device and its control method
US10074550B2 (en) Plasma stability determination method and plasma processing apparatus
JP2017045849A (en) Seasoning method and etching method
JP2002118095A (en) Apparatus for manufacturing semiconductor, method for treating surface of substrate to be treated and method for observing adherence state of plasma product
JP3927464B2 (en) Plasma processing method
JP2004152999A (en) Method and system for plasma processing
JP5189859B2 (en) Plasma processing method
JP2007214176A (en) Method for manufacturing semiconductor device, and plasma processing apparatus
JP4873025B2 (en) Plasma processing method
JP4294516B2 (en) Plasma processing method
KR20230094932A (en) Substrate processing system including impedence controlling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees