JP2006053200A - Edge filter - Google Patents

Edge filter Download PDF

Info

Publication number
JP2006053200A
JP2006053200A JP2004232982A JP2004232982A JP2006053200A JP 2006053200 A JP2006053200 A JP 2006053200A JP 2004232982 A JP2004232982 A JP 2004232982A JP 2004232982 A JP2004232982 A JP 2004232982A JP 2006053200 A JP2006053200 A JP 2006053200A
Authority
JP
Japan
Prior art keywords
wavelength band
edge filter
refractive index
film
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004232982A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kamibayashi
浩行 上林
Takeshi Maro
毅 麿
Yoshiaki Minagawa
良明 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004232982A priority Critical patent/JP2006053200A/en
Publication of JP2006053200A publication Critical patent/JP2006053200A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an edge filter which is capable of reducing polarization dependence and has an excellent spectral characteristic. <P>SOLUTION: The edge filter comprises an edge filter film 4 made by alternately laminating at least two kinds of optical thin films having different refractive indexes on an optical substrate 1. The edge filter transmits signal light having the wavelength of a first wavelength band which is made incident to the edge filter film 4 and reflects signal light having the wavelength of a second wavelength band which is made incident to the edge filter 4, wherein the first wavelength band and the second wavelength band have a predetermined separation width. Further, an incident angle of the signal light for the multilayer film is determined so that a dissociation width between a spectral characteristic of S-polarization and a spectral characteristic of P-polarization becomes the separation width or below. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、入射した信号光の一部を透過し、他の一部を反射することによって分岐を行うエッジフィルタに関する。   The present invention relates to an edge filter that branches by transmitting a part of incident signal light and reflecting another part.

B−PON(Broadband-PON)やIEEE802.3ahといったPON(Passive Optical Network)技術を利用した新たな通信方式の標準化・規格化が進められている。PONは、加入者と収容局を繋ぐアクセス回線に光ファイバを利用したアクセス網において、アクセス回線の途中に光スプリッタを挿入して信号光を分岐することにより、少ない光ファイバで複数の加入者を効率よく収容する方式である。   The standardization and standardization of a new communication system using PON (Passive Optical Network) technology such as B-PON (Broadband-PON) and IEEE802.3ah has been promoted. In an access network that uses an optical fiber for an access line that connects a subscriber and a receiving station, the PON can add multiple subscribers with fewer optical fibers by inserting an optical splitter in the middle of the access line to split the signal light. It is a system that accommodates efficiently.

従来のB−PONでは、加入者から収容局の方向に1260nm〜1360nmの波長帯域を使用し、収容局から加入者の方向に1480nm〜1500nmの波長帯域を使用している。新たに標準化されるB−PONやIEEE802.3ahといった新規格は、上記の従来の波長帯域に加えて、1550nm〜1560nmの波長帯域を新たな下り方向の通信帯域として使用し、放送配信等の通信サービスを行うことを想定している。   In the conventional B-PON, a wavelength band of 1260 nm to 1360 nm is used in the direction from the subscriber to the accommodating station, and a wavelength band of 1480 nm to 1500 nm is used in the direction from the accommodating station to the subscriber. New standards such as B-PON and IEEE 802.3ah that are newly standardized use the 1550 nm to 1560 nm wavelength band as a new downstream communication band in addition to the conventional wavelength band described above, and perform communications such as broadcast distribution. It is assumed that the service is performed.

上述の新規格に準拠した通信装置では、従来から使用されている1260nm〜1500nmの波長帯域と新たな放送配信用の1550nm〜1560nmの波長帯域とを分離する特性を持ったエッジフィルタを用いて、従来の波長帯域を使用した通信と新たな波長帯域を使用した通信とを1芯の光ファイバ上に重畳する必要がある。このため、上述した帯域分離を行うエッジフィルタでは、1500nmから1550nmの50nmの分離幅において、透過から反射、又は反射から透過に遷移する分光特性が必要となる。   In the communication device compliant with the above-mentioned new standard, an edge filter having a characteristic of separating a wavelength band of 1260 nm to 1500 nm used conventionally and a wavelength band of 1550 nm to 1560 nm for new broadcast distribution is used. It is necessary to superimpose communication using a conventional wavelength band and communication using a new wavelength band on a single-core optical fiber. For this reason, the edge filter that performs the band separation described above requires spectral characteristics that transition from transmission to reflection or from reflection to transmission in a separation width of 1500 nm to 1550 nm and 50 nm.

エッジフィルタには、光学基板上に誘電体膜を積層した光学多層膜フィルタが使用され、従来は、信号光の入射角を45度に設定して使用されることが一般的であった(例えば特許文献1参照)。しかしながら、信号光の入射角を45度に設定した従来の光学多層膜フィルタでは、透過から反射に遷移する際において、分光特性が入射光の偏光状態に依存することに起因して、S偏光とP偏光との分光特性の乖離が大きくなってしまうため、上述した1500nm〜1550nmの分離幅50nm以下で、透過帯域と反射帯域を分離することができないという問題がある。   As the edge filter, an optical multilayer filter in which a dielectric film is laminated on an optical substrate is used. Conventionally, the edge filter is generally used with an incident angle of signal light set to 45 degrees (for example, Patent Document 1). However, in the conventional optical multilayer filter in which the incident angle of the signal light is set to 45 degrees, the spectral characteristic depends on the polarization state of the incident light when transitioning from transmission to reflection. Since the difference in spectral characteristics from the P-polarized light becomes large, there is a problem that the transmission band and the reflection band cannot be separated when the separation width of 1500 nm to 1550 nm is 50 nm or less.

一方、入射角を小さくすることによって、S偏光とP偏光の差を小さくすることができる。しかしながら、入射角を小さくすると、入射光と反射光の光路が近くなってしまうため、コリメータレンズ等の部材をエッジフィルタから遠ざけて配置しなければならず、実装時にモジュールサイズを小型化できないという問題が発生する。
特開2000−162413号公報
On the other hand, by reducing the incident angle, the difference between S-polarized light and P-polarized light can be reduced. However, if the incident angle is reduced, the optical paths of the incident light and the reflected light become closer. Therefore, a member such as a collimator lens must be disposed away from the edge filter, and the module size cannot be reduced during mounting. Will occur.
JP 2000-162413 A

本発明は、上述の問題を解決するためになされたものであり、本発明は、偏光依存性を低減し、良好な分光特性を有するエッジフィルタを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an edge filter that reduces polarization dependency and has good spectral characteristics.

光学基板上に少なくとも2種類の屈折率異なる光学薄膜を交互に積層してなる多層膜を有し、前記多層膜に入射する第1の波長帯域の波長を有する信号光を透過し、前記多層膜に入射する第2の波長帯域の波長を有する信号光を反射し、
前記第1の波長帯域と前記第2の波長帯域が予め定められた分離帯域を隔てているエッジフィルタであって、S偏光の分光特性とP偏光の分光特性との乖離幅が、前記分離帯域の幅以下になるように前記多層膜に対する前記信号光の入射角を定めたものである。これにより、S偏光とP偏光の分光特性上の乖離幅を所定の分離幅以下に抑えて、エッジフィルタを所定の分光特性の下で使用することができる。
A multilayer film formed by alternately laminating at least two types of optical thin films having different refractive indexes on an optical substrate, and transmitting signal light having a wavelength in a first wavelength band incident on the multilayer film; Reflecting signal light having a wavelength in the second wavelength band incident on the
An edge filter in which the first wavelength band and the second wavelength band are separated from a predetermined separation band, and a separation width between a spectral characteristic of S-polarized light and a spectral characteristic of P-polarized light is the separation band. The incident angle of the signal light with respect to the multilayer film is determined so as to be equal to or less than the width. As a result, it is possible to use the edge filter under the predetermined spectral characteristics while suppressing the deviation width in the spectral characteristics of the S-polarized light and the P-polarized light to be equal to or smaller than the predetermined separation width.

また、前記分離帯域は1500nmから1550nmの範囲内である場合は、前記入射角は3度以上20度以下とするとよい。   Further, when the separation band is in the range of 1500 nm to 1550 nm, the incident angle is preferably 3 degrees or more and 20 degrees or less.

また、前記第1の波長帯域が少なくとも1260nmから1360mの範囲及び1480nmから1500nmの範囲を含む波長帯域、かつ、前記第2の波長帯域が少なくとも1550nmから1560nmの範囲を含む波長帯域であるか、あるいは、前記第2の波長帯域が少なくとも1260nmから1360mの範囲及び1480nmから1500nmの範囲を含む波長帯域、かつ、前記第1の波長帯域が少なくとも1550nmから1560nmの範囲を含む波長帯域とするとよい。このような構成により、B−PONで使用される1260nm〜1500nmの従来通信用の波長帯域と1550nm〜1560nmの新たな放送配信用の波長帯域とを分離することができる。   Further, the first wavelength band is a wavelength band including a range of at least 1260 nm to 1360 m and a range of 1480 nm to 1500 nm, and the second wavelength band is a wavelength band including a range of at least 1550 nm to 1560 nm, or The second wavelength band may be a wavelength band including at least a range of 1260 nm to 1360 m and a range of 1480 nm to 1500 nm, and the first wavelength band may be a wavelength band including a range of at least 1550 nm to 1560 nm. With such a configuration, the wavelength band for conventional communication of 1260 nm to 1500 nm used in B-PON and the new wavelength band for broadcast distribution of 1550 nm to 1560 nm can be separated.

なお、前記光学基板の裏面に、前記第一の波長帯域及び前記第二の波長帯域の光の反射を防止する反射防止膜を設けることとしてもよい。これにより、エッジフィルタを透過する光が前記光学基板の裏面で反射されることによって発生する挿入損失の増加を防ぐことができる。   In addition, it is good also as providing the antireflection film which prevents reflection of the light of said 1st wavelength band and said 2nd wavelength band on the back surface of the said optical substrate. As a result, it is possible to prevent an increase in insertion loss caused by the light passing through the edge filter being reflected from the back surface of the optical substrate.

また、前記多層膜は、高屈折率膜と低屈折率膜の2種類の膜を積層してなり、前記高屈折率膜の屈折率は1.8以上5.0以下であり、前記低屈折率膜の屈折率は1.3以上1.5以下であって、前記高屈折率膜と前記低屈折率膜を合わせた積層数が30層以上150層以下であるとよい。   The multilayer film is formed by laminating two kinds of films, a high refractive index film and a low refractive index film, and the refractive index of the high refractive index film is 1.8 to 5.0, and the low refractive index film The refractive index of the refractive index film is preferably 1.3 or more and 1.5 or less, and the number of laminated layers including the high refractive index film and the low refractive index film is preferably 30 or more and 150 or less.

さらにまた、前記高屈折率膜は、Ta、TiO、ZnS、Si、Ge、SiGe、SiN、SiC、ZrO、NbO、YO、In、SnO、CeO、HfO又はこれらの混合材の少なくとも一種からなり、前記低屈折率膜は、SiO、MgO、AlO、SiO、SiO、MgF又はこれらの混合材の少なくとも一種からなるものとするとよい。 Furthermore, the high refractive index film includes Ta x O y , TiO x , ZnS, Si, Ge, SiGe x , SiN x , SiC x , ZrO x , NbO x , YO x , In x O y , SnO x , The low refractive index film is made of at least one of CeO x , HfO x or a mixture thereof, and the low refractive index film is made of SiO x , MgO x , AlO x , SiO x C y , SiO x N y , MgF x or a mixture thereof. It should be made of at least one kind.

本発明により、偏光依存性を低減し、良好な分光特性を有するエッジフィルタを提供することができる。   According to the present invention, it is possible to provide an edge filter with reduced polarization dependency and good spectral characteristics.

発明の実施の形態1.
図1は本実施の形態にかかるエッジフィルタ10の断面を示した模式図である。エッジフィルタ膜4は、平行平面状の光学基板1上に高屈折率膜2と低屈折率膜3が交互に積層して形成され、所望の光学特性条件を満足するように各層の積層数及び膜厚が調整されたものである。ここで、エッジフィルタ膜4に対する所望の光学特性条件とは、光の透過及び反射によって、上述したB−PONで使用される3つの波長帯域を、従来の通信に使用される2つの波長帯域と、放送配信用に追加された新たな波長帯域とに分離する特性である。具体的にはB−PONの従来の送受信波長である1260nm〜1360nm及び1480nm〜1500nmの波長帯域の信号光を透過し、放送配信用である1550nm〜1560nmの波長帯域の信号光を反射する特性、又は逆に、1260nm〜1360nm及び1480nm〜1500nmの波長帯域の信号光を反射し、1550nm〜1560nmの波長帯域の信号光を透過する分光特性である。
Embodiment 1 of the Invention
FIG. 1 is a schematic view showing a cross section of an edge filter 10 according to the present embodiment. The edge filter film 4 is formed by alternately laminating a high refractive index film 2 and a low refractive index film 3 on a parallel flat optical substrate 1, and the number of layers and the number of layers to satisfy desired optical characteristic conditions. The film thickness is adjusted. Here, the desired optical characteristic condition for the edge filter film 4 is that the three wavelength bands used in the above-described B-PON are changed to the two wavelength bands used in the conventional communication by light transmission and reflection. This is a characteristic of separation into a new wavelength band added for broadcast distribution. Specifically, a characteristic of transmitting signal light in a wavelength band of 1260 nm to 1360 nm and 1480 nm to 1500 nm, which are conventional transmission and reception wavelengths of B-PON, and reflecting signal light in a wavelength band of 1550 nm to 1560 nm for broadcast distribution, Or, conversely, the spectral characteristics reflect signal light in the wavelength bands of 1260 nm to 1360 nm and 1480 nm to 1500 nm and transmit the signal light in the wavelength band of 1550 nm to 1560 nm.

なお、図1に示すように、光学基板1の直上に高屈折率膜2を配置し、光学基板1の屈折率とその直上に配置される膜の屈折率差が大きくなるように構成するのが好ましいが、平面状の光学基板1の直上は低屈折率膜3でも良く、最終層は高屈折率膜2とした構造でも良い。   As shown in FIG. 1, the high refractive index film 2 is disposed immediately above the optical substrate 1 so that the difference in refractive index between the refractive index of the optical substrate 1 and the film disposed immediately above it is increased. However, a structure in which the low refractive index film 3 may be provided immediately above the planar optical substrate 1 and a high refractive index film 2 may be used as the final layer.

また、エッジフィルタ10には、光学基板1の反対面に高屈折率膜2と低屈折率膜3を単層又は交互に複数層積層して構成した反射防止膜5が形成されている。反射防止膜5を設けることにより、エッジフィルタ10を透過する信号光が光学基板1の裏面で反射することによって発生する挿入損失の増加を防ぐことができる。この裏面反射が原因で起こる挿入損失が問題にならない場合は、反射防止膜5は設けなくても良い。   Further, the edge filter 10 is provided with an antireflection film 5 formed by laminating a high refractive index film 2 and a low refractive index film 3 on a surface opposite to the optical substrate 1 in a single layer or alternately in a plurality of layers. By providing the antireflection film 5, it is possible to prevent an increase in insertion loss caused by signal light transmitted through the edge filter 10 being reflected on the back surface of the optical substrate 1. When the insertion loss caused by the back surface reflection does not become a problem, the antireflection film 5 may not be provided.

次に、エッジフィルタ10の光学特性について説明する。上述したように、B−PONやIEEE802.3ahといった規格に準拠した通信機器に使用されるエッジフィルタ10は、1260nm〜1500nmの波長帯域の光と1550nm〜1560nmの波長帯域の光のうち、一方帯域の光を透過し、他方の帯域の光を反射する分光特性を有するフィルタである。このようなエッジフィルタには、短波長側に透過帯域を有するSWPF(Short Wave Pass Filter)と、長波長側に透過帯域を有するLWPF(Long Wave Pass Filter)の2種類が考えられる。   Next, the optical characteristics of the edge filter 10 will be described. As described above, the edge filter 10 used for the communication equipment compliant with the standards such as B-PON and IEEE 802.3ah is one of the light in the wavelength band of 1260 nm to 1500 nm and the light in the wavelength band of 1550 nm to 1560 nm. Is a filter having spectral characteristics that transmits light of the other band and reflects light in the other band. There are two types of edge filters, SWPF (Short Wave Pass Filter) having a transmission band on the short wavelength side and LWPF (Long Wave Pass Filter) having a transmission band on the long wavelength side.

このようなエッジフィルタ10の特性としては、透過帯域と反射帯域との間の変化が急峻であり、かつ、透過帯域での透過率の平坦性(フラットネス)が確保されていることが望ましい。一般に、エッジフィルタ膜4を構成する積層数を多くするほど急峻な帯域分離特性を得られることが分かっている。しかし、積層数を多くすると、透過帯域に生じるリップルが大きくなり、フラットネス特性が損なわれる傾向がある。したがって、エッジフィルタに要求される帯域分離特性及びフラットネス特性に応じて、積層数を調整すればよく、エッジフィルタ膜4の具体的な積層数は、一般的に30層以上150層以下に選択されることが多い。   As the characteristics of the edge filter 10, it is desirable that the change between the transmission band and the reflection band is steep, and the flatness of the transmittance in the transmission band is ensured. In general, it has been found that a steep band separation characteristic can be obtained as the number of stacked layers constituting the edge filter film 4 is increased. However, when the number of stacked layers is increased, ripples generated in the transmission band increase and flatness characteristics tend to be impaired. Therefore, the number of layers may be adjusted according to the band separation characteristics and flatness characteristics required for the edge filter, and the specific number of layers of the edge filter film 4 is generally selected from 30 to 150 layers. Often done.

さらに、エッジフィルタ10を使用して入射した信号光を分離して反射光を検出するためには、実装上の都合から、信号光の入射角を一定以上の大きさとする必要がある。入射角が小さすぎると、反射光を平行光に変換するコリメータレンズ等の配置が困難となるためである。一方、光学多層膜フィルタでは、分光特性が偏光依存性を有しており、入射光の偏光状態によって分光特性が異なることが知られている。この偏光依存性によるS偏光とP偏光との乖離は、入射角が大きくなるほど大きくなる。このため、透過帯域から反射帯域に移行する間の分離幅が狭いエッジフィルタにおいては、信号光の入射角大きくなることに起因する帯域分離特性の低下が大きな問題となる。   Furthermore, in order to separate the incident signal light using the edge filter 10 and detect the reflected light, the incident angle of the signal light needs to be a certain level or more for convenience of mounting. This is because if the incident angle is too small, it is difficult to arrange a collimator lens or the like that converts reflected light into parallel light. On the other hand, in the optical multilayer filter, it is known that the spectral characteristics have polarization dependence, and the spectral characteristics differ depending on the polarization state of incident light. The deviation between the S-polarized light and the P-polarized light due to the polarization dependence increases as the incident angle increases. For this reason, in an edge filter having a narrow separation width during the transition from the transmission band to the reflection band, the degradation of the band separation characteristic due to the increase in the incident angle of the signal light becomes a serious problem.

そこで、発明者らは、要求される透過帯域と反射帯域との分離幅(本発明では50nm)に応じて入射角を適切に設定することにより、1260nm〜1500nmの波長帯域と1550nm〜1560nmの波長帯域とを分離する良好な特性を有し、かつ、反射光の検出に支障を生じないエッジフィルタが得られることを見出した。   Therefore, the inventors set the incident angle appropriately in accordance with the required separation width between the transmission band and the reflection band (50 nm in the present invention), whereby the wavelength band of 1260 nm to 1500 nm and the wavelength of 1550 nm to 1560 nm. It has been found that an edge filter can be obtained which has good characteristics for separating the band and does not interfere with detection of reflected light.

さらに、検討の結果、エッジフィルタ膜4のフィルタ面の法線と入射する信号光のなす角度を入射角とするとき、その入射角を3度から20度の範囲としたときに良好な分光特性が得られることを見出した。入射角が3度より小さくなるとコリメータレンズ等の部材をエッジフィルタから遠ざけて配置しなければならなくなり、実装上モジュールを小型化できないため、入射角は3度以上とすることが望ましい。   Further, as a result of the examination, when the angle between the normal line of the filter surface of the edge filter film 4 and the incident signal light is an incident angle, the spectral characteristics are good when the incident angle is in the range of 3 degrees to 20 degrees. It was found that can be obtained. When the incident angle is smaller than 3 degrees, a member such as a collimator lens must be disposed away from the edge filter, and the module cannot be reduced in terms of mounting. Therefore, the incident angle is desirably 3 degrees or more.

一方、入射角が20度より大きくなると、S偏光の分光特性とP偏光の分光特性との乖離幅が大きくなって、S偏光とP偏光の双方を1500nm〜1550nmの50nmの分離幅で透過帯域と反射帯域に分けることが困難になる。このため、入射角は20度以下とすることが望ましい。   On the other hand, when the incident angle is larger than 20 degrees, the divergence width between the spectral characteristics of S-polarized light and P-polarized light becomes large, and both S-polarized light and P-polarized light have a transmission band with a separation width of 50 nm from 1500 nm to 1550 nm. It becomes difficult to divide into the reflection band. For this reason, it is desirable that the incident angle be 20 degrees or less.

より具体的に説明すると、例えばエッジフィルタがSWPFであって、S偏光の方がP偏光より短波長側で透過率が減少し始めるとした場合、S偏光の透過率が減少を始める波長をλ1とし、P偏光の透過率が所定の値まで減少する波長をλ2とすると、少なくともλ2−λ1の値が50nmより小さくなければ、S偏光とP偏光の双方を1500nm〜1550nmの50nmの分離幅で透過帯域と反射帯域に分けることができないことになる。しかしながら、入射角が20度より大きくなると、λ2−λ1の値が50nm以上となってしまうということである。   More specifically, for example, when the edge filter is SWPF and the transmittance of the S-polarized light starts to decrease on the shorter wavelength side than the P-polarized light, the wavelength at which the transmittance of the S-polarized light starts decreasing is λ1. Assuming that the wavelength at which the transmittance of P-polarized light decreases to a predetermined value is λ2, if at least the value of λ2-λ1 is not smaller than 50 nm, both S-polarized light and P-polarized light are separated by a separation width of 50 nm from 1500 nm to 1550 nm. It cannot be divided into a transmission band and a reflection band. However, when the incident angle is larger than 20 degrees, the value of λ2−λ1 becomes 50 nm or more.

以上のことから、1260nm〜1500nmの波長帯域と1550nm〜1560nmの波長帯域とを分離するエッジフィルタ10に対する信号光の入射角は、3度以上20以下とすることが望ましい。さらに良好な分光特性を得るためには、入射角は5度以上15度以下とするとよい。   From the above, it is desirable that the incident angle of the signal light with respect to the edge filter 10 that separates the wavelength band of 1260 nm to 1500 nm and the wavelength band of 1550 nm to 1560 nm is 3 degrees or more and 20 or less. In order to obtain better spectral characteristics, the incident angle is preferably 5 degrees or more and 15 degrees or less.

次に、エッジフィルタ10の各部の材料及び製造法について説明する。光学基板1は、B−PONの信号光に使用する近赤外の波長帯域において透明であることが好ましく、例えば、99.8%以上の透過率を有することが望ましい。光学基板1として具体的には、非晶質ガラス、結晶化ガラスもしくは他の光学基板を用いることができる。具体的にはLiNbO、LiTaO、TiO、SrTiO、Al、MgOなどの酸化物単結晶、多結晶基板、CaF、MgFBaF、LiFなどのフッ化物単結晶基板、多結晶基板、NaCl、KBr、KClなどの塩化物、臭化物単結晶、多結晶基板又はフッ化ポリイミド等の樹脂基板が適用できる。 Next, the material and manufacturing method of each part of the edge filter 10 will be described. The optical substrate 1 is preferably transparent in the near-infrared wavelength band used for the B-PON signal light. For example, the optical substrate 1 desirably has a transmittance of 99.8% or more. Specifically, amorphous glass, crystallized glass, or another optical substrate can be used as the optical substrate 1. Specifically, oxide single crystals such as LiNbO 3 , LiTaO 3 , TiO 2 , SrTiO 3 , Al 2 O 3 and MgO, polycrystalline substrates, fluoride single crystal substrates such as CaF 2 , MgF 2 BaF 2 and LiF, Polycrystalline substrates, chlorides such as NaCl, KBr, and KCl, bromide single crystals, polycrystalline substrates, and resin substrates such as fluorinated polyimide can be applied.

高屈折率膜2の材料としては、Ta、TiO、ZnS、Si、Ge、SiGe、SiN、SiC、ZrO、NbO、YO、In、SnO、CeO、HfO又はこれらの混合材から少なくとも一種が選ばれる。また、低屈折率膜3の材料としては、SiO、MgO、AlO、SiO、SiO、MgF又はこれらの混合材の少なくとも一種が選ばれる。また、上記の化学量論組成から多少ずれても構わない。なお、各屈折率膜は同種のものを用いることが好ましいが、屈折率が近似した材料であれば、一部を他の材料からなる屈折率膜に置換することも可能である。 Examples of the material for the high refractive index film 2 include Ta x O y , TiO x , ZnS, Si, Ge, SiGe x , SiN x , SiC x , ZrO x , NbO x , YO x , In x O y , SnO x , At least one kind is selected from CeO x , HfO x or a mixture thereof. Further, as the material of the low refractive index film 3, at least one of SiO x , MgO x , AlO x , SiO x C y , SiO x N y , MgF x, or a mixture thereof is selected. Moreover, you may shift | deviate somewhat from said stoichiometric composition. In addition, although it is preferable to use the same kind as each refractive index film | membrane, if it is a material with a similar refractive index, it is also possible to substitute a part with refractive index film | membrane which consists of other materials.

エッジフィルタ10の製造は、真空成膜法で行うことができる。真空成膜法には、真空蒸着法、スパッタ法、化学気相成長法、レーザブレイション法など各種成膜法などを用いることができる。真空蒸着法を用いる場合、膜質を改善するため蒸着気流の一部をイオン化するとともに基板側にバイアスを印加するイオンプレーティング法、クラスタイオンビーム法、あるいは、イオン銃を用いて基板にイオンを照射するイオンアシスト蒸着法を用いると有効である。スパッタ法としては、DC反応性スパッタ法、RFスパッタ法、イオンビームスパッタ法などを用いることができる。また、化学的気相法としては、プラズマ重合法、光アシスト気相法、熱分解法、有機金属化学気相法などを用いることができる。なお、個々の薄膜の膜厚は、膜形成時の蒸着時間などを変えることで、所望の膜厚とすることができる。   The edge filter 10 can be manufactured by a vacuum film forming method. As the vacuum film forming method, various film forming methods such as a vacuum deposition method, a sputtering method, a chemical vapor deposition method, and a laser brazing method can be used. When using a vacuum deposition method, ion deposition is performed by ionizing a part of the deposition air flow and applying a bias to the substrate side in order to improve the film quality, cluster ion beam method, or ion irradiation to the substrate using an ion gun. It is effective to use an ion-assisted deposition method. As the sputtering method, a DC reactive sputtering method, an RF sputtering method, an ion beam sputtering method, or the like can be used. Further, as the chemical vapor phase method, a plasma polymerization method, a light-assisted vapor phase method, a thermal decomposition method, a metal organic chemical vapor phase method, or the like can be used. In addition, the film thickness of each thin film can be made into a desired film thickness by changing the vapor deposition time etc. at the time of film formation.

続いて、エッジフィルタ10の実施例について説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。実施例1、実施例2及び比較例1で説明するエッジフィルタの材料には、高屈折率膜にNb(屈折率2.30)、低屈折率膜にSiO(屈折率1.467)、光学基板に光学ガラスBK7(独SCHOTT GLASS社製、屈折率1.51)を使用した。また、以下の説明で使用する設計波長とは。入射角0度で分光特性を測定した場合における反射帯域の中心波長を意味する。 Next, an embodiment of the edge filter 10 will be described. In addition, this invention is not limited to these Examples at all. The material of the edge filter described in Example 1, Example 2, and Comparative Example 1 includes Nb 2 O 5 (refractive index 2.30) as a high refractive index film and SiO 2 (refractive index 1.30) as a low refractive index film. 467), and optical glass BK7 (manufactured by SCHOTT GLASS, refractive index 1.51) was used for the optical substrate. What is the design wavelength used in the following description? It means the center wavelength of the reflection band when spectral characteristics are measured at an incident angle of 0 degree.

(実施例1)
光学基板に光屈折率膜と低屈折率膜を交互に積層し、1260nmから1500nmの波長帯域において透過率−30dB以下であり、1550nmから1560nmの波長帯域において透過率−0.1dB以上であるエッジフィルタの設計を行った。また、エッジフィルタ膜の法線と信号光とのなす入射角は5度として設計を行った。その結果、積層数が60層で、設計波長が1327nmのエッジフィルタを得た。その分光特性を図2に示す。また、図2の波長1480nmから1560nmの帯域を拡大したグラフを図3に示す。図2及び図3では、S偏光の透過率Tsを細実線及び細網掛け線で示し、P偏光の透過率Tpを太実線及び太網掛け線で示している。
Example 1
An optical refractive index film and a low refractive index film are alternately laminated on an optical substrate, and the transmittance is −30 dB or less in the wavelength band from 1260 nm to 1500 nm, and the transmittance is −0.1 dB or more in the wavelength band from 1550 nm to 1560 nm. The filter was designed. In addition, the design was performed with the incident angle between the normal line of the edge filter film and the signal light being 5 degrees. As a result, an edge filter having 60 layers and a design wavelength of 1327 nm was obtained. The spectral characteristics are shown in FIG. FIG. 3 shows a graph in which the band from the wavelength of 1480 nm to 1560 nm in FIG. 2 is enlarged. In FIGS. 2 and 3, the transmittance Ts of S-polarized light is indicated by a thin solid line and a thin hatched line, and the transmittance Tp of P-polarized light is indicated by a thick solid line and a thick shaded line.

図2及び図3に示すように、入射角5度で設計したエッジフィルタでは、S偏光、P偏光とも1260nmから1500nmの波長帯域において透過率−30dB以下になっており、1550nmから1560nmの範囲内においては透過率−0.1dB以上となっている。このことから、1500nm以下の波長帯域と1550nm以上の波長帯域を分離する良好な分光特性が得られていることが分かる。   As shown in FIGS. 2 and 3, in the edge filter designed with an incident angle of 5 degrees, both S-polarized light and P-polarized light have a transmittance of −30 dB or less in the wavelength band of 1260 nm to 1500 nm, and are within the range of 1550 nm to 1560 nm. The transmittance is -0.1 dB or more. From this, it can be seen that good spectral characteristics for separating a wavelength band of 1500 nm or less and a wavelength band of 1550 nm or more are obtained.

(実施例2)
光学基板に光屈折率膜と低屈折率膜を交互に積層し、1260nmから1500nmの波長帯域において透過率−0.1dB以上であり、1550nmから1560nmの波長帯域において透過率−30dB以下であるエッジフィルタの設計を行った。また、エッジフィルタ膜の法線と信号光とのなす入射角は15度として設計を行った。その結果、積層数が60層で、設計波長が1746nmのエッジフィルタを得た。その分光特性を図4に示す。また、図2の波長1480nmから1560nmの帯域を拡大したグラフを図5に示す。図4及び図5では、S偏光の透過率Tsを細実線及び細網掛け線で示し、P偏光の透過率Tpを太実線及び太網掛け線で示している。
(Example 2)
An optical refractive index film and a low refractive index film are alternately stacked on an optical substrate, and the transmittance is −0.1 dB or more in the wavelength band from 1260 nm to 1500 nm, and the transmittance is −30 dB or less in the wavelength band from 1550 nm to 1560 nm. The filter was designed. In addition, the design was performed with the incident angle between the normal line of the edge filter film and the signal light being 15 degrees. As a result, an edge filter having 60 layers and a design wavelength of 1746 nm was obtained. The spectral characteristics are shown in FIG. FIG. 5 shows a graph in which the band of wavelengths from 1480 nm to 1560 nm in FIG. 2 is enlarged. 4 and 5, the transmittance Ts of S-polarized light is indicated by a thin solid line and a thin hatched line, and the transmittance Tp of P-polarized light is indicated by a thick solid line and a thick shaded line.

図4及び図5に示すように、入射角15度で設計したエッジフィルタでは、S偏光、P偏光とも1260nmから1500nmの波長帯域において透過率−0.1dB以になっており、1550nmから1560nmの範囲内においては透過率上−30dB以下となっている。このことから、1500nm以下の波長帯域と1550nm以上の波長帯域を分離する良好な分光特性が得られていることが分かる。   As shown in FIGS. 4 and 5, in the edge filter designed with an incident angle of 15 degrees, both the S-polarized light and the P-polarized light have a transmittance of −0.1 dB or less in the wavelength band of 1260 nm to 1500 nm, and the 1550 nm to 1560 nm Within the range, the transmittance is -30 dB or less. From this, it can be seen that good spectral characteristics for separating a wavelength band of 1500 nm or less and a wavelength band of 1550 nm or more are obtained.

(比較例1)
エッジフィルタ膜の法線と信号光とのなす入射角は30度とした上で、1260nmから1500nmの波長帯域において透過率−0.1dB以上であり、1550nmから1560nmの波長帯域において透過率−30dB以下となるようエッジフィルタの設計を行った。その結果、積層数が60層で、設計波長が1804nmのエッジフィルタを得た。その分光特性を図6に示す。また、図6の波長1480nmから1560nmの帯域を拡大したグラフを図7に示す。図6及び図7では、S偏光の透過率Tsを細実線及び細網掛け線で示し、P偏光の透過率Tpを太実線及び太網掛け線で示している。
(Comparative Example 1)
The incident angle between the normal of the edge filter film and the signal light is 30 degrees, and the transmittance is −0.1 dB or more in the wavelength band from 1260 nm to 1500 nm, and the transmittance is −30 dB in the wavelength band from 1550 nm to 1560 nm. The edge filter was designed to be as follows. As a result, an edge filter having 60 layers and a design wavelength of 1804 nm was obtained. The spectral characteristics are shown in FIG. FIG. 7 shows a graph in which the band of wavelengths from 1480 nm to 1560 nm in FIG. 6 is enlarged. 6 and 7, the transmittance Ts of S-polarized light is indicated by a thin solid line and a thin hatched line, and the transmittance Tp of P-polarized light is indicated by a thick solid line and a thick shaded line.

図6及び図7からわかるように、1260nmから1500nmの波長帯域において、S偏光及びP偏光の透過率が−0.1dB以下となる部分が生じ、さらに、1550nmにおいては、S偏光の透過率が−30dB以上となっていることから、入射角が30度の場合では、本実施例のエッジフィルタは所望の光学特性を満足できない。これは、入射角を30度としたことにより、透過から反射に転じるエッジ部での透過率の変化が緩やかになったこと、及び、S偏光とP偏光との分光特性の差が大きくなったことに起因するものである。具体的には、図7に示されるように、S偏光、P偏光共に、透過率が−0.1dBから−30dBまで変化する波長幅が20nm以上であり、かつ、S偏光とP偏光との差が約30nmとなっている。このため、透過帯域と反射帯域の分離幅が50nm以上になってしまい、所望の分光特性を満足できないことが分かる。   As can be seen from FIGS. 6 and 7, in the wavelength band from 1260 nm to 1500 nm, there is a portion where the transmittance of S-polarized light and P-polarized light is −0.1 dB or less, and further, the transmittance of S-polarized light is 1550 nm. Since it is −30 dB or more, when the incident angle is 30 degrees, the edge filter of this embodiment cannot satisfy desired optical characteristics. This is because, by setting the incident angle to 30 degrees, the change in transmittance at the edge portion where the transition from transmission to reflection becomes gentle, and the difference in spectral characteristics between S-polarized light and P-polarized light becomes large. This is due to that. Specifically, as shown in FIG. 7, both the S-polarized light and the P-polarized light have a wavelength width at which the transmittance changes from −0.1 dB to −30 dB and 20 nm or more, and the S-polarized light and the P-polarized light The difference is about 30 nm. For this reason, the separation width of the transmission band and the reflection band becomes 50 nm or more, which indicates that the desired spectral characteristics cannot be satisfied.

本発明にかかるエッジフィルタの構成図である。It is a block diagram of the edge filter concerning this invention. 実施例1のエッジフィルタの分光特性を示すグラフである。6 is a graph showing spectral characteristics of the edge filter of Example 1. 実施例1のエッジフィルタの分光特性を示すグラフである。6 is a graph showing spectral characteristics of the edge filter of Example 1. 実施例2のエッジフィルタの分光特性を示すグラフである。6 is a graph showing spectral characteristics of an edge filter of Example 2. 実施例2のエッジフィルタの分光特性を示すグラフである。6 is a graph showing spectral characteristics of an edge filter of Example 2. 比較例1のエッジフィルタの分光特性を示すグラフである。6 is a graph showing spectral characteristics of an edge filter of Comparative Example 1. 比較例1のエッジフィルタの分光特性を示すグラフである。6 is a graph showing spectral characteristics of an edge filter of Comparative Example 1.

符号の説明Explanation of symbols

1 光学基板
2 高屈折率膜
3 低屈折率膜
4 エッジフィルタ膜
5 反射防止膜
DESCRIPTION OF SYMBOLS 1 Optical substrate 2 High refractive index film 3 Low refractive index film 4 Edge filter film 5 Antireflection film

Claims (6)

光学基板上に少なくとも2種類の屈折率が異なる光学薄膜を交互に積層してなる多層膜を有し、
前記多層膜に入射する第1の波長帯域の波長を有する信号光を透過し、前記多層膜に入射する第2の波長帯域の波長を有する信号光を反射し、
前記第1の波長帯域と前記第2の波長帯域が予め定められた分離帯域を隔てているエッジフィルタであって、
S偏光の分光特性とP偏光の分光特性との乖離幅が、前記分離帯域の幅以下になるように前記多層膜に対する前記信号光の入射角を定めたエッジフィルタ。
A multilayer film formed by alternately laminating at least two optical thin films having different refractive indexes on an optical substrate;
Transmitting signal light having a wavelength of a first wavelength band incident on the multilayer film, reflecting signal light having a wavelength of a second wavelength band incident on the multilayer film;
An edge filter in which the first wavelength band and the second wavelength band separate a predetermined separation band;
An edge filter in which an incident angle of the signal light with respect to the multilayer film is determined such that a deviation width between the spectral characteristics of S-polarized light and the spectral characteristics of P-polarized light is equal to or less than the width of the separation band.
前記分離帯域は1500nmから1550nmの範囲内であり、
前記入射角は3度以上20度以下である、請求項1に記載のエッジフィルタ。
The separation band is in the range of 1500 nm to 1550 nm;
The edge filter according to claim 1, wherein the incident angle is not less than 3 degrees and not more than 20 degrees.
前記第1の波長帯域が少なくとも1260nmから1360mの範囲及び1480nmから1500nmの範囲を含む波長帯域、かつ、前記第2の波長帯域が少なくとも1550nmから1560nmの範囲を含む波長帯域であるか、あるいは、前記第2の波長帯域が少なくとも1260nmから1360mの範囲及び1480nmから1500nmの範囲を含む波長帯域、かつ、前記第1の波長帯域が少なくとも1550nmから1560nmの範囲を含む波長帯域である、請求項1又は2に記載のエッジフィルタ。   The first wavelength band is a wavelength band including at least a range of 1260 nm to 1360 m and a range of 1480 nm to 1500 nm, and the second wavelength band is a wavelength band including a range of at least 1550 nm to 1560 nm, or The second wavelength band is a wavelength band including at least a range of 1260 nm to 1360 m and a range of 1480 nm to 1500 nm, and the first wavelength band is a wavelength band including a range of at least 1550 nm to 1560 nm. Edge filter as described in. 前記光学基板の裏面に、前記第1の波長帯域及び前記第2の波長帯域の光の反射を防止する反射防止膜を有する請求項1乃至3のいずれかに記載のエッジフィルタ。   The edge filter according to any one of claims 1 to 3, further comprising an antireflection film that prevents reflection of light in the first wavelength band and the second wavelength band on a back surface of the optical substrate. 前記多層膜は、高屈折率膜と低屈折率膜の2種類の膜を積層してなり、
前記高屈折率膜の屈折率は1.8以上5.0以下であり、前記低屈折率膜の屈折率は1.3以上1.5以下であって、前記高屈折率膜と前記低屈折率膜を合わせた積層数が30層以上150層以下の範囲内である、請求項1乃至4のいずれかに記載のエッジフィルタ。
The multilayer film is formed by laminating two kinds of films, a high refractive index film and a low refractive index film,
The refractive index of the high refractive index film is 1.8 or more and 5.0 or less, the refractive index of the low refractive index film is 1.3 or more and 1.5 or less, and the high refractive index film and the low refractive index film are low refractive index films. The edge filter according to any one of claims 1 to 4, wherein the number of laminated layers of the rate films is in the range of 30 to 150 layers.
前記高屈折率膜は、Ta、TiO、ZnS、Si、Ge、SiGe、SiN、SiC、ZrO、NbO、YO、In、SnO、CeO、HfO又はこれらの混合材の少なくとも一種からなり、
前記低屈折率膜は、SiO、MgO、AlO、SiO、SiO、MgF又はこれらの混合材の少なくとも一種からなる、請求項5に記載のエッジフィルタ。
The high refractive index film includes Ta x O y , TiO x , ZnS, Si, Ge, SiGe x , SiN x , SiC x , ZrO x , NbO x , YO x , In x O y , SnO x , CeO x , Consisting of at least one of HfO x or a mixture thereof,
The edge filter according to claim 5, wherein the low refractive index film is made of at least one of SiO x , MgO x , AlO x , SiO x C y , SiO x N y , MgF x, or a mixture thereof.
JP2004232982A 2004-08-10 2004-08-10 Edge filter Withdrawn JP2006053200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232982A JP2006053200A (en) 2004-08-10 2004-08-10 Edge filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232982A JP2006053200A (en) 2004-08-10 2004-08-10 Edge filter

Publications (1)

Publication Number Publication Date
JP2006053200A true JP2006053200A (en) 2006-02-23

Family

ID=36030741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232982A Withdrawn JP2006053200A (en) 2004-08-10 2004-08-10 Edge filter

Country Status (1)

Country Link
JP (1) JP2006053200A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333766A (en) * 2006-06-12 2007-12-27 Sony Corp Hologram recording medium
JP2009045752A (en) * 2007-08-14 2009-03-05 Innovation & Infinity Global Corp Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
JP2010537230A (en) * 2007-08-16 2010-12-02 ダウ コーニング コーポレーション Dichroic filter formed using silicon carbide-based layers
WO2016031133A1 (en) * 2014-08-27 2016-03-03 富士フイルム株式会社 Optical member having anti-reflection film and method for manufacturing same
CN106574985A (en) * 2014-08-25 2017-04-19 富士胶片株式会社 Anti-reflection film and optical member provided with anti-reflection film
JP2020501182A (en) * 2016-11-30 2020-01-16 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Optical filters based on silicon germanium
CN110989183A (en) * 2019-12-30 2020-04-10 长春理工大学 Spectroscope for marine multi-dimensional imaging system, preparation method and design method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333766A (en) * 2006-06-12 2007-12-27 Sony Corp Hologram recording medium
JP2009045752A (en) * 2007-08-14 2009-03-05 Innovation & Infinity Global Corp Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
JP2010537230A (en) * 2007-08-16 2010-12-02 ダウ コーニング コーポレーション Dichroic filter formed using silicon carbide-based layers
CN106574985A (en) * 2014-08-25 2017-04-19 富士胶片株式会社 Anti-reflection film and optical member provided with anti-reflection film
WO2016031133A1 (en) * 2014-08-27 2016-03-03 富士フイルム株式会社 Optical member having anti-reflection film and method for manufacturing same
CN106574986A (en) * 2014-08-27 2017-04-19 富士胶片株式会社 Optical member having anti-reflection film and method for manufacturing same
JPWO2016031133A1 (en) * 2014-08-27 2017-06-08 富士フイルム株式会社 Optical member provided with antireflection film and method for manufacturing the same
JP2020501182A (en) * 2016-11-30 2020-01-16 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Optical filters based on silicon germanium
US11041982B2 (en) 2016-11-30 2021-06-22 Viavi Solutions Inc. Silicon-germanium based optical filter
JP7027420B2 (en) 2016-11-30 2022-03-01 ヴァイアヴィ・ソリューションズ・インコーポレイテッド Silicon-germanium-based optical filter
CN110989183A (en) * 2019-12-30 2020-04-10 长春理工大学 Spectroscope for marine multi-dimensional imaging system, preparation method and design method thereof
CN110989183B (en) * 2019-12-30 2021-08-03 长春理工大学 Spectroscope for marine multi-dimensional imaging system, preparation method and design method thereof

Similar Documents

Publication Publication Date Title
JP2002311235A (en) Composite light diffusion compensating element and light diffusion compensating method using the same
US6907167B2 (en) Optical interleaving with enhanced spectral response and reduced polarization sensitivity
JP2002267834A (en) Optical component, optical dispersion compensation device using the component and method for compensating optical dispersion
JPWO2001086328A1 (en) Optical component and its dispersion compensation method
US6600604B2 (en) Athermal thin film filter
US20040246582A1 (en) Optical interleaver and filter cell design with enhanced clear aperture
JP2006053200A (en) Edge filter
US7079322B2 (en) Wavelength division multiplexer
US6684002B2 (en) Method and apparatus for an optical filter
CN111290064A (en) Polarization-independent optical filter
US6850364B2 (en) Method and apparatus for an optical multiplexer and demultiplexer with an optical processing loop
US7389050B2 (en) Wavelength multiplexer/demultiplexing device
JP3584257B2 (en) Polarizing beam splitter
JP2004177658A (en) Dielectric multilayer band-pass filter
US20050041290A1 (en) Optical interleaver, filter cell, and component design with reduced chromatic dispersion
CN100559745C (en) Be used to handle the device of light signal
JP2005091996A (en) Optical component packaging module and optical communication module
US10145999B2 (en) Polarizing beamsplitter that passes s-polarization and reflects p-polarization
JP2004138798A (en) Multilayered dielectric band-pass filter
JP2008116714A (en) Optical filter and color separation prism
JP2005266039A (en) Optical band pass filter
JP4372483B2 (en) Optical bandpass filter
JP4757471B2 (en) Wavelength multiplexer / demultiplexer
CN114089460A (en) Low-angle offset optical filter
JP2004354705A (en) Optical band pass filter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106