JP2006053107A - Optical measuring instrument and its assembling method - Google Patents

Optical measuring instrument and its assembling method Download PDF

Info

Publication number
JP2006053107A
JP2006053107A JP2004236460A JP2004236460A JP2006053107A JP 2006053107 A JP2006053107 A JP 2006053107A JP 2004236460 A JP2004236460 A JP 2004236460A JP 2004236460 A JP2004236460 A JP 2004236460A JP 2006053107 A JP2006053107 A JP 2006053107A
Authority
JP
Japan
Prior art keywords
light
measurement
light source
optical axis
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004236460A
Other languages
Japanese (ja)
Inventor
Iwao Iwatani
巌 岩谷
Satoshi Maeda
智 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004236460A priority Critical patent/JP2006053107A/en
Publication of JP2006053107A publication Critical patent/JP2006053107A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical measuring instrument suppressed in measuring error caused by minute fluctuations in the distance between measuring targets, and provide its assembling method. <P>SOLUTION: In the optical measuring instrument equipped with a light source for emitting a light beam to the measuring target and a light detection part for detecting the measuring light emitted from the light source to be reflected by the measuring target to output the detection light signal corresponding to the measuring light, the light source has characteristics, wherein an intensity constant point almost constant in the illumination intensity of the light beam within a spot formed by irradiating the measuring target with the light beam even if the distance up to the measuring target from the light source fluctuate within a predetermined range, at a place off the optical axis of the light source and the light detection part has the optical axis passing through the intensity constant point. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、測定対象物に光ビームを出射する光源と、該光源から出射して前記測定対象物で反射した測定光を受光し、該測定光に応じた受光信号を出力する受光部とを備えた光学測定装置およびこの光学測定装置の組立方法に関する。   The present invention includes a light source that emits a light beam to a measurement object, and a light receiving unit that receives the measurement light emitted from the light source and reflected by the measurement object, and outputs a light reception signal corresponding to the measurement light. The present invention relates to an optical measuring device provided and an assembling method of the optical measuring device.

従来より、感光体などの像担持体上にトナー像を形成し、紙などの記録媒体上にこのトナー像を転写および定着することにより画像形成を行なう、プリンタなどの画像形成装置が知られている。   2. Description of the Related Art Conventionally, there has been known an image forming apparatus such as a printer that forms a toner image on an image carrier such as a photoconductor and transfers and fixes the toner image on a recording medium such as paper. Yes.

このような画像形成装置では、記録媒体上に転写したトナー像のトナー濃度が正しくでているか否かが、画像形成の合間に形成したパッチと呼ばれるダミーのトナー像の濃度を検証することでなされている。この検証は、パッチに向けて発光素子から照射され、パッチの表面で反射した反射光を受光した受光素子からの出力レベルを判定することによって行なわれている(特許文献1参照)。   In such an image forming apparatus, whether or not the toner density of the toner image transferred onto the recording medium is correct is determined by verifying the density of a dummy toner image called a patch formed during image formation. ing. This verification is performed by determining the output level from the light receiving element that receives the reflected light that is irradiated from the light emitting element toward the patch and reflected by the surface of the patch (see Patent Document 1).

図1は、上述の発光素子および受光素子で構成されたトナー濃度測定装置の一例を示す図である。   FIG. 1 is a diagram illustrating an example of a toner concentration measuring apparatus including the above-described light emitting element and light receiving element.

図1には、発光素子である発光ダイオード101および受光素子であるフォトダイオード102を内蔵するトナー濃度測定装置100が、被測定対象であるパッチ110から所定の距離(以下、この距離を測定距離と称する。)をおいて配備されている様子が示されている。尚、図1に示すトナー濃度測定装置100には、発光側絞り101a、受光レンズ102a、および受光側絞り102bが備えられており、また、図1には、パッチ110が中間転写ベルト120上に形成されている様子が示されている。   In FIG. 1, a toner concentration measuring apparatus 100 including a light emitting diode 101 as a light emitting element and a photodiode 102 as a light receiving element has a predetermined distance from a patch 110 to be measured (hereinafter, this distance is referred to as a measurement distance). The state of being deployed is shown. 1 includes a light-emitting side stop 101a, a light-receiving lens 102a, and a light-receiving side stop 102b. In FIG. 1, a patch 110 is provided on the intermediate transfer belt 120. It shows how it is formed.

さらに、図1には、発光ダイオード101の発光光軸Sとフォトダイオード102の受光光軸Rとがパッチ110表面上の位置Xで交差している様子が示されている。   Further, FIG. 1 shows a state in which the light emitting optical axis S of the light emitting diode 101 and the light receiving optical axis R of the photodiode 102 intersect at a position X on the surface of the patch 110.

図2は、図1に示すトナー濃度測定装置における照明強度とパッチ表面上の位置との関係を示すグラフ図である。   FIG. 2 is a graph showing the relationship between the illumination intensity and the position on the patch surface in the toner concentration measuring apparatus shown in FIG.

図2には、図1に示すトナー濃度測定装置100が、発光ダイオード101の光軸Sとフォトダイオード102の光軸Rとの交点Xにおいて照明強度がピークとなるように設計されているものであることが示されている。   In FIG. 2, the toner concentration measuring apparatus 100 shown in FIG. 1 is designed so that the illumination intensity reaches a peak at the intersection X between the optical axis S of the light emitting diode 101 and the optical axis R of the photodiode 102. It is shown that there is.

図3は、受光強度と測定距離との間の関係を示すグラフ図である。   FIG. 3 is a graph showing the relationship between the received light intensity and the measurement distance.

図3には、測定距離が仕様よりも近づくほど受光強度が上昇し遠ざかるほど受光強度が低下する、フォトダイオードの受光特性が示されている。   FIG. 3 shows the light receiving characteristics of a photodiode in which the received light intensity increases as the measurement distance approaches the specification, and the received light intensity decreases as the distance increases.

図4は、図1に示すトナー濃度測定装置からの、測定距離毎のセンサ出力を示すグラフ図である。   FIG. 4 is a graph showing the sensor output for each measurement distance from the toner concentration measuring apparatus shown in FIG.

図4に示すセンサ出力は、図2に示す照明強度特性と、図3に示す受光特性と、測定距離変化に伴う、照明強度自身の変化、および、発光光軸Sと非測定対象であるパッチ110の交点(ずれた場合はXでない)の移動による受光光軸上の照明強度の変化とを反映したものである。
特開平3−045972号公報
The sensor output shown in FIG. 4 includes the illumination intensity characteristic shown in FIG. 2, the light receiving characteristic shown in FIG. 3, the change in the illumination intensity itself accompanying the change in the measurement distance, and the light emission optical axis S and the patch that is not measured. This is a reflection of the change in illumination intensity on the light receiving optical axis due to the movement of 110 intersections (not X when shifted).
JP-A-3-045972

ところで、トナー濃度測定装置100を、中間転写ベルトとの間に仕様通りの間隔を空けてプリンタや複写機などに取り付けようとしても取付誤差は少なからず発生し、また、パッチが形成される中間転写ベルトにおいて波打ちが発生しないとも限らない。   By the way, even if the toner density measuring device 100 is attached to a printer, a copying machine or the like with an interval as specified between the intermediate transfer belt and the intermediate transfer belt, there is a considerable installation error, and the intermediate transfer in which a patch is formed. There is no guarantee that undulation will not occur in the belt.

そのような場合には、測定距離が仕様とはズレてしまうために、図4に示すようにセンサ出力が大きく異なってしまうことになり、正確な濃度検出ができなくなるという問題が発生する。   In such a case, since the measurement distance is deviated from the specification, the sensor output is greatly different as shown in FIG. 4, which causes a problem that accurate density detection cannot be performed.

尚、以上に説明したことは、トナー像の濃度検出においてのみ発生する問題ではなく、トナー像が記録媒体上の目標とする位置に正確に転写されているか否かを光学的に検出する転写位置検出装置などにおいても同様に発生する問題でもある。   Note that what has been described above is not a problem that occurs only in toner image density detection, but a transfer position for optically detecting whether or not the toner image is accurately transferred to a target position on the recording medium. This is also a problem that occurs in the detection device and the like.

本発明は、上記事情に鑑み、測定対象との間の距離の微少変動による測定誤差が抑制された光学測定装置、および、このような光学測定装置の組立方法を提供することを目的とする。   In view of the circumstances described above, an object of the present invention is to provide an optical measurement device in which measurement errors due to slight fluctuations in the distance to the measurement object are suppressed, and a method for assembling such an optical measurement device.

上記目的を達成するための本発明の光学測定装置は、
測定対象物に光ビームを出射する光源と、この光源から出射して上記測定対象物で反射した測定光を受光し、この測定光に応じた受光信号を出力する受光部とを備えた光学測定装置において、
上記光源は、この光源の光軸から外れた所に、この光源からこの測定対象物までの距離が所定範囲内で変動しても上記光ビームが上記測定対象物に照射されてなるスポット内においてこの光ビームの照明強度が略一定である強度一定点が存在する特性を有するものであり、
上記受光部は、上記強度一定点を通る光軸を有するものであることを特徴とする。
In order to achieve the above object, an optical measurement apparatus of the present invention comprises:
Optical measurement including a light source that emits a light beam to a measurement object, and a light receiving unit that receives the measurement light emitted from the light source and reflected by the measurement object, and outputs a light reception signal corresponding to the measurement light In the device
The light source is located in a spot where the measurement object is irradiated with the light beam even if the distance from the light source to the measurement object fluctuates within a predetermined range at a position off the optical axis of the light source. It has the characteristic that there is a constant intensity point where the illumination intensity of this light beam is substantially constant,
The light receiving unit has an optical axis passing through the constant intensity point.

本発明の光学測定装置では、受光部の光軸が、測定光の特性をほぼ決定する、光ビームの照明強度が、測定対象物までの距離が所定範囲内で変化しても略一定である強度一定点を通るようになされている。したがって、本発明の光学測定装置によれば、測定対象物までの距離が所定範囲内で変化しても受光信号の出力変化を抑制することができ、これにより、測定対象との間の距離の微少変動による測定誤差を抑制することができる。   In the optical measurement device of the present invention, the optical axis of the light receiving unit substantially determines the characteristics of the measurement light, and the illumination intensity of the light beam is substantially constant even if the distance to the measurement object changes within a predetermined range. It is designed to pass through a fixed point. Therefore, according to the optical measurement device of the present invention, even if the distance to the measurement object changes within a predetermined range, it is possible to suppress the change in the output of the received light signal, thereby reducing the distance to the measurement object. Measurement errors due to minute fluctuations can be suppressed.

上記目的を達成するための本発明の光学測定装置の組立方法は、
被測定面上に光ビームを出射する光源と、この光源から出射して上記被測定面上で反射した測定光を受光し、この測定光に応じた受光信号を出力する受光部とを備えた光学測定装置の組立方法において、
上記光源の光軸および上記受光部の光軸それぞれが上記被測定面上を通るようにこの光源およびこの受光部それぞれを配置する第1ステップと、
上記光源と上記被測定面との距離が所定範囲内で変動しても上記光ビームがこの被測定面上に照射されてなるスポット内においてこの光ビームの照明強度が略一定である強度一定点とこの被測定面上の、上記受光部の光軸の通過点とを一致させる第2ステップとを有することを特徴とする。
In order to achieve the above object, an assembling method of the optical measuring device of the present invention comprises:
A light source that emits a light beam onto the surface to be measured, and a light receiving unit that receives the measurement light emitted from the light source and reflected on the surface to be measured, and outputs a light reception signal according to the measurement light In the assembly method of the optical measuring device,
A first step of disposing each of the light source and the light receiving unit such that the optical axis of the light source and the optical axis of the light receiving unit pass on the surface to be measured;
Even if the distance between the light source and the surface to be measured fluctuates within a predetermined range, an intensity constant point where the illumination intensity of the light beam is substantially constant in a spot formed by the light beam being irradiated on the surface to be measured. And a second step for matching the passing point of the optical axis of the light receiving unit on the surface to be measured.

ここで、上記第2ステップが、上記強度一定点と上記通過点を、上記第1ステップで配置した上記光源の配置位置を変更することで一致させるステップであってもよい。   Here, the second step may be a step of matching the constant intensity point and the passing point by changing the arrangement position of the light source arranged in the first step.

あるいは、上記第2ステップが、上記強度一定点と上記通過点を、上記スポットの形状を変更することで一致させるステップであってもよい。   Alternatively, the second step may be a step of matching the fixed intensity point and the passing point by changing the shape of the spot.

このようにスポットの形状を変更させることで照明強度の特性を変更することができ、これにより、光源および受光部の相対位置を変更しなくても強度一定点と通過点とを一致させることができ便利である。   By changing the shape of the spot in this way, it is possible to change the characteristics of the illumination intensity, thereby making it possible to match the constant intensity point and the passing point without changing the relative positions of the light source and the light receiving unit. It is convenient.

本発明の光学測定装置の組立方法によって組み立てられた、本発明の光学測定装置によれば、測定対象との間の距離の微少変動による測定誤差を抑制することができる。   According to the optical measuring device of the present invention assembled by the assembling method of the optical measuring device of the present invention, it is possible to suppress a measurement error due to a slight variation in the distance to the measurement object.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図5は、図2を含む、照明強度とパッチ表面上の位置との関係の測定距離毎のグラフ図である。   FIG. 5 is a graph showing the relationship between the illumination intensity and the position on the patch surface for each measurement distance, including FIG.

図5には、発光ダイオードの測定距離が変化しても照明強度が略一定の、パッチ表面上の位置Yが示されている。   FIG. 5 shows a position Y on the patch surface where the illumination intensity is substantially constant even when the measurement distance of the light emitting diode changes.

従来は発光ダイオードの光軸Sが被測定面と交差する点にフォトダイオードの光軸Rが合わせられていたのに対し、本発明の光学測定装置では、測定距離が変化しても照明強度が略一定の被測定面上の位置に受光素子の光軸を合わせることにより、被測定面と光学測定装置との間の距離の微少変動に対して安定的なセンサ出力が実現される。   Conventionally, the optical axis R of the photodiode is aligned with the point where the optical axis S of the light-emitting diode intersects the surface to be measured. In contrast, the optical measurement apparatus of the present invention provides illumination intensity even when the measurement distance changes. By aligning the optical axis of the light receiving element at a substantially constant position on the surface to be measured, a stable sensor output can be realized against slight fluctuations in the distance between the surface to be measured and the optical measuring device.

図6は、本発明の光学測定装置の組立方法の一実施形態によって組み立てられた、本発明の光学測定装置の第1実施形態を示す図である。   FIG. 6 is a diagram showing a first embodiment of the optical measurement device of the present invention assembled by an embodiment of the assembly method of the optical measurement device of the present invention.

図6に示す、本実施形態のトナー濃度測定装置10は、発光素子である発光ダイオード111が備えられた発光部11、および、受光素子であるフォトダイオード121が備えられた受光部12を有しており、プリンタや複写機内部に取り付けられてトナー濃度や位置の測定を行なうものである。このトナー濃度測定装置10には、パッチ表面との間の距離に関わる方向については、発光部11と受光部12とを固定するものの、パッチ表面上の位置に関わる、発光部11と受光部12との間の間隔を変更することができる機構が備えられている。   A toner concentration measuring apparatus 10 according to the present embodiment illustrated in FIG. 6 includes a light emitting unit 11 provided with a light emitting diode 111 that is a light emitting element, and a light receiving unit 12 provided with a photodiode 121 that is a light receiving element. It is installed inside a printer or copier to measure toner density and position. The toner concentration measuring device 10 fixes the light emitting unit 11 and the light receiving unit 12 in the direction related to the distance between the patch surface, but the light emitting unit 11 and the light receiving unit 12 related to the position on the patch surface. The mechanism which can change the space | interval between is provided.

図6には、受光部12と発光部11との間に隙間が確保されている様子が示されており、この隙間の確保により発光ダイオード111の光軸が、図6に示す光軸Sから光軸S’に変化した様子が示されている。本実施形態のトナー濃度測定装置10では、受光部12と発光部11の間隔を調整することで、測定距離が変化しても照明強度が略一定のパッチ表面上の位置Yにフォトダイオード121の光軸が合わせられている。尚、このトナー濃度測定装置10に用いられている発光ダイオード111は、光軸から外れたところに、パッチ表面までの距離が所定範囲内で変動しても照明強度が一定である強度一定点が存在する特性を有するものである。   FIG. 6 shows a state in which a gap is secured between the light receiving unit 12 and the light emitting unit 11. By securing this gap, the optical axis of the light emitting diode 111 is changed from the optical axis S shown in FIG. 6. A state of changing to the optical axis S ′ is shown. In the toner concentration measuring apparatus 10 of the present embodiment, by adjusting the distance between the light receiving unit 12 and the light emitting unit 11, the photodiode 121 is positioned at a position Y on the patch surface where the illumination intensity is substantially constant even if the measurement distance changes. The optical axis is aligned. The light emitting diode 111 used in the toner concentration measuring apparatus 10 has a constant intensity point where the illumination intensity is constant even when the distance to the patch surface fluctuates within a predetermined range at a position off the optical axis. It has existing characteristics.

ここで、被測定対象までの距離が仕様設定されているトナー濃度測定装置10の工場出荷前の組み立て調整について説明する。   Here, the assembly adjustment before factory shipment of the toner concentration measuring apparatus 10 in which the distance to the object to be measured is set will be described.

図7は、トナー濃度測定装置の組み立て調整の流れを示す図である。   FIG. 7 is a diagram showing a flow of assembly adjustment of the toner concentration measuring apparatus.

図7に示すステップS1において、パッチの代わりに所定の濃度または反射率をもつ基準板が既に設置されている治具(不図示)への、調整対象のトナー濃度測定装置10の取付けが行なわれる。この治具では、基準板とこのトナー濃度測定装置10との間の測定距離、および、発光部11と受光部12の間隔の変更が可能となっており、また、トナー濃度測定装置10のフォトダイオード121からのセンサ出力が記録できる様になっている。ステップS2において、発光部11と受光部12とが仮の間隔(ここでは、間隔0mm)で、また、仕様設定されている距離を基準板との間に確保して配置される。ステップS3において、基準板とトナー濃度測定装置10との間の測定距離を変化させながら出力が最大となる測定距離を求める。ステップS4では、表1に示す関係に基づいて発光部11と受光部12の移動/調整量を求める。   In step S1 shown in FIG. 7, the toner density measuring device 10 to be adjusted is attached to a jig (not shown) in which a reference plate having a predetermined density or reflectance is already installed instead of the patch. . With this jig, it is possible to change the measurement distance between the reference plate and the toner concentration measuring device 10 and the interval between the light emitting unit 11 and the light receiving unit 12, and the photo of the toner concentration measuring device 10 can be changed. The sensor output from the diode 121 can be recorded. In step S <b> 2, the light emitting unit 11 and the light receiving unit 12 are arranged with a provisional interval (here, an interval of 0 mm) and a distance set as a specification secured between the reference plate. In step S3, a measurement distance at which the output is maximized is obtained while changing the measurement distance between the reference plate and the toner density measuring device 10. In step S4, the movement / adjustment amount of the light emitting unit 11 and the light receiving unit 12 is obtained based on the relationship shown in Table 1.

Figure 2006053107
Figure 2006053107

表1に示す関係は、フォトダイオードの光軸と照明強度の略一定の強度一定点とを一致させるための、測定距離と受発光間の移動/調整量との関係であり、これら関係は実験的に見いだされたものである。   The relationship shown in Table 1 is the relationship between the measurement distance and the movement / adjustment amount between light emission and emission in order to make the optical axis of the photodiode coincide with a substantially constant intensity constant point of illumination intensity. It was discovered.

ステップS5では、ステップS4で求めた移動/調整量となるような位置に発光部11と受光部12とを仮固定する。ステップS6では、基準板とトナー濃度測定装置10の測定距離を仕様設定距離を中心に変化させながらフォトダイオード121からのセンサ出力の変動量の測定を行なう。ステップ7では、センサ出力の変動量の確認を行なう。尚、変動量が所定範囲に入っていない場合には、再移動/再調整を行い、移動/調整量の微調整を行う。   In step S5, the light emitting unit 11 and the light receiving unit 12 are temporarily fixed at a position corresponding to the movement / adjustment amount obtained in step S4. In step S6, the variation amount of the sensor output from the photodiode 121 is measured while changing the measurement distance between the reference plate and the toner density measuring device 10 around the specification setting distance. In step 7, the fluctuation amount of the sensor output is confirmed. When the fluctuation amount is not within the predetermined range, re-movement / re-adjustment is performed, and the movement / adjustment amount is finely adjusted.

図8は、基準板と調整対象のトナー濃度測定装置との間の距離を、仕様設定距離を中心に変化させた場合のセンサ出力を示す図である。   FIG. 8 is a diagram showing sensor output when the distance between the reference plate and the toner density measuring device to be adjusted is changed around the specification setting distance.

図8には、仕様設定距離を中心に±0.5mm変化した場合のセンサ出力の変動が図4における変動に比べ小さくなっている様子が示されている。   FIG. 8 shows how the sensor output fluctuation is smaller than the fluctuation in FIG. 4 when ± 0.5 mm is changed around the specification setting distance.

最後に、フォトダイオードの光軸と強度一定点が一致した受発光間隔で、発光部11と受光部12を本固定し(ステップ8)、トナー濃度測定装置10の組み立て調整を終了する。発光部11と受光部12が本固定されたトナー濃度測定装置10は、プリンタや複写機などの組み立て工場へ引き渡され、仕様設定距離に配置されるようプリンタや複写機などに組み込まれる。こうすることで、被測定対象までの距離の微少変動に対しても安定した濃度測定が可能となる。したがって、本実施形態のトナー濃度測定装置10によれば、測定対象との間の距離の微少変動による測定誤差を抑制することができる。   Finally, the light emitting unit 11 and the light receiving unit 12 are permanently fixed at a light receiving / emitting interval where the optical axis of the photodiode coincides with a constant intensity point (step 8), and the assembly adjustment of the toner concentration measuring device 10 is finished. The toner concentration measuring device 10 having the light emitting unit 11 and the light receiving unit 12 fixed thereto is handed over to an assembly factory such as a printer or a copying machine, and is incorporated into the printer or the copying machine so as to be arranged at a specification setting distance. By doing so, it is possible to measure the concentration stably even with a slight change in the distance to the object to be measured. Therefore, according to the toner concentration measuring apparatus 10 of the present embodiment, it is possible to suppress a measurement error due to a slight variation in the distance to the measurement target.

図9は、本発明の光学測定装置の第2実施形態を示す図である。   FIG. 9 is a diagram showing a second embodiment of the optical measurement apparatus of the present invention.

図6に示す第1実施形態と図9に示す第2実施形態との相違点は、第2実施形態では、発光部と受光部とが一体になっており、測定距離が変化しても照明強度が略一定のパッチ表面上の位置へのフォトダイオードの光軸合わせを、受光部に対し発光部を移動させるのではなく発光ダイオードからの照射光によりパッチ表面に形成されるスポット範囲を縮小することで行なう点のみである。   The difference between the first embodiment shown in FIG. 6 and the second embodiment shown in FIG. 9 is that in the second embodiment, the light emitting unit and the light receiving unit are integrated, and illumination is performed even if the measurement distance changes. Aligning the optical axis of the photodiode to a position on the patch surface where the intensity is substantially constant, rather than moving the light emitting portion relative to the light receiving portion, reduces the spot range formed on the patch surface by the irradiation light from the light emitting diode. It is only a point to do.

図9に示す、本実施形態のトナー濃度測定装置20には、発光ダイオード211からの照射光のスポット範囲を調節する遮光部材213が配備されており、この遮光部材213が、矢印Bの向きに回動されることで、スポット範囲が縮減される。   In the toner concentration measuring apparatus 20 of the present embodiment shown in FIG. 9, a light shielding member 213 for adjusting the spot range of the irradiation light from the light emitting diode 211 is provided, and this light shielding member 213 is in the direction of arrow B. By rotating, the spot range is reduced.

本実施形態のトナー濃度測定装置20では、遮光部材213を回動させてスポット範囲を変化させることで第1実施形態のトナー濃度測定装置10と同じ効果が得られている。   In the toner concentration measuring device 20 of the present embodiment, the same effect as the toner concentration measuring device 10 of the first embodiment is obtained by rotating the light shielding member 213 to change the spot range.

図9には、遮光部材213が矢印B方向に所定角度回動されている場合のスポット長が寸法bで示され、遮光部材213が矢印A方向に回動されて退避した状態にされた場合のスポット長は寸法aで示されている。   In FIG. 9, the spot length when the light shielding member 213 is rotated by a predetermined angle in the direction of the arrow B is indicated by a dimension b, and the light shielding member 213 is rotated in the direction of the arrow A to be retracted. The spot length is indicated by dimension a.

また、図9には、遮光部材213を回動させることによりスポット範囲を縮減したことにより、発光ダイオード211を固定したまま光軸が光軸Sから光軸S’に変化した様子が示されている。   Further, FIG. 9 shows a state in which the light axis is changed from the optical axis S to the optical axis S ′ while the light emitting diode 211 is fixed by reducing the spot range by rotating the light shielding member 213. Yes.

本実施形態のトナー濃度測定装置20の組み立て調整については、第1実施形態における受光部12と発光部11の間隔の代わりに、遮光部材213の回動角度が決定されるようになっていることのみが相違点であるので説明は省略するが、本実施形態のトナー濃度測定装置20でも、測定対象との間の距離の微少変動による測定誤差を抑制することができる。   Regarding the assembly adjustment of the toner concentration measuring apparatus 20 of the present embodiment, the rotation angle of the light shielding member 213 is determined instead of the interval between the light receiving unit 12 and the light emitting unit 11 in the first embodiment. However, since the difference is only the difference, the toner concentration measuring apparatus 20 of the present embodiment can also suppress measurement errors due to slight fluctuations in the distance to the measurement target.

以上に説明した実施形態では、発光部と受光部の間隔を変更する機構を備えた場合や、発光ダイオードからの照射光によるスポット範囲を変化させる遮光部材を備えた場合を例に挙げたが、本発明は、受光素子の光軸を、測定距離が変化しても照明強度が略一定の被測定面上の位置へ移動できるものであればよく、発光素子の取付角度を変更および調整可能な様に構成してもよい。また、発光素子が首振り自在のものであってもよい。   In the embodiment described above, the case where a mechanism for changing the interval between the light emitting part and the light receiving part is provided, and the case where a light shielding member for changing the spot range due to the irradiation light from the light emitting diode is provided as an example. The present invention is not limited as long as the optical axis of the light receiving element can be moved to a position on the surface to be measured where the illumination intensity is substantially constant even if the measurement distance is changed, and the mounting angle of the light emitting element can be changed and adjusted. You may comprise like this. Further, the light emitting element may be swingable.

上述の発光素子および受光素子で構成されたトナー濃度測定装置の一例を示す図である。It is a figure which shows an example of the toner density | concentration measuring apparatus comprised by the above-mentioned light emitting element and a light receiving element. 照明強度とパッチ表面上の位置との関係を示すグラフ図である。It is a graph which shows the relationship between illumination intensity and the position on the patch surface. 受光強度と測定距離との間の関係を示すグラフ図である。It is a graph which shows the relationship between received light intensity and measurement distance. 図1に示すトナー濃度測定装置からの、測定距離毎のセンサ出力を示すグラフ図である。FIG. 2 is a graph showing sensor output for each measurement distance from the toner concentration measuring apparatus shown in FIG. 1. 図2を含む、照明強度とパッチ表面上の位置との関係の測定距離毎のグラフ図である。It is a graph figure for every measurement distance of the relationship between illumination intensity and the position on a patch surface including FIG. 本発明の光学測定装置の第1実施形態を示す図である。It is a figure which shows 1st Embodiment of the optical measuring device of this invention. トナー濃度測定装置の調整の流れを示す図である。FIG. 5 is a diagram illustrating a flow of adjustment of a toner concentration measuring device. 基準板と調整対象のトナー濃度測定装置との間の測定距離を仕様の距離を中心に変化させた場合の出力を示す図である。It is a figure which shows the output at the time of changing the measurement distance between the reference | standard board and the toner density measuring apparatus of adjustment object centering on the distance of specification. 本発明の光学測定装置の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the optical measuring device of this invention.

符号の説明Explanation of symbols

10、20 トナー濃度測定装置
11 発光部
110 パッチ
111 発光ダイオード
12 受光部
120 中間転写ベルト
121 フォトダイオード
213 遮光部材
10, 20 Toner density measuring device 11 Light emitting unit 110 Patch 111 Light emitting diode 12 Light receiving unit 120 Intermediate transfer belt 121 Photodiode 213 Light shielding member

Claims (4)

測定対象物に光ビームを出射する光源と、該光源から出射して前記測定対象物で反射した測定光を受光し、該測定光に応じた受光信号を出力する受光部とを備えた光学測定装置において、
前記光源は、該光源の光軸から外れた所に、該光源から該測定対象物までの距離が所定範囲内で変動しても前記光ビームが前記測定対象物に照射されてなるスポット内において該光ビームの照明強度が略一定である強度一定点が存在する特性を有するものであり、
前記受光部は、前記強度一定点を通る光軸を有するものであることを特徴とする光学測定装置。
Optical measurement comprising a light source that emits a light beam to a measurement object, and a light receiving unit that receives the measurement light emitted from the light source and reflected by the measurement object, and outputs a light reception signal corresponding to the measurement light In the device
The light source is located in a spot formed by irradiating the measurement object with the light beam even if the distance from the light source to the measurement object fluctuates within a predetermined range at a position off the optical axis of the light source. It has a characteristic that there is a constant intensity point where the illumination intensity of the light beam is substantially constant,
The optical measuring device, wherein the light receiving unit has an optical axis passing through the constant intensity point.
被測定面上に光ビームを出射する光源と、該光源から出射して前記被測定面上で反射した測定光を受光し、該測定光に応じた受光信号を出力する受光部とを備えた光学測定装置の組立方法において、
前記光源の光軸および前記受光部の光軸それぞれが前記被測定面上を通るように該光源および該受光部それぞれを配置する第1ステップと、
前記光源と前記被測定面との距離が所定範囲内で変動しても前記光ビームが該被測定面上に照射されてなるスポット内において該光ビームの照明強度が略一定である強度一定点と該被測定面上の、前記受光部の光軸の通過点とを一致させる第2ステップとを有することを特徴とする光学測定装置の組立方法。
A light source that emits a light beam on the surface to be measured, and a light receiving unit that receives the measurement light emitted from the light source and reflected on the surface to be measured, and outputs a light reception signal corresponding to the measurement light In the assembly method of the optical measuring device,
A first step of disposing each of the light source and the light receiving unit such that each of the optical axis of the light source and the optical axis of the light receiving unit passes on the surface to be measured;
Even if the distance between the light source and the surface to be measured fluctuates within a predetermined range, an intensity constant point at which the illumination intensity of the light beam is substantially constant in a spot formed by irradiating the light beam on the surface to be measured And a second step of matching the passing point of the optical axis of the light receiving unit on the surface to be measured.
前記第2ステップが、前記強度一定点と前記通過点を、前記第1ステップで配置した前記光源の配置位置を変更することで一致させるステップであることを特徴とする請求項2記載の光学測定装置の組立方法。   3. The optical measurement according to claim 2, wherein the second step is a step of making the constant intensity point and the passing point coincide with each other by changing an arrangement position of the light source arranged in the first step. Device assembly method. 前記第2ステップが、前記強度一定点と前記通過点を、前記スポットの形状を変更することで一致させるステップであることを特徴とする請求項2記載の光学測定装置の組立方法。   3. The method of assembling an optical measurement apparatus according to claim 2, wherein the second step is a step of matching the constant intensity point and the passing point by changing the shape of the spot.
JP2004236460A 2004-08-16 2004-08-16 Optical measuring instrument and its assembling method Pending JP2006053107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236460A JP2006053107A (en) 2004-08-16 2004-08-16 Optical measuring instrument and its assembling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236460A JP2006053107A (en) 2004-08-16 2004-08-16 Optical measuring instrument and its assembling method

Publications (1)

Publication Number Publication Date
JP2006053107A true JP2006053107A (en) 2006-02-23

Family

ID=36030681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236460A Pending JP2006053107A (en) 2004-08-16 2004-08-16 Optical measuring instrument and its assembling method

Country Status (1)

Country Link
JP (1) JP2006053107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268656A (en) * 2007-04-23 2008-11-06 Fuji Xerox Co Ltd Density detecting device and image forming apparatus
JP2014008259A (en) * 2012-06-29 2014-01-20 Kyoraku Sangyo Co Ltd Game machine
JP2015102568A (en) * 2013-11-21 2015-06-04 コニカミノルタ株式会社 Image forming apparatus and detection error reducing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268656A (en) * 2007-04-23 2008-11-06 Fuji Xerox Co Ltd Density detecting device and image forming apparatus
JP2014008259A (en) * 2012-06-29 2014-01-20 Kyoraku Sangyo Co Ltd Game machine
JP2015102568A (en) * 2013-11-21 2015-06-04 コニカミノルタ株式会社 Image forming apparatus and detection error reducing method

Similar Documents

Publication Publication Date Title
KR101360252B1 (en) A reflection type optics sensor and a surface coarseness detection method of the measurement side
CN103376550B (en) Image forming apparatus
JPH11227249A (en) Image forming apparatus
KR101299455B1 (en) Light scanning unit, image forming apparatus having the same and sync calibration method of the light scanning unit
US7057634B2 (en) Multi-beam scanning device and image forming apparatus using the scanning device
US10031457B2 (en) Optical sensor, recording medium discrimination device, and image forming apparatus
US8248444B2 (en) Light scanner including lens assembling datums
JP2006053107A (en) Optical measuring instrument and its assembling method
US7639411B2 (en) Laser scanning unit and image forming apparatus having the same
JP4554840B2 (en) Toner adhesion measuring device
JP2003344219A (en) Method and instrument for measuring eccentricity, manufacturing method for projection optical system, and projection optical system
JPH0950176A (en) Toner density measuring device
JP4366254B2 (en) Scanning optical system inspection apparatus and method
JP2007283690A (en) Image-forming apparatus
JP5903406B2 (en) Light beam sensor position adjustment method
JP2003270572A (en) Optical scanner
JP2000002622A (en) Beam-inspecting device and beam adjustment method for light-scanning unit
KR20060015390A (en) Lens assembly
JP4745796B2 (en) Eccentricity measuring apparatus and decentration adjusting apparatus for optical deflection apparatus, and scanning optical apparatus and image forming apparatus using them
JP2001228417A (en) Light source unit, image forming device using light source unit, and production method of light source unit
JP3795664B2 (en) Optical writing device
JP2000231070A (en) Laser scanner
JP2006215352A (en) Image forming apparatus
JP2000162536A (en) Light beam scanner
JP2006171646A (en) Multi-beam scanner, image forming apparatus furnished with the same, and color image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302