JP2006054108A - Cathode for arc discharge and ion source - Google Patents
Cathode for arc discharge and ion source Download PDFInfo
- Publication number
- JP2006054108A JP2006054108A JP2004234905A JP2004234905A JP2006054108A JP 2006054108 A JP2006054108 A JP 2006054108A JP 2004234905 A JP2004234905 A JP 2004234905A JP 2004234905 A JP2004234905 A JP 2004234905A JP 2006054108 A JP2006054108 A JP 2006054108A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- conductor portion
- arc discharge
- cylindrical
- cylindrical conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electron Sources, Ion Sources (AREA)
Abstract
Description
本発明はアーク放電用陰極及び該陰極を備えたイオン源に関する。 The present invention relates to an arc discharge cathode and an ion source equipped with the cathode.
アーク放電は様々の分野で利用されてきた。今日ではイオン工学技術の分野において広く利用されている。例えば、イオン注入、イオンドーピング、イオン注入とPVD法、CVD法による薄膜形成技術とを組み合わせたイオンビームミキシング技術等で用いられるイオン源において目的とするイオンを得るためのプラズマを生成することに利用されている。 Arc discharge has been used in various fields. Today it is widely used in the field of ion engineering technology. For example, it is used to generate plasma for obtaining target ions in an ion source used in ion beam mixing technology that combines ion implantation, ion doping, ion implantation and thin film formation technology by PVD method, CVD method, etc. Has been.
アーク放電を利用してプラズマを発生させるイオン源では、放電を維持するために必要となる電子を陰極から安定的に放出させるためや、陰極に放電不良、ひいてはプラズマ生成効率を低下させる堆積物がプラズマ照射の下で陰極等に発生することを抑制するために、陰極を高温に加熱、保持することが行われている。 In an ion source that uses arc discharge to generate plasma, electrons necessary to maintain the discharge are stably emitted from the cathode, and there are deposits that cause discharge defects at the cathode and thus reduce plasma generation efficiency. In order to suppress the generation of a cathode or the like under plasma irradiation, the cathode is heated and held at a high temperature.
堆積物生成によるプラズマ生成率低下について例を挙げると、イオン源から引き出すイオン種が半導体不純物ドーピングやイオン注入などに利用されるものである場合、イオン源に供給されるガス或いは蒸発原からの蒸気(以下、これらを「ガス」と総称することがある。)の反応に伴って陰極等の表面に堆積物が生成することがある。かかる堆積物は陰極等と他の部材との間にまたがって両者間の絶縁を破り、ひいてはプラズマ生成を妨げることもある。 As an example of the plasma generation rate reduction due to deposit generation, when the ion species extracted from the ion source is used for semiconductor impurity doping, ion implantation, etc., the gas supplied to the ion source or the vapor from the evaporation source (Hereinafter, these may be collectively referred to as “gas”.) In some cases, deposits may be generated on the surface of the cathode or the like. Such deposits may straddle between the cathode and other members and break the insulation between the two, thus preventing plasma generation.
かかるアーク放電を利用してプラズマを発生させるイオン源として、例えば特開2003−249177号公報に記載されているものを挙げることができる。同公報に開示されたタイプのイオン源では、プラズマ生成領域を囲う容器内に設置された、太さの均一なタングステンなどの高融点金属の線材(以下、「フィラメント」と呼ぶことがある。)を、これに直接電流を流し、抵抗加熱を行うことによって熱電子放出が活発となる温度にまで加熱し、さらに、該フィラメントに容器に対して負電位となるように電圧を印加することによって放電を生成、維持する。 As an ion source for generating plasma using such arc discharge, for example, those described in Japanese Patent Application Laid-Open No. 2003-249177 can be cited. In the ion source of the type disclosed in the publication, a wire of a refractory metal such as tungsten having a uniform thickness (hereinafter sometimes referred to as “filament”) installed in a container surrounding a plasma generation region. In this case, a current is applied directly to the electrode, and resistance heating is performed to heat the thermoelectron emission to a temperature at which it becomes active. Further, a voltage is applied to the filament so as to have a negative potential with respect to the container. Generate and maintain
アーク放電の開始時には、フィラメントから放出される熱電子は、フィラメント加熱用電流に基づいてフィラメント周囲に発生する磁場とフィラメントと容器間の電界によって決定される、一般的にごく小さい曲率半径を持つラーマー旋回を行いながら、目的とするイオンを得るため容器内に導入された中性ガスと衝突して電離反応を起こしプラズマを生成する。プラズマが生成された後には、高温となったフィラメントから放出される熱電子はフィラメントを加熱するための磁界によって軌道を曲げられつつ、プラズマとフィラメント間に生成される厚みの小さいシースと呼ばれる領域中で静電的に加速され、プラズマ中に放出される。プラズマ中の電子及びイオンは拡散によって消失していくが、フィラメントから新たな熱電子が放出されてくることで、該新たな熱電子と中性ガスとが衝突して新たな電子/イオンが生成され、拡散によって消失する電子及びイオンが補われる。かくしてプラズマが維持される。 At the beginning of the arc discharge, the thermoelectrons emitted from the filament are generally determined by a magnetic field generated around the filament based on the filament heating current and an electric field between the filament and the container, which is generally a Larmor having a very small radius of curvature. While swirling, it collides with a neutral gas introduced into the container in order to obtain target ions, causing an ionization reaction and generating plasma. After the plasma is generated, the thermoelectrons emitted from the heated filament are bent in a trajectory by a magnetic field for heating the filament, and in a region called a thin sheath generated between the plasma and the filament. Is electrostatically accelerated and released into the plasma. Electrons and ions in the plasma disappear due to diffusion, but new thermoelectrons are emitted from the filament, and the new thermoelectrons collide with neutral gas to generate new electrons / ions. The electrons and ions that disappear due to diffusion are compensated. Thus, the plasma is maintained.
このようにして生成されるプラズマはフィラメントを中心として等方的に発生するので、通常、プラズマの形状を確定し、プラズマの拡散を抑えてイオン密度を向上せしめ、イオン源のイオン生成効率を高めるために、イオン引出し方向に対し垂直方向の直線磁界が外部から加えられる。なお、この磁界は一般的には上記形状、印加方向に限定されない。 Since the plasma generated in this way is generated isotropically around the filament, the shape of the plasma is usually determined, ion diffusion is improved by suppressing plasma diffusion, and ion generation efficiency of the ion source is increased. Therefore, a linear magnetic field perpendicular to the ion extraction direction is applied from the outside. In general, the magnetic field is not limited to the shape and application direction.
イオン源の他の例として特開平10−199430号公報記載のものを挙げることができる。このイオン源では、熱電子放出部分はプラズマに曝される領域に配置される一方、これを加熱する加熱部分がプラズマに曝されない領域に配置される。 Other examples of the ion source include those described in JP-A-10-199430. In this ion source, the thermionic emission portion is disposed in a region exposed to plasma, while the heated portion for heating the portion is disposed in a region not exposed to plasma.
しかしながら、フィラメントに直接電流を流して該フィラメントを加熱し、熱電子を放出させる場合、フィラメント表面の温度分布は均一にならない。 However, when a current is directly applied to the filament to heat the filament and emit thermoelectrons, the temperature distribution on the filament surface is not uniform.
フィラメントにはフィラメントから放出される熱電子電流に相当するアーク電流が重畳されるためにフィラメントを流れる電流は陰極で大きく、このためフィラメントに流される加熱電流に基づいてフィラメント周囲に磁場が形成され、この磁場のためにフィラメントから放出される熱電子はごく小さな曲率半径のラーマー旋回を行うためフィラメントのごく近傍に存在することになる。そのためガスとの衝突による電離確率は、電位差の大きくなるフィラメントの負極側が高くなり、プラズマは負極側に集中的に生成されやすくなる。その結果フィラメントの加熱電流に熱電子放出に伴ってプラズマからフィラメントに流入する放電電流が陰極部にフィラメント負極側に向かって積分される効果が拡大されるのみならず、イオン衝撃の結果としてより負極側が加熱され、プラズマに曝露したフィラメント領域の負極側端部付近に集中して高くなる。 Since an arc current corresponding to the thermoelectron current emitted from the filament is superimposed on the filament, the current flowing through the filament is large at the cathode, so that a magnetic field is formed around the filament based on the heating current passed through the filament, The thermoelectrons emitted from the filament due to this magnetic field exist in the very vicinity of the filament because of the Larmor rotation with a very small radius of curvature. For this reason, the ionization probability due to collision with the gas increases on the negative electrode side of the filament where the potential difference increases, and plasma tends to be intensively generated on the negative electrode side. As a result, the effect of integrating the discharge current flowing from the plasma into the filament with thermionic emission into the filament heating current is integrated into the cathode toward the anode side of the filament. The side is heated and becomes concentrated in the vicinity of the negative electrode side end of the filament region exposed to the plasma.
このように、フィラメントのプラズマに曝露した負極側端部は他の部分より高温に加熱されやすく、その部分より集中的に熱電子が放出され、このため、フィラメント負極側端部に対応する領域に集中的に高密度のプラズマが形成される。 Thus, the negative electrode side end exposed to the filament plasma is easily heated to a higher temperature than the other parts, and the thermoelectrons are intensively emitted from that part, so that the region corresponding to the filament negative electrode side end is discharged. A high density plasma is intensively formed.
また通常の場合、フィラメントは熱電子放出の効率を高めるために融点近傍まで昇温され、スパッタリングによってフィラメント表面から材料が放出されることにより損耗する。この損耗率が前記の加熱率の集中に伴う温度不均一により、フィラメント負極側で大きくなり、結局この部分で破損にいたることになる。 Also, in the normal case, the filament is heated to near the melting point in order to increase the efficiency of thermionic emission, and is worn out by releasing the material from the filament surface by sputtering. This wear rate becomes larger on the filament negative electrode side due to the temperature non-uniformity accompanying the concentration of the heating rate, and eventually this portion is broken.
前記のように直線磁場がある場合にはさらに深刻な問題が発生する。既述のとおり、フィラメント負極側が局部的に加熱されると、その部分から他の部分よりも多い熱電子放出が生じることになる。この集中的な加熱により局所化した熱電子放出は、磁力線に沿った領域でのみ電離を促進し、その結果細くて電子密度の高い領域をプラズマ中に生成する。この局所高密度プラズマはもとのフィラメントを、接触部において局所的にさらに加熱するという正帰還を発生させる。 More serious problems occur when there is a linear magnetic field as described above. As described above, when the filament negative electrode side is locally heated, more thermoelectrons are emitted from that portion than other portions. Thermionic emission localized by this intensive heating promotes ionization only in the region along the magnetic field lines, and as a result, a thin and high electron density region is generated in the plasma. This local high-density plasma generates positive feedback that further heats the original filament locally at the contact portion.
最終的には赤外線放射による冷却率で決まる値でフィラメント高温部分の温度が決定されて定常状態となるが、ほぼ全ての熱電子がフィラメント上の一部分から集中して放出され、昇華率も大きなものとなってフィラメント寿命は大幅に短くなる。
また、この局所的な加熱はフィラメント上の、選択的にプラズマ照射を受ける部分に生じるが、この加熱部分は外部から加えられた磁場とフィラメント自身が加熱電流によって周囲に作る磁場との結合、及びフィラメントを通しての熱伝導によって決定されるので、プラズマの空間分布や安定性の面においても影響を与える。
Eventually, the temperature of the filament high temperature part is determined by the value determined by the cooling rate by infrared radiation, and it becomes a steady state, but almost all the thermoelectrons are concentrated and emitted from a part on the filament, and the sublimation rate is also large. Thus, the filament life is significantly shortened.
In addition, this local heating occurs in a portion of the filament that is selectively subjected to plasma irradiation, and this heating portion combines the magnetic field applied from the outside with the magnetic field that the filament itself creates by the heating current, and Since it is determined by heat conduction through the filament, it also affects the spatial distribution and stability of the plasma.
以上の現象は、陰極に対応する所定空間全体にできるだけ均一なプラズマを生成する必要がある場合において特に重大であり、プラズマ機器の寿命と効率を両立させることを困難にする。 The above phenomenon is particularly serious when it is necessary to generate plasma as uniform as possible in the entire predetermined space corresponding to the cathode, making it difficult to achieve both the life and efficiency of the plasma equipment.
前記特開平10−199430号公報に開示されたイオン源では、熱電子放出源を加熱部分とプラズマ曝露部分に分離し、高温で温度不均一を生じやすい加熱部分をプラズマに直接曝さないようにしているので、保守間隔の延長化が可能である。しかし、熱電子を放出させるための電子放出部分を直接的に加熱しないので、加熱効率が悪い。また、熱入力がプラズマに曝露された電子放出部分で拡散するため、該電子放出部分におけるプラズマへの熱電子放出の面積が広くなりすぎ、その結果、所定空間領域に集中するプラズマの生成が困難になり、イオン引出しにおいて好ましいイオン種密度が所定空間領域に集中するようなプラズマ生成の効率を低下せしめる。 In the ion source disclosed in Japanese Patent Laid-Open No. 10-199430, a thermionic emission source is separated into a heated portion and a plasma exposed portion so that a heated portion that tends to cause temperature non-uniformity at a high temperature is not directly exposed to plasma. Therefore, the maintenance interval can be extended. However, since the electron emission part for emitting thermoelectrons is not directly heated, the heating efficiency is poor. In addition, since the heat input diffuses in the electron emission part exposed to the plasma, the area of the thermal electron emission to the plasma in the electron emission part becomes too large, and as a result, it is difficult to generate plasma concentrated in a predetermined space region. Thus, the efficiency of plasma generation is reduced such that a preferable ion species density in ion extraction is concentrated in a predetermined space region.
そこで本発明は、アーク放電用の陽極と陰極間に放電電圧を印加するとともに該陰極に加熱電流を流して該陰極から熱電子を放出させつつアーク放電を発生させ、該アーク放電のもとで目的とするイオンを得るためのプラズマを生成させる該アーク放電用陰極であって、従来のこの種のアーク放電用陰極と比べると長期にわたり安定して求めるイオンを提供しうるプラズマを発生させることができるアーク放電用陰極を提供することを課題とする。 Therefore, the present invention applies a discharge voltage between the anode and the cathode for arc discharge, and causes a heating current to flow to the cathode to generate arc discharge while emitting thermoelectrons from the cathode. An arc discharge cathode for generating plasma for obtaining target ions, which can generate plasma that can stably provide desired ions over a long period of time as compared with a conventional arc discharge cathode of this type. It is an object of the present invention to provide an arc discharge cathode that can be used.
また本発明は、アーク放電用の陽極と陰極間に放電電圧を印加するとともに該陰極に加熱電流を流して該陰極から熱電子を放出させつつアーク放電を発生させ、該アーク放電のもとで目的とするイオンを得るためのプラズマを生成させ、該プラズマから該イオンを引き出すイオン源であって、従来のこの種のイオン源と比べると長期にわたり安定して求められるイオン放出が可能なイオン源を提供することを課題とする。 The present invention also applies a discharge voltage between an anode and a cathode for arc discharge, and causes a heating current to flow through the cathode to generate arc discharge while emitting thermoelectrons from the cathode. An ion source that generates a plasma for obtaining target ions and extracts the ions from the plasma, and is capable of emitting ions that are stably required over a long period of time compared to a conventional ion source of this type It is an issue to provide.
本発明は前記課題を解決するため、次のアーク放電用陰極及びイオン源を提供する。
(1)アーク放電用陰極
アーク放電用の陽極と陰極間に放電電圧を印加するとともに該陰極に加熱電流を流して該陰極から熱電子を放出させつつアーク放電を発生させ、該アーク放電のもとで目的とするイオンを得るためのプラズマを生成させる該アーク放電用陰極であり、筒形導体部と該筒形導体部の内部に配置された1本又は複数本の導体からなる中心導体部と、該筒形導体部及び中心導体部の先端部を電気的に接続する接続導体部とを含み、該筒形導体部と中心導体部とで陰極加熱電流が逆方向に流されるアーク放電用陰極。
In order to solve the above problems, the present invention provides the following arc discharge cathode and ion source.
(1) Arc discharge cathode A discharge voltage is applied between the anode and the cathode for arc discharge, and a heating current is applied to the cathode to cause the generation of arc discharge while emitting thermoelectrons from the cathode. And a central conductor portion comprising a cylindrical conductor portion and one or a plurality of conductors disposed inside the cylindrical conductor portion, the cathode for arc discharge generating plasma for obtaining target ions. And a connecting conductor portion that electrically connects the cylindrical conductor portion and the tip end portion of the central conductor portion, and for arc discharge in which a cathode heating current flows in the opposite direction between the cylindrical conductor portion and the central conductor portion cathode.
(2)イオン源
アーク放電用の陽極と陰極間に放電電圧を印加するとともに、該陰極に加熱電流を流して該陰極から熱電子を放出させつつアーク放電を発生させ、該アーク放電のもとで目的とするイオンを得るためのプラズマを生成させ、該プラズマから該イオンを引き出すイオン源であり、該アーク放電用陰極は筒形導体部と該筒形導体部の内部に配置された1本又は複数本の導体からなる中心導体部と、該筒形導体部及び中心導体部の先端部を電気的に接続する接続導体部とを含み、該筒形導体部と中心導体部とで陰極加熱電流が逆方向に流される陰極であるイオン源(要するに上記(1)記載のアーク放電用陰極を採用したイオン源)。
(2) Ion source A discharge voltage is applied between the anode and the cathode for arc discharge, and an arc discharge is generated while flowing a heating current to the cathode to emit thermoelectrons from the cathode. Is an ion source that generates plasma for obtaining target ions and extracts the ions from the plasma, and the arc discharge cathode is a cylindrical conductor portion and one disposed inside the cylindrical conductor portion. Or a central conductor portion composed of a plurality of conductors and a connecting conductor portion that electrically connects the cylindrical conductor portion and the tip end portion of the central conductor portion, and the cylindrical conductor portion and the central conductor portion are heated by cathode. An ion source that is a cathode in which a current flows in the opposite direction (in short, an ion source that employs the arc discharge cathode described in (1) above).
本発明に係るアーク放電用陰極、本発明に係るイオン源におけるアーク放電用陰極は、それを構成する筒形導体部とその内部に配置される中心導体部とで陰極加熱電流が逆方向に流されるから、中心導体部に流れる電流に基づいて形成される磁場と筒形導体部に逆向きに流される電流に基づいて形成される磁場とが生じ、且つ、これらの磁場が相殺しあい、陰極全体としてみれば、陰極加熱電流に基づく陰極周囲の磁場の形成が十分抑制される。 In the arc discharge cathode according to the present invention and the arc discharge cathode in the ion source according to the present invention, the cathode heating current flows in the opposite direction between the cylindrical conductor part constituting the cathode and the central conductor part disposed therein. Therefore, a magnetic field formed based on the current flowing in the central conductor portion and a magnetic field formed based on the current flowing in the opposite direction to the cylindrical conductor portion are generated, and these magnetic fields cancel each other, and the entire cathode As a result, the formation of the magnetic field around the cathode based on the cathode heating current is sufficiently suppressed.
このように陰極周囲の磁場形成が抑制される結果、外側の筒形導体部全体から熱電子が放出されやすくなり、プラズマ生成領域に外部から磁場が与えられない場合には筒形導体部に対応する領域全体にわたってプラズマが形成され、このためプラズマから陰極への電流の流入が陰極全体に対して実現され、これらにより陰極の局部的過熱がそれだけ抑制され、従って、陰極寿命がそれだけ長くなり、長期にわたり安定して求められるイオンを得るためのプラズマを生成できるようになる。
また、外部から該陰極の長さ方向に沿って直線磁場が与えられる場合には、放出された熱電子は該直線磁場に束縛され、該陰極の長さ方向に運動する。そのため、接続導体部とそれに続く中心導体部及び筒形導体部の先端部を含む部分(以下、「陰極先端部」ということがある。)に集中してプラズマが生成される。このためプラズマから陰極への電流の流入は該陰極先端部に集中し、該陰極先端部の局部的加熱が生じるが該接続導体部の厚みを筒形導体部厚みに対して十分厚くすることによって陰極寿命を所望の時間まで長くすることができる。
As a result of the suppression of the magnetic field formation around the cathode in this way, thermoelectrons are easily emitted from the entire outer cylindrical conductor, and it corresponds to the cylindrical conductor when no magnetic field is applied to the plasma generation region from the outside. The plasma is formed over the entire area, so that an inflow of current from the plasma to the cathode is realized for the entire cathode, which suppresses the local overheating of the cathode, and thus the life of the cathode is lengthened. It is possible to generate plasma for obtaining ions that are stably obtained over a wide range.
Further, when a linear magnetic field is applied from the outside along the length direction of the cathode, the emitted thermoelectrons are bound to the linear magnetic field and move in the length direction of the cathode. For this reason, plasma is generated in a concentrated manner in the connecting conductor portion and the portion including the central conductor portion and the tip portion of the cylindrical conductor portion (hereinafter also referred to as “cathode tip portion”). For this reason, inflow of current from the plasma to the cathode is concentrated on the tip of the cathode, and local heating of the tip of the cathode occurs, but by making the thickness of the connecting conductor portion sufficiently thicker than the thickness of the cylindrical conductor portion. The cathode life can be extended to a desired time.
また、本発明によると、アーク放電用陰極の中心導体部の加熱率と筒形導体部の加熱率を調整すること等により、目的とするイオンを得るために必要な条件を有するプラズマを生成するための様々な運転状態に対応して陰極の加熱効率、アーク放電の放電効率などの調整(例えばかかる効率を高めるための調整)が可能である。 Further, according to the present invention, plasma having conditions necessary for obtaining target ions is generated by adjusting the heating rate of the central conductor part and the cylindrical conductor part of the arc discharge cathode. Therefore, it is possible to adjust the heating efficiency of the cathode, the discharge efficiency of arc discharge, etc. (for example, adjustment for increasing the efficiency) corresponding to various operating conditions.
より具体的には、目的とするイオンを得るための所望のプラズマ状態に応じて、陰極使用時の前記筒形導体部の加熱表面温度分布調整(代表的には均一な温度分布調整)のために該筒形導体部各部の電気抵抗、前記中心導体部各部の電気抵抗及び前記接続導体部の電気抵抗のうち少なくとも一つを調整することができる。
かかる電気抵抗調整の目的で、例えば、該筒形導体部各部の肉厚、前記中心導体部各部の太さ及び前記接続導体部の体積のうち少なくとも一つを調整することができる。また、このような筒形導体部各部の肉厚等の調整とともに、或いはこのような調整に代えて、筒形導体部の形状(断面形状等)、中心導体部の形状(断面形状等)及び接続導体部の形状(断面形状等)のうち少なくとも一つを調整することもできる。
More specifically, according to the desired plasma state for obtaining the target ions, for the heating surface temperature distribution adjustment (typically uniform temperature distribution adjustment) of the cylindrical conductor when the cathode is used. Furthermore, at least one of the electrical resistance of each part of the cylindrical conductor part, the electrical resistance of each part of the central conductor part, and the electrical resistance of the connection conductor part can be adjusted.
For the purpose of adjusting the electrical resistance, for example, at least one of the thickness of each part of the cylindrical conductor part, the thickness of each part of the central conductor part, and the volume of the connection conductor part can be adjusted. In addition to or in place of such adjustment of the thickness of each part of the cylindrical conductor part, the shape of the cylindrical conductor part (cross-sectional shape etc.), the shape of the central conductor part (cross-sectional shape etc.) and It is also possible to adjust at least one of the shapes (cross-sectional shapes, etc.) of the connection conductor portion.
さらに具体例を挙げれば、本発明に係るアーク放電用陰極、本発明に係るイオン源におけるアーク放電用陰極によると、陰極加熱電流を筒形導体部の根元部より先端部へ、さらに、接続導体部を介して中心導体部の先端部から根元部へ向け流し、プラズマに露出する陰極先端部が最も負電位になるように用いて、プラズマの照射による陰極加熱率を陰極先端部に集中させることができる。 More specifically, according to the arc discharge cathode according to the present invention and the arc discharge cathode in the ion source according to the present invention, the cathode heating current is transferred from the root portion of the cylindrical conductor portion to the tip portion, and further to the connection conductor. The cathode heating rate from the plasma irradiation is concentrated on the cathode tip using the cathode tip exposed to the plasma at the most negative potential. Can do.
この場合、陰極加熱電流を各導体部に一様に流しても、陰極先端部と筒形導体部の根元部分の表面温度がほぼ同一になるような電気抵抗を該陰極先端部に与えるように該陰極先端部分を形成してもよい。例えば、陰極先端部を筒形導体部や中心導体部の他の部分より厚く形成する等してそれを実現することが可能である。こうすることで、陰極表面(筒形導体部表面)の温度分布を一層均一化し、陰極寿命をそれだけで長くすることができる。 In this case, even if the cathode heating current is made to flow uniformly to each conductor, an electric resistance is given to the cathode tip so that the surface temperatures of the cathode tip and the base portion of the cylindrical conductor are almost the same. The cathode tip portion may be formed. For example, it can be realized by forming the cathode tip portion thicker than other portions of the cylindrical conductor portion and the central conductor portion. By so doing, the temperature distribution on the cathode surface (tubular conductor surface) can be made more uniform, and the cathode life can be extended by itself.
また、定格の放電電流が定められている場合には、外側の筒形導体部の肉厚分布と中心導体部の太さ分布を適切に選ぶこと等により、放電電流に陰極加熱電力の一部を担わせ、陰極寿命を犠牲にすることなく、陰極の加熱効率を向上させることも可能である。 If the rated discharge current is determined, a part of the cathode heating power can be added to the discharge current by appropriately selecting the thickness distribution of the outer cylindrical conductor and the thickness distribution of the center conductor. It is also possible to improve the heating efficiency of the cathode without sacrificing the life of the cathode.
広い放電電流の範囲において本発明に係るアーク放電用陰極を使用したい場合、換言すれば、プラズマ密度を広い範囲から選択したい場合には、例えば、前記陰極加熱電流による陰極加熱の割合がプラズマから陰極に流入する放電電流による陰極加熱の割合より大きくなるように設定し、換言すれば、放電電流にあまり影響されることなく陰極加熱電力の調整により陰極からの熱電子放出割合を容易に制御できるようにすれば、外側の筒形導体部各部の厚さは実質上一定にしておいても筒形導体部各部の表面温度分布の均一化を維持しつつ所望密度、大きさのプラズマを形成できる。このように、前記筒形導体部は各部の肉厚が一定に形成されていてもよい。 When it is desired to use the arc discharge cathode according to the present invention in a wide discharge current range, in other words, when it is desired to select the plasma density from a wide range, for example, the cathode heating rate by the cathode heating current is from plasma to cathode. In other words, the rate of thermionic emission from the cathode can be easily controlled by adjusting the cathode heating power without being significantly affected by the discharge current. By doing so, it is possible to form plasma having a desired density and size while maintaining uniform surface temperature distribution of each part of the cylindrical conductor part even if the thickness of each part of the outer cylindrical conductor part is substantially constant. Thus, the said cylindrical conductor part may be formed so that the thickness of each part is constant.
また、前記中心導体部、筒形導体部及び接続導体部は同一の材料で形成することもできるし、熱電子放出効率を向上させるために筒形導体部を中心導体部より高抵抗材料で形成することもできる。 In addition, the central conductor portion, the cylindrical conductor portion, and the connection conductor portion can be formed of the same material, or the cylindrical conductor portion is formed of a higher resistance material than the central conductor portion in order to improve thermionic emission efficiency. You can also
いずれにしても、前記中心導体部、筒形導体部及び接続導体部は、それぞれ高融点材料から形成することが望ましいが、かかる高融点材料として次のものを例示できる。
すなわち、モリブデン、タンタル、タングステン、レニウム、イリジウムから選ばれた単体金属材料、又はこれら金属のうち少なくとも二つを含む合金からなる金属材料、又はかかる金属材料を母材として該母材をアルカリ金属、アルカリ土類金属、アルカリ金属の酸化物、アルカリ土類金属の酸化物、アルカリ金属の炭化物、アルカリ土類金属の炭化物のうち1種で被覆した材料である。
In any case, the center conductor portion, the cylindrical conductor portion, and the connection conductor portion are preferably formed from a high melting point material, but examples of the high melting point material include the following.
That is, a single metal material selected from molybdenum, tantalum, tungsten, rhenium, iridium, or a metal material made of an alloy containing at least two of these metals, or using the metal material as a base material, the base material as an alkali metal, It is a material coated with one of alkaline earth metal, alkali metal oxide, alkaline earth metal oxide, alkali metal carbide, and alkaline earth metal carbide.
前記中心導体部、筒形導体部及び接続導体部の形状については、代表例として、中心導体部は円形断面を有する棒状導体部、筒形導体部は円筒形導体部である場合を挙げることができる。棒状の中心導体部は単数の棒状導体からなるものであっても、複数本の棒状導体を束ねた形態のものでもよい。また、中心導体部は棒状導体でなくコイル状導体であっても構わない。 As a representative example of the shapes of the center conductor portion, the cylindrical conductor portion, and the connection conductor portion, the center conductor portion may be a rod-like conductor portion having a circular cross section, and the cylindrical conductor portion may be a cylindrical conductor portion. it can. The rod-shaped central conductor portion may be composed of a single rod-shaped conductor or may be formed by bundling a plurality of rod-shaped conductors. The central conductor portion may be a coiled conductor instead of a rod-shaped conductor.
また、前記接続導体部として、中心導体部に外嵌するとともに筒形導体部に内嵌するリング形の導体部を例示できる。かかるリング形の接続導体部は、導体部の材料の機械加工により形成することができる他、シート状の導体材料を中心導体部に巻きつけこれに筒形導体部を外嵌めしたり、或いはさらに、その状態で、電子ビーム溶接やレーザー溶接等により中心導体部及び筒形導体部と一体化して形成できる。
なお、中心導体部、筒形導体部及び接続導体部の形状は上記したものに限定されることはなく、支障のない範囲で各種形状を採用できる。例えば、中心導体部や筒形導体部は断面輪郭が円形である必要はなく、例えば、支障のない範囲で多角形を呈するものでもよい。また、接続導体部にしても円形リング形状のものに限定されることはなく、中心導体部や筒形導体部の断面形状等に応じた適当な形状のものとすることができる。
In addition, examples of the connection conductor portion include a ring-shaped conductor portion that is externally fitted to the central conductor portion and is fitted to the cylindrical conductor portion. Such a ring-shaped connecting conductor portion can be formed by machining the material of the conductor portion, and a sheet-like conductor material is wound around the central conductor portion, and a cylindrical conductor portion is externally fitted thereto, or further In this state, it can be formed integrally with the central conductor portion and the cylindrical conductor portion by electron beam welding or laser welding.
Note that the shapes of the central conductor portion, the cylindrical conductor portion, and the connection conductor portion are not limited to those described above, and various shapes can be adopted within a range that does not hinder. For example, the central conductor portion and the cylindrical conductor portion do not need to have a circular cross-sectional outline, and may be polygonal in a range that does not hinder, for example. Further, the connection conductor portion is not limited to a circular ring shape, and may be of an appropriate shape according to the cross-sectional shape of the center conductor portion or the cylindrical conductor portion.
以上説明したように本発明によると、アーク放電用の陽極と陰極間に放電電圧を印加するとともに該陰極に加熱電流を流して該陰極から熱電子を放出させつつアーク放電を発生させ、該アーク放電のもとで目的とするイオンを得るためのプラズマを生成させる該アーク放電用陰極であって、従来のこの種のアーク放電用陰極と比べると長期にわたり安定して求められるイオンを提供し得るプラズマを発生させることができるアーク放電用陰極を提供することが可能である。 As described above, according to the present invention, a discharge voltage is applied between the anode and the cathode for arc discharge, and a heating current is applied to the cathode to generate thermoelectrons from the cathode, thereby generating arc discharge. An arc discharge cathode for generating a plasma for obtaining desired ions under discharge, which can provide ions that are stably required over a long period of time compared to a conventional arc discharge cathode of this type. It is possible to provide an arc discharge cathode capable of generating plasma.
また本発明によると、アーク放電用の陽極と陰極間に放電電圧を印加するとともに該陰極に加熱電流を流して該陰極から熱電子を放出させつつアーク放電を発生させ、該アーク放電のもとで目的とするイオンを得るためのプラズマを生成させ、該プラズマから該イオンを引き出すイオン源であって、従来のこの種のイオン源と比べると長期にわたり安定して求められるイオン放出を行えるイオン源を提供することができる。 According to the present invention, a discharge voltage is applied between the anode and the cathode for arc discharge, and a heating current is applied to the cathode to generate arc discharge while emitting thermoelectrons from the cathode. An ion source that generates plasma for obtaining target ions in the plasma and extracts the ions from the plasma, and can perform ion emission that can be stably obtained over a long period of time compared to this type of conventional ion source Can be provided.
以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明に係るアーク放電用陰極の1 例を採用したイオン源の1 例(イオン源A)を示している。図2は該陰極の断面構造等を示している。
イオン源Aはプラズマ生成領域を囲む容器C内にアーク放電用陰極10を設置し、容器Cの開口部に対向させてイオン引出し電極Eを設置し、容器C外に永久磁石或いは電磁石によって構成される磁石Mを設けたものであるが、図示例のイオン源Aの容器Cはさらに真空容器CH内に配置されており、該真空容器CH内が図示省略の排気装置により減圧されることで、容器C内も減圧されるようになっている。また、磁石Mは真空容器CHを介して容器Cの外周に対し設置されている。真空容器CHは例えばイオン注入装置においてイオン注入されるべき基板等をイオン源に対向させて収容する容器である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows one example (ion source A) of an ion source employing one example of an arc discharge cathode according to the present invention. FIG. 2 shows the cross-sectional structure of the cathode.
In the ion source A, an arc discharge cathode 10 is installed in a container C surrounding a plasma generation region, an ion extraction electrode E is installed opposite to an opening of the container C, and the ion source A is constituted by a permanent magnet or an electromagnet outside the container C. The container C of the ion source A in the illustrated example is further disposed in the vacuum container CH, and the inside of the vacuum container CH is decompressed by an exhaust device (not shown), The inside of the container C is also decompressed. Moreover, the magnet M is installed with respect to the outer periphery of the container C through the vacuum container CH. The vacuum container CH is a container that accommodates, for example, a substrate to be ion-implanted in an ion implantation apparatus facing the ion source.
また、イオン源Aの容器Cには、ガス或いは蒸気の導入口部Gが設けられており、ここから容器C内に目的とするイオンを得るためのガス或いは蒸気を導入できるようになっている。
磁石Mは容器C内に形成されるプラズマを閉じ込めるために、イオン引出し電極系Eによるイオン引出し方向Xに垂直且つアーク放電用陰極10に沿う方向Yの直線磁場を容器
C内に形成する。
The container C of the ion source A is provided with a gas or vapor inlet G, from which gas or vapor for obtaining target ions can be introduced into the container C. .
The magnet M forms a linear magnetic field in the container C perpendicular to the ion extraction direction X by the ion extraction electrode system E and in the direction Y along the arc discharge cathode 10 in order to confine the plasma formed in the container C.
陰極10はその詳細については後述するが、容器C内にイオン引出し電極系Eに対向して該電極系Eと平行姿勢で設置されており、陰極加熱用の電源PW1に接続されている。 容器Cはアーク放電用陰極10に対する陽極を兼ねており、容器Cと陰極10とにアーク放電用の電源PW2が接続されている。
イオン引出し電極系Eと容器C間にはイオン引出しのための電位を与えるための電源PW3が接続されている。
Although the details of the cathode 10 will be described later, the cathode 10 is installed in the container C so as to face the ion extraction electrode system E in a posture parallel to the electrode system E, and is connected to a power source PW1 for heating the cathode. The container C also serves as an anode for the arc discharge cathode 10, and a power source PW <b> 2 for arc discharge is connected to the container C and the cathode 10.
A power supply PW3 for applying a potential for ion extraction is connected between the ion extraction electrode system E and the container C.
図2に示すように、アーク放電用陰極10は、断面円形の棒状の中心導体部1、これに空間をおいて外嵌された筒形導体部2、及び中心導体部1の先端部と筒形導体部2の先端部を接続するリング形の接続導体部3を含んでいる。 As shown in FIG. 2, the arc discharge cathode 10 includes a rod-shaped central conductor portion 1 having a circular cross section, a cylindrical conductor portion 2 that is externally fitted with a space therebetween, and a tip portion and a cylinder of the central conductor portion 1. A ring-shaped connecting conductor portion 3 for connecting the tip end portion of the shape conductor portion 2 is included.
円筒形導体部2は容器Cの壁に設けた電気絶縁体ISを貫通して容器外まで引き出されており、絶縁体ISに嵌着された円筒形の保持導体部21が該筒形導体部2の根元部分に外嵌接続されている。円筒形導体部2は保持導体部21を介して陰極加熱用電源PW1のプラス極に接続されている。
電気絶縁体ISのうち少なくとも容器C内に位置してプラズマに曝される部分は、アルミナセラミックや窒化ホウ素等で形成されている。これによって、高融点金属によって形成されているとは限らない保持導体部21をプラズマの直接的な照射から保護している。
The cylindrical conductor portion 2 passes through the electrical insulator IS provided on the wall of the container C and is drawn out of the container, and the cylindrical holding conductor portion 21 fitted to the insulator IS is the cylindrical conductor portion. The base part of 2 is externally connected. The cylindrical conductor portion 2 is connected to the positive electrode of the cathode heating power source PW1 through the holding conductor portion 21.
At least a portion of the electrical insulator IS located in the container C and exposed to the plasma is formed of alumina ceramic, boron nitride, or the like. This protects the holding conductor portion 21 that is not necessarily formed of a refractory metal from direct plasma irradiation.
中心導体部1の根元部分は保持導体部11に保持されており、保持導体部11は電源PW1のマイナス極に接続されている。なお、保持導体部11は図示省略の部材を介して容器C壁又は真空容器CHに絶縁されつつ支持されている。 The base portion of the center conductor portion 1 is held by the holding conductor portion 11, and the holding conductor portion 11 is connected to the negative pole of the power source PW1. The holding conductor portion 11 is supported while being insulated from the container C wall or the vacuum container CH through a member (not shown).
陰極10についてさらに詳述すると、中心導体部1、筒形導体部2及び接続導体部3はここでは同じ高融点金属材料であるタンタルから形成されている。
筒形導体部2は全体にわたり0.1mm〜1mm程度の範囲の均一な厚さを有し、外径3mm〜7mm程度、長さ5mm〜30mm程度の範囲で形成されている。
中心導体部1は外径0.5mm〜3mm程度の範囲の棒状或いは細線を束ねた形態に形成されており、長さは筒形導体部2より長くしている。
The cathode 10 will be described in further detail. The central conductor 1, the cylindrical conductor 2, and the connecting conductor 3 are made of tantalum, which is the same refractory metal material here.
The cylindrical conductor portion 2 has a uniform thickness in the range of about 0.1 mm to 1 mm throughout, and is formed in the range of an outer diameter of about 3 mm to 7 mm and a length of about 5 mm to 30 mm.
The central conductor portion 1 is formed in a form in which rods or fine wires having an outer diameter in the range of about 0.5 mm to 3 mm are bundled, and the length is longer than that of the cylindrical conductor portion 2.
陰極10における接続導体部3は中心導体部1及び筒形導体部2に接触抵抗少なく十分密着する状態で嵌着されているだけでもよいが、電子ビーム溶接やレーザー溶接等により中心導体部1及び筒形導体部2と一体化しておくことが望ましい。本例では電子ビーム溶接にて一体化している。
そしてここでは、接続導体部3を中心導体部1の外径、筒形導体部2の肉厚より十分厚く形成することで陰極先端部eに集中するプラズマによるスパッタリングによっても長寿命となるようにしてある。
The connecting conductor 3 in the cathode 10 may be merely fitted to the central conductor 1 and the cylindrical conductor 2 in a state of being sufficiently closely contacted with the central conductor 1 and the cylindrical conductor 2. It is desirable to be integrated with the cylindrical conductor 2. In this example, they are integrated by electron beam welding.
Here, the connection conductor 3 is formed to be sufficiently thicker than the outer diameter of the central conductor 1 and the wall thickness of the cylindrical conductor 2, so that a long life can be obtained by sputtering by plasma concentrated on the cathode tip e. It is.
陰極材料として一般的なタングステンを本発明に採用する場合、接続導体部3を機械加工で形成する場合には、タングステン材料を展性一延性転移温度である300℃以上の温度に加熱して加工する必要があるが、これを避けるために、シート状タングステン材料を中心導体部1の先端部に巻き付け、これに筒形導体部2の先端部を嵌めて仮組み立てし、その後にこれらを電子ビーム溶接やレーザー溶接等により一体化してもよい。 When general tungsten is used as the cathode material in the present invention, when the connecting conductor portion 3 is formed by machining, the tungsten material is heated to a temperature equal to or higher than 300 ° C. which is the malleable ductile transition temperature. However, in order to avoid this, a sheet-like tungsten material is wound around the tip of the central conductor portion 1, and the tip of the cylindrical conductor portion 2 is fitted to the tip to tentatively assemble them. You may integrate by welding, laser welding, etc.
なお、陰極材料としてタンタル、レニウム等を採用する場合には、これら材料の機械加工が可能であるので、旋盤などを用いて精密な形状の接続導体部3を形成し、特に電子ビーム溶接やレーザー溶接を採用しなくても、これを単純な嵌め合い加工で中心導体部1及び筒形導体部2に嵌めて陰極10を組み立てることができる。 When tantalum, rhenium or the like is adopted as the cathode material, these materials can be machined. Therefore, the connecting conductor portion 3 having a precise shape is formed using a lathe or the like, particularly, electron beam welding or laser. Even if welding is not employed, the cathode 10 can be assembled by fitting it to the central conductor portion 1 and the cylindrical conductor portion 2 by a simple fitting process.
中心導体部1とその保持導体部11との接続及び筒形導体部2とその保持導体部21との接続には、熱膨張の影響を十分考慮することが要求される。通常の運転では中心導体部1の方が外側の筒形導体部2よりも高温になるのでこれを考慮し、さらに導体間の膨張差を考慮して接続部の設計を行えばよい。 The connection between the central conductor portion 1 and the holding conductor portion 11 and the connection between the cylindrical conductor portion 2 and the holding conductor portion 21 are required to sufficiently consider the influence of thermal expansion. In normal operation, the center conductor portion 1 has a higher temperature than the outer cylindrical conductor portion 2, and this is taken into consideration, and the connecting portion may be designed in consideration of the expansion difference between the conductors.
中心導体部1について、中心導体部1とその保持導体部11との相互接続を密着嵌め合いで行った場合と、中心導体部1を保持導体部11に余裕を持たせて摺動可能に嵌め込んだ場合の2種類の様態について通電テストを行ってみたが、いずれも支障無く機能した。 また、中心導体部1と接続導体部3についても、電子ビーム溶接によって接続したものと、嵌め合い構造としたものとでも通電テストを行ってみたが、いずれも支障無く機能した。 With respect to the center conductor portion 1, the center conductor portion 1 and its holding conductor portion 11 are slidably fitted to the holding conductor portion 11 when the interconnection between the center conductor portion 1 and the holding conductor portion 11 is closely fitted. We conducted a power-on test for two types of cases, and both worked without problems. The center conductor portion 1 and the connecting conductor portion 3 were also tested with both the one connected by electron beam welding and the one with a fitting structure, but all functioned without hindrance.
陰極の組み立て時その組み立てにおける溶接時等に発生している可能性のある残留応力を除去するため、ここでは、陰極10を最初に電子放出温度まで昇温する際には、1秒間あたり1℃未満程度の温度勾配でゆっくりと昇温させた。そうすることで、その後は比較的短時間で昇温させても、陰極への残留応力による悪影響が十分抑制される状態とした。 In order to remove residual stress that may be generated during welding in the assembly of the cathode, the temperature of the cathode 10 is raised to 1 ° C. per second when the cathode 10 is first heated to the electron emission temperature. The temperature was slowly raised with a temperature gradient of less than about. By doing so, even if the temperature was raised in a relatively short time thereafter, the adverse effect due to the residual stress on the cathode was sufficiently suppressed.
以上説明したイオン源Aによると、真空容器CH内を図示省略の排気装置により排気することでイオン源Aの容器C内から排気してプラズマ生成ガス圧を例えば10Pa程度以下に維持しつつ、目的イオンを得るためのガス或いは蒸気を図示省略のガス供給装置或いは蒸気生成器からガス或いは蒸気の導入口部Gを介して容器C内へ所定量導入するとともに、陰極10には電源PW1にて加熱電流を流して筒形導体部2から熱電子を放出させつつ陰極10と容器C間に電源PW2から放電電圧を印加することで、容器C内にプラズマを生成させ、該プラズマからイオン引出し電極系Eにてイオンビームを引出すことができる。 According to the ion source A described above, the inside of the vacuum vessel CH is evacuated from the inside of the vessel C of the ion source A by evacuating the inside of the vacuum vessel CH by an unillustrated exhaust device, and the plasma generation gas pressure is maintained at about 10 Pa or less, for example A predetermined amount of gas or vapor for obtaining ions is introduced into a container C through a gas or vapor inlet port G from a gas supply device or vapor generator (not shown), and the cathode 10 is heated by a power source PW1. A plasma is generated in the container C by applying a discharge voltage from the power source PW2 between the cathode 10 and the container C while discharging current from the cylindrical conductor portion 2 by flowing current, and an ion extraction electrode system from the plasma. An ion beam can be extracted by E.
このときアーク放電用陰極10では、それを構成する中心導体部1とこれに外嵌する筒形導体部2とで、陰極加熱電流が逆方向に流されるから、中心導体部1に流れる電流に基づいて形成される磁場と筒形導体部2に逆向きに流される電流に基づく磁場とが生じ、且つ、これらの磁場が相殺しあい、陰極10全体としてみれば、陰極加熱電流に基づく陰極周囲の磁場の形成が十分抑制される。 At this time, in the arc discharge cathode 10, the cathode heating current is caused to flow in the opposite direction between the central conductor portion 1 constituting the arc discharge cathode and the cylindrical conductor portion 2 fitted on the central conductor portion 1. And a magnetic field based on a current flowing in the opposite direction to the cylindrical conductor portion 2 is generated, and these magnetic fields cancel each other, so that the cathode 10 as a whole is around the cathode based on the cathode heating current. The formation of the magnetic field is sufficiently suppressed.
このように陰極周囲の磁場形成が抑制される結果、外側の筒形導体部2の全体から熱電子が放出されやすくなり、容器Cの外側に設置された磁石Mによって形成される直線磁場に沿って運動し、該陰極10表面でもっとも電位の低い接続導体部3近傍にプラズマが集中して生成される。また、このため、プラズマから陰極10への電流の流入は筒形導体部2よりも厚みのある接続導体部3に集中し、陰極10の寿命が筒形導体部2がプラズマに曝されるときよりも長くなる。また接続導体部3の厚みは一般的に用いられる円形断面を持つ棒状陰極に比して厚くできるので、陰極寿命は一般的な陰極よりも長くなる。従って、該陰極10を用いることにより、長期にわたり安定して求めるイオンを得るためのプラズマを生成し、該イオン放出を行える。 As a result of suppressing the formation of the magnetic field around the cathode in this way, the thermal electrons are easily emitted from the entire outer cylindrical conductor portion 2, and along the linear magnetic field formed by the magnet M installed outside the container C. The plasma is concentrated and generated in the vicinity of the connection conductor portion 3 having the lowest potential on the surface of the cathode 10. For this reason, the inflow of current from the plasma to the cathode 10 is concentrated on the connecting conductor portion 3 having a thickness larger than that of the cylindrical conductor portion 2, and the lifetime of the cathode 10 is exposed to the plasma. Longer than. Moreover, since the thickness of the connection conductor part 3 can be made thicker than that of a rod-like cathode having a circular cross section that is generally used, the cathode life is longer than that of a general cathode. Therefore, by using the cathode 10, it is possible to generate plasma for obtaining ions stably obtained over a long period of time, and perform the ion emission.
また、本例では、図示のとおり、電源PW1による陰極加熱電流を筒形導体部2の根元部より先端部へ、さらに、接続導体部3を介して中心導体部1の先端部から根元部へ向け流しており、これにより接続導体部3を含む陰極先端部eがもっとも負電位になり、プラズマの照射による陰極加熱が陰極先端部eに集中するが、ここでは、前記のとおり、接続導体部3を中心導体部1の外径、筒形導体部2の肉厚より十分厚く形成することで陰極先端部eの電気抵抗を低くし、陰極先端部も筒形導体部2の根元部分と同程度の表面温度となるように加熱されるようにしてあるから、前記の磁場形成の抑制と相まって陰極表面温度を一層均一化できる。 Further, in this example, as shown in the figure, the cathode heating current from the power source PW1 is transferred from the root part of the cylindrical conductor part 2 to the tip part, and further from the tip part of the center conductor part 1 to the root part via the connection conductor part 3. As a result, the cathode tip e including the connection conductor portion 3 has the most negative potential, and the cathode heating due to plasma irradiation concentrates on the cathode tip e. Here, as described above, the connection conductor portion 3 is formed to be sufficiently thicker than the outer diameter of the central conductor portion 1 and the thickness of the cylindrical conductor portion 2 to reduce the electrical resistance of the cathode tip portion e, and the cathode tip portion is also the same as the root portion of the cylindrical conductor portion 2. Since the surface temperature is heated to a certain level, the cathode surface temperature can be made more uniform in combination with the suppression of the magnetic field formation.
また、ここでは、電源PW1による陰極加熱電流による陰極加熱の割合がプラズマから陰極10に流入する放電電流による陰極加熱の割合より大きくなるように設定してあり、放電電流にあまり影響されることなく陰極加熱電力の調整により陰極からの熱電子放出割合を容易に制御でき、これにより広い範囲で放電電流を制御して、所望密度のプラズマを形成できる。 Here, the ratio of cathode heating by the cathode heating current by the power source PW1 is set to be larger than the ratio of cathode heating by the discharge current flowing from the plasma into the cathode 10, and it is not greatly affected by the discharge current. The ratio of thermionic emission from the cathode can be easily controlled by adjusting the cathode heating power, thereby controlling the discharge current in a wide range and forming plasma with a desired density.
次に、陰極10の放電特性を調べた実験について説明する。
実験では、中心導体部1の外径1.0mm、筒形導体部2は肉厚が一様に0.1mmで外径は3.2mm、中心導体部1の長さ32mm、筒形導体部2の長さ25mm、接続導体部3の厚さが1.5mmである陰極を採用した。残留応力は予め十分除去した。
Next, an experiment for examining the discharge characteristics of the cathode 10 will be described.
In the experiment, the outer diameter of the central conductor portion 1 is 1.0 mm, the cylindrical conductor portion 2 has a uniform thickness of 0.1 mm, the outer diameter is 3.2 mm, the length of the central conductor portion 1 is 32 mm, the cylindrical conductor portion. A cathode having a length of 25 mm and a thickness of the connecting conductor portion 3 of 1.5 mm was employed. Residual stress was sufficiently removed in advance.
容器C内における磁石Mによる磁場を80ガウス程度とし、ガス圧を0.15Paに維持しつつ容器C内にアルゴンガスを導入し、該陰極に電源PW1にて種々の加熱電流を流す一方、電源PW2による放電電圧Vd〔V〕の印加に伴って陰極から放出される電子電流Id〔A〕を測定したところ、図3に示す結果を得た。 While the magnetic field by the magnet M in the container C is about 80 Gauss and the gas pressure is maintained at 0.15 Pa, argon gas is introduced into the container C and various heating currents are supplied to the cathode by the power source PW1, while the power source When the electron current Id [A] emitted from the cathode with the application of the discharge voltage Vd [V] by PW2 was measured, the result shown in FIG. 3 was obtained.
図3に示すように、放電電圧がアルゴンの電離電圧である13.5V付近で急峻な放電開始を示した。これは陰極表面に陰極加熱電流により大きな磁場が形成される従来の線材フィラメントを用いた場合の放電電流特性と大きく異なっており、陰極表面に局所的な磁場がない場合に見られる典型的な特性である。従って、非常に低い放電電圧、放電電流でも安定したプラズマの維持が可能であることを示している。生成されたプラズマの形状を観測したところ、ほぼ陰極の大きさに一致したサイズで形成されていることが確認された。 As shown in FIG. 3, the discharge started sharply when the discharge voltage was around 13.5 V, which is the ionization voltage of argon. This is significantly different from the discharge current characteristics when using a conventional wire filament in which a large magnetic field is formed on the cathode surface by the cathode heating current. Typical characteristics seen when there is no local magnetic field on the cathode surface It is. Therefore, it is shown that stable plasma can be maintained even with a very low discharge voltage and discharge current. When the shape of the generated plasma was observed, it was confirmed that the plasma was formed in a size substantially corresponding to the size of the cathode.
また赤外線カメラにより陰極の赤外線放射強度分布を調査したところ、陰極各部からほぼ均一な赤外線放射が生じており、それに対応したほぼ均一な温度分布が実現されていることが分かった。 In addition, when the infrared radiation intensity distribution of the cathode was examined with an infrared camera, it was found that almost uniform infrared radiation was generated from each part of the cathode, and a substantially uniform temperature distribution corresponding to that was realized.
本発明は、各種イオン機器において、長期にわたり安定して所望イオンを生成することに利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used to stably generate desired ions for a long time in various ion devices.
A イオン源
10 アーク放電用陰極
1 中心導体部
11 保持導体部
2 筒形導体部
21 保持導体部
3 接続導体部
e 陰極先端部
C イオン源容器
E イオン引出し電極系
M 磁石
G ガス或いは蒸気の導入口部
IS 電気絶縁体
PW1 陰極加熱用電源
PW2 放電用電源
PW3 イオン引出し用電源
CH 真空容器
A ion source 10 arc discharge cathode 1 central conductor portion 11 holding conductor portion 2 cylindrical conductor portion 21 holding conductor portion 3 connecting conductor portion e cathode tip C ion source vessel E ion extraction electrode system M magnet G introduction of gas or vapor Mouth IS Electrical insulator PW1 Cathode heating power supply PW2 Discharge power supply PW3 Ion extraction power supply CH Vacuum container
Claims (13)
The ion source according to claim 11, wherein a part of the cylindrical conductor heating power is carried by a discharge current flowing from the plasma to the cathode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004234905A JP4534078B2 (en) | 2004-08-11 | 2004-08-11 | Arc discharge cathode and ion source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004234905A JP4534078B2 (en) | 2004-08-11 | 2004-08-11 | Arc discharge cathode and ion source |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006054108A true JP2006054108A (en) | 2006-02-23 |
JP4534078B2 JP4534078B2 (en) | 2010-09-01 |
Family
ID=36031446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004234905A Expired - Fee Related JP4534078B2 (en) | 2004-08-11 | 2004-08-11 | Arc discharge cathode and ion source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4534078B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010044993A (en) * | 2008-08-18 | 2010-02-25 | Nissin Ion Equipment Co Ltd | Hot cathode and ion source provided therewith |
JP2010267504A (en) * | 2009-05-15 | 2010-11-25 | Nissin Ion Equipment Co Ltd | Ion source |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457859A (en) * | 1977-10-17 | 1979-05-10 | Hitachi Ltd | Ion source |
JPS54140100A (en) * | 1978-04-24 | 1979-10-30 | Ulvac Corp | Magnetronntype ion generator by electron bombardment heating |
JPH0584013U (en) * | 1992-04-20 | 1993-11-12 | 日新電機株式会社 | Filament structure |
JPH06243776A (en) * | 1993-02-16 | 1994-09-02 | Denki Kagaku Kogyo Kk | Thermal electric field radiation electron gun |
JPH06295693A (en) * | 1993-04-08 | 1994-10-21 | Nissin Electric Co Ltd | Ion source device |
JP2002140997A (en) * | 2000-11-02 | 2002-05-17 | Nissin Electric Co Ltd | Ion source |
-
2004
- 2004-08-11 JP JP2004234905A patent/JP4534078B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457859A (en) * | 1977-10-17 | 1979-05-10 | Hitachi Ltd | Ion source |
JPS54140100A (en) * | 1978-04-24 | 1979-10-30 | Ulvac Corp | Magnetronntype ion generator by electron bombardment heating |
JPH0584013U (en) * | 1992-04-20 | 1993-11-12 | 日新電機株式会社 | Filament structure |
JPH06243776A (en) * | 1993-02-16 | 1994-09-02 | Denki Kagaku Kogyo Kk | Thermal electric field radiation electron gun |
JPH06295693A (en) * | 1993-04-08 | 1994-10-21 | Nissin Electric Co Ltd | Ion source device |
JP2002140997A (en) * | 2000-11-02 | 2002-05-17 | Nissin Electric Co Ltd | Ion source |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010044993A (en) * | 2008-08-18 | 2010-02-25 | Nissin Ion Equipment Co Ltd | Hot cathode and ion source provided therewith |
US8188645B2 (en) | 2008-08-18 | 2012-05-29 | Nissin Ion Equipment Co., Ltd. | Hot cathode and ion source including the same |
JP2010267504A (en) * | 2009-05-15 | 2010-11-25 | Nissin Ion Equipment Co Ltd | Ion source |
Also Published As
Publication number | Publication date |
---|---|
JP4534078B2 (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8878422B2 (en) | Device for producing an electron beam | |
JP6415388B2 (en) | Plasma generator | |
WO2011046116A1 (en) | Gas field ionization ion source and ion beam device | |
US5539274A (en) | Electron beam excited plasma system | |
KR101983294B1 (en) | An Electron Structure of a Large Current Duo Plasmatron Ion Source for BNCT Accelerator and an Apparatus Comprising the Same | |
JP4359597B2 (en) | Hollow cathode discharge gun with excellent discharge stability | |
TW201737285A (en) | Indirectly heated cathode ion source and repeller for use within an ion source chamber | |
JP4401977B2 (en) | Method for producing filament used for ion source and ion source | |
JP4534078B2 (en) | Arc discharge cathode and ion source | |
US20020166975A1 (en) | Gaseous ion source feed for oxygen ion implantation | |
KR102475954B1 (en) | Apparatus and method for operating heaterless hollow cathodes, and electric space propulsion systems using such cathodes | |
JP5321234B2 (en) | Ion source | |
JP2005259606A (en) | Filament for thermal electron emission | |
JP6637285B2 (en) | Apparatus and method for generating discharge | |
JP2017107816A (en) | Filament for thermal electron emission, quadrupole mass spectrometer, and method for analyzing residual gas | |
JP6048829B2 (en) | Ion source | |
JP7197927B2 (en) | Electron beam generator and attachment member | |
KR20030084630A (en) | Ion source | |
KR100624745B1 (en) | Hollow cathode discharge gun with stable discharge characteristics | |
JPH0837099A (en) | Plasma generating device | |
JPH11109096A (en) | Surface producing type anion source | |
JP4571425B2 (en) | Plasma generator and thin film forming apparatus | |
JP2005005236A (en) | Plasma generator | |
KR200227340Y1 (en) | Ion beam generator | |
JP2940197B2 (en) | Ion source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100528 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140625 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140625 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |