JP2006053116A - Optics system structure for coupling plurality of laser beams - Google Patents

Optics system structure for coupling plurality of laser beams Download PDF

Info

Publication number
JP2006053116A
JP2006053116A JP2004261638A JP2004261638A JP2006053116A JP 2006053116 A JP2006053116 A JP 2006053116A JP 2004261638 A JP2004261638 A JP 2004261638A JP 2004261638 A JP2004261638 A JP 2004261638A JP 2006053116 A JP2006053116 A JP 2006053116A
Authority
JP
Japan
Prior art keywords
lens
laser
beams
wavelength
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004261638A
Other languages
Japanese (ja)
Other versions
JP2006053116A5 (en
Inventor
Josan Sei
序 三 成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004261638A priority Critical patent/JP2006053116A/en
Publication of JP2006053116A publication Critical patent/JP2006053116A/en
Publication of JP2006053116A5 publication Critical patent/JP2006053116A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optics system for coupling a plurality of diodes and laser beams, which can be made more compact and improved in optical axis stability. <P>SOLUTION: The plurality of diodes are coupled by a prism as shown by figure 2, whereby beams are formed and collimated by using one shared lens. Therefore, using the one shared lens makes the optics system compact and its structure difficult to cause an optical axis misalignment to occur therein. Furthermore, when coupling the plurality of diodes and laser beams having different beam characteristics to form one beam, a "lens type prism" is introduced, which has lens faces capable of preliminarily compensating each beam shape as shown by figure 3, thereby forming and collimating respective beams being coupled, in combination with the above shared lens, such that their shapes and divergent angles are identical to each other. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

発明に属する技術分野Technical field belonging to the invention

この発明は、複数のレーザーダイオードとレーザービームを結合して多波長のレーザービームに出力に関する技術である。  The present invention relates to a technique for outputting a laser beam having multiple wavelengths by combining a plurality of laser diodes and a laser beam.

従来、一つビームに複数の波長出力のレーザーを得る為、プリズム、或いは、反射ミラーなどを用いて、複数のレーザーダイオード、又は、レーザービームを結合させる技術がある。  Conventionally, in order to obtain a laser having a plurality of wavelength outputs in one beam, there is a technique of combining a plurality of laser diodes or laser beams using a prism or a reflection mirror.

レーザーダイオードなどビーム発散するタイプに対し、ビームを先ず平行光にしてから結合するのは、従来の技術である。又、レーザー二つ以上を結合する場合に、ビームを二つずつ段階的に結合にするので、システム全体のサイズは非常に大きくなるである。  It is a conventional technique that a beam is first collimated and then combined with a beam diverging type such as a laser diode. In addition, when two or more lasers are combined, the beams are combined in stages, so that the size of the entire system becomes very large.

又、応用上の都合で、結合される複数のレーザーは、同一形状と同じ発散角のビームにするので、従来の手法では、結合前に一つずつのレーザービームを整形するコリメータレンズが必要である。複数のレーザーダイオード(LD)を結合する場合には、LD一つずつ、ビーム整形できるコリメータレンズ系が必要である。  In addition, for the convenience of application, multiple lasers to be combined have the same shape and the same divergence angle, so the conventional method requires a collimator lens that shapes each laser beam before combining. is there. When combining a plurality of laser diodes (LDs), a collimator lens system capable of beam shaping for each LD is required.

この様に、従来の方法では、多数の光学部品と長い光路は必要なので、サイズが大きくなるシステムに煩雑な光路調整も必要である。更に、多い光学部品とマウントを使われる為、結合されたビームの光軸ずれなど経時変化もシステムの不安定な要因になるのである。  As described above, since the conventional method requires a large number of optical components and a long optical path, complicated optical path adjustment is also necessary for a system having a large size. Furthermore, since many optical components and mounts are used, changes over time such as optical axis misalignment of the combined beam are also unstable factors of the system.

発明が解決しようとする課題Problems to be solved by the invention

より簡素な手法で作るよりコンパクトな光学系で、複数のレーザーを結合できること、又は、ビーム性質が異なる各々のレーザービームに対し、所要光学部品の数を最低限に抑え、より高いビーム整形効果で各々のビームを整形し、結合されたレーザービームに含められる各波長成分のレーザーが同一形状且つ同じビーム発散角になる複数のビームの結合光学系は、本特許に解決しようとする課題である。  A more compact optical system made by a simpler method, which can combine multiple lasers, or for each laser beam with different beam properties, minimizes the number of required optical components and achieves a higher beam shaping effect. A combined optical system of a plurality of beams that shapes each beam and has a laser beam of each wavelength component included in the combined laser beam having the same shape and the same beam divergence angle is a problem to be solved by this patent.

課題を解決する為の手段Means to solve the problem

従来可視長波長赤色から赤外線までしかないダイオードレーザー(LD)は、近年、製造技術の向上に伴って、紫外から、可視短波長ブルー色までの発光波長に伸びて来た。又、LD励起のグリーンレーザーは、チップのような小型の製品も出来ている。紫外、ブルーとグリーン又赤色の可視領域から、近赤外線までいろいろな波長を持つ多波長小型化のレーザーは、バイオと遺伝子関係、医療診断、又、分光計測機器等幅広い応用に使われている。近年、それらの応用に、紫外から可視、又近赤外に複数の波長を持つ小型のレーザー光源を求められている。  In the past, diode lasers (LDs) that have only visible long wavelength red to infrared have recently been extended to emission wavelengths from ultraviolet to visible short wavelength blue with the improvement of manufacturing technology. Also, LD-pumped green lasers can be made as small products as chips. Multi-wavelength miniaturized lasers with various wavelengths from the visible range of ultraviolet, blue and green or red to near infrared are used in a wide range of applications such as biotechnology and genetics, medical diagnosis, and spectroscopic instruments. In recent years, small laser light sources having a plurality of wavelengths from ultraviolet to visible and near infrared have been demanded for these applications.

一般、レーザーダイオードは、ビーム拡がり角が大きい光源で、結合前にビームを整形できるコリメータ系レンズが必要である。  In general, a laser diode is a light source having a large beam divergence angle and requires a collimator lens that can shape the beam before combining.

偏光プリズムで偏光方向が異なる二つのビーム結合ができる。波長が異なる二つビームの結合は、単一波長のみ反射するミラーでのビーム結合が出来るのである。図1は、この様なビーム二つの結合光学系の例である。  Two beams with different polarization directions can be combined by a polarizing prism. Two beams having different wavelengths can be combined with a mirror that reflects only a single wavelength. FIG. 1 shows an example of such a two-beam combining optical system.

上述の光学系は、ビームを結合するプリズムかミラーでの精密な光軸調整が必要であり、光軸の微小なずれによるビーム同軸性のずれもシステムの不安定要因である。  The above-described optical system requires precise optical axis adjustment with a prism or mirror for combining the beams, and deviation of the beam coaxiality due to a slight deviation of the optical axis is also an unstable factor of the system.

本発明は、図2のように、二つレーザーダイオードを先ずプリズムで結合させ、一つ共用のレンズで平行ビームにコリメータする。この光学系の光軸調整のキーポイントは、ダイオードLD1とLD2の発光点を、共用レンズのバックフォックス焦点に合わせることである。ビーム結合プリズムに通るダイオードLD1とLD2は、普通10度以上発散角を持つ非平行光であり、プリズムが多少ずれても、その後でビームを共用レンズでコリメータするので、光軸はずれにくくなる。  In the present invention, as shown in FIG. 2, two laser diodes are first combined by a prism, and collimated to a parallel beam by a common lens. The key point of the optical axis adjustment of this optical system is to match the light emitting points of the diodes LD1 and LD2 with the back fox focus of the shared lens. The diodes LD1 and LD2 passing through the beam combining prism are non-parallel light having a divergence angle of usually 10 degrees or more. Even if the prism is slightly deviated, the beam is collimated by a common lens after that, so that the optical axis is difficult to deviate.

この様な複数のレーザーダイオードを一個の共用レンズでコリメータする方法では、必要な光学部品点数が減る上で光路も短縮でき、光軸がずれ難い且つコンパクトな構造でのビーム結合が実現できる。  In such a method of collimating a plurality of laser diodes with a single common lens, the number of necessary optical components can be reduced, the optical path can be shortened, and the beam coupling can be realized with a compact structure in which the optical axis is hardly displaced.

但し、結合する各波長のレーザーダイオードは、一般、ビーム広がり角が異なるので、一つの共用レンズでコリメータすると、結合される各ダイオードのビーム形状と発散角は、異なることもある。  However, since the laser diodes of each wavelength to be coupled generally have different beam divergence angles, the beam shape and the divergence angle of each diode to be coupled may be different when collimated with one common lens.

この問題を解決するため、本発明は、図3の様に、結合される前の各レーザーダイオードビームの形状と発散角を予備補正できる“レンズ型のプリズム”を導入する。図3の曲面36と37は、セルフォックレンズ系、球面系か非球面レンズ系、或いは、シリンドリカルレンズ系のもので、一つずつのビーム特性に合わせて設計できる。この様な“レンズ型のプリズム”の方法で、性質が異なる複数ビームを結合して、同一形状且つ同じ発散角のビームを出力できる。  In order to solve this problem, the present invention introduces a “lens-type prism” capable of precorrecting the shape and divergence angle of each laser diode beam before being combined as shown in FIG. The curved surfaces 36 and 37 in FIG. 3 are of a SELFOC lens system, a spherical system, an aspherical lens system, or a cylindrical lens system, and can be designed according to each beam characteristic. By such a “lens-type prism” method, a plurality of beams having different properties can be combined to output a beam having the same shape and the same divergence angle.

図3は、“レンズ型のプリズム”と共用コリメータレンズを導入する光学系で、本発明の実施の形態である。図3に示すように、レンズ面付きプリズム33で、ダイオード一つずつのビーム特性に合せてビームの形状を予備補正し、共用レンズ37との組み合わせで、結合された二つのビームを整形しコリメータする。  FIG. 3 shows an embodiment of the present invention, which is an optical system that introduces a “lens-type prism” and a common collimator lens. As shown in FIG. 3, a prism 33 with a lens surface preliminarily corrects the shape of the beam in accordance with the beam characteristics of each diode, and in combination with the shared lens 37, shapes the two combined beams to form a collimator. To do.

図4は、図3の31番レーザーダイオードLD1に対する光学系の有効光路図である。35レンズ面を有するプリズム33は、実際LD1のビーム形状を予備補正出来る一つのレンズと見られる。この補正レンズと37レンズの組み合せでLD1ビームを整形しコリメータする。  FIG. 4 is an effective optical path diagram of the optical system for the 31st laser diode LD1 of FIG. The prism 33 having 35 lens surfaces is actually seen as one lens that can preliminarily correct the beam shape of the LD1. The LD1 beam is shaped and collimated by a combination of the correction lens and the 37 lens.

図4と同じ原理で、図5は、32番レーザーダイオードLD2に対する光学系の有効光路図である。36レンズ面を有する33のレンズと35の組み合せレンズで、LD2ビームを整形しコリメータする。  FIG. 5 is an effective optical path diagram of the optical system for the 32nd laser diode LD2 based on the same principle as FIG. The LD2 beam is shaped and collimated by a combination of 33 lenses and 35 lenses having 36 lens surfaces.

このように、LD1とLD2のビームは、別々のコリメータレンズで整形され、結合される二者に対し、同一形状且つ同じ発散角のビームに設計できる。  In this way, the beams of LD1 and LD2 are shaped by separate collimator lenses and can be designed to have the same shape and the same divergence angle for the two combined.

3個以上の複数レーザービームでも、上記同じ原理の光学系、“レンズ型のプリズム”と、共用コリメータレンズの組み合わせでビームを結合できる。  Even with three or more laser beams, the beams can be combined by combining the optical system of the same principle, the “lens-type prism”, and a common collimator lens.

図6は、3個のレーザービームを結合する実施例である。図6の41は、グリーン532nm波長のチップ型レーザーである。42は、励起用808nm波長のレーザーダイオードで、43は、1064nm発振波長のYVO4レーザー結晶で、44は、二倍波SHG(Second Harmonics Generation)非線形光学結晶である。47と50は、レーザーダイオードである。この三つのレーザーに対し、45“レンズ型のプリズム”でビームの予備整形と結合、53共用レンズでビームを整形しコリメータする。この様に、複数のレーザービームをコンパクトな光学系でビームを結合できている。  FIG. 6 shows an embodiment in which three laser beams are combined. Reference numeral 41 in FIG. 6 denotes a chip type laser having a green wavelength of 532 nm. Reference numeral 42 denotes a laser diode having a wavelength of 808 nm for excitation, 43 denotes a YVO4 laser crystal having an oscillation wavelength of 1064 nm, and 44 denotes a second harmonic SHG (Second Harmonics Generation) nonlinear optical crystal. 47 and 50 are laser diodes. For these three lasers, 45 “lens-type prisms” are preliminarily shaped and combined with the beam, and the beam is shaped and collimated with the 53 shared lens. In this way, a plurality of laser beams can be combined with a compact optical system.

発明の効果The invention's effect

本発明に、“レンズ型のプリズム”と共用コリメータレンズの組み合わせで、複数のレーザービームを結合できる。“レンズ型のプリズム”と共用コリメータレンズ方式の導入で光学部品の点数は最小限に抑えられ、システムを小型化にし、又は、先にプリズムで結合された複数のビームを共用レンズでコリメータする仕組みで、光軸がずれにくい構造になり、光学システムの安定性を向上する。  In the present invention, a plurality of laser beams can be combined by combining a “lens-type prism” and a common collimator lens. Introduction of “lens-type prism” and shared collimator lens system minimizes the number of optical components, miniaturizes the system, or collimates multiple beams previously connected by a prism with a shared lens Thus, the optical axis is less likely to be displaced, and the stability of the optical system is improved.

予めコリメータされた二つのレーザーダイオードビームの結合光学系。Combined optics of two collimated laser diode beams. 一個共用コリメータレンズで二つレーザーダイオードビームを結合する光学系構造図。Optical system structure diagram combining two laser diode beams with one common collimator lens. ビーム径予備補正レンズ面付き“レンズ型プリズム”を用いる二つのレーザーダイオードビームの結合光学系の実際構成図。The actual block diagram of the coupling optical system of two laser diode beams using a “lens-type prism” with a beam diameter preliminary correction lens surface. 図3に示す光学系に31番レーザーダイオードLD1に対し、光学系の有効光路図。FIG. 4 is an effective optical path diagram of the optical system for the # 31 laser diode LD1 in the optical system shown in FIG. 3; 図3に示す光学系に32番レーザーダイオードLD2に対し、光学系の有効光路図。FIG. 4 is an effective optical path diagram of the optical system with respect to the 32nd laser diode LD2 in the optical system shown in FIG. 3; ビーム補正機能を有する三つのレーザービームの結合光学系の実施例。An embodiment of a combined optical system of three laser beams having a beam correction function.

符号の説明Explanation of symbols

(11) 波長λ1のレーザーダイオード(LD1)。
(12) 波長λ2のレーザーダイオード(LD2)。
(13) レーザービーム整形且つコリメータレンズ。
(14) 二つのビームを結合するプリズム。
(15) 波長λ1ビーム透過、波長λ2ビーム45°全反射コーディング面。
(16) 結合後のビーム形状。
(21) 波長λ1のレーザーダイオード(LD1)。
(22) 波長λ2のレーザーダイオード(LD2)。
(23) 二つのビームを結合するプリズム。
(24) 波長λ1ビーム透過、波長λ2ビーム45°全反射コーディング面。
(25) LD1とLD2両ビーム整形且つコリメータの共用レンズ。
(26) 結合後LD1波長成分のレーザービーム形状。
(27) 結合後LD2波長成分のレーザービーム形状。
(31) 波長λ1のレーザーダイオード(LD1)。
(32) 波長λ2のレーザーダイオード(LD2)。
(33) 二つのビームを結合する“レンズ型のプリズム”。
(34) 波長λ1ビーム透過、波長λ2ビーム45°全反射コーディング面。
(35) LD1レーザービーム形状補正球面、或いは、非球面、或いは、シリンドリカル型曲面。
(36) LD2レーザービーム形状補正球面、或いは、非球面、或いは、シリンドリカル型曲面。
(37) LD1とLD2両ビーム整形且つコリメータの共用レンズ。
(38) 結合後LD1波長成分のレーザービーム形状。
(39) 結合後LD2波長成分のレーザービーム形状。
(41) ダイオード励起532nm波長チップ型レーザー。
(42) 励起光源のレーザーダイオード(LD1)。
(43) YVO4レーザー結晶。
(44) KTP二倍波非線形光学結晶。
(45) 三つのビームを結合する“レンズ型のプリズム”。
(46) 532nmレーザービーム形状補正球面レンズ面。
(47) 波長λ2のレーザーダイオード(LD2)。
(48) LD2レーザービーム形状補正球面、或いは、非球面、或いは、シリンドリカル型曲面。
(49) 532nm波長透過、λ2波長45°全反射コーディング面。
(50) 波長λ3のレーザーダイオード(LD3)。
(51) LD3レーザービーム形状補正球面、或いは、非球面、或いは、シリンドリカル型曲面。
(52) 532nmとλ2波長透過、λ3波長45°全反射コーディング面。
(53) 結合した三つのレーザービームの整形且つコリメータの共通レンズ。
(54) 結合後のレーザービーム形状。
(11) A laser diode (LD1) having a wavelength λ1.
(12) A laser diode (LD2) having a wavelength λ2.
(13) Laser beam shaping and collimator lens.
(14) A prism that combines two beams.
(15) Wavelength λ1 beam transmission, wavelength λ2 beam 45 ° total reflection coding surface.
(16) Beam shape after combination.
(21) A laser diode (LD1) having a wavelength λ1.
(22) A laser diode (LD2) having a wavelength λ2.
(23) A prism that combines two beams.
(24) Wavelength λ1 beam transmission, wavelength λ2 beam 45 ° total reflection coding surface.
(25) LD1 and LD2 both beam shaping and collimator shared lens.
(26) Laser beam shape of LD1 wavelength component after coupling.
(27) Laser beam shape of LD2 wavelength component after coupling.
(31) A laser diode (LD1) having a wavelength λ1.
(32) A laser diode (LD2) having a wavelength λ2.
(33) A “lens-type prism” that combines two beams.
(34) Wavelength λ1 beam transmission, wavelength λ2 beam 45 ° total reflection coding surface.
(35) LD1 laser beam shape corrected spherical surface, aspherical surface, or cylindrical curved surface.
(36) LD2 laser beam shape corrected spherical surface, aspherical surface, or cylindrical curved surface.
(37) LD1 and LD2 both beam shaping and collimator shared lens.
(38) Laser beam shape of LD1 wavelength component after coupling.
(39) Laser beam shape of LD2 wavelength component after coupling.
(41) Diode-pumped 532 nm wavelength chip type laser.
(42) A laser diode (LD1) as an excitation light source.
(43) YVO4 laser crystal.
(44) KTP double wave nonlinear optical crystal.
(45) “Lens-type prism” that combines three beams.
(46) A 532 nm laser beam shape-corrected spherical lens surface.
(47) A laser diode (LD2) having a wavelength λ2.
(48) LD2 laser beam shape corrected spherical surface, aspherical surface, or cylindrical surface.
(49) 532 nm wavelength transmission, λ2 wavelength 45 ° total reflection coding surface.
(50) A laser diode (LD3) having a wavelength λ3.
(51) LD3 laser beam shape corrected spherical surface, aspherical surface, or cylindrical curved surface.
(52) 532 nm, λ2 wavelength transmission, λ3 wavelength 45 ° total reflection coding surface.
(53) A common lens for shaping and collimating three combined laser beams.
(54) Laser beam shape after combination.

Claims (2)

一つの共用ビームコリメータレンズを用いて、複数のレーザーダイオードとレーザービームを結合するコンパクトな光学系構造。Compact optical system structure that combines multiple laser diodes and laser beams using one common beam collimator lens. ビーム形状と発散角が異なる複数のレーザーダイオードとレーザービームを一つのビームに結合する際に、ビームを一つずつ予め形状を補正できる“レンズ型プリズム”と請求項目1の共用ビームコリメータレンズの組み合わせで、結合されたビームに含められる各波長成分が、同一ビーム形状且つ同じビーム発散角になる光学系構造。The combination of a “lens prism” and a common beam collimator lens according to claim 1, wherein when combining a plurality of laser diodes having different beam shapes and divergence angles and laser beams into one beam, the shape of each beam can be corrected in advance. An optical system structure in which each wavelength component included in the combined beam has the same beam shape and the same beam divergence angle.
JP2004261638A 2004-08-13 2004-08-13 Optics system structure for coupling plurality of laser beams Pending JP2006053116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261638A JP2006053116A (en) 2004-08-13 2004-08-13 Optics system structure for coupling plurality of laser beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261638A JP2006053116A (en) 2004-08-13 2004-08-13 Optics system structure for coupling plurality of laser beams

Publications (2)

Publication Number Publication Date
JP2006053116A true JP2006053116A (en) 2006-02-23
JP2006053116A5 JP2006053116A5 (en) 2007-10-04

Family

ID=36030689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261638A Pending JP2006053116A (en) 2004-08-13 2004-08-13 Optics system structure for coupling plurality of laser beams

Country Status (1)

Country Link
JP (1) JP2006053116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139886A1 (en) * 2007-05-09 2008-11-20 Olympus Corporation Automated analyzer
CN103630089A (en) * 2012-08-28 2014-03-12 北京航天计量测试技术研究所 Indicating value compensation system and method of double-color differential autocollimator
CN105627253A (en) * 2016-01-22 2016-06-01 山东神戎电子股份有限公司 Ultrahigh-power near-infrared semiconductor laser illuminator
WO2018139412A1 (en) * 2017-01-26 2018-08-02 日本電気株式会社 Detecting system and detecting method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261601A (en) * 1988-04-13 1989-10-18 Omron Tateisi Electron Co Nonspherical micro-lens and its manufacture and optical fiber coupler, condensing optical system, optical element, semiconductor laser light source and image device utilizing nonspherical micro-lens
JPH0260179A (en) * 1988-08-26 1990-02-28 Fuji Photo Film Co Ltd Laser ray source device for wave multiplexing
JPH04111381A (en) * 1990-08-30 1992-04-13 Sanyo Electric Co Ltd Semiconductor laser apparatus
JPH0587524A (en) * 1991-03-27 1993-04-06 Hughes Aircraft Co Optical measuring device
JPH06281871A (en) * 1993-01-27 1994-10-07 Ricoh Co Ltd Multibeam light source device and optical scanning device using the same
JPH09179048A (en) * 1995-12-27 1997-07-11 Minolta Co Ltd Multi-beam scanning optical device and laser light source
JPH1172730A (en) * 1997-08-29 1999-03-16 Minolta Co Ltd Light source device and light beam scanning optical device
JP2000151006A (en) * 1998-11-09 2000-05-30 Sharp Corp Semiconductor laser device
JP2002136506A (en) * 2000-10-30 2002-05-14 Shibuya Kogyo Co Ltd Blood sugar value detecting device
JP2002189148A (en) * 2000-12-20 2002-07-05 Mitsubishi Electric Corp Optical semiconductor element module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261601A (en) * 1988-04-13 1989-10-18 Omron Tateisi Electron Co Nonspherical micro-lens and its manufacture and optical fiber coupler, condensing optical system, optical element, semiconductor laser light source and image device utilizing nonspherical micro-lens
JPH0260179A (en) * 1988-08-26 1990-02-28 Fuji Photo Film Co Ltd Laser ray source device for wave multiplexing
JPH04111381A (en) * 1990-08-30 1992-04-13 Sanyo Electric Co Ltd Semiconductor laser apparatus
JPH0587524A (en) * 1991-03-27 1993-04-06 Hughes Aircraft Co Optical measuring device
JPH06281871A (en) * 1993-01-27 1994-10-07 Ricoh Co Ltd Multibeam light source device and optical scanning device using the same
JPH09179048A (en) * 1995-12-27 1997-07-11 Minolta Co Ltd Multi-beam scanning optical device and laser light source
JPH1172730A (en) * 1997-08-29 1999-03-16 Minolta Co Ltd Light source device and light beam scanning optical device
JP2000151006A (en) * 1998-11-09 2000-05-30 Sharp Corp Semiconductor laser device
JP2002136506A (en) * 2000-10-30 2002-05-14 Shibuya Kogyo Co Ltd Blood sugar value detecting device
JP2002189148A (en) * 2000-12-20 2002-07-05 Mitsubishi Electric Corp Optical semiconductor element module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139886A1 (en) * 2007-05-09 2008-11-20 Olympus Corporation Automated analyzer
CN103630089A (en) * 2012-08-28 2014-03-12 北京航天计量测试技术研究所 Indicating value compensation system and method of double-color differential autocollimator
CN105627253A (en) * 2016-01-22 2016-06-01 山东神戎电子股份有限公司 Ultrahigh-power near-infrared semiconductor laser illuminator
CN105627253B (en) * 2016-01-22 2018-11-30 山东神戎电子股份有限公司 A kind of super high power near-infrared semiconductor laser lighting
WO2018139412A1 (en) * 2017-01-26 2018-08-02 日本電気株式会社 Detecting system and detecting method
US10895529B2 (en) 2017-01-26 2021-01-19 Nec Corporation Detecting system and detecting method

Similar Documents

Publication Publication Date Title
US20210066889A1 (en) Wavelength beam combining laser systems utilizing etalons
US10067351B2 (en) Optical alignment systems and methods for wavelength beam combining laser systems
US20210257813A1 (en) Very Dense Wavelength Beam Combined Laser System
US9093822B1 (en) Multi-band co-bore-sighted scalable output power laser system
US8724222B2 (en) Compact interdependent optical element wavelength beam combining laser system and method
WO2017197883A1 (en) Laser array beam combining device
US10014650B2 (en) Fiber-based output couplers for wavelength beam combining laser systems
US9350141B2 (en) Stabilization of wavelength beam combining laser systems in the non-wavelength beam combining direction
US20110216417A1 (en) Selective Repositioning and Rotation Wavelength Beam Combining System and Method
US11156848B2 (en) Wavelength beam combining laser systems with high beam quality factor
WO2018006559A1 (en) Laser array beam combination device
JP2014216361A (en) Laser device and wavelength coupling method of light beam
US20150293301A1 (en) Integrated wavelength beam combining laser systems
US9124065B2 (en) System and method for wavelength beam combination on a single laser emitter
US8494024B1 (en) Beam quality of the monoblock laser through use of a 1.5 micron external cavity partial reflector
WO2012058683A2 (en) Compact interdependent optical element wavelength beam combining laser system and method
CN112928597A (en) Semiconductor laser optical fiber coupling module
JP2006053116A (en) Optics system structure for coupling plurality of laser beams
JP2006053116A5 (en)
CN116683292B (en) Semiconductor laser spectrum beam combining device and method based on thin film filter
Neukum Overview on new diode lasers for defense applications
Soskind Micro-optics packaging and integration for high-power diode laser beam combining
JP2018066842A (en) Light guide device, method for manufacturing the same, and ld module

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706