JP2006052718A - Impulse-turbine complex motor - Google Patents

Impulse-turbine complex motor Download PDF

Info

Publication number
JP2006052718A
JP2006052718A JP2004263049A JP2004263049A JP2006052718A JP 2006052718 A JP2006052718 A JP 2006052718A JP 2004263049 A JP2004263049 A JP 2004263049A JP 2004263049 A JP2004263049 A JP 2004263049A JP 2006052718 A JP2006052718 A JP 2006052718A
Authority
JP
Japan
Prior art keywords
prime mover
water
steam
turbine
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004263049A
Other languages
Japanese (ja)
Other versions
JP4595134B2 (en
Inventor
Masatoshi Ikeda
政利 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CEL KK
Original Assignee
CEL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CEL KK filed Critical CEL KK
Priority to JP2004263049A priority Critical patent/JP4595134B2/en
Publication of JP2006052718A publication Critical patent/JP2006052718A/en
Application granted granted Critical
Publication of JP4595134B2 publication Critical patent/JP4595134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the fuel consumption per output by improving a working heat efficiency followed by the improvement of supplemental output and then reduce the discharge amount of carbon dioxide, waste heat or the like to contribute to environmental conservation. <P>SOLUTION: A semi-serial hybrid complex motor is obtained by converting the heat of the exhaust gas discharged from an automobile engine into a steam energy by a steam generator 7, driving a single stage impulse turbine 1 by the steam energy, and transmitting the driving energy to the ring gear 16 of a flywheel by a gear to improve an axial output. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明の複合原動機は、交通及び運送等に使用される内燃機関式の車両用原動機に関するものである。The composite prime mover of the present invention relates to an internal combustion engine type vehicle prime mover used for transportation and transportation.

従来の内燃機関式の原動機には、主に小型の乗用及び運送用車両及び船舶に使用されるガソリンエンジンと中型から大型の車両及び船舶等に利用されるディーゼルエンジンが有った。自動車用原動機には、小型である事・軽量である事・高出力である事・取扱が簡単で故障が少ない事・静かである事等が要求される。小型・軽量・高出力である事には、搭載可能な燃料で長距離が走行できる経済性や様々な運転時の要求出力・回転数範囲で問題なく運用出来る対応性も含まれる。又、社会的なインフラとして、燃料が容易にどこでも入手できる事も重要である。ガソリンエンジン及びその燃料系を液化石油ガス用に適合させたLPG燃料エンジン及び軽油を使用するディーゼルエンジンは、これらの要求に適合しているので広く普及している。又、原動機から排出される排気ガスが問題となる建物内・倉庫等での用途や都市部のコミューター用には、蓄電池を車両に搭載し、電気モーターの原動機も使用されていた。一方、交通・運送用途では無いが、火力発電所や原子力発電所では、非常な高出力及び効率の要求に適した大型の軸流型蒸気タービン原動機が、又、局所的な給電・圧縮空気供給設備としての低中出力用には、ディーゼルエンジンやガスタービン原動機が使用されていた。小林清志氏の「工業熱力学 1980年初版1998年 第20刷 理工学社」によれば、これらの原動機は、用途やサイズに合わせて、様々な改良が積み重ねられてきており、発明されてから期間も長いので、工業的・学問的にも確立されていて、大きな改良の余地は少ない。一方、気体や液体の燃料を燃焼させて動力源としてきた事で、排出される排気ガスや利用できないで放散される排熱は、公害病やヒートアイランド現象・温暖化等の環境問題を惹起しているので、クリーンで効率の良い燃料電池(発電機)等の新技術の適用が期待されている。Conventional internal combustion engine-type prime movers include mainly gasoline engines used for small passenger and transport vehicles and ships, and diesel engines used for medium to large vehicles and ships. Automotive motors are required to be small, lightweight, high output, easy to handle, have few failures, and be quiet. The small size, light weight, and high output include the economics of being able to travel long distances with the fuel that can be mounted, and the ability to operate without problems within the required output and rotation speed ranges during various operations. It is also important that fuel can be easily obtained anywhere as a social infrastructure. LPG fuel engines in which gasoline engines and their fuel systems are adapted for liquefied petroleum gas and diesel engines using light oil are widely used because they meet these requirements. Also, for applications in buildings, warehouses, etc. where exhaust gas discharged from the prime mover is a problem, and for commuters in urban areas, a storage battery is mounted on the vehicle, and a prime mover of an electric motor is also used. On the other hand, in thermal power plants and nuclear power plants, which are not used for transportation and transportation, large axial flow steam turbine prime movers that are suitable for extremely high power and efficiency requirements, and local power supply and compressed air supply Diesel engines and gas turbine prime movers were used for low and medium output as equipment. According to Mr. Kiyoshi Kobayashi's “Industrial Thermodynamics 1980 First Edition 1998 20th Printing Engineering Company”, these prime movers have accumulated various improvements according to their uses and sizes, and have been invented. Since the period is long, it has been established industrially and academically, and there is little room for improvement. On the other hand, by using gas or liquid fuel as a power source, exhausted exhaust gas or exhaust heat that is dissipated without being used causes environmental problems such as pollution diseases, heat island phenomenon and global warming. Therefore, application of new technologies such as clean and efficient fuel cells (generators) is expected.

従来のガソリンエンジンは、主として使用される自動車用途では、触媒等の援用や燃焼状態の改善で排気ガスはクリーン化されているが、熱効率は低く燃料消費率が大きい(燃費・経済性が良くない)。ディーゼルエンジンは、ガソリンエンジンよりも圧縮比が高く取れるので、若干効率が良く、従って燃費も幾分良いが、排気ガスに黒煙や硫黄の酸化物が生じ、クリーンとは言えない。これらの従来主力とされてきた原動機は、熱効率という観点では低い効率であるが、小型・軽量・高出力で故障が少なく取扱が容易で低価格で作れ、燃料のインフラも整備されている点では掛替えがない。又、動力をサイクル毎に密閉された燃焼室の爆発・燃焼圧力から取出すので、負荷や回転数の範囲が非常に広く、運転性も良好である。問題は熱効率を上げられる手段や改良が尽くされていて、排気ガスや排熱の大幅な減少の有効な手段が無い事で、現状の改良の延長では時代の要請に対応できない事である。そこで、補機動力を低減する為に、例えば特許文献1の様に、通常エンジン内に組み込まれているウォーターポンプと蒸気タービンシステムを組み合わせて別置きにし、効率を上げ且つ水漏れを防止する提案がなされている。又、ガスタービンはタービンの外で燃焼が行われ、タービンを通過する燃焼ガスが高温・高圧・高速である範囲内では効率が良いが、自動車のように回転数や出力が非常に大きく変動し、時にはエンジンブレーキ等の出力が負の状態から、急に登坂の全負荷までにする必要が有ったりする、山間地も走る一般の自動車用途には適さない。この為、平地走行で運転パターンも簡易な大型の都市走行用乗合バス等には、海外で利用され始めている。最近小型の局所発電用途に利用が始まっているマイクロガスタービン発電機は、小型ではあるがガスタービン本来の運転条件の制限はそのままである為、発電機兼用の電気モーター及び蓄電装置との組合わせで使用が有望視されている。しかし、ガスタービン本来の運転必要条件はそのままであり、平地で必要なエンジン出力でサイズを決めれば、登坂時の出力が不足するので、登坂の連続に備える為の蓄電池の容量・重量の問題が発生する。又、登坂に対応する高出力のマイクロガスタービンは、燃焼温度が高温でなければ効率は低いので、平地で運用する際の燃費が良くないという問題が発生し、同じく適用出来る用途が限定される。一方、大量の電気を製造する為の火力及び原子力発電所では、蒸気タービンがもっとも適しているが、効率を上げる為に、再生サイクルや再熱サイクル等を含む設備全体が複雑になり、又復水器に大量の冷却水が必要でも有る事で、自動車に要求される小型化に難点があり、且つ運転範囲がガスタービン同様に制限されるので、そのままでは自動車用途には適さない。電気自動車等のモーターの利用では、蓄電装置が大きくなり走行できる距離に制限が生じ、充電も高速では出来ないので、機動性で一般用途には適さない。特に登坂が連続する場合に対応させる為に、大きく重い蓄電装置を設置すれば、平地でも走行距離に制限が出る。この為、ガソリンエンジンと電気モーターにも使用できる発電機を組み合わせた複合(ハイブリッド)原動機が、最新では製造されて好評を博している。この複合原動機は、DCモーターの低速回転時のトルクが大きい特性を発進に使用し、車速が上がるとガソリンエンジンを使用し、最大の出力が必要な際には、ガソリンエンジンも電気モーターも使用するパラレルハイブリッド方式である。又、発電には、ガソリンエンジンの最も効率の良い燃焼条件(回転数・負荷)を使い、実使用の熱効率の高い範囲を出来るだけ活用する事で、燃費を大きく向上させている。そのハイブリッドエンジンおよび電動機を含むシステムの制御ソフトについては、特許文献2の様な提案がなされている。しかしながら、蓄電設備は大きく重く、動力や発電の分配機構が複雑で高価に成る、大きな運送専用車両への適合が難しく、且つ根本からシステムが異なる事で、現行車両への改造取付は困難であるという欠点があった。しかし、ガソリン補給のインフラは整備されているから一般的に使用できるので、高価な割には急速に乗用車用途に普及している。このように、自動車用エンジンはその要求される運転(回転数・出力)範囲が広く、従来のエンジン及び複合型エンジンでも、効率が全般に良くて、単純で安価なシステムは達成されておらず、排気ガスや排熱の問題が解決されていないという問題が有った。これらは、台数としては遥かに少ないが、船舶や建設機械・農業用機械等でも共通の問題である。Conventional gasoline engines are mainly used in automobile applications, but exhaust gas has been cleaned with the aid of catalysts, etc. and improved combustion conditions, but the heat efficiency is low and the fuel consumption rate is large (the fuel efficiency and economy are not good) ). A diesel engine has a higher compression ratio than a gasoline engine, so it is slightly more efficient and therefore somewhat more fuel efficient, but it is not clean because black smoke and sulfur oxides are produced in the exhaust gas. These conventional prime movers have low efficiency in terms of thermal efficiency, but they are small, lightweight, high output, easy to handle, low in cost, easy to manufacture, and have a fuel infrastructure. There is no change. Further, since the power is taken out from the explosion / combustion pressure of the combustion chamber sealed for each cycle, the range of the load and the rotational speed is very wide and the operability is also good. The problem is that the means and improvements that can improve the thermal efficiency have been exhausted, and there is no effective means to significantly reduce exhaust gas and exhaust heat. Therefore, in order to reduce the power of auxiliary machinery, for example, as in Patent Document 1, a combination of a water pump and a steam turbine system that are usually built in an engine is installed separately to increase efficiency and prevent water leakage. Has been made. Gas turbines are combusted outside the turbine and are efficient in the range where the combustion gas passing through the turbine is high temperature, high pressure, and high speed. However, sometimes it is not suitable for general automobile applications that run in mountainous areas where the output of the engine brake or the like needs to be suddenly increased to the full load of the climbing slope. For this reason, it has begun to be used overseas for large city buses that travel on flat ground and have a simple driving pattern. Micro gas turbine generators that have recently begun to be used for small-scale local power generation applications are small, but the original operating conditions of gas turbines remain the same. The use is considered promising. However, the original operating requirements of the gas turbine remain the same, and if the size is determined based on the required engine output on flat ground, the output at the time of climbing will be insufficient, so there will be problems with the capacity and weight of the storage battery to prepare for continuous climbing. appear. In addition, high-power micro gas turbines corresponding to climbing slopes have low efficiency unless the combustion temperature is high, which causes a problem of poor fuel consumption when operating on flat ground, and the applicable applications are also limited. . On the other hand, steam turbines are most suitable for thermal power and nuclear power plants for producing large quantities of electricity. However, in order to increase efficiency, the entire equipment including the regeneration cycle and reheat cycle becomes complicated, and Since a large amount of cooling water is required for the water tank, there is a difficulty in miniaturization required for automobiles, and the operating range is limited in the same manner as a gas turbine. When a motor such as an electric vehicle is used, the power storage device becomes large and the distance that can be traveled is limited, and charging is not possible at high speed. In particular, if a large and heavy power storage device is installed in order to cope with a case where climbing is continued, the travel distance is limited even on flat ground. For this reason, composite (hybrid) prime movers that combine generators that can also be used in gasoline engines and electric motors have been well-received in the latest production. This composite prime mover uses the characteristics of a large torque at the time of low speed rotation of a DC motor for starting, uses a gasoline engine when the vehicle speed increases, and uses a gasoline engine and an electric motor when maximum output is required. Parallel hybrid system. For power generation, the most efficient combustion conditions (rotation speed / load) of the gasoline engine are used, and the range of high thermal efficiency in actual use is utilized as much as possible to greatly improve fuel efficiency. As for control software for a system including the hybrid engine and the electric motor, a proposal as in Patent Document 2 has been made. However, the storage facilities are large and heavy, and the distribution mechanism of power and power generation is complicated and expensive. It is difficult to adapt to large vehicles for exclusive use of transportation, and the system is fundamentally different, so it is difficult to retrofit the current vehicle. There was a drawback. However, since the infrastructure for replenishing gasoline has been established, it can be used generally, so it is rapidly becoming popular for passenger cars, although it is expensive. In this way, automobile engines have a wide range of required operation (rotation speed / output), and conventional engines and composite engines are generally efficient, and a simple and inexpensive system has not been achieved. There was a problem that the problem of exhaust gas and exhaust heat has not been solved. Although these are far less in number, they are a common problem for ships, construction machinery and agricultural machinery.

特開H09−088596 自動車用エンジンの水冷装置Water cooling device for automobile engine 特許第3216590号 原動機の運転制御装置およびハイブリッド車輌の運転制御装置Patent No. 3216590 Driving control device for prime mover and driving control device for hybrid vehicle

前述した「工業熱力学」によれば、ガソリンエンジンのオットーサイクルの理論熱効率は、圧縮比8・比熱比1.25の時、約0.4である。この圧縮比は高いほど理論熱効率が上がるが、ノッキングの限界があり、7〜11程度とある。往復動機関のガソリンエンジンを搭載した自動車を例に取ると、燃料の持つ熱エネルギーの内、約40%を燃焼・膨張行程でピストンが受け、その半分の約20%が有効な駆動輪出力になる。残りの20%はエンジンを動かす他の行程の摩擦損失や補機動力・動力伝達機構の損失等となっている。この損失を少なくして、有効な駆動力の割合を相対的に増加させる工夫は、エンジン側・駆動伝達系共に従来から行われている。又、ピストンが受ける40%以外のエネルギーは、排気ガスおよび冷却水への放熱になるが、その約半分の30%以上が排気ガスに含まれて捨てられている。排気ガスには約0.5MPa(約5気圧)以下程度の燃焼後の残圧と、全負荷連続時には最高800℃から、排気タービン過給機搭載エンジンでは約1000℃にも達する高温の熱エネルギーが含まれている。但し、実際の運転に使用される中負荷程度では排気温度は200〜500℃付近が多く、十分な工夫をしなければ利用は難しい。排気に含まれる圧力エネルギーの利用は、排気タービン駆動過給機(ターボチャージャー)等によって従来から行われている。この排気タービン駆動過給機では、渦巻型のタービンハウジングで排気の速度を集束して増速し、ラジアル式排気タービンを高速で回転させるが、圧縮機(コンプレッサー)側の特性も含めて、排気ガスの流れに対する抵抗は大きくなく、排気圧力は極力増大させない様になっている。これは、排圧が高くなると燃焼後の排気行程で、ピストンが排気を押し出すのに必要な力が大きくなってポンピングロスが増大する、排気の流れがスムーズでないとエンジンが過熱する等の不具合が生じる為である。従って、排気の圧力を直接動力に利用する事は、内燃機関式の原動機そのものの不具合を生じるので、排気タービン駆動過給機の様に、その一部のエネルギーを利用するもの以外では難しかった。排気に含まれている熱量については、排気をクリーン化する触媒を作動温度に上げる位で、これまで有効な利用法が無く、動力化出来ずにに単に放熱されていた。しかし、この排気温度は、負荷及び回転数に追従するので、出力が必要な場合程高温になるという、非常に利用し易い特性を持っている。一方、冷却水やオイルによって、エンジンを正常に働かせる為に、シリンダー・シリンダーヘッド周り及びピストン等の爆発・燃焼する部屋から運ばれる熱量は、エンジンによって駆動される冷却ファン、及び発電機や蓄電池の電力で駆動する電動ファン等による風や走行風で、エンジン各部やラジエーターから、主に熱伝導で大気(空気)中に放散されている。この熱量の利用については、冷却水で車室を空調する際のヒーターの熱源としては利用できるが、他の利用法は殆ど無かった。この熱量も原動機の負荷や回転数に追従し、出力が必要な場合程、大きな熱量を放散している。又、走行する際の風や風圧の利用については、ラジエーターの他、車室の空調に使用されるクーラー冷媒のコンデンサー(凝縮器)の放熱等にも利用されるが、風の力を利用する装置そのものが空気抵抗を増大させたりするので、一般的には少ない。広瀬隆氏の「燃料電池が世界を変える エネルギー革命最前線 2001年発行 NHK出版」によれば、冷蔵庫付のトラックの運転席の上に風力利用の交流発電機をつけて、エンジンによって駆動する発電機の負荷を下げ、燃費を改善した例がある。これは、トラックに必要な形状と冷蔵庫の消費電力の必要性から、走行風を積極利用した特例である。According to the aforementioned “industrial thermodynamics”, the theoretical thermal efficiency of the gasoline engine Otto cycle is about 0.4 when the compression ratio is 8 and the specific heat ratio is 1.25. The higher the compression ratio, the higher the theoretical thermal efficiency, but there is a limit of knocking, which is about 7-11. Taking a car with a gasoline engine as a reciprocating engine as an example, about 40% of the thermal energy of the fuel is received by the piston during the combustion / expansion stroke, and about 20% of that is about 20% of the effective drive wheel output. Become. The remaining 20% is the friction loss of other strokes that drive the engine, the loss of auxiliary power / power transmission mechanism, and so on. Conventionally, the engine and the drive transmission system have been devised to reduce the loss and relatively increase the ratio of the effective driving force. Further, the energy other than 40% received by the piston is radiated to the exhaust gas and the cooling water, but about 30% or more of that energy is contained in the exhaust gas and discarded. Exhaust gas has a residual pressure after combustion of about 0.5 MPa (about 5 atmospheres) or less, and high-temperature thermal energy that reaches a maximum of 800 ° C when the engine is fully loaded, and about 1000 ° C for engines equipped with an exhaust turbine supercharger It is included. However, the exhaust temperature is often in the vicinity of 200 to 500 ° C. at a medium load used in actual operation, and it is difficult to use unless sufficient measures are taken. The use of pressure energy contained in exhaust gas has been conventionally performed by an exhaust turbine drive supercharger (turbocharger) or the like. In this exhaust turbine driven turbocharger, the exhaust speed is focused and increased by a spiral turbine housing, and the radial exhaust turbine is rotated at high speed. However, the exhaust including the characteristics on the compressor (compressor) side is also included. The resistance to the gas flow is not large, and the exhaust pressure is not increased as much as possible. This is because when the exhaust pressure increases, the exhaust stroke after combustion increases the force required for the piston to push out the exhaust, increasing the pumping loss, and if the exhaust flow is not smooth, the engine overheats. This is because it occurs. Therefore, it is difficult to directly use the exhaust pressure for power because it causes a problem of the internal combustion engine type prime mover itself, except that it uses a part of the energy like an exhaust turbine drive supercharger. As for the amount of heat contained in the exhaust, there has been no effective use so far, raising the catalyst that cleans the exhaust to the operating temperature, and it was simply dissipated without being powered. However, since the exhaust temperature follows the load and the rotational speed, the exhaust temperature has a characteristic that is very easy to use, that is, the higher the output is required. On the other hand, in order for the engine to work normally with cooling water or oil, the amount of heat carried around the cylinder / cylinder head and from the explosion / combustion room of the piston, etc., depends on the cooling fan driven by the engine, the generator and the storage battery. Wind or traveling wind from an electric fan driven by electric power is dissipated from the engine parts and radiator to the atmosphere (air) mainly by heat conduction. Regarding the use of this amount of heat, it can be used as a heat source of a heater when air-conditioning the passenger compartment with cooling water, but there is almost no other usage. This amount of heat also follows the load and rotation speed of the prime mover, and the greater the amount of heat required, the greater the amount of heat that is dissipated. As for the use of wind and wind pressure when traveling, in addition to the radiator, it is also used for heat radiation of a condenser (condenser) of a cooler refrigerant used for air conditioning of the passenger compartment. Since the device itself increases the air resistance, it is generally small. According to Takashi Hirose's “Frontier of the Energy Revolution for Fuel Cells Changing the World 2001 Issued NHK Publishing”, a wind-powered AC generator is installed on the driver's seat of a truck with a refrigerator and power is driven by the engine. There is an example of improving the fuel efficiency by reducing the machine load. This is a special case in which the traveling wind is actively used because of the shape required for the truck and the power consumption of the refrigerator.

図2に直接サイクルの蒸気タービン原動機のシステム図を示す。ボイラーで発生させる高温高圧の蒸気は、タービンに当たってこれを回転させ、圧力が下がって復水器に入り、冷却されて凝縮し液化する。その水を給水ポンプが加圧し、ボイラーに送り込む。このシステムは、普通の蒸気原動機や沸騰水形原子炉に利用されており、このタービンは複雑で高価な軸流型の多段反動タービンを使用している。図3に間接サイクルの加圧水形原子炉のシステムを示す。ボイラーの代わりに、熱交換器である蒸気発生器を介して蒸気を作り、タービンに導く。これは、安全の為に、原子炉側とタービン側を分離するようになっている。これらは大規模な設備で、発生させ使用する熱量も膨大であるので、復水器での蒸気の冷却−凝縮−液化の過程では、外部の河川や海から大量に取り込む水で冷却すると「工業熱力学」にある。しかし、特に車両に搭載する場合には外部から冷却水は取り込めないので、空冷で達成しなければならない。又、タービン特有の運転範囲や過渡特性は、車輌搭載には適合しないので、これらのシステムは、直接車両用途に簡便に適合・転用するには無理がある。FIG. 2 shows a system diagram of a direct cycle steam turbine prime mover. The high-temperature and high-pressure steam generated in the boiler hits the turbine and rotates it, the pressure drops and enters the condenser, and is cooled and condensed and liquefied. The water pump pressurizes the water and sends it to the boiler. This system is used in ordinary steam prime movers and boiling water reactors, and this turbine uses a complex and expensive axial flow type multistage reaction turbine. Fig. 3 shows the system of a pressurized water reactor with an indirect cycle. Instead of the boiler, steam is generated through a steam generator, which is a heat exchanger, and led to the turbine. This is to separate the reactor side and the turbine side for safety. These are large-scale facilities, and the amount of heat generated and used is enormous. In the process of steam cooling-condensation-liquefaction in a condenser, cooling with water taken in from a large amount of external rivers or oceans will result in "industrial It is in "Thermodynamics". However, especially when it is mounted on a vehicle, cooling water cannot be taken in from the outside, so it must be achieved by air cooling. In addition, the operating range and transient characteristics peculiar to turbines are not suitable for mounting on vehicles, so these systems cannot be easily adapted and used directly for vehicle applications.

以上の様な従来技術では、内燃機関の原動機の排気や冷却の熱量は、比較的低温且つ少量で利用が難しく、積極的に動力化されてはいないし、走行風の利用種類も少ないので、これを組み合わせて軸出力に利用する工夫が必要である。火力や原子力で使用されている蒸気タービンについては、高温高圧で動作させる複雑で高価なシステムで、且つタービンの構造も高効率ではあるが大量のガス流体を必要とする軸流型タービンのシステムで、車載には課題が大きすぎてその流用は難しい。特許文献1においては、廃熱を利用して熱効率を向上させる発想は、本願発明と同じであるが、安全性の問題と気体の特性に合致させたシステムになっていない所に課題がある。安全性については、原動機の冷却システムの心臓部であるウォーターポンプを、そのシールの僅かな水漏れを解決する為に、別置きにするかという事で、そのタービン部分が故障した場合にエンジンにオーバーヒート等でどのような影響が発生するかを検討すれば、費用対効果や改造で使いにくい等の問題を差し引いても、採用は難しい。次に、ウォーターポンプに要求される回転数は、通常エンジンの回転数の約2倍以内であり、数気圧の圧力差でも毎秒数百メートルに及ぶ蒸気の速度を考えれば、直結で有効に利用するためには、使われているラジアル式タービンの径を大きくしなければならないし、その径が小さければ殆ど出力が取出せないという課題がある。従って、特許文献1は、出力の有効な取出しという観点から見れば、組み合わせとして適切とは言えない。又、蒸気タービンや蒸気発生器に洩れが発生すれば、同じように原動機本体の水量に影響が有る事も問題としてあげられる。従って、基本的に水系統は分離すべきものであり、安全第一を取るべき汎用車輌では、実用性の観点から実施が難しい。これらを、独立した水系統に変更し、システム的に簡単で、且つ低価格で実用可能な簡易なタービンや伝達系にして結合するという課題がある。又、特許文献2については、パラレルハイブリッド方式という複雑で高価なシステムであり、高い効率領域を使用できる代りに、制御が非常に高度の技術を必要とするシステムで、従来の原動機に簡便に付加或いは改造出来るものではないという課題がある。簡易な半シリアルハイブリッド方式の、本願発明の車載に関して、最も大事な事は、タービン類を使う場合に特有の反応速度の遅れの弊害を、最低限安全に対する障害にしない、つまり安全を第一にソフトとハードを整えるという課題である。最後に、環境の悪化や化石燃料の資源枯渇及び高騰対策として、自動車用原動機の効率改善や排気の浄化は急務であるのに、新しく適合が検討され研究開発が進められている諸技術が、現在世界中に有る数億台の車両に適用可能(改造可能)なものではなく、新規代替えで対応させるものであって、置き換えには長い期間を要するものである事が最大の課題で有った。In the conventional technology as described above, the heat quantity of exhaust and cooling of the prime mover of the internal combustion engine is difficult to use at a relatively low temperature and in a small amount, is not actively powered, and there are few types of traveling wind usage. It is necessary to devise a combination of these to use for shaft output. Steam turbines used in thermal power and nuclear power are complex and expensive systems that operate at high temperatures and pressures, and axial turbine systems that require a large amount of gas fluid with a highly efficient turbine structure. However, there are too many issues for in-vehicle use, and its diversion is difficult. In Patent Document 1, the idea of improving the thermal efficiency by using waste heat is the same as that of the present invention, but there is a problem in that the system does not match the safety problem and the gas characteristics. As for safety, the water pump, which is the heart of the cooling system of the prime mover, is placed separately to solve the slight water leakage of the seal. If we consider what kind of impact will occur due to overheating, etc., it will be difficult to adopt even if problems such as cost effectiveness and remodeling are difficult to use. Next, the rotation speed required for the water pump is usually within about twice the engine rotation speed, and even with a pressure difference of several atmospheres, considering the steam speed of several hundred meters per second, it can be used directly and effectively. In order to do this, the diameter of the radial turbine used must be increased, and if the diameter is small, there is a problem that almost no output can be obtained. Therefore, Patent Document 1 is not appropriate as a combination from the viewpoint of effective output extraction. Another problem is that if leakage occurs in the steam turbine or steam generator, it similarly affects the amount of water in the prime mover body. Therefore, the water system should basically be separated, and it is difficult to implement from the viewpoint of practicality in a general-purpose vehicle that should take safety first. There is a problem that these are changed to independent water systems and combined into a simple turbine or transmission system that is simple in terms of system and practical at low cost. In addition, Patent Document 2 is a complex and expensive system called a parallel hybrid system, and instead of being able to use a high efficiency region, it is a system that requires a very high level of control and can be easily added to a conventional prime mover. Or there is a problem that it cannot be remodeled. The most important thing about the in-vehicle system of the present invention of a simple semi-serial hybrid system is that the adverse reaction rate delay unique to the use of turbines is not made the minimum obstacle to safety. The challenge is to arrange software and hardware. Finally, as countermeasures against environmental deterioration, fossil fuel resource depletion and soaring, it is urgent to improve the efficiency of automobile prime movers and purify exhaust, but various technologies for which new adaptation is being studied and research and development are underway, The biggest challenge is that it is not applicable (modifiable) to hundreds of millions of vehicles around the world, but is a new alternative that requires a long time to replace. It was.

課題を解決する為の手段Means to solve the problem

本願発明のインパルスタービン型複合原動機によれば、従来技術の追加と組み合わせで、安価で効率が良く燃費の良い内燃機関式原動機が製作出来、現行使用されている自動車用にも小幅の改造で付加出来るようになる。即ち、本願発明は、従来の複合原動機に比しても、内燃機関原動機38の発生する排熱を、直接に主動力に転換できるので、安全且つ効率的で、大きく重くて高価な蓄電システムや、高出力の電気モーター等が無くても車両用としての利用が可能と成り、現行使用されているエンジンの部品を置き換えと改造で使う事も出来るので、小型で高出力且つ効率や環境性能の優れた次世代原動機が出来上がるまでの繋ぎとしても使用出来る。図1に、本願発明の1例の構成模式図を示す。まず、蒸気タービンシステムのポイントである復水器3(コンデンサー)であるが、従来の蒸気タービンシステムの復水器3は、水冷であった。基本的に車両では空冷にて達成しなければならないが、走行する車両では、外部から空気を取り込むことは容易に可能である。この復水器3は、外気の温度は最高で、且つ蒸気の発生量・流量は最大で且つ車両の速度は最小で容量設計しなければならない。水は比熱が大きく、夏季でも十分な冷却をする為には、ラジエーターやクーラーコンデンサーの前面や下面に復水器3を取り付けて、エンジン駆動によるファンや電動ファンによって中低速時の空気の取り込みを援用させる場合等、復水器3の動作を最優先させる必要がある。復水(蒸気の凝縮)が十分出来ないと給水ポンプ5が動作不良をおこし、ポンプそのものの損傷も発生しやすい。次に、凝縮した水は、比較的低温になってしまうので、給水ポンプ5の前段(吸込み側)又は後段(送水側)で、内燃機関原動機38の高温部位を利用して予熱をすると無駄が無い。図1では、オイルパン4内に予熱器39を設置している。加圧給水する給水ポンプ5については、ポンプ本体は小型・低消費動力で、必要な圧力と流量が発生出来ればどのような型式でも良いが、ポンプ部と駆動部は遮熱したほうが、効率上と駆動部の寿命の双方から好ましい。後付けで車両の改造に対応させる場合、エンジンの動力を用いない別置きの電動式ポンプが設置し易い。要求される圧力は比較的高く、流量は少なくても済むので、必要な場合、市販の小型流量のポンプを直列多段化して圧力を増大させると良い。給水ポンプ5の流量や圧力は、排気ガスの温度が最高である負荷が最大で最高回転時にも、十分に蒸気が発生させ続けられる様に設定する必要が有る。ガソリンエンジンの熱効率では、駆動輪換算で約20%位で、数十KWの出力で有るとすると、蒸気発生部の温度を、その排気ガスに依存する本願発明のインパルスタービンの出力は、本発明の特徴の一部を成す予熱器39を使用しても、熱効率で数%分で、出力も数KW程度に過ぎない。熱量で計算すれば、給水ポンプ5の吐出量は毎分数リットル程度の供給で済むので、小さくて総消費動力を数百W以下程度に抑えたものが良い。原動機の交流発電機や蓄電池の容量上、及び動力の効率上好ましくない場合は、内燃機関原動機38のクランクシャフトプーリーから、ベルトで動力伝達する給水ポンプ5を取り付け、動力の伝達・遮断は電磁クラッチ等で行えば良い。給水ポンプ5に付加するプーリー部に電磁クラッチを設置し、給水ポンプ5を動作させる場合にのみ該クラッチを接続する。この方法は空調用のクーラーコンプレッサーと同じである。給水ポンプ5側の水の系統への、蒸気発生器7からの蒸気の逆流を防止する為には、経路の途中にチェックバルブ6を入れておく必要がある。水は常圧では沸点が100℃で有るが、加圧すれば沸点が上昇し100℃でも沸騰しないので、運搬出来る熱量が大きくなり、内燃機関エンジン等の冷却水は加圧されている。この冷却水を循環させるのは、エンジン内部に組み込まれ、ベルトを介して動力軸の力で駆動されるウォータポンプであるが、圧力の一定化は、通常ラジエーターキャップをレギュレータとしている。同じ様に、給水ポンプ5を圧力・循環の原動力とするが、蒸気発生器7の前段(復水器3までの水の経路間)に、図4の様な予圧式チェックバルブ6を適宜設け、水側の圧力の維持と蒸気発生器7が必要とする分のみの水の供給を行わせれば良い。給水ポンプ5から蒸気発生器7までの配管回路の少なくとも一部(最終部)は、蒸気発生器7の高さよりも高く設定する。この最後の立ち下がりの部分で、水は重力によって蒸気発生部7に自然に流れ込み、順調に蒸気化する。蒸気発生器7までの少なくとも最終の回路が立ち上がりであると、蒸気の圧力が水の流れを阻害してしまう。蒸気発生器7は排気管8を兼用しているので、抵抗が大きくならない様に、細管37の断面積分程度は総断面積を大きくする。細管37としては、主に医療機器配管用として製造されている細径ステンレスパイプや耐蝕耐熱合金パイプを利用する。心臓部であるインパルスタービン1については、圧縮空気を利用して高速回転するエアータービンと同じく、外周部に蒸気を受ける窪みと、運動量をタービンに与えた蒸気が排出する際の折り返し(ターン)壁をもうけた、一体型の単段衝動(インパルス)タービンを使用する。蒸気は比較的圧力差が小さくても、その噴出流速は非常に高いという気体の特性を持っている。タービンの周速が高くなるので、本願発明の特徴であるフライホイール15の始動用リングギヤ16へのインパルスタービン軸歯車2での直接歯車伝達が良い。歯車伝達のギヤ比は、原動機の最高回転数にもよるが、10〜20前後の割り切れない数で設計すれば良い。この場合、例えば原動機側の回転数が、最高で毎分5千回転であれば、タービンの回転数は毎分5〜10万回転となり、小型の衝動タービンであれば問題無く達成可能である。ベアリングについては、歯車伝達で受けるラジアル荷重が、通常タービン軸受に採用されるフロートベアリングタイプには適さないので、この程度の回転であれば、ラジアル・スラスト荷重のどちらも受けられるアンギュラー玉軸受が適しており、動作温度が高く且つ水蒸気の侵入等で腐食等の害が発生する場合は、耐食性の優れたハウジング材質やセラミックベアリング等を採用すれば良い。尚、ベアリングハウジングの温度を高く保って蒸気の熱損失を抑える為に、ハウジングに予熱後の熱水を通じると効率が更に上がる。タービンの最高到達周速度は蒸気の最高噴出速度より小さい設計とし、噴出速度よりも低いほど速度差が大きくなって、高速回転時でも有効にトルクが伝達される。低速側で性能の高い直径の大きなタービンにするか、前述の高速での性能優先の小径タービンにするかは、原動機と車両の使用方法(運転パターン)に合わせて決めれば良い。フライホイール15のリングギヤ16は、通常焼き嵌めされているが、インパルスタービン軸歯車2との接触で到達温度が上昇する事、及び発生トルクを頻繁に伝達するので、部分的な溶接(点付け)等で補強しておくと良い。特に改造で取り付ける場合は、全周溶接するとフライホイール15、特にクラッチ取り付け面に歪みを生じ、又バランスが崩れ易いので注意する。本システムで特に注意すべき点としては、排気ガスやエンジン各部の熱量は、暖機が完了するまでは、有効に利用出来る程高温にならない事である。本システムの蒸気タービン部は、あくまで補助的なもので、必要な際にのみ補助し、不必要な際には大きな負荷にならない工夫、例えば極力軽量化して慣性を小さくする等が必要である。従って、排気ガスの温度が所定以上であり、車両のアクセラレーターペダル踏み込み量(或いはスロットルやガバナー開度)が一定以上ある場合の、アンド条件が満たされている場合のみにシステム動作(給水ポンプ5の作動)させる。その他の原動機の状態や外気の条件は、必要なら付け加えれば良い。復水器3の動作が可能な十分な外部からの空気の取り込み(面積)や、それを援用する電動ファン等による強制吸引には限度があるので、特に大きな復水器3が設置出来ない小型の車両では、給水ポンプ5の動作は、車両の一定以上の速度で開始するアンド条件を付け加えると良い。又、車両の前面は照明等を含む各機器が多く、空気抵抗を大きくしない為に、前面投影面積や形状に制限が大きいので、上下面を含む側面に復水器を設置し、走行風を取り込む走行風案内板26を図5の様に設置しても良い。輸送車両用等の大型の内燃機関では、処理する熱量も大きいので、復水器は循環式の水冷にして、その水を空冷式で冷却するという2段方式も可能である。又高価にはなるが、ヒートパイプを利用して、分離式で熱輸送を高速で行う事で小型軽量化する事も有効と考えられる。安全に対する配慮として、第一には故障で本体に影響が出ないシステムである事で、本願発明は、水が独立系且つ動力として補助系であり、これを満足している。次に必要な事は、タービン特有の反応遅れによる障害を、簡便なシステムで打ち消す事であり、制動時の反応遅れの対策である。この方法としては、制動と連動して、蒸気発生器7−インパルスタービン1間の蒸気圧力を抜く本願発明の手法が、最も合理的であると考えられる。制動時にも蒸気発生器7側に未蒸発の水が残っていて、且つ蒸気発生器7が高温の状態で有れば、負荷検知条件がダウンする事で、給水ポンプ5が停止しても出力発生が続き、これが緊急時の車両制動の障害になる場合が有る。この場合には、ブレーキ操作機構や制動機構と連動させて、蒸気発生器からインパルスタービン1部を開閉バルブ36によってバイパスさせ、復水器3へ通じる回路を作るのが最も簡便である。According to the impulse turbine type composite prime mover of the present invention, it is possible to produce an internal combustion engine prime mover that is inexpensive, efficient, and fuel efficient in combination with the addition of the prior art, and can be added to the currently used automobiles with minor modifications. become able to do. In other words, the present invention can directly convert the exhaust heat generated by the internal combustion engine prime mover 38 to the main power even compared to the conventional composite prime mover, so that it is safe and efficient, and is a large, heavy and expensive power storage system. Because it can be used for vehicles without a high-output electric motor, etc., and can be used for replacement and modification of the engine parts currently used, it is small and has high output and efficiency and environmental performance It can also be used as a connection until an excellent next generation motor is completed. FIG. 1 shows a schematic configuration diagram of an example of the present invention. First, the condenser 3 (condenser), which is a point of the steam turbine system, is the water cooling of the condenser 3 of the conventional steam turbine system. Basically, it must be achieved by air cooling in a vehicle, but in a traveling vehicle, air can be easily taken in from the outside. The condenser 3 must be designed with a maximum capacity of the outside air, a maximum steam generation amount and flow rate, and a minimum vehicle speed. Water has a large specific heat, and in order to sufficiently cool even in summer, a condenser 3 is attached to the front and underside of radiators and cooler condensers, and air is taken in at low and medium speeds by engine-driven fans and electric fans. It is necessary to give the top priority to the operation of the condenser 3 when it is used. If the condensate (condensation of steam) is not sufficient, the feed water pump 5 will malfunction, and the pump itself will easily be damaged. Next, since the condensed water becomes relatively low in temperature, it is wasted if preheating is performed using the high temperature portion of the internal combustion engine prime mover 38 at the front stage (suction side) or the rear stage (water supply side) of the water supply pump 5. No. In FIG. 1, a preheater 39 is installed in the oil pan 4. As for the feed water pump 5 for supplying pressurized water, the pump body may be of any type as long as the pump body is small and consumes less power and can generate the required pressure and flow rate. However, it is more efficient to shield the pump and drive units from heat. And the life of the drive unit are preferable. When retrofitting a vehicle, it is easy to install a separate electric pump that does not use engine power. Since the required pressure is relatively high and the flow rate is small, it is preferable to increase the pressure by connecting a commercially available small flow rate pump in multiple stages in series. The flow rate and pressure of the feed water pump 5 need to be set so that steam can be sufficiently generated even when the load at which the exhaust gas temperature is maximum is maximum and the engine rotates at the maximum speed. The thermal efficiency of the gasoline engine is about 20% in terms of driving wheels, and if it has an output of several tens of kW, the output of the impulse turbine of the present invention that depends on the exhaust gas temperature depends on the exhaust gas temperature. Even if the preheater 39 forming a part of the above is used, the thermal efficiency is only a few percent and the output is only about several KW. If calculated by the amount of heat, the discharge amount of the feed water pump 5 can be supplied at a few liters per minute, so it is preferable that the amount is small and the total power consumption is suppressed to about several hundred W or less. When the capacity of the alternator or the storage battery of the prime mover or the power efficiency is undesirable, a feed water pump 5 that transmits power by a belt is attached from the crankshaft pulley of the internal combustion engine prime mover 38. And so on. An electromagnetic clutch is installed in a pulley portion added to the water supply pump 5, and the clutch is connected only when the water supply pump 5 is operated. This method is the same as a cooler compressor for air conditioning. In order to prevent the backflow of steam from the steam generator 7 to the water system on the water supply pump 5 side, it is necessary to put a check valve 6 in the middle of the path. Water has a boiling point of 100 ° C. at normal pressure, but if it is pressurized, the boiling point rises and does not boil even at 100 ° C. Therefore, the amount of heat that can be transported increases, and cooling water for internal combustion engine engines and the like is pressurized. The cooling water is circulated by a water pump incorporated in the engine and driven by the force of the power shaft via a belt, but the pressure is usually fixed by using a radiator cap as a regulator. Similarly, the feed water pump 5 is used as a driving force for pressure and circulation, but a preload check valve 6 as shown in FIG. 4 is appropriately provided at the front stage of the steam generator 7 (between the water paths to the condenser 3). It is only necessary to maintain the pressure on the water side and supply water only as much as the steam generator 7 requires. At least a part (final part) of the piping circuit from the feed water pump 5 to the steam generator 7 is set to be higher than the height of the steam generator 7. At the last falling part, water naturally flows into the steam generation part 7 by gravity and is vaporized smoothly. If at least the final circuit up to the steam generator 7 is rising, the pressure of the steam hinders the flow of water. Since the steam generator 7 also serves as the exhaust pipe 8, the total cross-sectional area of the narrow tube 37 is increased so that the resistance does not increase. As the thin tube 37, a thin stainless steel pipe or a corrosion-resistant heat-resistant alloy pipe manufactured mainly for medical device piping is used. As for the impulse turbine 1 that is the heart, as with an air turbine that rotates at high speed using compressed air, a recess that receives steam at the outer periphery, and a turn wall when the steam that imparts momentum to the turbine is discharged. An integrated single-stage impulse (impulse) turbine is used. Vapor has a gas characteristic that its jet flow velocity is very high even if the pressure difference is relatively small. Since the peripheral speed of the turbine is high, direct gear transmission by the impulse turbine shaft gear 2 to the starting ring gear 16 of the flywheel 15 which is a feature of the present invention is good. The gear ratio of the gear transmission may be designed with an indivisible number of about 10 to 20, although it depends on the maximum rotational speed of the prime mover. In this case, for example, if the rotation speed on the prime mover side is 5,000 rotations per minute at the maximum, the rotation speed of the turbine will be 50,000 to 100,000 rotations per minute, and a small impulse turbine can be achieved without problems. As for the bearing, the radial load received by gear transmission is not suitable for the float bearing type normally used for turbine bearings. Therefore, if it is this level of rotation, an angular ball bearing that can receive both radial and thrust loads is suitable. If the operating temperature is high and damage such as corrosion occurs due to intrusion of water vapor, a housing material or a ceramic bearing having excellent corrosion resistance may be employed. In addition, in order to keep the temperature of the bearing housing high and suppress the heat loss of the steam, the efficiency further increases when hot water after preheating is passed through the housing. The maximum peripheral speed of the turbine is designed to be smaller than the maximum jet speed of steam, and the lower the jet speed, the greater the speed difference, and the torque is effectively transmitted even at high speed rotation. Whether to use a large-diameter turbine with high performance on the low speed side or a small-diameter turbine with priority on performance at high speed described above may be determined according to the use method (operation pattern) of the prime mover and the vehicle. The ring gear 16 of the flywheel 15 is normally shrink-fitted, but the reached temperature rises due to contact with the impulse turbine shaft gear 2 and the generated torque is frequently transmitted, so partial welding (dotting). It is good to reinforce with etc. In particular, when mounting by remodeling, it is noted that if the entire circumference is welded, the flywheel 15, particularly the clutch mounting surface, is distorted and the balance is easily lost. It should be noted that the amount of heat in the exhaust gas and each part of the engine does not become so high that it can be used effectively until the warm-up is completed. The steam turbine section of this system is only auxiliary, and it is necessary to assist only when necessary, and to reduce the inertia by reducing the weight as much as possible, for example, so that it does not become a heavy load when unnecessary. Therefore, the system operation (water supply pump 5) is performed only when the AND condition is satisfied when the temperature of the exhaust gas is equal to or higher than a predetermined value and the accelerator pedal depression amount (or throttle or governor opening) of the vehicle is higher than a certain value. Operation). Other prime mover conditions and outside air conditions may be added if necessary. Since there is a limit to the intake (area) of air from the outside that allows the condenser 3 to operate and forced suction by an electric fan that uses it, a small condenser that cannot install a particularly large condenser 3 In this vehicle, the operation of the water supply pump 5 may be added with an AND condition that starts at a speed higher than a certain speed of the vehicle. In addition, there are many devices including lighting etc. on the front of the vehicle, and since the air resistance is not increased, the front projection area and shape are very limited. The traveling wind guide plate 26 to be taken in may be installed as shown in FIG. In a large-sized internal combustion engine for a transportation vehicle or the like, the amount of heat to be processed is large. Therefore, a two-stage system is possible in which the condenser is cooled by water circulation and the water is cooled by air. Although it is expensive, it is considered effective to reduce the size and weight by using a heat pipe and separating and heat transporting at high speed. As a consideration for safety, the system according to the present invention is a system that does not affect the main body due to a failure, and the present invention satisfies this because water is an independent system and an auxiliary system as power. Next, what is necessary is to counteract the failure caused by the reaction delay peculiar to the turbine with a simple system, and to counter the response delay during braking. As this method, it is considered that the method of the present invention in which the steam pressure between the steam generator 7 and the impulse turbine 1 is released in conjunction with braking is the most rational. Even when braking, if unvaporized water remains on the steam generator 7 side and the steam generator 7 is in a high temperature state, the load detection condition goes down, so that even if the feed water pump 5 is stopped, output is possible. Occurrence continues and this may become an obstacle to vehicle braking in an emergency. In this case, it is most convenient to make a circuit that leads to the condenser 3 by bypassing a part of the impulse turbine from the steam generator by the opening / closing valve 36 in conjunction with the brake operation mechanism or the braking mechanism.

排気ガスの熱量の一部から動力を取出す為の蒸気発生器7は、高温であるほど蒸気化の効率が良いので、従来排気温度を下げる為に放熱するに任せていた排気管8等については、少なくとも蒸気発生器7部以上の排気ガス上流(排気ガスの流れてくる元)について、断熱材32等を捲いて保温した方が良い。又、蒸気発生器7−インパルスタービン1の高圧側、予熱器39から給水ポンプ5も保温が良いほど蒸気の無駄な放熱、つまり出力低下がない。これを請求項の2とする。The steam generator 7 for extracting power from a part of the heat quantity of the exhaust gas has a higher efficiency of vaporization as the temperature is higher. For the exhaust pipe 8 and the like that had been left to radiate heat to lower the exhaust temperature in the past, etc. In addition, it is better to keep the temperature of the exhaust gas upstream of the steam generator 7 parts or more (source of the exhaust gas flowing) through the heat insulating material 32 or the like. Further, the steam generator 7-impulse turbine 1, the preheater 39 to the feed water pump 5, the more heat is kept, the more the steam is not dissipated, that is, the output is not reduced. This is defined as claim 2.

寒冷地或いは寒冷な季節においては、水が凍結する際の体積膨張によって給水ポンプ5や各部配管に損傷が発生する。これを避ける為には、自動車エンジン用循環冷却水と同様に、凝固点降下剤を混合する事で、凝固点を降下させて凍結を防止する事が有効である。これを請求項の3とする。In cold districts or cold seasons, damage occurs to the water supply pump 5 and each part piping due to volume expansion when water freezes. In order to avoid this, it is effective to prevent freezing by lowering the freezing point by mixing a freezing point depressant as in the circulating cooling water for automobile engines. This is defined as claim 3.

予期しない不具合、例えばノズル29や復水器3の詰まりの発生等で、高温・高圧の蒸気が発生してしまい、システムが破裂損傷するのを防止するには、高圧ガス製造装置等では一般的な安全弁33を付けるのが最もよい。比較的高圧の蒸気発生器7−インパルスタービン1部間に最低1個、比較的低圧のタービン部下流から復水器3間に最低1個、それぞれ設定圧を適宜合わせて取り付けて置く。これを請求項の4とする。It is common in high pressure gas production equipment to prevent high temperature and high pressure steam from being generated due to unexpected troubles such as clogging of the nozzle 29 and condenser 3, etc. It is best to attach a safety valve 33. At least one set of relatively high pressure steam generator 7 and one portion of impulse turbine and at least one set of relatively low pressure from the downstream of the turbine portion to the condenser 3 are installed with their set pressures appropriately adjusted. This is defined as claim 4.

外気が寒冷すぎて復水器3での水の温度が下がりすぎる事で、予熱機構でも所定温度に昇温させきれなくなったり、復水器3内で凍結する等の障害を発生させない為には、復水器3の冷却容量が制御出来れば好ましい。従って、走行風の流路の断面積可変化や専用ファン等でこれを達成する場合がある。これを請求項の5とする。In order that the temperature of the water in the condenser 3 is too low because the outside air is too cold, the preheating mechanism will not be able to raise the temperature to the predetermined temperature, or the trouble such as freezing in the condenser 3 will not occur. It is preferable if the cooling capacity of the condenser 3 can be controlled. Therefore, this may be achieved by varying the cross-sectional area of the flow path of the traveling wind, a dedicated fan, or the like. This is defined as claim 5.

サイクルの液媒として、沸点の低いものを使う程、有効に排気ガスの熱量が利用出来る。この場合、環境に負荷を与えない物質である事が条件となり、これが満たされる範囲では、代替フロン等の利用が可能となる。これを請求項の6とする。The lower the boiling point of the liquid medium of the cycle, the more effectively the heat quantity of the exhaust gas can be used. In this case, it is a condition that the substance does not give a load to the environment, and alternative fluorocarbons can be used as long as this is satisfied. This is defined as claim 6.

発明の効果The invention's effect

本願発明の請求項1によって、従来技術の延長の組み合わせで、半シリアルハイブリッドタイプのインパルスタービン型複合原動機の製作が可能となり、中高負荷時に内燃機関原動機38の出力補助が出来る様になった。補助出力の向上により、実使用熱効率が向上して出力当たりの燃料消費量が低減でき、二酸化炭素放出量や排熱等が減少する事で、環境の保全に貢献する繋ぎの原動機技術のひとつが開示できた。特に、従来の原動機システムにたいする小幅な改造で、燃費改善が出来る事が最も重要である。According to claim 1 of the present invention, a semi-serial hybrid type impulse turbine type composite prime mover can be manufactured by combining the extension of the prior art, and the output of the internal combustion engine prime mover 38 can be assisted at medium and high loads. One of the prime mover technologies that contributes to environmental conservation is that by improving the auxiliary output, the actual use thermal efficiency can be improved, the fuel consumption per output can be reduced, and the amount of carbon dioxide emission and exhaust heat can be reduced. I was able to disclose. In particular, it is most important that the fuel efficiency can be improved by a slight modification to the conventional prime mover system.

本願発明の請求項2によって、従来大気中に放散されていた排気の熱が、更に効率よく積極的に、蒸気発生器7とインパルスタービン1によって動力に変換出来るようになる。According to claim 2 of the present invention, the heat of the exhaust gas conventionally diffused into the atmosphere can be more efficiently and actively converted into power by the steam generator 7 and the impulse turbine 1.

本願発明の請求項3によって、寒冷地や冬季に対応できるインパルスタービン型複合原動機が可能となる。According to claim 3 of the present invention, an impulse turbine composite prime mover that can cope with cold districts and winter seasons can be realized.

本願発明の請求項4によって、蒸気を安全に利用出来るインパルスタービン型複合原動機が可能となる。According to claim 4 of the present invention, an impulse turbine composite prime mover that can safely use steam can be realized.

本願発明の請求項5によって、寒冷地や冬季に問題を発生しないインパルスタービン型複合原動機が可能となる。According to claim 5 of the present invention, an impulse turbine type prime mover that does not cause a problem in a cold region or winter can be realized.

本願発明の請求項6によって、更に熱効率の良いインパルスタービン型複合原動機が可能となる。According to claim 6 of the present invention, an impulse turbine type composite prime mover with even better thermal efficiency is possible.

以上の様に、本複合原動機は、内燃機関原動機38において、従来利用されずに捨てられていた排気の熱量や冷却水側に逃がしていた熱量の一部を、蒸気のエネルギーとして積極的に直接原動機出力に変換する事で、総合的に熱効率を向上させて出力向上を達成する事が出来、燃費の向上で排気ガスの減少・排熱の減少等を達成する事が出来る。熱効率の向上で出力・トルクが増大すれば、実際の車両ではどのような理由で燃費が向上するかは、前述の三橋孝氏の「ターボ車の知識と特性 昭和55年発行 山海堂」に詳しい。本願発明は、従来の内燃機関原動機38の最高の普及要因である、使用出来る回転数及び負荷が広い特性はそのままで、改善分を上乗せする事が出来、新たに設計・製造される自動車のみではなく、現行使用されている車両にも部品交換や付加で適用できるので、応用範囲も非常に大きく取れるというメリットが有る。本願発明に更に改良や追加機能を加える事で、内燃機関を利用する車両への多種・多様の展開が可能である。As described above, the present composite prime mover directly and directly uses a part of the heat quantity of the exhaust gas that has been discarded without being used in the internal combustion engine prime mover 38 as well as the heat quantity released to the cooling water side as steam energy. By converting it to prime mover output, it is possible to improve overall heat efficiency and increase output, and to improve fuel efficiency and reduce exhaust gas and exhaust heat. If the output and torque increase due to the improvement in thermal efficiency, the reason why the fuel efficiency will improve in an actual vehicle is detailed in the above-mentioned “Takami Mitsuhashi's knowledge and characteristics of turbo car published in 1980, Sankai-do” . The invention of the present application is the most popular factor of the conventional internal combustion engine prime mover 38, the characteristics that can be used and a wide range of rotations can be added, and an improvement can be added, and only in a newly designed and manufactured automobile. In addition, it can be applied to currently used vehicles with parts replacement or addition, so there is a merit that the application range is very large. By adding further improvements and additional functions to the invention of the present application, various and various developments can be made for vehicles using an internal combustion engine.

発明の実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

図1に示す本願発明の経路の模式図に従って説明をする。本願発明のポイントになるのは、▲1▼排気マニホールド10・排気管8等を蒸気発生器7として利用する、▲2▼その蒸気で単段インパルスタービン1を回す、▲3▼タービン軸にインパルスタービン軸歯車2を設けて、タービンに発生するトルクを、原動機のフライホイール15の外周にあるリングギヤ16に減速して伝達する、▲4▼復水器3で車両走行時の走行風(空気の流れ)を利用して蒸気の凝縮作動をさせる、▲5▼凝縮した水を、原動機の高温部を熱源として予熱する、▲6▼蒸気発生器7から給水ポンプ5に蒸気を逆流させずに、しかも蒸気発生器7に必要な分だけの水を送り込む、▲7▼ソフト的には、加圧送水する給水ポンプ5の動作条件を基本的に(最低限)負荷検知と一定温度以上の排気ガス温度とし、更に、制動時のタービン特有の弊害を排除する等である。経路に沿って実施形態の上記要点を説明する。A description will be given according to the schematic diagram of the route of the present invention shown in FIG. The points of the present invention are: (1) the exhaust manifold 10 and the exhaust pipe 8 are used as the steam generator 7, (2) the single-stage impulse turbine 1 is rotated by the steam, and (3) the turbine shaft is impulsed. The turbine shaft gear 2 is provided, and torque generated in the turbine is decelerated and transmitted to the ring gear 16 on the outer periphery of the flywheel 15 of the prime mover. (4) Travel wind (air flow) of the vehicle by the condenser 3 (5) Condensate the steam using the flow), (5) Preheat the condensed water using the high temperature part of the prime mover as a heat source, (6) Without backflowing the steam from the steam generator 7 to the feed water pump 5, In addition, the necessary amount of water is sent to the steam generator 7. (7) In terms of software, the operating conditions of the feed water pump 5 for pressurized water supply are basically (minimum) load detection and exhaust gas above a certain temperature. Temperature, and And the like to eliminate the turbine-specific adverse effects of time. The main points of the embodiment will be described along the route.

まず▲1▼の蒸気発生器7については、復水器3で還された水が給水ポンプ5でボイラーに相当する蒸気発生器7に送り込まれる。内燃機関では爆発・燃焼するガスを囲むエンジン各部は、水冷及び油冷されているので、蒸気発生に実質利用出来る排気ガスの温度が高い部分は、構成する部品で言えば、多気筒エンジンでは、排気を集合させる排気マニホールド10が最も高く、それに続く排気管8が次に高い。図6に排気管8に蒸気発生用の細管37を取り付けて、蒸気発生器7と兼用させた例を示す。主となる原動機の排気圧力が大きくなりすぎない様に、蒸気を発生させる細管37の断面積と排気ガス流路の断面積を決めるが、内部の水が蒸気化する事で熱を奪うので、排気ガスの体積が減って圧力を下がるので、実験して決めれば良い。蒸気発生器7の細管37は、外径を小さくして出来るだけ多数設け、管の肉厚は温度・圧力や雰囲気に耐えられる限り薄い程、受熱する配管長さが長い程、効率が良い。細管の材質は、排気の高温や内部の蒸気圧に耐え、耐食性の良好な耐食耐熱合金・ステンレス鋼等で製作する。細管の振動は疲労破壊の原因となるので、適宜クランプする等の対策を取れば良い。蒸気の流れ方向は基本的に対向流式の熱交換機と同じに、排気ガスの流れと逆方向にして、細管の蒸気の出口であるインパルスタービン1側で、より加熱されるようにする。排気マニホールド10にも蒸気発生器7部を到達させる場合、複数の燃焼室から排気ガスが集合し、集合前の単独の排気管部よりも、集合後の排気管部の温度が平均的に高い場合も有るので、この流れ方向は個々の内燃機関の特性に合わせれば良い。蒸気発生器7からインパルスタービン1までの、蒸気の触れる流路の内壁は、管壁の粗さを抑えて蒸気との摩擦係数を小さくし、蒸気発生器7からインパルスタービン1間の距離は短いほど有利になる。First, regarding the steam generator 7 of (1), the water returned by the condenser 3 is sent to the steam generator 7 corresponding to the boiler by the feed water pump 5. In the internal combustion engine, each part of the engine surrounding the gas that explodes and burns is water-cooled and oil-cooled. The exhaust manifold 10 that collects the exhaust is the highest, and the exhaust pipe 8 that follows it is the next highest. FIG. 6 shows an example in which a thin tube 37 for generating steam is attached to the exhaust pipe 8 and also used as the steam generator 7. The cross-sectional area of the narrow tube 37 that generates steam and the cross-sectional area of the exhaust gas passage are determined so that the exhaust pressure of the main prime mover does not become too large. Since the volume of the exhaust gas decreases and the pressure decreases, it can be determined by experimentation. The thin tubes 37 of the steam generator 7 are provided as many as possible with a reduced outer diameter. The thickness of the tube is as thin as it can withstand the temperature, pressure, and atmosphere, and the longer the length of the pipe to receive heat, the better the efficiency. The material of the narrow tube is made of corrosion-resistant and heat-resistant alloy / stainless steel that can withstand high exhaust temperature and internal vapor pressure and has good corrosion resistance. Since vibration of the thin tube causes fatigue failure, measures such as clamping as appropriate may be taken. The steam flow direction is basically the same as that of the counter-flow heat exchanger, and is opposite to the exhaust gas flow so that the steam is heated more on the impulse turbine 1 side which is the steam outlet of the narrow tube. When the steam generator 7 part also reaches the exhaust manifold 10, exhaust gas collects from a plurality of combustion chambers, and the temperature of the exhaust pipe part after collection is higher on average than the single exhaust pipe part before collection. In some cases, the flow direction may be matched to the characteristics of the individual internal combustion engine. The inner wall of the flow path where the steam touches from the steam generator 7 to the impulse turbine 1 suppresses the roughness of the tube wall to reduce the coefficient of friction with the steam, and the distance between the steam generator 7 and the impulse turbine 1 is short. It becomes more advantageous.

次に▲2▼のタービン及びノズル部の蒸気吹き出し方法については、本願発明の複合原動機の場合には、図7の例のように、外周からインパルスタービン本体28の外径の、略接線方向から内側に、多数のノズル29を向けて蒸気を吹き出し、その速度エネルギーを回転力・速度に変換する衝動タービン型としている。これは得られる蒸気の圧力が比較的低圧で、流量も少ないからである。ノズルの内部形状を末広ノズルにして蒸気を高速化し、圧力を出来るだけ速度エネルギーに変換して動力として取り出すのも良い。蒸気を当てる方向は取り回しやコストに問題が無ければ、単段衝動タービンで良く使われる側面からでもかまわない。タービンに衝突した蒸気が回転力を与える為、タービンの形状は蒸気の力を出来るだけ引き出し、且つ排気が滑らかに出来る様にしなければならない。内燃機関側の運転範囲が広く、従って蒸気の発生量や圧力に大きな幅が有る為、インパルスタービン1やノズル29を2系統(2段階)に分けて動作させても良い。Next, with regard to the steam blowing method of the turbine and nozzle section of (2), in the case of the composite prime mover of the present invention, as shown in the example of FIG. 7, the outer diameter of the impulse turbine body 28 from the substantially tangential direction from the outer periphery. Inside is an impulse turbine type in which a large number of nozzles 29 are directed to blow out steam and its velocity energy is converted into rotational force / speed. This is because the vapor pressure obtained is relatively low and the flow rate is small. It is also possible to make the internal shape of the nozzle widen to increase the speed of the steam, convert pressure to velocity energy as much as possible, and take it out as power. The direction in which the steam is applied may be from the side often used in single-stage impulse turbines as long as there is no problem in handling and cost. Since the steam impinging on the turbine gives a rotational force, the shape of the turbine must draw out the steam force as much as possible and make the exhaust smooth. Since the operating range on the side of the internal combustion engine is wide, and therefore there is a large range in the amount of generated steam and the pressure, the impulse turbine 1 and the nozzle 29 may be operated in two systems (two stages).

次に▲3▼で原動機の出力増大に利用する、インパルスタービン1と内燃機関原動機38を繋ぐ為の機構について説明する。基本的に、内燃機関の原動機は、密閉できる爆発・燃焼部で生じる高圧をピストンやローターで受けて動力軸を回転させるので、回転数は比較的低く、高トルクであるが、爆発・燃焼が間欠的であるので動力が脈動する。一方、蒸気原動所のような巨大な設備を除いて、本願発明のような小型・低圧力の蒸気タービンでは、蒸気の圧力を密閉出来ない蒸気発生器7−ノズル29系で速度エネルギーに転換し、その速度エネルギーをタービンで受けて回転力に換えるので、回転数は非常に高く、低トルクで、比較的変動が少なく連続的である。タービンの出力はトルクと回転数の積であるから、低トルクでも回転が高い事で出力はある程度得られる。しかし、タービンの出力を原動機の動力軸に戻す際には、その機構(構造)のどこかで減速をしなければならない。タービンの回転数を動力軸に直結し、回転を抑え過ぎるると有効な出力が得られない。タービンの周速度は、無負荷であれば、ノズルから吹き出す蒸気の速度に限りなく近づき、蒸気の速度はノズル29の形状・性能にもよるが音速を超える事も可能な為、小径のタービンでは毎分数万から数十万回転まで可能である。トルクは、機械的損失を無視すれば減速比倍されるので、歯車伝達のギヤ比によって、タービンのトルクの数倍から数十倍まで増大させる事が出来る。図8に原動機の始動用リングギヤに、インパルスタービン軸歯車2で動力伝達する本願発明特有の伝達の1例を示す。しかし、排気の温度(熱エネルギー)を利用するので、エンジンの始動直後や低負荷運転時の様に、排気温度が低い時点では、蒸気発生器の作動を停止するから、出来るだけ軽量・コンパクトにして無駄な動力を抑える必要がある。又、排気温度が上昇しても、蒸気発生器の細管を熱が伝導したり、蒸気発生器の中で蒸気の圧力が上がって、タービンに動力が発生するまでに作動遅れ(タイムラグ)が有る。この為、このシステムでは蒸気タービンはあくまで補助的な役割しか果たさない。そこで、既に歯車を備えているフライホイール15のリングギヤ16に歯車で伝達する本願発明の方式が、機構上も効率上も最も合理的で改造にも適しており、そのインパルスタービン1・ベアリングハウジング・インパルスタービン軸歯車2の取付は、シリンダーブロック14のトランスミッション取付用の穴やタップが利用出来る。改造時に干渉する部分は取り除き、全体を蔽うカバーを新設すれば良い。Next, in (3), a mechanism for connecting the impulse turbine 1 and the internal combustion engine prime mover 38 used for increasing the output of the prime mover will be described. Basically, a prime mover of an internal combustion engine receives a high pressure generated in an explosion / combustion part that can be sealed by a piston or rotor to rotate the power shaft, so the rotational speed is relatively low and the torque is high. The power pulsates because it is intermittent. On the other hand, except for a huge facility such as a steam power plant, in a small and low-pressure steam turbine such as the present invention, the steam pressure is converted into velocity energy by a steam generator 7-nozzle 29 system that cannot seal the steam pressure. Since the speed energy is received by the turbine and converted into the rotational force, the rotational speed is very high, the torque is low, the fluctuation is continuous, and it is continuous. Since the output of the turbine is the product of the torque and the rotational speed, the output can be obtained to some extent by the high rotation even at low torque. However, when returning the output of the turbine to the power shaft of the prime mover, it is necessary to decelerate somewhere in the mechanism (structure). If the rotational speed of the turbine is directly connected to the power shaft and the rotation is suppressed too much, an effective output cannot be obtained. The turbine's peripheral speed approaches the speed of the steam blown out from the nozzle as long as there is no load, and the speed of the steam can exceed the speed of sound depending on the shape and performance of the nozzle 29. From tens of thousands to hundreds of thousands of revolutions per minute is possible. If the mechanical loss is ignored, the torque is multiplied by the reduction ratio. Therefore, depending on the gear ratio of the gear transmission, the torque can be increased from several times to several tens of times the torque of the turbine. FIG. 8 shows an example of transmission unique to the present invention in which power is transmitted by the impulse turbine shaft gear 2 to the starting ring gear of the prime mover. However, since the exhaust gas temperature (thermal energy) is used, the steam generator stops operating when the exhaust gas temperature is low, such as immediately after starting the engine or during low-load operation, making it as light and compact as possible. It is necessary to reduce unnecessary power. In addition, even if the exhaust temperature rises, there is a delay in operation (time lag) before heat is conducted through the narrow tube of the steam generator or the pressure of the steam rises in the steam generator and power is generated in the turbine. . For this reason, the steam turbine only plays an auxiliary role in this system. Therefore, the method of the present invention in which gears are transmitted to the ring gear 16 of the flywheel 15 already equipped with gears is the most rational in terms of mechanism and efficiency, and is suitable for modification. The impulse turbine 1, bearing housing, The impulse turbine shaft gear 2 can be mounted by using a hole or a tap for mounting the transmission of the cylinder block 14. Remove the interference part when remodeling, and install a new cover to cover the whole.

次に▲4▼の復水器3については、タービンを出た蒸気は、圧力・温度が下がるように流路断面積を大きくしたパイプ等で復水器7に接続する。途中に送風用のラインファンを組み込んでも良い。パイプは、熱伝導率の良い材質で放熱性の優れた形状のものを使用し、出来るだけ立ち下がりにする。従って、従来のラジエータやクーラー用コンデンサーよりも下の取付位置が好ましい。図9に示す、インパルスタービン1部の後段に付ける空冷式復水器3は、夏季等の外気が高温の状態で動作する容量で設計すれば良く、容量と耐圧力さえ適合すれば、小型の自動車用ラジエーターの流用が最も安価に済む。Next, with regard to the condenser 3 of (4), the steam that has exited the turbine is connected to the condenser 7 by a pipe or the like having a larger flow path cross-sectional area so that the pressure and temperature are lowered. A line fan for blowing air may be incorporated on the way. The pipe should be made of a material with good heat conductivity and a shape with excellent heat dissipation, and fall as much as possible. Therefore, the mounting position below the conventional radiator or condenser for the cooler is preferable. The air-cooled condenser 3 attached to the rear stage of the impulse turbine 1 shown in FIG. 9 may be designed with a capacity that operates in a state in which the outside air is at a high temperature in summer or the like. The use of automobile radiators is the cheapest.

次に▲5▼の予熱器39については、エンジンの暖機が終了していれば、原動機の高温部はどこでもよいが、最初に暖まる部分が最も動作上有利な為、排気ガスの流路廻りか、潤滑油系統が好ましい。更に、各部を取り回して、最後に最も高温の部分を通ずるともっと良い。予熱器39は機能さえ果たせば単なる配管でもかまわない。予熱器39を設置する内燃機関側の部位・部品としては、潤滑油を溜めるオイルパン4・シリンダーヘッド11金属部・シリンダーヘッド11排気ポート周り・シリンダーヘッド11冷却水通路・ラジエータのアッパータンク・シリンダー周囲金属部・シリンダー周囲冷却水通路等が温度が高く、特に図1のオイルパン4は後付け(改造)でも利用し易い部位である。Next, with respect to the preheater 39 of (5), if the engine has been warmed up, the high-temperature part of the prime mover may be anywhere, but the part that warms up first is the most advantageous for operation, so it is around the exhaust gas flow path. Or a lubricating oil system is preferred. Furthermore, it is better to route each part and finally pass through the hottest part. The preheater 39 may be a simple pipe as long as it functions. Parts and parts on the internal combustion engine side where the preheater 39 is installed include an oil pan 4 for storing lubricating oil, a cylinder head 11 metal part, a cylinder head 11 around an exhaust port, a cylinder head 11 cooling water passage, a radiator upper tank, and a cylinder The temperature of the surrounding metal part, the cooling water passage around the cylinder and the like is high, and the oil pan 4 in FIG. 1 is a part that is easy to use even after retrofitting (remodeling).

次に▲6▼の予圧式チェックバルブ6については、蒸気発生器7から給水ポンプ5へ蒸気が逆流すると、給水ポンプ5は気封されて機能を果たさなくなる。単なるチェックバルブを利用した場合、基本的に水や蒸気を一方通行にする役目を果たす事だけが出来る。本願発明の様に与圧すると、蒸気発生器7側の圧力プラス与圧による圧力に打ち克った際のみ、蒸気発生器7に水が供給されるが、給水ポンプ5の圧力と蒸気発生器7の圧力には段差が出来る。ノズル29によって蒸気発生器7は開放回路とされているが、蒸気発生器7が設計圧力以上を保っている間は、蒸発する水があるので、水の供給は必要がない。蒸気発生器7の圧力が下がって給水が必要となると、給水ポンプ5の圧力が、与圧と蒸気発生器7の圧力の合計に打ち克って水を供給する。この簡便なシステムでは、蒸気発生器7の設計圧力は給水ポンプ5の圧力を上回る必要があり、圧力の段差は与圧をするスプリングの力で決める事が出来る。蒸気発生器7に通ずる細管37は、内燃機関原動機38の排気系を通すので、その受ける熱量には当然差(温度分布)が有り、細かく制御する事で蒸気発生器7の最高の効率を達成しようとすれば、細管37の個々に与圧式チェックバルブ6を設けて、高温部を通じる細管についてスプリング24の力を小さく設定すれば良い。予圧の圧力は、0.1MPa(約1気圧)程度以下とし、給水ポンプ5の供給圧力は1MPa以下とし、安全の為に高圧領域は使用しない。Next, regarding the preload type check valve 6 of (6), when the steam flows backward from the steam generator 7 to the feed water pump 5, the feed water pump 5 is hermetically sealed and does not perform its function. If a simple check valve is used, it can basically only serve to make water and steam one-way. When the pressurization is performed as in the present invention, water is supplied to the steam generator 7 only when the pressure on the steam generator 7 side plus the pressure by the pressurization is overcome, but the pressure of the feed water pump 5 and the steam generator There is a step in the pressure of 7. Although the steam generator 7 is in an open circuit by the nozzle 29, there is no need to supply water because there is water that evaporates while the steam generator 7 maintains the design pressure or higher. When the pressure of the steam generator 7 decreases and water supply is required, the pressure of the water supply pump 5 overcomes the sum of the pressurized pressure and the pressure of the steam generator 7 to supply water. In this simple system, the design pressure of the steam generator 7 needs to exceed the pressure of the feed water pump 5, and the pressure step can be determined by the force of the spring that applies pressure. Since the narrow pipe 37 connected to the steam generator 7 passes the exhaust system of the internal combustion engine prime mover 38, there is a difference in the amount of heat received (temperature distribution), and the highest efficiency of the steam generator 7 is achieved by fine control. If it is going to do, the pressurization type check valve 6 should be provided in each thin tube 37, and the force of spring 24 should just be set small about the thin tube which passes through a high temperature part. The preload pressure is about 0.1 MPa (about 1 atm) or less, the supply pressure of the feed water pump 5 is 1 MPa or less, and the high pressure region is not used for safety.

次に▲7▼の動作条件については、特許文献1の様に冷却水温を基準に動作させるのでは無く、アクセラレーターペダルを踏み込み出力が必要な状態の場合で、排気温度が一定温度以上で蒸気発生に問題が生じない事が本願発明のインパルスタービン1の動作最低条件であり、そのふたつとも満たされた場合に加圧送水の給水ポンプ5を動作させれば良い。次に車載する蒸気タービンシステムとして、基本的に(最低限)必要な制動時の安全対策については、図12の様に、インパルスタービン1の前のパイプから、タービンの後ろの復水器側へのパイプまで、バイパス管35を設け、中間に開閉バルブ36を設ける。これは負荷が大きくて排気の温度が高く、且つ蒸気タービンが動力を発生して原動機の動力軸に戻している状態で、車両に急減速の必要が生じてアクセルペダルを戻し、ブレーキを掛けた際に、蒸気発生部や中継の配管の中にまだ水や水蒸気が残っていて、インパルスタービン1が引き続き動力を発生してしまう事で、減速の障害になるのを防止する為である。従って、バルブは動作の速い事と確実性を優先して選定すれば良く、スライド方式で、ソレノイド駆動のものが適切である。開放の信号は、基本的にブレーキペダルの踏み込みを検知する事から取るのが良い。開閉バルブ36は、ターボチャージャー過給機に使用されているウェストゲートバルブの様に、タービンハウジング30内に組み込む事も可能である。そのアクチュエータの動力は、ブレーキの油圧やブレーキのブースターにも使われる給気マニホールドの負圧等にしても良い。又、復水器3の容量と耐圧性は、このバイパス回路が高速・高負荷時に動作した場合でも十分に機能を果たす様にする必要が有る。ブレーキが解除されれば、開閉バルブ36はスプリング等の力で閉じれば良い。Next, regarding the operating condition (7), the operation is not based on the cooling water temperature as in Patent Document 1, but the accelerator pedal is depressed and the output is required. The occurrence of no problem is the minimum operating condition of the impulse turbine 1 of the present invention, and when both of them are satisfied, the pressurized water supply pump 5 may be operated. Next, as the in-vehicle steam turbine system, basically (minimum) necessary safety measures for braking are as follows from the pipe in front of the impulse turbine 1 to the condenser side behind the turbine as shown in FIG. A bypass pipe 35 is provided up to this pipe, and an open / close valve 36 is provided in the middle. This is a heavy load, the exhaust temperature is high, and the steam turbine is generating power and returning it to the power shaft of the prime mover. In this case, water or water vapor still remains in the steam generation section or the relay piping, and the impulse turbine 1 continues to generate power, thereby preventing an obstacle to deceleration. Therefore, the valve may be selected with priority given to its fast operation and certainty, and a slide-type solenoid-driven type is appropriate. The release signal should be taken from basically detecting the depression of the brake pedal. The on-off valve 36 can be incorporated into the turbine housing 30 like a waste gate valve used in a turbocharger supercharger. The power of the actuator may be brake hydraulic pressure, negative pressure of an air supply manifold used also for a brake booster, or the like. Further, the capacity and pressure resistance of the condenser 3 need to function sufficiently even when the bypass circuit operates at high speed and high load. If the brake is released, the open / close valve 36 may be closed by a force such as a spring.

請求項2については、図10に例を示す様に、蒸気発生器7とその後段のインパルスタービン1廻り等、及び予熱器39から蒸気発生器7までの高温水が流れる管路等の、外気に触れる部分は断熱をした方が当然効率が良い。又、断熱をしても、必ず熱は逃げて温度・圧力は下がるので、受熱部以外、つまり放熱部の長さと表面積は出来るだけ小さくした方が熱の放散を少なく出来て良い。With respect to claim 2, as shown in the example of FIG. 10, the outside air such as the steam generator 7 and the subsequent impulse turbine 1, and the pipe line through which high-temperature water from the preheater 39 to the steam generator 7 flows. Of course, it is more efficient to insulate the part that touches. Even if heat insulation is performed, heat always escapes and the temperature and pressure decrease. Therefore, heat dissipation can be reduced by reducing the length and surface area of the heat radiating part as much as possible.

請求項3については、混合する凝固点降下剤が蒸気の動作温度で分解しない事、システムに危害を加えない事、万一の放出で環境に悪影響を与えないことを条件に選定すれば良い。本願発明では特許文献1と異なり、主に安全上の配慮から、蒸気発生器の水は、内燃機関原動機38の冷却水とは独立の為、添加物は特許文献1のLLC等にはこだわらず、作動温度での耐久性(高温での耐分解性)と環境面から最適のものを選べば良い。The third aspect of the present invention may be selected on the condition that the freezing point depressant to be mixed does not decompose at the operating temperature of the steam, does not cause harm to the system, and does not adversely affect the environment by any chance. In the present invention, unlike Patent Document 1, mainly for safety reasons, the water of the steam generator is independent of the cooling water of the internal combustion engine prime mover 38, so the additive is not particular to the LLC of Patent Document 1, etc. Select the most suitable one from the viewpoint of durability at the operating temperature (decomposition resistance at high temperatures) and the environment.

請求項4については、それぞれに独立して取り付けて、噴出案内管34は図11の様に、適宜危害の及びにくい所に取り回すと良い。車両の運転席において、安全弁の噴出動作発生が分かる様に、例えば近接スイッチ等のセンサーを取り付けして、運転席の表示器と結合すれば、運転及び点検整備上便利で良い。About Claim 4, it attaches to each independently and it is good to manage the ejection guide pipe | tube 34 to the place where it is hard to do harm like the FIG. For example, if a sensor such as a proximity switch is attached and combined with an indicator on the driver's seat so that the occurrence of the ejection operation of the safety valve can be seen in the driver's seat of the vehicle, it is convenient for driving and inspection and maintenance.

請求項5については、簡易には復水器3前面に脱着可能なカバーを取り付けする構造とすればよく、このカバーをスライド開閉式として、復水器3の温度によって開閉する電動制御にすれば更に良い。About Claim 5, what is necessary is just to make it the structure which attaches the cover which can be attached or detached to the front surface of the condenser 3 simply, if this cover is made into a slide opening-and-closing type, and it is set as the electric control which opens and closes with the temperature of the condenser 3. Even better.

請求項6については、特許文献1と異なり、内燃機関原動機38の冷却系と独立したシステムの為、独自の液媒を採用する事も出来る。代替フロン等は、非常に激しい運転変動や安全弁の動作等がありうるレース用等の自動車では基本的には採用しない方が好ましい。オゾン層を破壊しないとしても自然に生じた物質ではないので、基本的に洩れや放出が有りうる状態では大量には使用できない。域内限定いわゆるコミュータ−用の車両等の効率向上に利用するのが最適である。About Claim 6, since patent document 1 differs from the cooling system of internal combustion engine prime mover 38, it can also employ | adopt an original liquid medium. Substitute chlorofluorocarbons and the like are preferably not adopted basically in automobiles for racing or the like that may have extremely severe driving fluctuations or safety valve operations. Even if it does not destroy the ozone layer, it is not a naturally occurring substance, so it cannot basically be used in large quantities in a state where leakage or emission is possible. It is optimal to use it to improve the efficiency of so-called commuter vehicles.

本願発明は、基本的なコンセプトとして、主に現行使用車輌の改善(新技術による革新原動機に置き換わるまでの繋ぎ)を目指しているので、自動車部品製造販売業・車輌整備業及び運送業(タクシーやトラック輸送等)に、安価で安全且つ効率を向上出来る改造システムとして利用される事を希望している。As the basic concept of the present invention is to improve the currently used vehicles as a basic concept (connection until the new engine is replaced with an innovative motor), the automobile parts manufacturing and sales business, the vehicle maintenance business and the transportation business (taxi and It is hoped that it will be used as a modified system that can improve safety, efficiency and safety at low cost.

本願発明のインパルスタービン型複合原動機の1例の構成模式図Schematic diagram of an example of an impulse turbine type composite prime mover of the present invention 直接サイクル(蒸気原動機・沸騰水形原子炉)のシステム図System diagram of direct cycle (steam prime mover / boiling water reactor) 間接サイクル(加圧水形原子炉)のシステム図System diagram of indirect cycle (pressurized water reactor) 給水ポンプ5から蒸気発生器7間に取り付ける与圧式チェックバルブ6の1例の断面図Sectional drawing of an example of the pressurization type check valve 6 attached between the feed water pump 5 and the steam generator 7 車両27側面に復水器3を取り付けた場合の走行風案内板26の1例の模式図Schematic diagram of an example of the traveling wind guide plate 26 when the condenser 3 is attached to the side surface of the vehicle 27 排気管8を蒸気発生器7にした場合の1例の模式図Schematic diagram of an example when the exhaust pipe 8 is a steam generator 7 単段インパルスタービン1部の1例の模式図Schematic diagram of one example of a single-stage impulse turbine part 1 リングギヤ16とインパルスタービン軸歯車2の1例の模式図Schematic diagram of one example of ring gear 16 and impulse turbine shaft gear 2 ラジエータ形復水器3の1例の模式図Schematic diagram of one example of radiator-type condenser 3 蒸気発生器7とインパルスタービン1部の断熱の1例の模式図Schematic diagram of one example of heat insulation between steam generator 7 and impulse turbine 1 part 安全弁33・噴出案内管34の1例の断面図Cross section of one example of safety valve 33 and ejection guide pipe 34 バイパス管35・開閉バルブ36の位置の1例を示す模式図Schematic diagram showing an example of the position of the bypass pipe 35 and the opening / closing valve 36

符号の説明Explanation of symbols

1・・インパルスタービン 2・・インパルスタービン軸歯車
3・・復水器 4・・オイルパン
5・・給水ポンプ 6・・予圧式チェックバルブ
7・・蒸気発生器 8・・排気管
9・・消音機 10・・排気マニホールド
11・・シリンダーヘッド 12・・給気マニホールド
13・・エアークリーナ 14・・シリンダーブロック
15・・フライホイール 16・・リングギヤ
17・・スタータモータ 18・・ボイラ又は原子炉
19・・水 20・・タービン
21・・発電機 22・・原子炉
23・・ボール 24・・スプリング
25・・バルブボデー 26・・走行風案内板
27・・車両 28・・インパルスタービン本体
29・・ノズル 30・・タービンハウジング
31・・循環ポンプ 32・・断熱材
33・・安全弁 34・・噴出案内管
35・・バイパス管 36・・開閉バルブ
37・・細管 38・・内燃機関原動機
39・・予熱器
1 ・ ・ Impulse turbine 2 ・ ・ Impulse turbine shaft gear 3 ・ ・ Condenser 4 ・ ・ Oil pan 5 ・ ・ Water supply pump 6 ・ ・ Preload type check valve 7 ・ ・ Steam generator 8 ・ ・ Exhaust pipe 9 ・ ・ Mute Machine 10 ・ Exhaust manifold 11 ・ Cylinder head 12 ・ Air supply manifold 13 ・ ・ Air cleaner 14 ・ ・ Cylinder block 15 ・ Flywheel 16 ・ ・ Ring gear 17 ・ ・ Starter motor 18 ・ Boiler or reactor 19 ・-Water 20-Turbine 21-Generator 22-Reactor 23-Ball 24-Spring 25-Valve body 26-Driving wind guide plate 27-Vehicle 28-Impulse turbine body 29-Nozzle 30. Turbine housing 31. Circulation pump 32. Heat insulation material 33. Safety valve 34. 5 .... Bypass pipe 36 ... Open / close valve 37 ... Thin tube 38 ... Internal combustion engine prime mover 39 ... Preheater

Claims (6)

液体又は気体の燃料を、空気と混合して燃焼室内で圧縮し電気火花で点火させ、或いは空気を燃焼室内で圧縮し高温にした上で、燃料を高圧噴射混合する事で着火させ、その爆発・燃焼させた際の圧力をピストン又はローターで受けて動力を取出す車両用の内燃機関原動機38において、燃焼室から出る高温の排気ガスを、消音器9等を介して外部へ排出する経路である排気マニホールド10や排気管8等に、水を通じ加熱する為の細管37を通じて蒸気発生器7の役目を兼用させ、その細管37内で蒸発・過熱する蒸気によりインパルスタービン1を回転させ、そのトルクを直接に該原動機38のフライホイール15外周に設けてある始動用のリングギヤ16にインパルスタービン軸歯車2で伝達し、且つそのインパルスタービン1より下流の圧力低下した蒸気を、該車両が走行時に受ける空気の流れを利用して冷却・凝縮する復水器3を備え、且つその下流の凝縮した水を該原動機38内の高温熱源(冷却水部・潤滑油部・機関の金属部)を利用して予熱する予熱器39又は同機能の配管を備え、且つその上流又は下流に電動モーター式の給水ポンプ5又は該内燃機関原動機38から受ける動力を断続する電磁クラッチ等付の給水ポンプ5を備え、水を送り込む元の復水器3から給水ポンプ5を介して送り先の蒸気発生器7までの間に、蒸気の逆流を防止し蒸気発生器7に必要な水のみを供給する為の与圧式チェックバルブ6を少なくとも1箇所以上は備え、且つその給水ポンプ5の動作制御に、最低動作開始排気ガス温度以上である事と、車両のアクセラレーターペダルの踏み込み角度等の一定以上の負荷を検知した状態等のアンド条件を使用して、発進時・登坂時及び高速走行時等の中高負荷時にのみ高温排気ガスの熱量を利用して該蒸気発生器7を作動させ、且つ該車輌制動時には、インパルスタービン1の上流の蒸気発生器7側回路と下流の復水器3側回路をバイパスする開閉バルブ36を、ブレーキ操作機構又は制動機構の作動と連動して開放するシステムとした、中高負荷時の総合熱効率を向上させて出力当たりの燃料消費量を低減し、制動時の安全対策を施した事を特徴とする車輌用のインパルスタービン型複合原動機、及び車両走行時の走行風と該原動機の中高負荷時の排気ガス熱量の使用方法Liquid or gaseous fuel is mixed with air and compressed in the combustion chamber and ignited with electric sparks, or air is compressed in the combustion chamber and heated to high temperature, and fuel is ignited by high-pressure injection and mixing, and its explosion In the internal combustion engine prime mover 38 for a vehicle that receives the pressure at the time of combustion with a piston or a rotor and extracts the power, this is a path for discharging high-temperature exhaust gas from the combustion chamber to the outside through the silencer 9 or the like. The exhaust manifold 10, the exhaust pipe 8, and the like are also used as the steam generator 7 through a thin tube 37 for heating through water, and the impulse turbine 1 is rotated by the vapor evaporated and superheated in the thin tube 37, and its torque is reduced. Directly transmitted to the starting ring gear 16 provided on the outer periphery of the flywheel 15 of the prime mover 38 by the impulse turbine shaft gear 2 and below the impulse turbine 1. Is provided with a condenser 3 that cools and condenses the steam whose pressure has been reduced by using the air flow received by the vehicle during travel, and the condensed water downstream thereof is converted into a high-temperature heat source (cooling water section) in the prime mover 38. A preheater 39 that preheats using a lubricating oil part or a metal part of an engine) or a pipe having the same function is provided, and the power received from the electric motor type water supply pump 5 or the internal combustion engine prime mover 38 upstream or downstream thereof. A feed water pump 5 with an intermittent electromagnetic clutch or the like is provided, and the steam generator 7 prevents back flow of steam between the original condenser 3 that feeds water through the feed water pump 5 to the destination steam generator 7. At least one pressurized check valve 6 for supplying only the water necessary for the operation, and the operation control of the water supply pump 5 requires that the exhaust gas temperature be above the minimum operation start temperature, and that the accelerator pedal of the vehicle Tread The steam generator 7 uses the heat quantity of the high-temperature exhaust gas only at medium and high loads such as when starting, climbing, and traveling at high speed, using AND conditions such as a state where a load exceeding a certain level such as a charging angle is detected. When the vehicle is braked, the open / close valve 36 that bypasses the upstream steam generator 7 side circuit and the downstream condenser 3 side circuit of the impulse turbine 1 is linked with the operation of the brake operation mechanism or the braking mechanism. Impulse turbine type composite prime mover for vehicles, characterized by improved overall thermal efficiency at medium and high loads, reducing fuel consumption per output, and taking safety measures during braking, Usage of running wind during vehicle running and exhaust gas calorific value at medium and high loads of the prime mover 蒸気発生器7の性能を向上させる為に、車両用原動機の排気マニホールド10から消音器9に至る排気管8(蒸気発生器7を含む)の全部又は一部、及び発生した蒸気をインパルスタービン1に供給する配管、及び該タービン1の高圧側機構外部、及び予熱器39から蒸気発生器7までの高温水が流れる部分等に、断熱材32を捲く等の保温処理を施した事を特徴とする請求項1に記載のインパルスタービン型複合原動機、及び車両走行時の走行風と該原動機の中高負荷時の排気ガス熱量の使用方法In order to improve the performance of the steam generator 7, all or part of the exhaust pipe 8 (including the steam generator 7) extending from the exhaust manifold 10 of the vehicle prime mover to the silencer 9 and the generated steam are transferred to the impulse turbine 1 It is characterized in that heat insulation treatment such as spreading a heat insulating material 32 is applied to the piping to be supplied to the outside, the high-pressure side mechanism of the turbine 1 and the portion where high-temperature water flows from the preheater 39 to the steam generator 7. The impulse turbine type composite prime mover according to claim 1, and a method of using the travel wind during vehicle travel and the amount of exhaust gas heat during medium and high loads of the prime mover 液体状態の水を通じる配管や給水ポンプ5等の各機構部が、該水の凍結により破損するのを防止する為に、該水に凝固点降下剤を混合した事を特徴とする請求項1,2に記載のインパルスタービン型複合原動機、及び車両走行時の走行風と該原動機の中高負荷時の排気ガス熱量の使用方法2. A freezing point depressant is mixed with the water in order to prevent each mechanism portion such as a pipe for passing water in a liquid state and the water supply pump 5 from being damaged by freezing of the water. 2. The impulse turbine type composite prime mover according to 2, and a method of using the travel wind during vehicle travel and the amount of exhaust gas heat during medium and high loads of the prime mover 蒸気システムに設計値以上の高圧力状態が発生した際に、人的損害や機構の破損を防止する為の安全弁33を、蒸気発生器7−インパルスタービン1間の高圧側及びインパルスタービン1−復水器3間の低圧側の双方に独立して備え、且つ噴出する蒸気の圧力や高温での危害を防止する為に、噴気の降温・降圧力化をする噴出案内管34を、該安全弁33に取りつけた事を特徴とする請求項1,2,3に記載のインパルスタービン型複合原動機、及び車両走行時の走行風と該原動機の中高負荷時の排気ガス熱量の使用方法When a high pressure state higher than the design value occurs in the steam system, a safety valve 33 for preventing human damage and mechanical damage is provided on the high pressure side between the steam generator 7 and the impulse turbine 1 and the impulse turbine 1 The safety guide 33 is provided with an ejection guide pipe 34 which is provided independently on both the low pressure sides of the water tanks 3 and which reduces the temperature and pressure of the fumarole in order to prevent the pressure of the ejected steam and the danger at high temperatures. The impulse turbine type composite prime mover according to claim 1, 2 or 3, and a method of using the running wind during traveling of the vehicle and the exhaust gas calorific value at medium and high loads of the prime mover 蒸気を凝縮する復水器3における過冷却を防止する為に、外気の入り口及び出口の開閉、又は通路面積の拡大縮小又は冷却ファンの回転の制御、及びその組合わせ等で、復水器3の凝縮後の水温と、復水器3の冷却容量を連動させる事を可能とした事を特徴とする請求項1,2,3,4に記載のインパルスタービン型複合原動機、及び車両走行時の走行風と該原動機の中高負荷時の排気ガス熱量の使用方法In order to prevent overcooling in the condenser 3 that condenses the steam, the condenser 3 is controlled by opening and closing the outside air inlet and outlet, expanding / reducing the passage area or controlling the rotation of the cooling fan, and combinations thereof. The impulse turbine type prime mover according to claim 1, 2, 3 and 4, and a vehicle running time, wherein the water temperature after condensation of the water and the cooling capacity of the condenser 3 can be linked. Method of using exhaust gas calorific value during running and medium and high loads of the motor 蒸気サイクルの液媒として、水の代りに代替フロン等の低沸点の液体を利用して、より低温で蒸気発生器7を作動させる事で、熱効率を向上させた事を特徴とする請求項1,2,3,4,5,6に記載のインパルスタービン型複合原動機、及び車両走行時の走行風と該原動機の中高負荷時の排気ガス熱量の使用方法2. The heat efficiency is improved by operating the steam generator 7 at a lower temperature by using a low boiling point liquid such as chlorofluorocarbon instead of water as a liquid medium of the steam cycle. , 2, 3, 4, 5 and 6, and an impulsive turbine-type composite prime mover, and a method of using the travel wind during vehicle travel and the amount of exhaust gas heat during medium and high loads of the prime mover
JP2004263049A 2004-08-13 2004-08-13 Impulse turbine type composite prime mover Expired - Fee Related JP4595134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263049A JP4595134B2 (en) 2004-08-13 2004-08-13 Impulse turbine type composite prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263049A JP4595134B2 (en) 2004-08-13 2004-08-13 Impulse turbine type composite prime mover

Publications (2)

Publication Number Publication Date
JP2006052718A true JP2006052718A (en) 2006-02-23
JP4595134B2 JP4595134B2 (en) 2010-12-08

Family

ID=36030353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263049A Expired - Fee Related JP4595134B2 (en) 2004-08-13 2004-08-13 Impulse turbine type composite prime mover

Country Status (1)

Country Link
JP (1) JP4595134B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270773A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Engine starter
WO2008089972A3 (en) * 2007-01-25 2008-11-27 Compact Dynamics Gmbh Device for recovering electric energy from the exhaust heat of an internal combustion engine in a motor vehicle and method for recovering electric energy from the exhaust heat of an internal combustion engine in a motor vehicle
JP2014080878A (en) * 2012-10-15 2014-05-08 Rui Qi Tong Heat recovery converter
CN107747789A (en) * 2017-08-30 2018-03-02 青岛海尔空调器有限总公司 The fault detect of air-conditioning and its supercooling tube group and processing method
CN110043412A (en) * 2019-04-30 2019-07-23 成都德慧美科技有限公司 A kind of energy recycle device for being mounted on airbome pulse formula fog machine
CN113982704A (en) * 2021-09-08 2022-01-28 华能南京金陵发电有限公司 Lubricating structure for detecting steam-electricity double-drive steam turbine
CN116771483A (en) * 2023-08-17 2023-09-19 江苏中奕和创智能科技有限公司 Water-cooled generator set with engine autonomous cooling function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988596A (en) * 1995-09-28 1997-03-31 Aisin Seiki Co Ltd Water cooling device for automobile engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988596A (en) * 1995-09-28 1997-03-31 Aisin Seiki Co Ltd Water cooling device for automobile engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270773A (en) * 2006-03-31 2007-10-18 Mazda Motor Corp Engine starter
WO2008089972A3 (en) * 2007-01-25 2008-11-27 Compact Dynamics Gmbh Device for recovering electric energy from the exhaust heat of an internal combustion engine in a motor vehicle and method for recovering electric energy from the exhaust heat of an internal combustion engine in a motor vehicle
JP2014080878A (en) * 2012-10-15 2014-05-08 Rui Qi Tong Heat recovery converter
CN107747789A (en) * 2017-08-30 2018-03-02 青岛海尔空调器有限总公司 The fault detect of air-conditioning and its supercooling tube group and processing method
CN107747789B (en) * 2017-08-30 2019-11-05 青岛海尔空调器有限总公司 The fault detection and processing method of air-conditioning and its supercooling tube group
CN110043412A (en) * 2019-04-30 2019-07-23 成都德慧美科技有限公司 A kind of energy recycle device for being mounted on airbome pulse formula fog machine
CN113982704A (en) * 2021-09-08 2022-01-28 华能南京金陵发电有限公司 Lubricating structure for detecting steam-electricity double-drive steam turbine
CN116771483A (en) * 2023-08-17 2023-09-19 江苏中奕和创智能科技有限公司 Water-cooled generator set with engine autonomous cooling function
CN116771483B (en) * 2023-08-17 2023-11-14 江苏中奕和创智能科技有限公司 Water-cooled generator set with engine autonomous cooling function

Also Published As

Publication number Publication date
JP4595134B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
Teng et al. A rankine cycle system for recovering waste heat from HD diesel engines-WHR system development
US7454911B2 (en) Energy recovery system in an engine
US7808118B2 (en) Method for creating energy sources for a vehicle drive system
JP2904931B2 (en) Engine assembly with internal combustion engine and steam engine
US4366674A (en) Internal combustion engine with Rankine bottoming cycle
US10012136B2 (en) System and method for recovering thermal energy for an internal combustion engine
Teng Waste heat recovery concept to reduce fuel consumption and heat rejection from a diesel engine
US9074492B2 (en) Energy recovery arrangement having multiple heat sources
EP3161275B1 (en) A waste heat recovery device
US20100212304A1 (en) Driving device
US7227274B2 (en) Method for creating energy sources for a vehicle drive system
US20140230761A1 (en) Engine Energy Management System
CN105492734A (en) Engine cooling system
Furukawa et al. A study of the Rankine cycle generating system for heavy duty HV trucks
US9500199B2 (en) Exhaust turbocharger of an internal combustion engine
CN104727912A (en) System For Recycling Exhaust Heat From Internal Combustion Engine
Cipollone et al. Experimental assessment of engine charge air cooling by a refrigeration unit
US20140150426A1 (en) Device and method for using the waste heat of an internal combustion engine
CN102230412B (en) Composite power system and method for recycling flue gas afterheat of vehicles
JP4595134B2 (en) Impulse turbine type composite prime mover
JP2007255278A (en) Rankine cycle system of engine
CN201265460Y (en) System for power generation by high-temperature gas discharged by internal combustion engine
WO2019128919A1 (en) Internal combustion engine waste heat recovery system
EP2829700A2 (en) Engine energy-management system
RU2369764C1 (en) Power plant in vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100903

R150 Certificate of patent or registration of utility model

Ref document number: 4595134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161001

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20191001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees