JP2006053436A - Wavelength variable filter, characteristic controlling method of wavelength variable filter and wavelength variable laser - Google Patents

Wavelength variable filter, characteristic controlling method of wavelength variable filter and wavelength variable laser Download PDF

Info

Publication number
JP2006053436A
JP2006053436A JP2004236066A JP2004236066A JP2006053436A JP 2006053436 A JP2006053436 A JP 2006053436A JP 2004236066 A JP2004236066 A JP 2004236066A JP 2004236066 A JP2004236066 A JP 2004236066A JP 2006053436 A JP2006053436 A JP 2006053436A
Authority
JP
Japan
Prior art keywords
wavelength
filter
waveguide
diffraction order
ladder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004236066A
Other languages
Japanese (ja)
Other versions
JP4625285B2 (en
Inventor
Seuk Hwan Chung
錫煥 鄭
Shinji Matsuo
慎治 松尾
Yuzo Yoshikuni
裕三 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004236066A priority Critical patent/JP4625285B2/en
Publication of JP2006053436A publication Critical patent/JP2006053436A/en
Application granted granted Critical
Publication of JP4625285B2 publication Critical patent/JP4625285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength variable filter wherein a narrow-band wavelength and low loss can be realized and to provide a wavelength variable laser using the wavelength variable filter. <P>SOLUTION: The wavelength variable filter is provided with a pair of an input waveguide and an output waveguide, optical couplers disposed at a fixed interval on both the input waveguide and the output waveguide and a ladder interference type filter consisting of N (N;a natural number of 3 or more) pieces of array waveguides connecting the input waveguide to the output waveguide via the optical couplers. One or a plurality of low diffraction order regions having a fixed difference of optical path length successively from the array waveguide of a first step connected to an incident end side of the output waveguide and a high diffraction order region having fixed differences of only i pieces of array waveguides continued from an M step (M;a natural number of N-1 or less, i;a natural number of 1 or more and M+i; a natural number of N or less) so that the difference of the optical path length of the array waveguide of (M+i)th step is p-th (p;a natural number) multiple of that of the array waveguide of M-th step are connected in series. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は波長多重光通信システムの重要な光部品である波長可変フィルタ、フィルタ特性制御方法および半導体波長可変レーザに関するものである。   The present invention relates to a tunable filter, a filter characteristic control method, and a semiconductor tunable laser, which are important optical components of a wavelength division multiplexing optical communication system.

近年、インターネットトラヒックの爆発的な増大に伴い、高密度波長多重光伝送方式が導入されている。このような高密度波長多重伝送において、光源として用いられる半導体レーザはコストパフォーマンスの観点から、広帯域波長可変性を有することが強く求められ、これまで超周期構造グレーティング(SSG:super-structure grating)を用いた波長可変レーザ(例えば、非特許文献1参照)、アレー導波路格子(AWG:arrayed waveguide grating)を用いた波長可変レーザ(例えば、非特許文献2参照)やラダー干渉型フィルタおよびリング共振器 を用いた波長可変レーザ(非特許文献3参照)などが研究開発されている。   In recent years, with the explosive increase of Internet traffic, a high-density wavelength division multiplexing optical transmission system has been introduced. In such a high-density wavelength division multiplexing transmission, a semiconductor laser used as a light source is strongly required to have a broadband wavelength variability from the viewpoint of cost performance, and a super-structure grating (SSG) has been used so far. Wavelength tunable laser used (for example, see Non-Patent Document 1), wavelength tunable laser (for example, see Non-Patent Document 2) using an arrayed waveguide grating (AWG), ladder interference filter, and ring resonator A wavelength tunable laser (see Non-Patent Document 3) using a laser is being researched and developed.

図15に、従来のSSGを用いた波長可変レーザの構造図を示す。SSGは一定波長間隔(FSR:free-spectral range)で反射特性を有するグレーティングである。SSGを用いた波長可変レーザでは二つの異なるFSRを有するSSGを使用することにより、それぞれのFSRの最小公倍数に相当する波長範囲内で波長可変動作を可能する。従来のSSGを用いた波長可変レーザの場合、波長可変動作時、二つのSSG領域とともに位相調整領域の屈折率も制御する必要があるため、発振波長制御が容易ではない欠点があった。   FIG. 15 shows a structural diagram of a wavelength tunable laser using a conventional SSG. SSG is a grating having reflection characteristics at a constant wavelength interval (FSR: free-spectral range). In a wavelength tunable laser using SSG, by using SSG having two different FSRs, wavelength tunable operation is possible within a wavelength range corresponding to the least common multiple of each FSR. In the case of a wavelength tunable laser using a conventional SSG, it is necessary to control the refractive index of the phase adjustment region as well as the two SSG regions during the wavelength tunable operation.

図16に、従来のAWGを用いた波長可変レーザの構成を示す。AWGを用いた多波長選択光源の場合、発振波長数に対する半導体光増幅器(SOA:semiconductor optical amplifier )の増大や比較的長い共振器長から縦モード間隔が3GHz程度と狭くなるため、発振モード不安定の問題が危惧されていた。   FIG. 16 shows a configuration of a wavelength tunable laser using a conventional AWG. In the case of a multi-wavelength selective light source using AWG, the oscillation mode becomes unstable because the longitudinal mode interval is narrowed to about 3 GHz due to an increase in semiconductor optical amplifier (SOA) with respect to the number of oscillation wavelengths and a relatively long resonator length. The problem was concerned.

図17に、従来のラダー干渉型フィルタ1720およびリング共振器1760を用いた波長可変レーザ1700の構成を示す。ラダー干渉型フィルタとリング共振器との組み合わせで構成された波長可変レーザは、簡単な制御方法で一定波長間隔の波長をデジタル的に可変できる特徴を有する。   FIG. 17 shows a configuration of a wavelength tunable laser 1700 using a conventional ladder interference filter 1720 and a ring resonator 1760. A wavelength tunable laser composed of a combination of a ladder interference filter and a ring resonator has a feature that digitally varies the wavelength of a certain wavelength interval by a simple control method.

しかし、この波長可変レーザは、発振波長安定化のためにラダー干渉型波長フィルタの帯域を十分狭くする必要がある。ラダー干渉型波長フィルタを狭帯域化できる最も有効な方法としてアレー導波路本数の増大およびラダー干渉計の回折次数の増大が挙げられる。   However, in this wavelength tunable laser, it is necessary to sufficiently narrow the band of the ladder interference type wavelength filter in order to stabilize the oscillation wavelength. The most effective method for narrowing the band of the ladder interference type wavelength filter includes increasing the number of arrayed waveguides and increasing the diffraction order of the ladder interferometer.

Figure 2006053436
Figure 2006053436

表1は、アレー導波路の本数および回折次数の増大した場合のラダー干渉型フィルタ特性に及ぼす影響を、フィルタ損失、レーザの縦モード間隔、ラダーフィルタの透過波長間隔(FSR)および波長可変範囲の観点で示している。   Table 1 shows the effects on the ladder interference filter characteristics when the number of array waveguides and the diffraction order are increased. Filter loss, laser longitudinal mode interval, ladder filter transmission wavelength interval (FSR), and wavelength variable range Shown from the perspective.

アレー導波路本数を増大させた場合、素子サイズおよび光結合器の増大に伴い、挿入損失が増大する問題ほか、光路長の増大により、レーザの縦モード間隔も狭くなり、ラダー干渉型フィルタおよび発振波長ロック用フィルタに求められる帯域が一層狭くなる。   When the number of arrayed waveguides is increased, the insertion loss increases as the element size and optical coupler increase, and the longitudinal mode interval of the laser becomes narrower due to the increase in the optical path length. The bandwidth required for the wavelength lock filter is further narrowed.

また、アレー導波路の本数の増大に伴い、光結合器の数は必然的に増大するが、通常、光結合器は光波長により結合係数が変化する波長依存性を有する。従って、光結合器の数が増大するにつれ、ラダー干渉型フィルタ特性の波長依存性はより顕著になるため、波長可変レーザの応用では波長可変に伴い、出力パワーが一定に保たれないことが懸念される。   Further, as the number of array waveguides increases, the number of optical couplers inevitably increases, but the optical coupler usually has a wavelength dependency in which the coupling coefficient changes depending on the optical wavelength. Therefore, as the number of optical couplers increases, the wavelength dependence of the ladder interference filter characteristics becomes more conspicuous. Therefore, there is a concern that the output power may not be kept constant along with the wavelength variation in the application of the wavelength tunable laser. Is done.

一方、回折次数の増大による狭帯域化の場合、損失や縦モード間隔は一定に保たれるものの、FSRおよび波長可変範囲が回折次数に反比例して減少する問題がある。従って、波長可変レーザで用いられるSOAの利得帯域がラダー干渉型フィルタのFSRより広い場合、モードホップのようなレーザ発振特性の不安定化が問題となる。狭いFSRの問題はAWGを用いるレーザで検討されているチャーピング手法(例えば、非特許文献2参照)を導入することにより、解消可能である。   On the other hand, in the case of narrowing the band by increasing the diffraction order, the loss and the longitudinal mode interval are kept constant, but there is a problem that the FSR and the wavelength variable range decrease in inverse proportion to the diffraction order. Accordingly, when the gain band of the SOA used in the wavelength tunable laser is wider than the FSR of the ladder interference filter, destabilization of laser oscillation characteristics such as mode hops becomes a problem. The problem of the narrow FSR can be solved by introducing a chirping technique (for example, see Non-Patent Document 2) that has been studied with a laser using AWG.

しかし、波長可変範囲はラダー干渉計の回折次数に反比例するため、回折次数を増大する限り、広帯域波長可変動作はできなくなってしまう。結局、いずれの方法を用いても発振波長安定化、低損失(高出力発振)および広帯域波長可変動作を可能にするラダー干渉型波長フィルタを実現することが困難である。   However, since the wavelength variable range is inversely proportional to the diffraction order of the ladder interferometer, wideband wavelength variable operation cannot be performed as long as the diffraction order is increased. Eventually, it is difficult to realize a ladder interference type wavelength filter that enables oscillation wavelength stabilization, low loss (high power oscillation), and broadband wavelength tunable operation regardless of which method is used.

H.Ishii et al, ”Multiple-Phase-Shift Super Structure Grating DBR Lasers for Broad Wavelength Tuning”, IEEE Photonics Technology Letters, Vol.5, No.6, June 1993, pp.613-615H.Ishii et al, “Multiple-Phase-Shift Super Structure Grating DBR Lasers for Broad Wavelength Tuning”, IEEE Photonics Technology Letters, Vol.5, No.6, June 1993, pp.613-615 C.R.Doerr et al, ”Chirped Waveguide Granting Router Multifrequency Laser with Absolute Wavelength Control”, IEEE Photonics Technology Letters, Vol.8, No.12, December 1993, pp.1606-1608C.R.Doerr et al, “Chirped Waveguide Granting Router Multifrequency Laser with Absolute Wavelength Control”, IEEE Photonics Technology Letters, Vol.8, No.12, December 1993, pp.1606-1608 S.Matsuo et al, ”Digitally tunable laser using ladder filter and ring resonator”, Proceedings ECOC 2003, September 2003, pp884-885S. Matsuo et al, “Digitally tunable laser using ladder filter and ring resonator”, Proceedings ECOC 2003, September 2003, pp884-885

本発明は、狭帯域化、低損失化および波長可変範囲の増大が可能なラダー干渉型波長フィルタを提供することを目的とする。また、当該ラダー干渉型波長フィルタを発振波長選択素子として用いことにより、発振波長安定化、高出力動作および広帯域波長可変動作が可能な波長可変レーザを提供することを目的とする。   An object of the present invention is to provide a ladder interference type wavelength filter capable of narrowing the band, reducing the loss, and increasing the wavelength variable range. It is another object of the present invention to provide a wavelength tunable laser capable of stabilizing the oscillation wavelength, performing high output operation, and broadband wavelength tunable operation by using the ladder interference type wavelength filter as an oscillation wavelength selection element.

本発明は、このような目的を達成するために、請求項1に記載の発明は、一対の入力導波路および出力導波路と、前記入力導波路および前記出力導波路に一定の間隔で配置された光結合器と、前記光結合器を介して入力導波路と出力導波路との間を接続するN本(N;3以上の自然数)のアレー導波路からなるラダー干渉型フィルタとを備えた波長可変フィルタであって、前記入力導波路の入射端側に接続された1段目のアレー導波路から順番に一定の光路長差を有する1つまたは複数の低回折次数領域と、M段目から連続するi個(M;N−1以下の自然数、i;1以上の自然数、M+i;N以下)のアレー導波路の光路長差のみ、一定の光路長差を、M段目アレー導波路と(M+i)段目のアレー導波路の光路長差がp倍(pは自然数)とした高回折次数領域とが直列結合されたことを特徴とする。   In order to achieve such an object, the present invention according to claim 1 includes a pair of input waveguides and output waveguides, and the input waveguides and the output waveguides arranged at regular intervals. And a ladder interference filter comprising N (N; natural number of 3 or more) array waveguides connecting between the input waveguide and the output waveguide via the optical coupler. One or a plurality of low diffraction order regions having a certain optical path length difference in order from the first-stage array waveguide connected to the incident end side of the input waveguide; The optical path length difference of only i (M; natural number less than or equal to N−1, i; natural number greater than or equal to 1, M + i; N or less) array path length difference is determined as an M-th array waveguide. And (M + i) stage optical waveguide length difference is p times (p is a natural number) A high diffraction orders regions is equal to or coupled in series.

請求項2に記載の発明は、請求項1に記載の波長可変フィルタであって、前記高回折次数領域における前記M段目から前記(M+i)段目までのアレー導波路に接続された前記光結合器の光結合率を適正化したことを特徴とする。   The invention according to claim 2 is the wavelength tunable filter according to claim 1, wherein the light connected to the arrayed waveguide from the M-th stage to the (M + i) -th stage in the high diffraction order region. The optical coupling rate of the coupler is optimized.

請求項3に記載の発明は、請求項1または2に記載の波長可変フィルタであって、前記光結合器の間の前記導波路上に配置された一定の長さの電極をさらに備え、前記高回折次数領域に配置された前記電極の長さのみを、前記低回折次数領域に配置された前記電極の長さのp倍にしたことを特徴とする。   A third aspect of the present invention is the wavelength tunable filter according to the first or second aspect, further comprising an electrode having a certain length disposed on the waveguide between the optical couplers, Only the length of the electrode arranged in the high diffraction order region is set to p times the length of the electrode arranged in the low diffraction order region.

請求項4に記載の発明は、波長可変レーザであって、請求項1ないし3のいずれかに記載の波長可変フィルタと、当該波長可変フィルタからの出力光が入射される発振波長ロック用フィルタと、前記発振波長ロック用フィルタからの出力光を増幅する半導体光増幅器とを備えたことを特徴とする。   A fourth aspect of the present invention is a wavelength tunable laser, the wavelength tunable filter according to any one of the first to third aspects, and an oscillation wavelength lock filter into which output light from the wavelength tunable filter is incident. And a semiconductor optical amplifier for amplifying output light from the oscillation wavelength locking filter.

請求項5に記載の発明は、請求項4に記載の波長可変レーザであって、発振波長ロック用フィルタは、リング共振器であることを特徴とする。   The invention according to claim 5 is the wavelength tunable laser according to claim 4, wherein the oscillation wavelength lock filter is a ring resonator.

請求項6に記載の発明は、波長可変フィルタのフィルタ特性制御方法であって、請求項3に記載の波長可変フィルタにおいて、前記可変フィルタの中心波長を短波長側にシフトする場合に前記入力導波路に配置された電極に電流注入し、前記可変フィルタの中心波長を長波長側にシフトする場合に前記出力導波路に配置された電極に電流注入することを特徴とする。   The invention described in claim 6 is a filter characteristic control method for a wavelength tunable filter, wherein in the wavelength tunable filter according to claim 3, when the center wavelength of the tunable filter is shifted to the short wavelength side, the input guide is provided. Current is injected into an electrode arranged in the waveguide, and current is injected into the electrode arranged in the output waveguide when the center wavelength of the variable filter is shifted to the long wavelength side.

本発明によればアレー導波路の導波路の本数およびラダー干渉計の回折次数を増大させずに狭帯域化、低損失化および波長可変範囲の増大が可能なラダー干渉型波長フィルタを提供することができる。また、本発明に係るラダー干渉型波長フィルタを発振波長選択素子として用いことにより、発振波長安定化、高出力動作および広帯域波長可変動作が可能な波長可変レーザを提供することができる。   According to the present invention, there is provided a ladder interference type wavelength filter capable of narrowing the band, reducing the loss and increasing the wavelength variable range without increasing the number of waveguides of the arrayed waveguide and the diffraction order of the ladder interferometer. Can do. In addition, by using the ladder interference type wavelength filter according to the present invention as an oscillation wavelength selection element, it is possible to provide a wavelength tunable laser capable of oscillation wavelength stabilization, high output operation, and broadband wavelength tunable operation.

以下、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1を参照して本発明の第1の実施形態を説明する。図1に、第1の実施形態に係る波長可変レーザの構成を示す。波長可変レーザ100は、一対の入力導波路102および出力導波路104と、入力導波路102および出力導波路104に所定の間隔で配置された光結合器130−1〜130−Nおよび132−1〜132−Nと、光結合器130−1〜130−Nおよび132−1〜132−Nを介して入力導波路102と出力導波路104との間を接続するN本(N;3以上の自然数)のアレー導波路140−1から140−Nとから構成されたラダー干渉型波長フィルタ120と、ラダー干渉型波長フィルタ120からの出力光が入射される発振波長ロック用フィルタとしてのリング共振器160と、リング共振器160からの出力光を増幅する半導体光増幅器180と、入力導波路102の入射端および半導体光増幅器180の出射端にそれぞれ接続された反射ミラー(反射膜)190とを備える。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a configuration of a wavelength tunable laser according to the first embodiment. The wavelength tunable laser 100 includes a pair of an input waveguide 102 and an output waveguide 104, and optical couplers 130-1 to 130-N and 132-1 disposed in the input waveguide 102 and the output waveguide 104 at predetermined intervals. ˜132-N and N (N; 3 or more) connecting the input waveguide 102 and the output waveguide 104 via the optical couplers 130-1 to 130-N and 132-1 to 132-N (A natural number) array waveguides 140-1 to 140-N, and a ring resonator as an oscillation wavelength lock filter into which output light from the ladder interference type wavelength filter 120 is incident. 160, a semiconductor optical amplifier 180 that amplifies output light from the ring resonator 160, and an input end of the input waveguide 102 and an output end of the semiconductor optical amplifier 180, respectively. It continued the reflected mirror and a (reflective film) 190.

また、ラダー干渉型波長フィルタ120は、回折次数の異なる二つのラダー干渉計、つまり、低回折次数領域122と高回折次数領域124との従属接続により構成される。   Further, the ladder interference type wavelength filter 120 is constituted by two ladder interferometers having different diffraction orders, that is, a subordinate connection between the low diffraction order region 122 and the high diffraction order region 124.

アレー導波路の本数をNとし、入力導波路102の入射端のアレー導波路を1段目のアレー導波路とした場合、低回折次数領域のアレー導波路長は1段目から(N−1)段目のアレー導波路まで順次ΔSずつ増大し、次式を満足する波長(λ)で透過率が最大になる。
λ=(n0effΔS)/m ・・・(1)
When the number of array waveguides is N and the array waveguide at the incident end of the input waveguide 102 is the first-stage array waveguide, the array waveguide length in the low diffraction order region is (N−1) from the first stage. ) Sequentially increases by ΔS up to the stage array waveguide, and the transmittance is maximized at a wavelength (λ 0 ) that satisfies the following equation.
λ 0 = (n 0 eff ΔS) / m (1)

ここで、neffは光導波路の実効屈折率およびmはラダー干渉計の回折次数である。一方、高回折次数領域は1段のラダー干渉計で構成され、(N−1)段目のアレー導波路140−(N−1)とN段目のアレー導波路140−Nとの光路長差をp×ΔSにすれば、この領域のラダー干渉計の回折次数は低回折次数領域よりp倍(pは自然数)大きい回折次数を有する。従って、透過率が最大になる波長(λ)は次式で表される。
λ=(neffpΔS)/(p×m)=(neffΔS)/m ・・・(2)
Here, n eff is the effective refractive index of the optical waveguide, and m is the diffraction order of the ladder interferometer. On the other hand, the high diffraction order region is composed of a one-stage ladder interferometer, and the optical path length between the (N-1) -th array waveguide 140- (N-1) and the N-th array waveguide 140-N. If the difference is p × ΔS, the diffraction order of the ladder interferometer in this region has a diffraction order that is p times larger than the low diffraction order region (p is a natural number). Therefore, the wavelength (λ 1 ) that maximizes the transmittance is expressed by the following equation.
λ 1 = (n eff pΔS) / (p × m) = (n eff ΔS) / m (2)

従って、上式から分かるように、ラダー干渉型フィルタ120における低回折次数領域122と高回折次数領域124の中心ピーク波長は一致する。この場合、中心ピーク波長の透過率およびFSRは低回折次数領域により求められる。一方、高回折次数を有するラダー干渉計は中心ピーク波長近傍を狭帯域化する役割をする。尚、反射ミラー190は、光帰還構造のために設けた反射膜である。   Therefore, as can be seen from the above equation, the center peak wavelengths of the low diffraction order region 122 and the high diffraction order region 124 in the ladder interference filter 120 coincide. In this case, the transmittance and FSR of the center peak wavelength are obtained from the low diffraction order region. On the other hand, a ladder interferometer having a high diffraction order serves to narrow the band near the center peak wavelength. The reflection mirror 190 is a reflection film provided for the optical feedback structure.

図17に示す従来の波長可変レーザ(例えば、非特許文献3参照)と比べ、ラダー干渉型波長フィルタが低回折次数領域と高回折次数領域とを有することが特徴である。   Compared with the conventional wavelength tunable laser shown in FIG. 17 (for example, see Non-Patent Document 3), the ladder interference type wavelength filter has a low diffraction order region and a high diffraction order region.

図2は、ラダー干渉型波長フィルタ120と直列結合されたリング共振器160の透過スペクトルを計算機により計算した結果である。リング共振器160のピーク波長間隔は100GHzとなっている。図2(a)は、従来のラダー干渉型フィルタによる波長スペクトル特性、および図2(b)は第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタによる波長スペクトル特性である。ここで、ラダー干渉計の回折次数を40、アレー導波路の本数を15およびラダーフィルタで用いた光結合器の光結合率は0.85とした。但し、第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタについては、高回折次数領域のpを15とした。図2(a)および(b)の実線に示すように、発振モードは直列接続されたラダー干渉型フィルタとリング共振器の波長スペクトル特性で決まり、発振波長の安定性は、ラダー干渉型フィルタの中心波長(λ)と一致するリング共振器のリング共振ピークおよびそれに隣接するリング共振ピーク間の抑圧比により決まる。図2(b)に示すように、低回折次数領域122と高回折次数領域124とを有するラダー干渉型フィルタ120の場合、3−dB帯域は1.65nmであり、図2(a)に示す従来のラダー干渉型フィルタ(2.07nm)に比べて狭帯域化できるため、隣接するリング共振ピーク間の抑圧比も2.3dBから3.4dBに増大し、発振波長の安定化が可能になる。 FIG. 2 shows a calculation result of a transmission spectrum of the ring resonator 160 coupled in series with the ladder interference type wavelength filter 120 by a computer. The peak wavelength interval of the ring resonator 160 is 100 GHz. FIG. 2A shows the wavelength spectrum characteristics of the conventional ladder interference filter, and FIG. 2B shows the wavelength spectrum characteristics of the ladder interference filter in the wavelength tunable laser according to the first embodiment. Here, the diffraction order of the ladder interferometer is 40, the number of array waveguides is 15, and the optical coupling factor of the optical coupler used in the ladder filter is 0.85. However, for the ladder interference filter in the wavelength tunable laser according to the first embodiment, p in the high diffraction order region is set to 15. As shown by the solid lines in FIGS. 2A and 2B, the oscillation mode is determined by the wavelength spectrum characteristics of the ladder interference filter and the ring resonator connected in series, and the stability of the oscillation wavelength is determined by the ladder interference filter. It is determined by the suppression ratio between the ring resonance peak of the ring resonator that matches the center wavelength (λ 0 ) and the adjacent ring resonance peak. As shown in FIG. 2B, in the case of the ladder interference filter 120 having the low diffraction order region 122 and the high diffraction order region 124, the 3-dB band is 1.65 nm, which is shown in FIG. Since the band can be narrowed compared with the conventional ladder interference filter (2.07 nm), the suppression ratio between adjacent ring resonance peaks is increased from 2.3 dB to 3.4 dB, and the oscillation wavelength can be stabilized. .

しかし、第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタではアレー導波路の本数を保持しながら、高回折次数領域を設けたため、必然的に素子サイズが増大するほか、光路長の増大により、レーザ共振器の縦モード間隔も狭くなる問題が生じる。   However, since the ladder interference filter in the wavelength tunable laser according to the first embodiment has a high diffraction order region while maintaining the number of array waveguides, the element size naturally increases, and the optical path length increases. This causes a problem that the longitudinal mode interval of the laser resonator is also narrowed.

従って、この問題を克服するためには、低回折次数領域のアレー導波路の本数を減少させなければいけない。第1の実施形態に係る波長可変レーザ100におけるラダー干渉型フィルタ120が、15本のアレー導波路を有する従来のラダー干渉型フィルタと同じ素子サイズを有するためには、例えば、アレー導波路の本数を8とした場合には、高回折次数領域のpを8とし、あるいはアレー導波路の本数を12とした場合には、高回折次数領域のpを4になればよい。つまり、高回折次数領域のpが増大するほど、全体のアレー導波路本数を減らすことができ、低回折次数領域のアレー導波路の本数を増大させるほど、従来のラダー干渉型フィルタ特性に近づく。   Therefore, in order to overcome this problem, the number of array waveguides in the low diffraction order region must be reduced. In order for the ladder interference filter 120 in the wavelength tunable laser 100 according to the first embodiment to have the same element size as the conventional ladder interference filter having 15 array waveguides, for example, the number of array waveguides Is set to 8, p in the high diffraction order region is set to 8, or when the number of array waveguides is set to 12, p in the high diffraction order region is set to 4. That is, as the p in the high diffraction order region increases, the total number of array waveguides can be reduced, and as the number of array waveguides in the low diffraction order region increases, it approaches the conventional ladder interference filter characteristics.

図3は、(ラダー干渉計の回折次数を40、アレー導波路の本数を15とした)従来のラダー干渉型フィルタのスペクトル特性と、従来のラダー干渉型フィルタと同じ素子サイズを有する本発明の第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタの波長スペクトル特性を示している。図3(a)に、アレー導波路の本数を14、高回折次数領域のpを2とした場合の第1の実施形態に係る波長可変レーザ100におけるラダー干渉型フィルタ120の波長スペクトル特性を示し、図3(b)に、アレー導波路の本数を11、高回折次数領域のpを5とした場合の第1の実施形態に係る波長可変レーザ100におけるラダー干渉型フィルタ120の波長スペクトル特性を示す。   FIG. 3 shows the spectral characteristics of a conventional ladder interference filter (with the diffraction order of the ladder interferometer being 40 and the number of array waveguides being 15) and the same element size as that of the conventional ladder interference filter. The wavelength spectrum characteristic of the ladder interference type filter in the wavelength variable laser which concerns on 1st Embodiment is shown. FIG. 3A shows the wavelength spectrum characteristics of the ladder interference filter 120 in the wavelength tunable laser 100 according to the first embodiment when the number of arrayed waveguides is 14 and p in the high diffraction order region is 2. FIG. 3B shows the wavelength spectrum characteristics of the ladder interference filter 120 in the tunable laser 100 according to the first embodiment when the number of array waveguides is 11 and p in the high diffraction order region is 5. Show.

図3(a)に示すように、従来のラダー干渉型フィルタに比べ、本発明のラダー干渉型フィルタの透過帯域は若干広いことが分かる。これはアレー導波路の本数の減少によるフィルタ帯域の広がりが高回折次数領域による狭帯域化効果より顕著であることを意味する。   As shown in FIG. 3A, it can be seen that the transmission band of the ladder interference filter of the present invention is slightly wider than that of the conventional ladder interference filter. This means that the broadening of the filter band due to the decrease in the number of array waveguides is more remarkable than the narrowing effect due to the high diffraction order region.

次に図4を参照して、本発明の第2の実施形態に係るラダー干渉型波長フィルタ420を説明する。   Next, referring to FIG. 4, a ladder interference type wavelength filter 420 according to a second embodiment of the present invention will be described.

第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタ120では、高回折次数領域による狭帯域化効果を高めるためにはpを増大することが有効であるが、それとともに低回折次数領域のアレー導波路本数は減少する。この場合、図3(b)に示すように、フィルタ帯域がさらに広がってしまい、素子サイズを増大しないまま、高回折次数領域のみによる狭帯域化は困難である。   In the ladder interference filter 120 in the wavelength tunable laser according to the first embodiment, it is effective to increase p in order to increase the narrowing effect by the high diffraction order region. The number of array waveguides decreases. In this case, as shown in FIG. 3B, the filter band is further widened, and it is difficult to narrow the band only by the high diffraction order region without increasing the element size.

図4に、高回折次数領域の位置を変化させたラダー干渉型フィルタの構成を示す。ラダー干渉型フィルタ420は、一対の入力導波路402および出力導波路404と、入力導波路402および出力導波路404に所定の間隔で配置された光結合器430−1〜430−Nおよび432−1〜432−Nと、光結合器430−1〜430−Nおよび432−1〜432−Nを介して入力導波路402と出力導波路404との間を接続するN本(N;4以上の自然数)のアレー導波路440−1から440−Nとから構成される。   FIG. 4 shows the configuration of a ladder interference filter in which the position of the high diffraction order region is changed. Ladder interference filter 420 includes a pair of input waveguide 402 and output waveguide 404, and optical couplers 430-1 to 430-N and 432- arranged in input waveguide 402 and output waveguide 404 at predetermined intervals. 1 to 432-N, and N (N; 4 or more) connecting the input waveguide 402 and the output waveguide 404 via the optical couplers 430-1 to 430-N and 432-1 to 432-N (Natural number) array waveguides 440-1 to 440-N.

アレー導波路の本数をNとし、入力導波路402の入射端のアレー導波路を1段目のアレー導波路とした場合、1段目からM段目(M;2以上、N−1以下の自然数)および(M+1)段目からN段目までのアレー導波路の導波路長が順次ΔSずつ増大する2つの低回折次数領域422と、M段目のアレー導波路と(M+1)段目のアレー導波路との光路長の差がΔSのp倍である高回折次数領域424とが従属接続された構成となっている。   When the number of array waveguides is N and the array waveguide at the incident end of the input waveguide 402 is the first-stage array waveguide, the first to M-th stages (M; 2 or more and N-1 or less) Natural number) and two low diffraction order regions 422 in which the waveguide lengths of the array waveguides from the (M + 1) -th stage to the N-th stage sequentially increase by ΔS, the M-th array waveguide, and the (M + 1) -th stage A high diffraction order region 424 in which a difference in optical path length from the array waveguide is p times ΔS is cascade-connected.

第2の実施形態に係るラダー干渉型フィルタ420は、第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタと比べて、低回折次数領域と従属接続(直列結合)される高回折次数領域の位置のみを変化させることを特徴とする。これにより、素子サイズを増大せず、狭帯域化特性を得ることができる。   The ladder interference filter 420 according to the second embodiment is a high diffraction order region that is subordinately connected (series coupled) to the low diffraction order region as compared with the ladder interference filter in the wavelength tunable laser according to the first embodiment. Only the position of is changed. Thereby, it is possible to obtain a narrow band characteristic without increasing the element size.

この場合、アレー導波路の本数、回折次数および光結合器の光結合率は図1に示す第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタと同様とすることができる。   In this case, the number of array waveguides, the diffraction order, and the optical coupling rate of the optical coupler can be the same as those of the ladder interference filter in the wavelength tunable laser according to the first embodiment shown in FIG.

図5に、図4に示すラダー干渉型フィルタの波長スペクトル特性を示す。高回折次数領域の接続位置を変化させることにより、狭帯域化特性が得られることが確認できる。このようなフィルタスペクトル特性の大きな変化は高回折次数領域の接続位置の変化によるラダー干渉型フィルタの伝達関数の変化に起因する。この場合、ラダー干渉型フィルタの透過帯域は高回折次数領域の接続位置に依存して変化する。最も良好な狭帯域波長特性を得るためには高回折次数領域の接続位置を低回折次数領域の中心にすればいいが、狭帯域化に伴い、フィルタ特性の消光比が減少する問題点がある。   FIG. 5 shows the wavelength spectrum characteristics of the ladder interference filter shown in FIG. It can be confirmed that the band narrowing characteristic can be obtained by changing the connection position of the high diffraction order region. Such a large change in filter spectral characteristics is caused by a change in the transfer function of the ladder interference filter due to a change in the connection position in the high diffraction order region. In this case, the transmission band of the ladder interference filter changes depending on the connection position of the high diffraction order region. In order to obtain the best narrowband wavelength characteristics, the connection position of the high diffraction order region may be set to the center of the low diffraction order region, but there is a problem that the extinction ratio of the filter characteristics decreases as the bandwidth becomes narrower. .

従って、高回折次数領域の接続位置を変化させる方法ではフィルタの狭帯域化と消光比とのトレードオフが生じる。   Therefore, the method of changing the connection position in the high diffraction order region causes a tradeoff between the narrowing of the filter and the extinction ratio.

尚、本実施形態では、1つの高回折次数領域のみを有するラダー干渉型フィルタの例を示したが、複数の高回折次数領域を有することもできる。   In the present embodiment, an example of a ladder interference filter having only one high diffraction order region has been described, but a plurality of high diffraction order regions can also be provided.

次に図7〜8を参照して第3の実施形態に係るラダー干渉型フィルタを説明する。第3の実施形態に係るラダー干渉型フィルタは、第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタ120ラダー干渉型フィルタの光結合器130−1〜130−Nおよび132−1〜132−Nの光結合率(κ)を適正化することを特徴とする。これにより、狭帯域化を可能とし、あるいは低損失化を可能とするラダー干渉型フィルタを提供することができる。   Next, a ladder interference filter according to the third embodiment will be described with reference to FIGS. The ladder interference filter according to the third embodiment includes optical couplers 130-1 to 130-N and 132-1 to 132 of the ladder interference filter 120 in the wavelength tunable laser according to the first embodiment. It is characterized by optimizing the optical coupling rate (κ) of -N. As a result, it is possible to provide a ladder interference filter that can narrow the band or reduce the loss.

第2の実施形態に係る可変波長レーザにおけるラダー干渉型フィルタ420では、高回折次数領域424の接続位置を変化させることにより狭帯域化が得られたものの、ラダーフィルタの消光比とのトレードオフが問題となった。   In the ladder interference filter 420 in the tunable wavelength laser according to the second embodiment, although the narrow band is obtained by changing the connection position of the high diffraction order region 424, there is a trade-off with the extinction ratio of the ladder filter. It became a problem.

図6に、第3の実施形態に係るラダー干渉型フィルタ、即ち第1の実施形態に係る波長可変レーザにおけるラダー干渉型フィルタ120において、光結合器130−1〜130−(N−1)および132−1〜132−(N−1)の光結合率(κ)を0.85と設定し、N段目のアレー導波路140−Nに接続された光結合器130−Nおよび132−Nの光結合率(κ)のみ0.5に設定した場合の波長スペクトル特性を示している。   FIG. 6 shows an optical coupler 130-1 to 130- (N-1) in the ladder interference filter according to the third embodiment, that is, the ladder interference filter 120 in the wavelength tunable laser according to the first embodiment. The optical coupling ratios (κ) of 132-1 to 132- (N-1) are set to 0.85, and the optical couplers 130-N and 132-N connected to the N-th array waveguide 140-N. The wavelength spectrum characteristics when only the optical coupling ratio (κ) is set to 0.5 are shown.

つまり、高回折次数領域の接続位置は変化せずに、光結合器の光結合率(κ)のみ適正化した構成となっている。図6は、アレー導波路の本数を11、および高回折次数領域のpを5とした場合の波長スペクトル特性を示す。図6に示すように、光結合率(κ)を適正化することにより、従来ラダー干渉型フィルタに比べて、素子サイズを増大させず、ラダー干渉型フィルタの3−dB帯域を狭帯域化させることができることが確認できる。   That is, the connection position in the high diffraction order region is not changed, and only the optical coupling rate (κ) of the optical coupler is optimized. FIG. 6 shows wavelength spectrum characteristics when the number of array waveguides is 11 and p in the high diffraction order region is 5. As shown in FIG. 6, by optimizing the optical coupling rate (κ), the 3-dB band of the ladder interference filter is narrowed without increasing the element size as compared with the conventional ladder interference filter. It can be confirmed that

また、図5に示した高回折次数領域の接続位置を変化させた場合の波長スペクトル特性に比べてフィルタ消光比が3dBほど増大することから、第1の実施形態に係る波長可変レーザに用いた場合に、当該波長可変レーザの発振波長安定化させることができる。   Further, since the filter extinction ratio is increased by about 3 dB compared to the wavelength spectrum characteristic when the connection position of the high diffraction order region shown in FIG. 5 is changed, the filter was used for the wavelength tunable laser according to the first embodiment. In this case, the oscillation wavelength of the wavelength tunable laser can be stabilized.

ラダー干渉型波長フィルタで用いられる光結合器の光結合率(κ)は、透過波長ピークの損失が最小になるように設定する必要がある。通常、光結合器として用いられる方向性結合器や多モード干渉(MMI:multi-mode interference)結合器は入力光波長により結合特性が異なる波長依存性を有する。   The optical coupling rate (κ) of the optical coupler used in the ladder interference type wavelength filter needs to be set so that the loss of the transmission wavelength peak is minimized. In general, a directional coupler or a multi-mode interference (MMI) coupler used as an optical coupler has a wavelength dependency in which a coupling characteristic varies depending on an input light wavelength.

従って、光結合器の数が増えれば増えるほど波長依存性が顕著になり、ラダー干渉型フィルタの波長可変動作に伴い、透過ピークの損失が増大するため、レーザ特性を劣化させる原因となる。本発明の様々な実施形態に係るラダー干渉型フィルタは、比較的少ない光結合器を用いて狭帯域化できるため、フィルタ素子の挿入損失やスペクトル特性の波長依存性を低減することが期待できる。   Therefore, as the number of optical couplers increases, the wavelength dependence becomes more prominent, and the loss of the transmission peak increases with the wavelength variable operation of the ladder interference filter, which causes the laser characteristics to deteriorate. Since the ladder interference filter according to various embodiments of the present invention can be narrowed using a relatively small number of optical couplers, it can be expected to reduce the insertion loss of filter elements and the wavelength dependence of spectral characteristics.

図7(a)および(b)の各々に、光結合器としてMMI結合器を用いた従来のラダー干渉型フィルタおよび第3の実施形態に係るラダー干渉型フィルタの波長スペクトル特性の計算機による計算結果をそれぞれ示す。図7に示す数値計算ではMMI結合器の波長依存性を考慮するために、MMI結合器の結合係数を波長に対する関数とした。また、MMI結合器の挿入損失を0.2dB/個、光導波路の伝搬損失を0.46dB/cmとした。   In each of FIGS. 7A and 7B, calculation results of wavelength spectral characteristics of a conventional ladder interference filter using an MMI coupler as an optical coupler and a ladder interference filter according to the third embodiment are calculated by a computer. Respectively. In the numerical calculation shown in FIG. 7, in order to consider the wavelength dependence of the MMI coupler, the coupling coefficient of the MMI coupler is a function with respect to the wavelength. Further, the insertion loss of the MMI coupler was 0.2 dB / piece, and the propagation loss of the optical waveguide was 0.46 dB / cm.

また、従来のラダー干渉型フィルタについては、アレー導波路の本数を15、および回折次数を40とした。第3の実施形態に係るラダー干渉型フィルタについては、アレー導波路の本数を10、回折次数を40および高回折次数領域に係わるパラメータpを5とした。   In the conventional ladder interference filter, the number of array waveguides is 15 and the diffraction order is 40. In the ladder interference filter according to the third embodiment, the number of array waveguides is 10, the diffraction order is 40, and the parameter p related to the high diffraction order region is 5.

図7(a)および(b)に示すように、MMI結合器の光結合率(κ)が波長依存性を有するため、所望の回折次数(m)による透過帯域前後の回折次数(m+1)および(m−1)による透過ピークは減少していることが分かる。第3の実施形態に係るラダー干渉型フィルタの場合、狭帯域化に必要とするMMI結合器が少ないため、従来のラダー干渉型フィルタに比べてスペクトル特性の波長依存性が弱いこと、また中心ピーク波長の透過率(−5.5dB)が従来のラダー干渉型フィルタ(−6.9dB)よりも高く得られることが利点としてある。   As shown in FIGS. 7A and 7B, since the optical coupling rate (κ) of the MMI coupler has wavelength dependence, the diffraction orders (m + 1) before and after the transmission band according to the desired diffraction order (m) and It can be seen that the transmission peak due to (m-1) decreases. In the case of the ladder interference filter according to the third embodiment, since the number of MMI couplers required for narrowing the band is small, the wavelength dependence of the spectral characteristics is weaker than that of the conventional ladder interference filter, and the center peak The advantage is that the wavelength transmittance (−5.5 dB) can be obtained higher than that of the conventional ladder interference filter (−6.9 dB).

従って、第1の実施形態に係る波長可変レーザに、第3の実施形態に係るラダー干渉型波長フィルタを用いれば、狭帯域化による発振モード安定化、高出力発振および波長可変動作に伴う出力パワーの波長依存性の低減が可能になる。   Therefore, if the ladder interference type wavelength filter according to the third embodiment is used for the wavelength tunable laser according to the first embodiment, the oscillation mode is stabilized by narrowing the band, the output power associated with the high output oscillation and the wavelength variable operation It becomes possible to reduce the wavelength dependence of the.

第3の実施形態に係るラダー干渉型フィルタは、従来のラダー干渉型フィルタと比べ、少ないアレー導波路本数のみならず、小さい回折次数を用いて狭帯域波長スペクトル特性が実現可能である。従って、第1の実施形態に係る波長可変レーザの発振特性を劣化させずに波長可変範囲の拡大が期待できる。   The ladder interference filter according to the third embodiment can realize a narrowband wavelength spectrum characteristic by using not only a small number of array waveguides but also a small diffraction order as compared with a conventional ladder interference filter. Therefore, it is possible to expect an expansion of the wavelength variable range without deteriorating the oscillation characteristics of the wavelength variable laser according to the first embodiment.

図8に、従来のラダー干渉型フィルタの回折次数より小さい回折次数を有するラダー干渉型フィルタの波長スペクトル特性を示している。この数値計算では図7と同様に光導波路の伝搬損失およびMMI結合器の挿入損失と波長依存性を考慮している。   FIG. 8 shows the wavelength spectrum characteristics of a ladder interference filter having a diffraction order smaller than that of a conventional ladder interference filter. In this numerical calculation, the propagation loss of the optical waveguide, the insertion loss of the MMI coupler, and the wavelength dependence are taken into consideration as in FIG.

従来のラダー干渉型フィルタについては、アレー導波路の本数を15および回折次数を40とした。本実施例のラダー干渉型フィルタについては、アレー導波路の本数を8、回折次数を30および高回折次数領域のパラメータpを8とした。光結合器の光結合率(κ)は中心波長(λ=1.55μm)で0.85とした。但し、高回折次数領域のアレー導波路に接続された光結合器の光結合率(κ)のみ0.5(λ=1.55μm)に設定した。 For the conventional ladder interference filter, the number of array waveguides is 15 and the diffraction order is 40. For the ladder interference filter of this example, the number of array waveguides was 8, the diffraction order was 30, and the parameter p in the high diffraction order region was 8. The optical coupling rate (κ) of the optical coupler was 0.85 at the center wavelength (λ 0 = 1.55 μm). However, only the optical coupling rate (κ) of the optical coupler connected to the arrayed waveguide in the high diffraction order region was set to 0.5 (λ 0 = 1.55 μm).

図8に示すように、本発明のラダー干渉型フィルタは比較的小さい回折次数を用い、素子サイズを増大せずに、従来のラダー干渉型フィルタと同程度の透過帯域が実現できる。また、光結合器の数が少ないことから低損失化および低波長依存スペクトル特性が可能になる。通常、屈折率変化によるラダー干渉型フィルタの透過ピーク波長変化量(Δλ)は次式のように表される。
Δλ=ΔnL/m ・・・(3)
As shown in FIG. 8, the ladder interference filter of the present invention uses a relatively small diffraction order, and can achieve a transmission band comparable to that of a conventional ladder interference filter without increasing the element size. In addition, since the number of optical couplers is small, low loss and low wavelength dependent spectral characteristics are possible. Usually, the amount of change in transmission peak wavelength (Δλ) of a ladder interference filter due to a change in refractive index is expressed by the following equation.
Δλ = ΔnL e / m (3)

ここで、ΔnおよびLはそれぞれ屈折率変化量および屈折率変化領域長である。つまり、本発明のラダー干渉型フィルタは従来構造より小さい回折次数を用いていることから同じΔnに対して大きなΔλが得られるため、広帯域波長可変動作が可能になる。また、透過帯域間のFSRが広くなるため、所望の波長領域以外でのレーザ発振を抑制できる利点もある。 Here, [Delta] n and L e are each refractive index change amount and the refractive index change region length. That is, since the ladder interference filter of the present invention uses a diffraction order smaller than that of the conventional structure, a large Δλ can be obtained with respect to the same Δn, so that a broadband wavelength variable operation is possible. Further, since the FSR between the transmission bands is widened, there is an advantage that laser oscillation outside the desired wavelength region can be suppressed.

図9に、本発明の第3の実施形態に従って、実際に作製したラダー干渉型フィルタの波長スペクトル特性を示す。実線は従来のラダー干渉型フィルタの波長スペクトル特性を、破線は本発明によるラダー干渉型フィルタの波長スペクトル特性を示す。試作素子の作製条件は上記図8の数値計算と同じである。   FIG. 9 shows the wavelength spectrum characteristics of the ladder interference filter actually manufactured according to the third embodiment of the present invention. A solid line indicates the wavelength spectrum characteristic of the conventional ladder interference filter, and a broken line indicates the wavelength spectrum characteristic of the ladder interference filter according to the present invention. The production conditions of the prototype device are the same as those of the numerical calculation in FIG.

図9に示すように、本発明のラダー干渉型フィルタ帯域は2.08nmと観測され、従来のラダー干渉型フィルタの帯域(2.04nm)とほぼ同じでありながら、透過ピークのFSRは比較的広く、中心透過ピークの透過率は1.5dBほど高く、フィルタ特性の波長依存性は小さいことを確認することができる。   As shown in FIG. 9, the ladder interference filter band of the present invention is observed to be 2.08 nm, which is almost the same as the band of the conventional ladder interference filter (2.04 nm), but the FSR of the transmission peak is relatively It can be widely confirmed that the transmittance of the central transmission peak is as high as 1.5 dB, and the wavelength dependence of the filter characteristics is small.

このように、本実施例に説明するラダー干渉型フィルタは素子サイズを増大せずに従来のラダー干渉型フィルタの3/4に相当する回折次数を用い、狭帯域化、低損失および低波長依存スペクトル特性が可能という特徴を有する。つまり、図9に示したスペクトル特性では、従来のラダー干渉型フィルタおよび第3実施形態に係るラダー干渉型フィルタの回折次数がそれぞれ40および30であったが、従来のラダー干渉型フィルタの回折次数が120の場合、第3の実施形態に係るラダー干渉型フィルタの回折次数を90と定めれば、従来構造によるフィルタと同程度の透過帯域を得ることができる。従って、本発明のラダー干渉型フィルタは常に従来のラダーフィルタに比べてFSRおよび波長可変範囲を4/3倍拡大することが可能である。   As described above, the ladder interference filter described in this embodiment uses a diffraction order equivalent to 3/4 of the conventional ladder interference filter without increasing the element size, and has a narrow band, low loss, and low wavelength dependence. It has the feature that spectral characteristics are possible. That is, in the spectral characteristics shown in FIG. 9, the diffraction orders of the conventional ladder interference filter and the ladder interference filter according to the third embodiment are 40 and 30, respectively. When the diffraction order of the ladder interference filter according to the third embodiment is set to 90, a transmission band comparable to that of a filter having a conventional structure can be obtained. Therefore, the ladder interference filter of the present invention can always expand the FSR and the wavelength variable range by 4/3 times compared to the conventional ladder filter.

次に図10を参照して第4の実施形態について説明する。   Next, a fourth embodiment will be described with reference to FIG.

第4の実施形態に係るラダー干渉型フィルタ1020は高回折次数を有するラダー干渉計を多段に結合した高回折次数領域を有する。図10に示す第4の実施形態に係るラダー干渉型フィルタ1020は、一対の入力導波路1002および出力導波路1004と、入力導波路1002および出力導波路1004に所定の間隔で配置された光結合器1030−1〜1030−Nおよび1032−1〜1032−Nと、光結合器1030−1〜1030−Nおよび1032−1〜1032−Nを介して入力導波路1002と出力導波路1004との間を接続するN本(N;4以上の自然数)のアレー導波路1040−1から1040−Nとから構成される。   The ladder interference filter 1020 according to the fourth embodiment has a high diffraction order region in which ladder interferometers having high diffraction orders are coupled in multiple stages. A ladder interference filter 1020 according to the fourth embodiment shown in FIG. 10 includes a pair of input waveguide 1002 and output waveguide 1004, and optical coupling arranged at predetermined intervals in the input waveguide 1002 and the output waveguide 1004. Between the input waveguide 1002 and the output waveguide 1004 via the optical couplers 1030-1 to 1030-N and 1032-1 to 1032-N, and the optical couplers 1030-1 to 1030-N and 1032-1 to 1032-N. It is composed of N (N: a natural number of 4 or more) arrayed waveguides 1040-1 to 1040-N connecting them.

アレー導波路の接続アレー導波路の本数をNとし、入力導波路1002の入射端のアレー導波路を1段目のアレー導波路とした場合、1段目から(N−2)段目までのアレー導波路の導波路長が順次ΔSずつ増大する低回折次数領域1022と、(N−2)段目からN段目までのアレー導波路の光路長の差のみ、一定の光路長の差を、(N−2)段目とN段目のアレー導波路の導波路の長の差がΔSのp倍となるように増大する高回折次数領域1024とが従属接続(直列結合)された構成となっている。   When the number of connected array waveguides of the array waveguide is N and the array waveguide at the incident end of the input waveguide 1002 is the first-stage array waveguide, the first to (N−2) -th stages are used. Only the difference in the optical path length of the arrayed waveguide from the (N−2) -th stage to the N-th stage is a constant difference in optical path length, and the low diffraction order region 1022 in which the waveguide length of the array waveguide sequentially increases by ΔS. , (N-2) and high diffraction order region 1024 that increases so that the difference between the waveguide lengths of the (N−2) -th stage and the N-th stage array waveguide is p times ΔS is connected in series (coupled in series). It has become.

第1および2の実施形態で説明したラダー干渉型フィルタは、1段の高回折次数を有するラダー干渉計を従属接続した構造を用いているが、図10に示すように、高回折次数を有するラダー干渉計が連続する複数段になっても図6に示すような狭帯域特性を得ることが可能である。この場合、1段のラダー干渉計を用いるフィルタと比べて狭帯域化のみならず、フィルタの消光比も増大できる利点がある。   The ladder interference filter described in the first and second embodiments uses a structure in which a ladder interferometer having one stage of high diffraction order is connected in cascade, but has a high diffraction order as shown in FIG. Even when the ladder interferometer has a plurality of successive stages, it is possible to obtain narrow band characteristics as shown in FIG. In this case, there is an advantage that not only the band can be narrowed but also the extinction ratio of the filter can be increased as compared with a filter using a one-stage ladder interferometer.

次に図11を参照して、本発明の第5の実施形態に係るラダー干渉型波長可変フィルタを説明する。   Next, referring to FIG. 11, a ladder interference type tunable filter according to a fifth embodiment of the present invention will be described.

第5の実施形態に係るラダー干渉型波長可変フィルタ1120は、波長可変動作のために、電極1110および1112による電流注入構造を設けたラダー干渉型波長可変フィルタである。   A ladder interference type tunable filter 1120 according to the fifth embodiment is a ladder interference type tunable filter provided with a current injection structure by electrodes 1110 and 1112 for wavelength tunable operation.

図11に示すラダー干渉型波長可変フィルタ1120は、一対の入力導波路1102および出力導波路1104と、入力導波路1102および出力導波路1104に所定の間隔で配置された光結合器1130−1〜1130−Nおよび1132−1〜1132−Nと、光結合器1130−1〜1130−Nおよび1132−1〜1132−Nを介して入力導波路1102と出力導波路1104との間を接続するN本(N;3以上の自然数)のアレー導波路1140−1から1140−Nと、入力導波路1102および出力導波路1104に光結合器1130−1〜1130−Nおよび1132−1〜1132−Nの間毎に配置された電極1110および1112から構成される。   A ladder interference type tunable filter 1120 shown in FIG. 11 includes a pair of input waveguides 1102 and output waveguides 1104 and optical couplers 1130-1 to 1130-1 arranged at predetermined intervals in the input waveguides 1102 and 1104. 1130-N and 1132-1 to 1132-N, and N connecting the input waveguide 1102 and the output waveguide 1104 via the optical couplers 1130-1 to 1130-N and 1132-1 to 1132-N This (N; natural number greater than or equal to 3) array waveguides 1140-1 to 1140-N, input waveguides 1102 and output waveguides 1104 and optical couplers 1130-1 to 1130-N and 1132-1 to 1132-N The electrodes 1110 and 1112 are arranged at intervals.

また、ラダー干渉型波長可変フィルタ1120は、図12に示すエピタキシャル基板の層構造を有する。n型InP基板1201上に、nドープInP層1202、ノンドープGaInAsP層1203(バンドギャップ波長λ=1.3μm)、pドープInP層1204、pドープInP層1205、およびpドープInGaAs層1206が順次成膜されている。 Further, the ladder interference type tunable filter 1120 has the layer structure of the epitaxial substrate shown in FIG. On an n-type InP substrate 1201, an n-doped InP layer 1202, a non-doped GaInAsP layer 1203 (band gap wavelength λ g = 1.3 μm), a p-doped InP layer 1204, a p + -doped InP layer 1205, and a p + -doped InGaAs layer 1206 Are sequentially formed.

図12に示される部分のpドープInGaAs層1206上およびn型InP基板1201にそれぞれAuZnNi電極およびAuGeNi電極を形成している。 An AuZnNi electrode and an AuGeNi electrode are formed on the p + doped InGaAs layer 1206 and the n-type InP substrate 1201 shown in FIG.

本実施形態のラダー干渉型フィルタの波長可変動作時、図8に示す波長スペクトルを一定に保つためには図11に示す電極長LおよびLを最適化しなければならない。電流注入によるラダー干渉型波長フィルタの波長変化量(Δλ)は上記式(3)で決まるため、電極の長さを一定にした場合、Δλは回折次数に反比例する。 In the wavelength variable operation of the ladder interference filter of this embodiment, the electrode lengths L 1 and L 2 shown in FIG. 11 must be optimized in order to keep the wavelength spectrum shown in FIG. 8 constant. Since the wavelength change amount (Δλ) of the ladder interference type wavelength filter by current injection is determined by the above equation (3), Δλ is inversely proportional to the diffraction order when the length of the electrode is constant.

実施形態のラダー干渉型フィルタの場合、二つの異なる回折次数を有するラダー干渉計を従属接続した構成である。従って、波長可変動作時、波長スペクトルを一定に保つためには低回折次数領域および高回折次数領域のΔλを等しくする必要があり、高回折次数領域1124の電極の長さLおよびLは次式のように決まる。
高回折次数領域の電極の長さL=p×L ・・・(4)
高回折次数領域の電極の長さL=p×L、(L=L) ・・・(5)
In the case of the ladder interference filter according to the embodiment, a ladder interferometer having two different diffraction orders is cascade-connected. Accordingly, in order to keep the wavelength spectrum constant during the wavelength variable operation, it is necessary to make Δλ in the low diffraction order region and the high diffraction order region equal, and the electrode lengths L 1 and L 2 in the high diffraction order region 1124 are It is determined as follows:
Electrode length L 1 = p × L 1 (4) in the high diffraction order region
The length of the electrode in the high diffraction order region L 2 = p × L 2 , (L 1 = L 2 ) (5)

つまり、回折次数変化分に比例して電極の長さを調整することにより、波長可変動作時、波長スペクトルを一定に保つことができる。図11に示すラダー干渉型フィルタは、屈折率制御用電極Lに電流注入すると、λは短波長側にシフトし、屈折率制御用電極Lに電流注入すると、λは長波長側にシフトする。 That is, by adjusting the length of the electrode in proportion to the change in the diffraction order, the wavelength spectrum can be kept constant during the wavelength variable operation. Ladder interference filter shown in FIG. 11, when current is injected into the refractive index control electrodes L 1, lambda 0 is shifted to the short wavelength side, when current is injected into the refractive index control electrodes L 2, lambda 0 is the long wavelength side Shift to.

図13(a)および(b)に第5の実施形態に係るラダー干渉型波長フィルタの波長可変特性を示す。図13(a)に示すように、高回折次数領域の電極長LおよびLを適正化しないと、波長可変動作に伴い、波長スペクトルが歪み、レーザ発振が不安定になりかねない。一方、図13(b)に示すように、電極長LおよびLを回折次数変化分に比例して適正化すると、波長スペクトルが歪まずに波長可変でき、レーザ発振が不安定になることを抑制することができる。 FIGS. 13A and 13B show variable wavelength characteristics of the ladder interference type wavelength filter according to the fifth embodiment. As shown in FIG. 13A, unless the electrode lengths L 1 and L 2 in the high diffraction order region are optimized, the wavelength spectrum may be distorted and the laser oscillation may become unstable due to the wavelength variable operation. On the other hand, as shown in FIG. 13 (b), when the electrode length L a and L b optimizing in proportion to the diffraction order variation, can variable wavelength without distorting the wavelength spectrum, the laser oscillation becomes unstable Can be suppressed.

図14(a)および(b)に、第5の実施形態に基づいて試作したラダー干渉型フィルタの波長可変特性を示す。図14(a)は、従来のラダー干渉型フィルタは下部の屈折率制御用電極に40mA電流注入した場合中心波長λのシフトの様子を示す。中心波長λが4.6nm短波長側にシフトしたことが確認できる。他方、図14(b)は、第5の実施形態に基づいて作成したラダー干渉型フィルタの下部の屈折率制御用電極に40mA電流注入した場合の中心波長λのシフトの様子を示す。中心波長λが5.7nm短波長側にシフトし、同じ電流注入量に対してピーク波長変化量が大きくなっており、従来のラダー干渉型フィルタに比べて広帯域波長可変できることが確認できる。 FIGS. 14A and 14B show the wavelength tunable characteristics of the ladder interference type filter experimentally manufactured based on the fifth embodiment. FIG. 14A shows a state of shift of the center wavelength λ 0 when a conventional ladder interference filter is injected with a 40 mA current to the lower refractive index control electrode. It can be confirmed that the center wavelength λ 0 has shifted to the 4.6 nm short wavelength side. On the other hand, FIG. 14B shows how the center wavelength λ 0 is shifted when a current of 40 mA is injected into the refractive index control electrode in the lower part of the ladder interference filter produced based on the fifth embodiment. The center wavelength λ 0 is shifted to the short wavelength side of 5.7 nm, the peak wavelength change amount is larger with respect to the same current injection amount, and it can be confirmed that the broadband wavelength can be varied as compared with the conventional ladder interference filter.

尚、本実施形態においては、電流注入によりラダー干渉型波長フィルタの波長を変化させる場合について説明したが、電圧印加によりラダー干渉型波長フィルタの波長を変化させることもできる。また、電流注入または電圧印加によりは発生する熱によりラダー干渉型波長フィルタの波長を変化させることもできる。   In the present embodiment, the case where the wavelength of the ladder interference type wavelength filter is changed by current injection has been described. However, the wavelength of the ladder interference type wavelength filter can be changed by voltage application. Further, the wavelength of the ladder interference type wavelength filter can be changed by heat generated by current injection or voltage application.

本発明の第1の実施形態に係る波長可変レーザの構成図である。1 is a configuration diagram of a wavelength tunable laser according to a first embodiment of the present invention. (a)は、従来のラダー干渉型フィルタにおけるラダー干渉型波長フィルタと直列結合されたリング共振器の透過スペクトルを示す図である。(b)は、本発明の第1の実施形態に係るラダー干渉型フィルタと直列結合されたリング共振器の透過スペクトルを示す図である。(A) is a figure which shows the transmission spectrum of the ring resonator connected in series with the ladder interference type | mold wavelength filter in the conventional ladder interference type | mold filter. (B) is a figure which shows the transmission spectrum of the ring resonator connected in series with the ladder interference type | mold filter which concerns on the 1st Embodiment of this invention. (a)は、低回折次数領域のアレー導波路の本数を14および高回折次数領域のpを2とした場合の第1の実施形態に係るラダー干渉型フィルタの波長スペクトル特性を示す図である。(b)は、低回折次数領域のアレー導波路の本数を11および高回折次数領域のpを5とした場合の本発明の第1の実施形態に係るラダー干渉型フィルタの波長スペクトル特性を示す図である。(A) is a figure which shows the wavelength spectrum characteristic of the ladder interference type filter which concerns on 1st Embodiment when the number of the arrayed waveguides of a low diffraction order area | region is 14 and p of a high diffraction order area | region is 2. FIG. . (B) shows the wavelength spectrum characteristics of the ladder interference filter according to the first embodiment of the present invention when the number of array waveguides in the low diffraction order region is 11 and p in the high diffraction order region is 5. FIG. 高回折次数領域が低回折次数領域の間に従属接続された第2の実施形態に係るラダー干渉型フィルタの構成図である。It is a block diagram of the ladder interference type filter which concerns on 2nd Embodiment by which the high diffraction order area | region was cascade-connected between the low diffraction order area | regions. 第2の実施形態に係るラダー干渉型フィルタの波長スペクトル特性を示す図である。It is a figure which shows the wavelength spectrum characteristic of the ladder interference type filter which concerns on 2nd Embodiment. 光結合器の光結合率を適正化した本発明の第3の実施形態に係るラダー干渉型フィルタの特性を示す図である。It is a figure which shows the characteristic of the ladder interference type filter which concerns on the 3rd Embodiment of this invention which optimized the optical coupling factor of the optical coupler. (a)は、従来のラダー干渉型フィルタにおいて、MMI光結合器の波長依存性および挿入損失を考慮した波長スペクトル特性を示す図である。(b)は本発明の第3の実施形態に係るラダー干渉型フィルタにおいて、MMI光結合器の波長依存性および挿入損失を考慮した波長スペクトル特性を示す図である。(A) is a figure which shows the wavelength spectrum characteristic which considered the wavelength dependence and insertion loss of the MMI optical coupler in the conventional ladder interference type filter. (B) is a figure which shows the wavelength spectrum characteristic which considered the wavelength dependence and insertion loss of an MMI optical coupler in the ladder interference type filter which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るラダー干渉型波長可変フィルタの特性を示す図である。It is a figure which shows the characteristic of the ladder interference type | mold wavelength variable filter which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るラダー干渉型フィルタにより試作したラダー干渉型フィルタの波長スペクトル特性を示す図である。It is a figure which shows the wavelength spectrum characteristic of the ladder interference type filter prototyped with the ladder interference type filter which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るラダー干渉型波長可変フィルタの構成図である。It is a block diagram of the ladder interference type | mold wavelength variable filter which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るラダー干渉型波長可変フィルタの構成図である。It is a block diagram of the ladder interference type | mold wavelength variable filter which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係るラダー干渉型フィルタのエピタキシャル基板の層構造を示すである。It is a layer structure of the epitaxial substrate of the ladder interference type filter which concerns on the 5th Embodiment of this invention. (a)は、第5の実施形態に係るラダー干渉型波長可変フィルタにおいて、電極長を適正化していない場合の波長可変特性を示す図である。(b)は、第5の実施形態に係るラダー干渉型波長可変フィルタにおいて、電極長を適正化した場合の波長可変特性を示す図である。(A) is a figure which shows the wavelength variable characteristic in case the electrode length is not optimized in the ladder interference type | mold wavelength variable filter which concerns on 5th Embodiment. (B) is a figure which shows the wavelength variable characteristic at the time of optimizing electrode length in the ladder interference type | mold wavelength variable filter which concerns on 5th Embodiment. (a)は、従来のラダー干渉型フィルタの波長可変特性を示す図である。(b)は、本発明の第5の実施形態に係るラダー干渉型波長可変フィルタの波長可変特性を示す図である。(A) is a figure which shows the wavelength variable characteristic of the conventional ladder interference type filter. (B) is a figure which shows the wavelength variable characteristic of the ladder interference type | mold wavelength variable filter which concerns on the 5th Embodiment of this invention. 超周期構造グレーティングを用いた従来の波長可変レーザの構成図である。It is a block diagram of the conventional wavelength tunable laser using a superperiod structure grating. AWGを用いた従来の波長可変レーザの構成図である。It is a block diagram of the conventional wavelength tunable laser using AWG. ラダー干渉計とリング共振器を用いた従来の波長可変レーザの構成図である。It is a block diagram of the conventional wavelength tunable laser using a ladder interferometer and a ring resonator.

符号の説明Explanation of symbols

100 波長可変レーザ
120,420,1020,1120, ラダー干渉型波長フィルタ
160 リング共振器
180,1602 半導体光増幅器
190 反射ミラー
102,402,1002,1102 入力導波路
104,404,1004,1104 出力導波路
140−1〜140−N,440−1〜440−N,1040−1〜1040−N,1140−1から1140−N アレー導波路
130−1〜130−N,132−1〜132−N,430−1〜430−N,432−1〜432−N,1030−1〜1030−N,1032−1〜1032−N,1130−1〜1130−N,1132−1〜1132−N 光結合器
122,422,1022,1122 低回折次数領域
124,424,1024,1124 高回折次数領域
1110 屈折率制御用電極
1112 屈折率制御用電極
100 Wavelength Tunable Lasers 120, 420, 1020, 1120, Ladder Interference Wavelength Filter 160 Ring Resonator 180, 1602 Semiconductor Optical Amplifier 190 Reflection Mirror 102, 402, 1002, 1102 Input Waveguide 104, 404, 1004, 1104 Output Waveguide 140-1 to 140-N, 440-1 to 440-N, 1040-1 to 1040-N, 1140-1 to 1140-N array waveguides 130-1 to 130-N, 132-1 to 132-N, 430-1 to 430-N, 432-1 to 432-N, 1030-1 to 1030-N, 1032-1 to 1032-N, 1130-1 to 1130-N, 1132-1 to 1132-N 122,422,1022,1122 Low diffraction order region 124,424,1024,1124 High diffraction order region 110 for refractive index control electrodes 1112 for refractive index control electrodes

Claims (6)

一対の入力導波路および出力導波路と、前記入力導波路および前記出力導波路に一定の間隔で配置された光結合器と、前記光結合器を介して入力導波路と出力導波路との間を接続するN本(N;3以上の自然数)のアレー導波路からなるラダー干渉型フィルタとを備えた波長可変フィルタであって、
前記入力導波路の入射端側に接続された1段目のアレー導波路から順番に一定の光路長差を有する1つまたは複数の低回折次数領域と、
M段目から連続するi個(M;N−1以下の自然数、i;1以上の自然数、M+i;N以下)のアレー導波路の光路長差のみ、一定の光路長差を、M段目のアレー導波路と(M+i)段目のアレー導波路の光路長差がp倍(pは自然数)とした高回折次数領域とが直列結合されたことを特徴とする波長可変フィルタ。
A pair of input waveguides and output waveguides, an optical coupler disposed at a certain interval in the input waveguides and the output waveguides, and between the input waveguides and the output waveguides via the optical couplers A tunable filter comprising a ladder interference filter composed of N (N: a natural number of 3 or more) array waveguides,
One or more low diffraction order regions having a certain optical path length difference in order from the first-stage array waveguide connected to the incident end side of the input waveguide;
Only the optical path length difference of the array waveguides of i pieces (M; natural number less than or equal to N−1, i; natural number greater than or equal to 1 and M + i; N or less) from the M-th stage is a constant optical path length difference. And a high diffraction order region in which the optical path length difference between the (M + i) -th array waveguide is p times (p is a natural number) is coupled in series.
前記高回折次数領域における前記M段目から前記(M+i)段目までのアレー導波路に接続された前記光結合器の光結合率を適正化したことを特徴とする請求項1に記載の波長可変フィルタ。   2. The wavelength according to claim 1, wherein an optical coupling rate of the optical coupler connected to the array waveguide from the M-th stage to the (M + i) -th stage in the high diffraction order region is optimized. Variable filter. 前記光結合器の間の前記導波路上に配置された一定の長さの電極をさらに備え、
前記高回折次数領域に配置された前記電極の長さのみを、前記低回折次数領域に配置された前記電極の長さのp倍にしたことを特徴とする請求項1または2に記載の波長可変フィルタ。
Further comprising a length of electrode disposed on the waveguide between the optical couplers;
3. The wavelength according to claim 1, wherein only the length of the electrode disposed in the high diffraction order region is set to p times the length of the electrode disposed in the low diffraction order region. Variable filter.
請求項1ないし3のいずれかに記載の波長可変フィルタと、
当該波長可変フィルタからの出力光が入射される発振波長ロック用フィルタと、
前記発振波長ロック用フィルタからの出力光を増幅する半導体光増幅器とを
備えたことを特徴とする波長可変レーザ。
The wavelength tunable filter according to any one of claims 1 to 3,
An oscillation wavelength locking filter on which output light from the wavelength tunable filter is incident;
A wavelength tunable laser comprising: a semiconductor optical amplifier that amplifies output light from the oscillation wavelength lock filter.
発振波長ロック用フィルタは、リング共振器であることを特徴とする請求項4に記載の波長可変レーザ。   The wavelength tunable laser according to claim 4, wherein the oscillation wavelength lock filter is a ring resonator. 請求項3に記載の波長可変フィルタにおいて、
前記可変フィルタの中心波長を短波長側にシフトする場合に前記入力導波路に配置された電極に電流注入し、
前記可変フィルタの中心波長を長波長側にシフトする場合に前記出力導波路に配置された電極に電流注入する
ことを特徴とする波長可変フィルタのフィルタ特性制御方法。
The tunable filter according to claim 3,
When the center wavelength of the variable filter is shifted to the short wavelength side, current is injected into the electrode disposed in the input waveguide,
A method for controlling a filter characteristic of a wavelength tunable filter, wherein current is injected into an electrode disposed in the output waveguide when the center wavelength of the tunable filter is shifted to a long wavelength side.
JP2004236066A 2004-08-13 2004-08-13 Wavelength filter, wavelength tunable filter, wavelength tunable filter characteristic control method, and wavelength tunable laser Expired - Fee Related JP4625285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236066A JP4625285B2 (en) 2004-08-13 2004-08-13 Wavelength filter, wavelength tunable filter, wavelength tunable filter characteristic control method, and wavelength tunable laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236066A JP4625285B2 (en) 2004-08-13 2004-08-13 Wavelength filter, wavelength tunable filter, wavelength tunable filter characteristic control method, and wavelength tunable laser

Publications (2)

Publication Number Publication Date
JP2006053436A true JP2006053436A (en) 2006-02-23
JP4625285B2 JP4625285B2 (en) 2011-02-02

Family

ID=36030942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236066A Expired - Fee Related JP4625285B2 (en) 2004-08-13 2004-08-13 Wavelength filter, wavelength tunable filter, wavelength tunable filter characteristic control method, and wavelength tunable laser

Country Status (1)

Country Link
JP (1) JP4625285B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183429A (en) * 2006-01-06 2007-07-19 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable filter and wavelength variable laser
JP2010050162A (en) * 2008-08-19 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor wavelength variable laser
WO2013021422A1 (en) * 2011-08-10 2013-02-14 富士通株式会社 External resonator semiconductor laser element and optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4323348B2 (en) * 2004-03-02 2009-09-02 日本電信電話株式会社 Wavelength filter and wavelength tunable filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4323348B2 (en) * 2004-03-02 2009-09-02 日本電信電話株式会社 Wavelength filter and wavelength tunable filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183429A (en) * 2006-01-06 2007-07-19 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable filter and wavelength variable laser
JP2010050162A (en) * 2008-08-19 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> Semiconductor wavelength variable laser
WO2013021422A1 (en) * 2011-08-10 2013-02-14 富士通株式会社 External resonator semiconductor laser element and optical element
US9020004B2 (en) 2011-08-10 2015-04-28 Fujitsu Limited External resonator-type semiconductor laser element and optical element

Also Published As

Publication number Publication date
JP4625285B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US9270078B2 (en) Tunable SOI laser
EP1281221B1 (en) Improved mirror and cavity designs for sampled-grating distributed bragg reflector lasers
JP4942429B2 (en) Semiconductor tunable laser
JP5458194B2 (en) Semiconductor tunable laser
JP5357214B2 (en) Optical integrated circuit
WO2016082541A1 (en) Wide-range tunable laser and tuning method thereof
JP4469759B2 (en) Tunable laser
US9871344B2 (en) Tunable laser and method for tuning a lasing mode
JP5001239B2 (en) Semiconductor tunable laser
JP5821742B2 (en) Wavelength multiplexing / demultiplexing element, multi-wavelength light source, and multi-wavelength optical transmitter
JP4625285B2 (en) Wavelength filter, wavelength tunable filter, wavelength tunable filter characteristic control method, and wavelength tunable laser
CN111463657B (en) Tunable laser
JP4402912B2 (en) Semiconductor tunable laser and tunable laser module
Kuznetsov Design of widely tunable semiconductor three-branch lasers
JP2006295102A (en) Tunable laser
JP2007183429A (en) Wavelength variable filter and wavelength variable laser
JP2007183430A (en) Tunable filter and wavelength tunable laser
JP5034572B2 (en) Light source device
JP2007248901A (en) Optical transceiver
Jeong et al. Chirped ladder-type interferometric filter for widely tunable laser diode
JP2007250661A (en) Oscillation mode stabilization method of wavelength variable laser
Hammood et al. Broadband Optical Add-Drop Filters Enabled by Silicon Photonic Sub-wavelength-grating-assisted Waveguides
Yamazaki et al. A widely tunable laser using silica-waveguide ring resonators
Jeong et al. Analysis and demonstration of single-passband response and tuning characteristics in a chirped ladder interferometric filter for a widely tunable laser diode
Laroy et al. New widely tunable laser concepts for future telecommunication networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100510

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R150 Certificate of patent or registration of utility model

Ref document number: 4625285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees